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Abstract. Several metrics have been proposed and utilized to diagnose the performance of linear Bayesian and geostatistical1

atmospheric inverse problems. These metrics are mostly related to assessing reduction in prior uncertainties, comparing mod-2

eled observations to true observations, and checking distributional assumptions. These metrics, though important, should be3

augmented with sensitivity analysis to obtain a comprehensive understanding of the performance of atmospheric inversions and4

critically improve the quality of an atmospheric inverse model and confidence in the estimated fluxes. In this study, we derive5

analytical forms of the local sensitivities of the estimated fluxes with respect to the number of inputs such as measurements,6

covariance parameters, covariates, and forward operator. These local sensitivities have different units and vastly different mag-7

nitudes. To this end, we also propose a technique to rank local sensitivities. In addition to local sensitivity, we provide a8

framework for global sensitivity analysis for linear atmospheric inversion that shows the apportionment of the uncertainty in9

different inputs to the uncertainty of estimated fluxes. Prior to performing an inversion, we also propose a mathematical frame-10

work to construct correlation matrices from a pre-computed forward operator that encompasses non-stationary structures. This11

is closely tied to the overall quality of estimated fluxes. We show the application of our methodology in the context of an12

atmospheric inverse problem for estimating methane fluxes in Los Angeles, California. The proposed framework is applicable13

to any other domain that employs linear Bayesian and geostatistical inverse methods.14

1 Introduction15

Inverse models within the context of atmospheric applications are often used for constraining global to regional scale fluxes of16

trace gases (for discussion see, Enting, 2002). At global scale, data assimilation (for further details on data assimilation, see17

Wikle and Berliner, 2007) that sequentially assimilates observations and updates the prior estimates of fluxes by utilizing an18

atmospheric model coupled with chemistry remains the primary inverse modeling framework. This framework at regional scale19

is complimented by inversions that assimilates all observations simultaneously by utilizing a precomputed forward operator20

(Lin et al., 2003) that describes the relationship between observations and fluxes (for details, see Enting, 2002). This work21

focuses on these latter class of inverse methods. It specifically addresses sensitivity analysis and correlation in the forward22

operator in the context of Bayesian (for e.g., see Lauvaux et al., 2016) and geostatistical inverse methods (see Kitanidis, 1996).23

24
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The senstivity analysis in context of this study is covered under local and global themes. Primarily, we focus on local sensitiv-25

ity analysis (LSA) that measures the effect of a given input on a given output. This is obtained by computing partial derivatives26

of an output of interest with respect to an input factor (See Rabitz, 1989, and Turányi, 1990). Within global theme, we focus27

on how uncertainty in the model output can be apportioned to different sources of uncertainty with respect to corresponding28

model input (Saltelli et al., 2008).29

30

Previously, many methods have been proposed and utilized to perform sensitivity analysis. These can be categorized as31

global and local sensitivity analyses. Global sensitivity analysis (GSA) includes Morris’s (e.g. Morris, 1991) one step at a time32

method (OAT), Polynomial Chaos Expansion (PCE) (e.g. Sudret, 2008), Fourier amplitude sensitivity test (FAST) (e.g. Xu and33

Gertner, 2011), Sobol’s method (e.g. Sobol, 2001) and Derivative based global sensitivity measures (DGSM) (e.g. Sobol and34

Kucherenko, 2010) among others. These existing GSA methods either: (1) assume independence of parameters (e.g., FAST35

and OAT), or are (2) computationally expensive (e.g., Sobol’s method), or (3) require knowledge of the joint probability dis-36

tribution of the parameter space (e.g., DGSM, PCE). Therefore, these traditional methods cannot be directly applied in linear37

atmospheric inverse problems, which consists of tens of thousands of non-normal, spatio-temporally correlated parameters38

(includes observations). Recently proposed active subspace based GSA (Constantine and Diaz, 2017) uses low dimensional39

approximation of the parameter space. In its current form, it is still computationally expensive for problems that consists of40

thousands of parameters (see case study in Constantine and Diaz, 2017).41

42

In comparison to GSA, local sensitivity method like Bayesian Hyper Differential Sensitivity Analysis (HDSA) computes43

partial derivatives with respect to maximum a posteriori probability estimates (MAP) of a quantity of interest. Our method for44

LSA is similar to Bayesian HDSA, except for the fact that it directly finds analytical derivatives of the MAP solution with45

respect to the input parameters in linear atmospheric inverse problems. This is possible when we know analytical closed form46

solutions of the estimated fluxes. In this study, we leverage a framework that is not only one of the most commonly adopted47

forms in atmospheric inversions but also admit closed form solutions. Thus, unlike the previous work on Bayesian HDSA,48

we do not generate samples from the prior to compute multiple MAP points. As we have limited knowledge of the prior49

distribution of the spatio-temporally correlated parameters. We derive exact functional form of the local sensitivity equations50

based on the closed form analytical MAP solution. Our method is simple and amenable to tens of thousands of parameters.51

Note as in all linear atmospheric inverse problems one of the key goals of this work is to study the importance of thousands of52

spatio-temporally varying parameters by ranking them and computation of the local sensitivities is a means to achieve that goal.53

54

Overall, in atmospheric trace gas inversions mostly LSA is performed. Within this context, LSA asseses how sensitive the55

posterior estimates of fluxes are with reference to the underlying choices or assumptions, like (1) observations included, (2)56

model-data error covariance, (3) the input prior information and its error, and (4) the forward operator (for discussion see,57

Michalak et al., 2017). This task is sometimes performed to arrive at a robust estimate of fluxes and their uncertainties. It is58

achieved by running an inverse model multiple times by varying the inputs and assessing their impact on the estimated fluxes59
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and uncertainties. Another complimentary way to do LSA is by computing local partial derivatives with respect to these quan-60

tities down to an individual entry that go in an inversion.61

62

LSA can be grouped with standard information content approaches such as averaging kernel or model resolution matrix and63

degrees of freedom for signal (DOFS; for details see Sec. 3.2.1 of this manuscript, Rodgers, 2000, and Brasseur and Jacob,64

2017). Averaging kernel matrix shows how the estimated fluxes are related or sensitive to the true fluxes. Thus, it belongs to the65

LSA category. However, LSA is more informative than DOFS and averaging kernel alone as it goes after individual components66

(see Sec. 3.2) that determine DOFS. Furthermore, DOFS is a measure that provides an estimate of the information resolved by67

an inversion. In comparison, LSA focuses on quantifying the impact and the relative importance of various components of an68

inversion in governing the estimates of fluxes.69

70

In this study, we focus on the quality of the inverse estimates of the fluxes which means providing diagnostic metrics to71

better characterize our understanding of the impact of input choices on the inverse estimates of fluxes and thus improve the72

quality of the inverse model. Specifically, in this technical note we provide: (1) analytical expressions to conduct post hoc (that73

is after an inversion has been performed) LSA by computing partial derivatives, (2) a scientifically interpretable framework for74

ranking thousands of spatio-temporally correlated input parameters with same or different units, (3) a mathematical schema for75

conducting GSA. However, GSA is considerably difficult to perform in the absence of the knowledge about the uncertainties76

associated with all the inputs that go in an inversion, and (4) a technique to assess spatio-temporal correlation between forward77

operators of two or multiple observations. This is tied to the overall diagnostics of the estimated fluxes as fluxes are strongly78

sensitive to the forward operator and improvement in understanding the representation of the atmospheric transport model error79

through spatio-temporal association in the forward operators can lead to significant improvement in designing the components80

of an atmospheric inversion framework.81

2 Organization of the study82

In a generic form a linear inverse problem can be written as:83

z = Hs + ε (1)84

where H is a forward operator that maps model parameters s (fluxes in the context of this work) to measurements z and85

encapsulates our understanding of the physics of the measurements. The error ε in Eq. (1) describes the mismatch between86

measurements and the modeled measurements (see Sec. 3).87

88

In a typical linear atmospheric inverse problem (see Fig. 1) the estimates of the fluxes (box 8 of Fig. 1) are obtained in a89

classical one stage batch Bayesian setup (for details see Enting, 2002; Tarantola, 2005), where the a priori term (box 3 in Fig. 1)90
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is based on a fixed flux pattern at a prescribed spatio-temporal resolution, and errors (box 6 in Fig. 1) are either assumed to be91

independent or are governed by a prescribed covariance structure (for details see Gurney et al., 2003; Rödenbeck et al., 2003,92

2006).93

Figure 1. The schema for performing a linear atmospheric inversion to obtain estimates of the fluxes of greenhouse gases. The middle

column (the green background box) lists all the inputs that are required for performing an inversion whereas the right column (the orange

background box) lists the modeling process (box 7) and the output obtained after performing an inversion (box 8). Note this work focuses on

understanding and ranking the impact of the inputs (box 3, 4, and 6 in the middle column) on the estimates of fluxes (box 8) and developing

correlation structures from the forward operator (box 5).

Within the previously mentioned setup, choice of the input parameters including the forms of error structures have profound94

impact on the quality of the inverse estimates of fluxes. Understanding the impact of these inputs is critical for evaluating the95

quality of estimated fluxes. Thus, in the first part of this work we utilize the understanding of the physics of the measurement96

that is encapsulated in H to generate correlation matrices that are scientifically interpretable in the context of estimated fluxes97

and to build an interpretable non-stationary model of the residual covariance structure (box 6 in Fig. 1). This is described in98

Sec. 3.1. In the second part of this work we assess and rank the importance of the inputs mentioned in the middle column (the99

green background box) of Fig. 1 in governing the estimates of fluxes (box 8 of Fig. 1). This is covered in Sec. 3.2. These two100

parts are followed by a methane (CH4) case study that demonstrates the applicability of our methods (see Sec. 4).101

102
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To maintain maximum transparency, facilitate assessment, and show applicability of our methods in Sec. 3 we also provide103

two well documented interactive MATLAB Livescripts (for details on Livescript see MatlabLivescript), one for each method-104

ological part. These Livescripts contain equations, code, and visualizations as it relates to the real-data case study described in105

Sec. 4, and are included as supplementary material. Separate pdfs of these Livescripts are also included for the readers who do106

not have access to MATLAB.107

3 Methods and derivation108

3.1 Analysis of the forward operator109

In inversions that assimilates all observations simultaneously, first a forward operator for each observation that would be in-110

cluded in an inversion is obtained from a transport model. These observations of trace gases can be obtained from multiple111

platforms that include in-situ network of fixed locations on the surface, intermittent aircraft flights and satellites. In most sit-112

uations, the spatio-temporal coverage of these forward operators are visually assessed by plotting an aggregated sum or mean113

of their values over a map of the spatial domain of the study. However, standard quantitative metrics to assess their coverage114

and intensity in space and time remains completely absent. In this study, we present two metrics for this assessment and these115

are defined below. These metrics conform to triangular inequality and therefore can be defined as distance function in their116

respective metric spaces.117

118

Note sometimes in the published literature on trace gas inversions the forward operator obtained from a transport model119

is referred to as a sensitivity matrix, Jacobian or footprint. Henceforth, to avoid misinterpretation, we always refer to Jaco-120

bian/sensitivity matrix/footprint as forward operator. We show our application through forward operators constructed by run-121

ning a Lagrangian transport model. However, our methods can also be applied in analytical Eulerian framework (see Brasseur122

and Jacob, 2017 for details).123

3.1.1 Integrated area overlap measurement index (IAOMI)124

The Integrated Area Overlap Measurement Index (IAOMI) summarizes the shared information content between two forward125

operators and hence indirectly between two observations. It is therefore a measure of the uniqueness of the flux signal associated126

with an observation in comparison to other observations.127

Intuitively, IAOMI can be better understood spatially. For a given time point, consider two forward operators F and G as128

two vector-valued functions over an area. IOAMI is the proportion of the common contribution of the two forward operators129

from the intersected area with respect to the overall contribution of the two forward operators. This is demonstrated through a130

Venn diagram in Fig. 2. Thus, IAOMI can be defined as:131

νF,G =
ΣAF∩AG

f1(F,G)

ΣAF∪AF
f2(F,G)

(2)132
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Figure 2. Venn diagram that defines IOAMI in terms of two hypothetical forward operators F and G

Where for any forward operator S, the corresponding set AS on which forward operator is always positive, is defined as133

AS = {x : S(x)> 0} and the two vector-valued functionals f1 and f2 can be given as:134

f1(F,G) =

min(F,G) on AF ∩AG

0 otherwise
and f2(F,G) =


max(F,G) on AF ∩AG

F on AF ∩AcG
G on AcF ∩AG

(3)135

Note that the IAOMI defined in Eq. (2) can also be written as a ratio of the sum of minimums over sum of the maximums as:136

νF,G =
ΣAF∪AG

min(F,G)

ΣAF∪AG
max(F,G)

(4)137

IAOMI ν can also be thought as a measure of similarity between two forward operators. It is evident from Eq. (4) that this is138

a weighted Jaccard similarity index or Ruzicka index (Cha, 2007). It follows that ν is closed and bounded in [0,1] and accounts139

for both the spatio-temporal spread and the intensity of the forward operator. A stronger ν implies larger overlap of intensity140

in space and time and is analogous to finding the common area within two curves. The corresponding measure of dissimilarity141

can be defined by 1−ν. The smaller the overlap or the larger the value of 1−ν, the larger is the dissimilarity. Note the ν metric142

is only indicative of the overlap in the spatio-temporal intensity between two forward operators. To measure how much of the143

shared intensity has come from either forward operator, we use a metric υF|(F,G) defined as:144
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υF|(F,G) =
ΣAF∩AG

f1(F,G)

ΣAF
f3(F)

(5)145

Where f3(F) = F on AF and 0 everywhere else. Likewise, we can define υG|(F,G) which shows proportional contribution146

of the forward operator G on the shared intensity. Both ν and υ can be computed from observations taken from same or different147

platforms, at same or different time or for two different in-situ measurement sites over a specified time-interval.148

3.1.2 Spatio-temporal Area of Dominance (STAD)149

The notion of the spatio-temporal area of dominance (STAD) stems naturally from IAOMI. For any two forward operators F,150

and G, we can find out the left-over dominant contribution of F and G by computing quantities F−G and G−F that leads151

to determination of the area where F or G is dominant.152

153

For two forward operators F and G, STAD of F with respect to G is defined as:154

STADF(F,G) =

F−min(F,G) on AF ∩AG

F otherwise
155

IAOMI and STAD of any forward operator F with respect to the forward operators F and G are linked by the following156

equation:157

νF,GΣAF∪AG
H2(F,G) + ΣAF∪AG

STADF(F,G) = ΣAF
F (6)158

Given a number of forward operators {F,G1,G2, · · ·}, STAD for any particular forward operator F with respect to all other159

forward operators can be generalized from Eq. (6) as FSTAD(F,Gmax) where Gmax = maxiGi on AG; AG = ∪kAGk
and160

AGk
is the set on which forward operator Gk is always positive (see Sec. 3.1.1 for its definition). STAD can be aggregated161

over any time-periods. Intuitively, STAD determines areas in space-time where one forward operator dominates over other162

forward operators. This is especially useful in locating the primary sources of fluxes that influences an observation.163

3.1.3 Jensen-Shannon distance (JSD) for forward operators164

Dissimilarity between forward operators can also be measured via entropy (for definition, see MacKay et al., 2003) based165

distances. Entropy distances are sensitive in capturing differences between two distributions that are similar in the first order166

(e.g. mean, or median) and second order moments (e.g. variance, or quartile deviation) but differ in higher order moments (e.g.167

Kurtosis) or modes (e.g. unimodal vs. multimodal). Entropy based distance metrics that adhere to triangular inequality can168

also be combined with spatio-temporal coverage to measure the probabilistic divergence between two forward operators. One169

such metric is Jensen-Shanon distance (JSD) (Nielsen, 2019) which can be used to compute distance between two distributions170
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generated by the forward operators. Normalized forward operators can be seen as samples from an underlying high-dimensional171

probability distribution such that total sum is one. For any vector-valued forward operator F, normalization by the total sum172

can be given as:173

PFk
=

Fk∑
kFk

(7)174

where Fk denotes kth entry of F and index k spans over the entire domain. The symbol P denotes normalized forward175

operator. We can then use JSD to compute distance between two normalized forward operators. Thus, JSD can be computed176

as:177

JSD (PF||PG) =

√
1

2
D (PF||M) +

1

2
D (PG||M) (8)178

where D stands for Kulback-Leibler (KL) divergence (see MacKay et al., 2003 for details). KL divergence D of any proba-179

bility distribution p with respect to another probability distribution q is defined as: D(p||q) =
∑
plog(p/q) and M is defined180

as: M = 1
2 (PF +PG). The symbol || is used to indicate that D (PF||M) and D (PG||M) are not conditional entropies (see181

MacKay et al., 2003). JSD is closed and bounded in [0,1] when KL divergence is computed with base 2 logarithm. Intuitively,182

JSD and 1− ν (i.e. 1-IAOMI) are comparable since both of them are measures of dissimilarity.183

184

Note that, one can use JSD or 1-IAOMI matrix of all pairwise forward operators as a representative distance matrix for185

describing correlations in model-data errors (i.e., R in Eq. (9)). These correlation matrices need to be at least positive semi-186

definite. Since JSD or 1-IAOMI matrices are real, symmetric, and admit orthogonal decomposition, entry-wise exponential187

of such symmetric diagonalizable matrices is positive-semidefinite. Thus, they can be incorporated in R via the commonly188

adopted exponential kernel of the distance matrix (see Ghosh et al., 2021). Furthermore, the IAOMI matrix itself is a positive189

semidefinite (Bouchard et al., 2013) matrix and can also be directly incorporated in R as a measure of correlation. However,190

we do not explore this area of research in this manuscript.191

3.2 Local sensitivity analysis in inversions192

For linear Bayesian and geostatistical inverse problem, the solutions (see, Tarantola, 2005 for the batch Bayesian and Kitanidis,193

1996 for the geostatistical case) can be obtained by minimizing their respective objective functions. These objective functions194

can be given as:195

L(s|y,sprior,H,Q,R) =
1

2
(z−Hs)tR−1(z−Hs) +

1

2
(s− sprior)

tQ−1(s− sprior) (9)196

L(s|y,H,Q,R,β) =
1

2
(z−Hs)tR−1(z−Hs) +

1

2
(s−Xβ)tQ−1(s−Xβ) (10)197
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where lower case symbols represent vectors and the uppercase symbols represent matrices, and this same approach of repre-198

sentation is adopted throughout the manuscript. In Eq. (9) and (10), z is an (n×1) vector of available measurements with unit199

of each entry being ppm. The forward operator H is an (n×m) matrix with unit of each entry being ppm µmoles−1m2sec.200

The matrix H is obtained from a transport model that describes the relationship between measurements and unknown fluxes.201

Unknown flux s is an (m×1) vector with unit of entries being µmoles m−2sec−1. The covariance matrix R of the model-data202

errors is an (n×n) matrix with unit of the entries being ppm2. The covariate matrix X is an (m×p) matrix of known covariates203

related to s. The unit of each of the entries in every column of the covariate matrix X is the unit of its measurement or if it is204

standardized (e.g. subtract a covariate by its mean and divide by its standard deviation) then it is unitless. For further discussion205

on standardization and normalization see Gelman and Hill, 2006. The units of (p× 1) vector β are such that Xβ and s have206

the same units. The prior error covariance matrix Q is an (m×m) matrix that represents the errors between s and Xβ with207

unit of the entries being
(
µmoles m−2sec−1

)2
.208

209

The analytical solutions for the unknown fluxes s in the Bayesian case (denoted by the subscript B) and the geostatistical210

case (denoted by the subscript G) can be obtained from Eq. (11) and (12) as given below.211

ŝB = sprior + QHt
(
HQHt + R

)−1
(z−Hsprior) (11)212

ŝG = Xβ+ QHt
(
HQHt + R

)−1
(z−HXβ) (12)213

Eq. (12) is often expressed as sG = Xβ+εwhere Xβ is the mean and ε= QHt
(
HQHt + R

)−1
(z−HXβ) is the stochas-214

tic part of the estimated fluxes. As the estimate of sG in Eq. (12) depends on the unknown β, it needs to be estimated prior215

to obtaining ŝG. The solution for the β̂ can be obtained from pre-determined quantities as described earlier in the context of216

Eq. (10) and can be given as:217

β̂ = Ω−1AtΨ−1z (13)218

Plugging in β̂ in Eq. (12) leads to Eq. (14) where all symbols are defined previously or in Eq. (15).219

ŝG = XΩ−1AtΨ−1z + QHtΨ−1
(
z−AΩ−1AtΨ−1z

)
where (14)220

A = HX,Ψ =
(
HQHt + R

)
, Ω = (HX)

t (
HQHt + R

)−1
HX (15)221

Note that, ŝB and ŝG in Eq. (11) and (12) are essentially functions which are represented by equations. This is a commonly222

adopted nomenclature that is used by researchers working in the field of atmospheric inversions. We differentiate Eq. (11)223

with respect to sprior, R, Q, z and Eq. (14) with respect to X, R, Q, z to obtain the local sensitivities. There are two ways224

to differentiate ŝ with respect to z, X, H, Q, and R. In the first case, every entry in z, X, H, Q, and R can be considered225

as a parameter that results in differentiation of ŝ with respect to these quantities. On the other hand, if the structures of the226
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covariance matrices Q and R are determined by parameters then ŝ can be differentiated just with respect to these parameters.227

In the former case, Eq. (11) and (14) are used to differentiate ŝ with respect to an entry at a time in z, X, H, Q, and R. Such228

an approach of entry-by-entry differentiation is useful if the computational cost in terms of memory constraint is important or229

if we would like to know the influence of a single entry on ŝ. We provide both sets of equations in this work.230

3.2.1 LSA with respect to observations, priors, scaling factors, and forward operators231

Local sensitivity of ŝ with respect to observations (z) can be given as232

∂ŝB
∂z

= QHtΨ−1 (16)233

∂ŝG
∂z

= XΩ−1AtΨ−1 + QHtΨ−1−QHtΨ−1AΩ−1AtΨ−1 (17)234

where all quantities are as defined earlier. The units of the entries in ∂ŝ
∂z are µmoles−1m2sec−1ppm−1 and the matrices are235

of dimension (m×n). These units are inverse of the units of H. Local sensitivities with respect to an observation zi for both236

the Bayesian and the geostatistical case can be written as vector of sensitivities times an indicator for the ith entry i.e. ∂ŝ∂zei237

where ei = ∂z
∂zi

is a vector of zeros with the ith entry equals to 1.238

239

Note by utilizing ∂ŝ
∂z , we can also obtain an averaging kernel (or model resolution matrix) and DOFS (see Rodgers, 2000).240

The averaging kernel matrix for any linear inverse model can be written as:241

V =
∂ŝ

∂z
×H (18)242

where V of dimension (m×m), is the local sensitivity of ŝ with respect to the true unknown fluxes. Then the DOFS can243

be computed by taking the trace of the averaging kernel matrix V. DOFS represents the amount of information resolved by244

an inverse model when a set of observations have been assimilated (for a detailed discussion, see Rodgers, 2000 and Brasseur245

and Jacob, 2017). Theoretically, the value of DOFS cannot exceed number of observations (n) in case of an underdetermined246

system and the number of fluxes (m) in case of an overdetermined system.247

248

We can directly compute local sensitivity of ŝ with respect to the prior mean flux sprior in the Bayesian case. In the geostatis-249

tical case, the prior mean is modeled by two quantities X and β. In this scenario, we need to find sensitivities with respect to250

X as well as β. These local sensitivities can be given as:251
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∂ŝB
∂sprior

= I−CH (19)252

∂ŝG
∂X

= Kz ⊗
(
I +
(
MAt−XΩ−1At−QHt

)
Ψ−1H

)
+
(
XΩ−1−M

)
⊗
(
Fz −KzA

tΨ−1H
)

(20)253

∂ŝG

∂β̂
= X−CA (21)254

where A = HX, B = QHt, C = BΨ−1, Ω = AtΨ−1A, Kz = ztΨ−1AΩ−1, M = CAΩ−1, and Fz = ztΨ−1H. The255

symbol⊗ represents the Kronecker product. The quantity ∂ŝB
∂sprior

is of dimension (m×m) and its entries are unitless. The quan-256

tity ∂ŝG
∂β̂

is of dimension (m×p) and units of the entries in each column of ∂ŝG
∂β̂

are of the form (µmoles−1m2sec−1)(unit of βi)−1.257

The sensitivity matrix ∂ŝG
∂X is of dimension (m×mp) where every ith block of m columns ((i−1)m+A : im) of ∂ŝG∂X has units258

of the form (µmoles−1m2sec−1)(unit of Xi)
−1 where Xi is the ith column of X. Note that, the sensitivity matrix ∂ŝB

∂sprior
in259

Eq. (19) can also be thought as proportion of posterior uncertainty to that of the prior uncertainty. In context of the Bayesian260

case, proportional uncertainty reduction becomes averaging kernel.261

262

Sometimes, it is important to know the influence of the prior of any particular grid point or an area consisting of few points263

on ŝ. Local sensitivity of ŝ with respect to the ith entry in sprior and β̂i is a matrix of dimension (m× 1) and can be written as264
∂ŝB
∂sprior

ei and ∂ŝG
∂β̂

ei respectively. However, the entry-wise ∂ŝG
∂Xij

is more complex and can be given by:265

∂ŝG
∂Xij

= (I−CH)

((
I−XΩ−1XtHtΨ−1H

) ∂X

∂Xij
Ω−1Xt + XΩ−1

∂Xt

∂Xij

(
I−HtΨ−1HXΩ−1Xt

))
Ftz (22)266

where ∂Xt

∂Xij
= Eij is a single-entry matrix with a one for a Xij for which differentiation is being performed and zero ev-267

erywhere else. For z, entry-by-entry differentiation can be easily performed, since both Eq. (11) and (14) result from linear268

models and are functions of the form Φz + n where Φ and n are independent of z. For example, Φ and n for Eq. (11) are269

QHt
(
HQHt + R

)−1
and sprior−QHt

(
HQHt + R

)−1
Hsprior respectively and are independent of z. In this case, ∂ŝB∂zi can270

be written as Φei where ei is a single-entry vector with a one for a zi for which differentiation is being performed and zero271

everywhere else. Local sensitivity ∂ŝG
∂zi

can similarly be defined for the respective Φ. Here both the quantities ∂ŝG
∂Xij

and ∂ŝB
∂zi

272

are matrices of dimension (m× 1).273

274

Local sensitivity of ŝ with respect to an entry in the forward operator has units of the form
(
µmoles−1m2sec−1

)2
ppm−1. In275

the Bayesian case this sensitivity can be written as:276

∂ŝB
∂H

= Q⊗Pz −BPz ⊗Ct−BCt⊗Pz −Q⊗D + BD⊗Ct + BCt⊗D− sprior⊗Ct (23)277

where ∂ŝB
∂H is a sensitivity matrix of dimension (m×mn). In the geostatistical case, this sensitivity can be partitioned into278

two components i.e., ∂β̂
∂H and ∂ε̂

∂H as shown in Eq. (24) where ∂β̂
∂H and ∂ε̂

∂H are obtained in an orderly sequence from Eq. (25)279

and (26).280
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∂ŝG
∂H

= X
∂β̂

∂H
+
∂ε̂

∂H
where (24)281

∂β̂

∂H
=−L⊗Gz −Pt

zAΩ−1Xt⊗KT + GzHQ⊗Kt + N⊗Gz + L⊗PT
z −PT

z HQ⊗Kt−N⊗Pt
z (25)282

∂ε̂

∂H
= Q⊗Pz −Cz⊗Ct−CHQ⊗Pz −XKtz⊗CT −CA

∂β̂

∂H
(26)283

The expanded form of some of the symbols in Eq. (23) through (26), which have not been expanded yet can be written284

as D = ΨHsprior, Gz = ztΨ−1AΩ−1AtΨ−1, L = Ω−1Xt, N = Ω−1AtΨ−1HQ, Pz = Ψ−1z, and K = Ψ−1AΩ−1. The285

quantities ∂ŝG
∂H , ∂β̂∂H , and ∂ε̂

∂H are sensitivity matrices of dimensions (m×mn), (p×mn), and (m×mn) respectively. The units286

of the entries of ∂ŝ
∂H are of the form (µmoles−1m2sec−1)2ppm−1.287

288

There might be times when we would like to know the sensitivity of the transport (H) with respect to certain source locations289

only. In this case, we can use ij form of Eq. (23) through (26) to obtain ∂ŝB
∂Hij

in parts. In this formulation, ∂ŝB
∂Hij

can be given290

as:291

∂ŝB
∂Hij

= C
∂H

∂Hij
(C(Hsprior− z)− sprior) + (Q−CHQ)

(
∂H

∂Hij

)t
Ψ−1(z−Hsprior) (27)292

∂ŝG
∂Hij

= X
∂β̂

∂Hij
+

∂ε̂

∂Hij
, where (28)293

∂β̂

∂Hij
=

(
−Kt ∂H

∂Hij

(
XN−CAS + QHt

)
+ KtHQ

∂Ht

∂Hij

(
Ψ−1ASt− I

)
+ Ω−1Xt ∂Ht

∂Hij

(
I−Ψ−1AS

))
Ψ−1z (29)294

∂ε̂

∂Hij
=

(
Q
∂Ht

∂Hij
−C

∂H

∂Hij
QHt−CHQ

∂Ht

∂Hij

)
Ψ−1

(
z−Aβ̂

)
−C

(
∂H

∂Hij
Xβ̂+ A

∂β̂

∂Hij

)
(30)295

where S = AΩ−1 and the matrix ∂H
∂Hij

is a single-entry matrix with a one for a Hij entry for which the differentiation is296

being performed and zero everywhere else. The quantities ∂ŝB
∂Hij

, ∂ŝG
∂Hij

, ∂β̂
∂Hij

, and ∂ε̂
∂Hij

are sensitivity matrices of dimensions297

(m×1), (m×1), (p×1), and (m×1) respectively. Units of ∂ŝB
∂Hij

and ∂ŝG
∂Hij

are the same as their kronecker product counterparts.298

3.2.2 LSA with respect to error covariance matrices and prior information299

In order to compute the local sensitivities of ŝ with respect to Q and R, consider that they are parametrized as Q(θQ) and300

R(θR) where θQ and θR are the parameter vectors. The differentiation with respect to error covariance parameters in Q and301

R can be accomplished from Eq. (31) through (34) where the subscript i indicates the ith covariance parameter for which302

differentiation is being performed.303
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∂ŝB
∂θQi

= (I−CH)
∂Q

∂θQi

HtΨ−1(z−Hsprior) (31)304

∂ŝG
∂θQi

=
(
−XΩ−1ATΨ−1H + I−QHTΨ−1H + QHTΨ−1AΩ−1ATΨ−1H

) ∂Q

∂θQi

HTΨ−1(z−AΩ−1ATΨ−1z)

(32)

305

∂ŝB
∂θRi

=−C
∂R

∂θRi

Ψ−1(z−Hsprior) (33)306

∂ŝG
∂θRi

= (−XΩ−1AT −B + CAΩ−1AT )Ψ−1
∂R

∂θRi

Ψ−1(z−AΩ−1ATΨ−1z) (34)307

All the quantities ∂ŝB
∂θQi

, ∂ŝG
∂θQi

, ∂ŝB
∂θRi

, and ∂ŝG
∂θRi

are sensitivity matrices of dimension (m× 1) and the units of the entries of308
∂ŝ
∂θQi

and ∂ŝ
∂θRi

are of the form (µmoles−1m2sec−1)(unit of θQi
or θRi

)−1. It is also possible to find ∂ŝ
∂Q and ∂ŝ

∂R directly as309

shown in Eq. (35) through (38).310

∂ŝB
∂Q

= HtΨ−1(z−Hsprior)⊗
(
I−HtΨ−1Bt

)
(35)311

∂ŝG
∂Q

=
(
Gz − zt

)
Ψ−1H⊗

((
B−MAt + LtAt

)
Ψ−1H− I

)
(36)312

∂ŝB
∂R

= Ψ−1(z−Hsprior)⊗Ψ−1HQ (37)313

∂ŝG
∂R

=
(
Gz − zt

)
Ψ−1⊗

(
B−MAt + LtAt

)
Ψ−1 (38)314

First two quantities ∂ŝB
∂Q and ∂ŝG

∂Q are sensitivity matrices of dimension (m×m2). The second set of quantities ∂ŝB
∂R and ∂ŝG

∂R315

are sensitivity matrices of dimension (m×n2). Equations (35) through (38) are useful when Q and R are fully or partially316

non-parametric. However, dimensions of these matrices can be quite large and users needs to be careful in realizing the full317

matrix.318

3.3 GSA: a variance-based approach319

GSA is a process of apportioning the uncertainty in an output estimate to the uncertainty in each input parameter. The term320

“global” stems from the idea of accounting for the effect of all input parameters simultaneously. This is different from “local”321

sensitivity analysis where the effect of a small change in each parameter on the functional output is considered separately while322

keeping all other parameters constant. Although quite important, a detailed GSA is challenging as it requires knowledge of the323

probabilistic variations of all possible combinations (also known as covariance) of the input parameters. In atmospheric inverse324

problems, it is hard to know the joint variation of all input parameters. However, sometimes it might be possible to know325

the approximate joint variation of a small subset of input parameters (e.g. the covariance between Q and R parameters). In326

such case, we can use a variance based approximate method to find the relative contribution of their uncertainties with respect327

to the total flux uncertainty. Note it is also possible to use DGSM (see Sobol and Kucherenko, 2010) or the active-subspace328
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technique (see Constantine and Diaz, 2017) in such a scenario. Since the variance based method proposed here doesn’t require329

any sampling and can levearage previously computed derivatives, we adher to this method in this study as an easy extension330

after LSA.331

332

The GSA method presented here leverages local sensitivities but actually belongs to the class of variance based methods.333

This is an approach that addresses the contribution to the total variance of the estimated fluxes. This is an approximate method334

unlike the exact decomposition technique of Sobol using conditional variances. It applies a simple first-order Taylor’s approx-335

imation around parameter estimates to obtain an approximate representation. This approach has been used in many research336

works including environmental modeling (e.g. Hamby, 1994) and life cycle assessment (Groen et al., 2017; Heijungs, 1996)337

among others.338

339

Broadly, we can consider ŝ as a function of the covariates Q,R,H,X(or sprior), and z i.e. ŝ = f(Q,R,H,X(or sprior),z).340

We can then compute how uncertainties of the individual components of f are accounted in the overall uncertainty of ŝ by341

applying multivariate Taylor series expansion of ŝ about its mean. Approximation up to first-order polynomial of the Taylor342

series expansion leads to the equation:343

Var(ŝ) =

(
∂ŝ

∂θ

t

Wθ
∂ŝ

∂θ

)
θ=θ̂

+ Error, where344

θ = (θQ,θR,θH ,θX(or sprior),θz) is the vector of parameters and W = Var(θ) is the covariance matrix of the parameters.345

It is however, challenging to estimate some of the individual covariance quantities such as the cross-covariance between θR and346

θH or between θH , and θQ to get the best possible decomposition of the total uncertainty of ŝ. Assuming no cross-covariance347

between Q and R and ignoring other parameters not related to the variance parameters, the diagonal of the variance of the348

posterior fluxes can be approximated as:349

Var(ŝi) =

L∑
j=1

(
∂ŝ

∂θQj

)2

i

Var
(
θQj

)
+

M∑
k=1

(
∂ŝ

∂θRk

)2

i

Var(θRk
)

∣∣∣∣∣∣
θ=θ̂

(39)350

Where the subscript i on the right-hand side of Eq. (39) refers to the ith entry of the derivative vector which is a scalar and351

parameters θQj
and θRk

refer to the jth and kth parameters of the sets θQ and θR respectively. From Eq. (39), we can see352

how uncertainty in the flux estimate is apportioned into variance components of θQ and θR of an inversion framework. No353

normalization is necessary in such a framework of GSA since on the right hand side of Eq. (39), the variance components are354

naturally weighted in such a way that both sides have same units. Once the two components of Vŝi (i.e. Eq. (39)) are computed,355

they can also be summed over the solution space (e.g. number of gridcells × number of time-periods) of ŝ and ranked to find356

the relative importance of the parameters.357

358
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Even after simplification, implementation of Eq. (39) is difficult as it requires knowledge of the uncertainties associated with359

the parameters of Q and R that are generally not known. Note that, it is also possible to have a complete apportionment of the360

variance of ŝ for all the parameters of f at least up to the first-order polynomial in the Taylor’s series. However, its implementa-361

tion is difficult since it requires knowledge of the covariances of all the parameters. We do not further discuss GSA in the context362

of the case study presented in this work, but we have shown its application with respect to Q and R in the MATLAB Livescript.363

364

Other than the variance based Taylor series method described above there are many other approaches to perform GSA365

as described in the introductory section but either they are computationally expensive or assume independence of the input366

parameters which is not the case in atmospheric inverse problems. We do not pursue other approaches for quantifying GSA367

associated with Q and R as they would lead to similar results and would not add anything substantial to the contributions of368

this study.369

3.4 Ranking importance of covariates, covariance parameters, and observations from LSA370

In atmospheric inverse modeling we encounter two situations while ranking importance of parameters. These are ranking of371

parameters when they have same or different units. The situation of ranking of parameters with same units arise when we want372

to study the influence of a group of parameters like observations that have same units. Comparatively, the situation of ranking373

of parameters with different units arise when we want to study the influence of groups of parameters that have different units374

like observations in z in comparison to variance of observations in R. Both these situations can be accounted through GSA375

that is described in Sec. 3.3. However, GSA in atmospheric inverse modeling cannot be fully performed due to the reasons376

mentioned earlier. Therefore, in this work we adopted a regression-based approach to rank the importance of parameters. The377

proposed approach utilizes output from LSA, accounts for multicollinearity and results in importance scores that are bounded378

between 0 to 1. We define the regression model for ranking as:379

ŝ = Eγ+ ξ (40)380

where ŝ are fluxes obtained from an inversion, and E is an (m× number of derivatives) matrix of the previously estimated381

sensitivities. The vector of unknown coefficients γ is of dimension (number of derivatives× 1), and ξ is an (m× 1) vector of382

unobserved errors associated with the regression model. To exemplify, E in Eq. (40) can be arranged as:383

E =

[
∂ŝ

∂z

∂ŝ

∂Q

∂ŝ

∂R
· ·
]

(41)384

In a regression-based approach, as described in Eq. (40), multicollinearity between independent variables in E can pose a385

problem for determining the importance of independent variables in influencing Γ. To avoid this problem, we computed relative386

importance weights by using the method outlined in Johnson, 2000. These weights are computed by first deriving uncorrelated387

orthogonal counterparts of the covariates in E and then regressing ŝ to get importance weights for each covariate. The weights388
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are standardized by the coefficient of determination i.e., R2 such that they range between 0 to 1 with the sum of all the weights389

being 1. Implementation of this method is included in the Livescript submitted with this manuscript.390

391

Note Least Absolute Shrinkage and Selection Operator (LASSO) or Principal Component Analysis (PCA) can also be392

employed to compute ranking under multicollinearity. However both these methods result in weights that are unbounded. Fur-393

thermore, “inference after selection” is ambiguous in linear regression which is the case for LASSO coefficients (see Berk394

et al., 2013 or chapter 6 of Hastie et al., 2015 for details). Consequently, interpreting the LASSO coefficients as ranks may not395

be the best approach.396

397

The regression-based approach described above can be employed when we want to rank parameters with both same and398

different units. However, an additional normalization step is required if we are interested in getting overall rank of the param-399

eters that have different units like in z, Q, and R. To perform this normalization, first each column in every sensitivity matrix400

(e.g. ∂ŝ∂z ,
∂ŝ
∂Q , and so forth) that is to be ranked is normalized (min-max normalization; see Vafaei et al., 2020) between 0 to401

1. Following which all columns for a sensitivity matrix are summed and renormalized to vary between 0 to 1. This results in402

one column that is representative of a sensitivity matrix for a particular group. We denote this by the subscript “grouped” (e.g.403
∂ŝ
∂z grouped) in latter sections.404

405

Once the normalized sensitivity vectors are obtained for each group the regression methodology as described above can be406

used to rank the importance of each group. The ranking methodology proposed above does not account for non-linear rela-407

tionship between estimates of the fluxes and the derivatives. If this is a concern then the strength of the nonlinear relationship408

among the derivative vectors can be first obtained by computing distance correlation between fluxes and the local derivatives409

of the parameters. After which we can employ variable transformation (e.g., Box-Cox transformation; see Sakia, 1992) before410

applying the regression methodology described above.411

412

Note that most analytical inversions use DOFS to diagnose information content of an inversion. DOFS = 0 implies that no413

informational gain happened in an inversion. In this case, the estimated flux reverts back to prior. In Eq. (40), this means that414

the γ coefficient that corresponds to Q would have the largest impact. Likewise if DOFS is large, then the γ coefficients for z415

and R would be larger (and likely correlated). We show this correspondence in Sec. 4.416

417

Finally, all different kinds of diagnostic methods that are applied in the context of any regression-based model can be used418

for understanding the relationship between dependent and independent variables. However, what covariates to include in E419

depends on the specific case study under consideration.420
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4 Results: Los Angeles methane inversion case study421

To demonstrate the applicability of our methods we utilize data from our published work on CH4 fluxes in the Los Angeles422

megacity (see Yadav et al., 2019). In this previous work, fluxes were estimated for South Coast Air Basin (SoCAB) region423

(see Fig. 3) at 0.03◦ spatial (1826 grid-cells) and 4-day temporal resolution from the Jan 27, 2015 through Dec 24, 2016.424

However, in the current work we utilize input data from Oct 23, 2015 through Oct 31, 2015 that is a single inversion period to425

contextualize the applicability of our methods. This period overlaps with the beginning of the well-studied Aliso Canyon gas426

leak (Conley et al., 2016). We do not extend our analysis for the full duration of the previous study as this is not the objective427

of this work and all the details associated with computing the inverse flux estimates can be found in that work. Furthermore, in428

the Livescript we present our sensitivity based equations with respect to the geostatistical approach to inverse modeling as this429

was the approach adopted in the previous study.430

431

For each observation included in the case study, a forward operator was obtained by using Weather Research Forecasting-432

Stochastic Time Inverted Lagrangian Model (see Yadav et al., 2019). These forward operators are used to demonstrate the433

application of the methodology for building IOAMI and JSD based correlation matrices in the MATLAB Livescript. They are434

also used in conjunction with measurements, and prior information to estimate the fluxes and perform LSA.435

4.1 STAD from the forward operators436

In this work we identify STAD for the 4-day period for which the inversion was performed. The spatial domain of the study437

over this time period is uniquely disaggregated by STAD as shown in Fig. 3. The STAD for different sites are mostly spatially438

contiguous but for some sites we found isolated grid cells which were not within the contiguous zones. We have manually439

combined these with STAD for the nearest site to create a spatially continuous map as shown in Fig. 3. The discontinuous440

version of the STAD shown in Fig. 3 is included in the Livescript. The discontinuities in the STAD result mostly from unequal441

number of observations across sites and indicates that aggregation over longer time-period is required to completely identify a442

noise free STAD. We do not investigate the time-period of this aggregation as this is beyond the scope of this work.443

444

Overall, the STAD for each site indicates regions of fluxes that contributes most to the observational (e.g. CH4 enhancement)445

signal. This in turn allows us to sub-divide the spatio-temporal variations in fluxes or enhancements by the STAD regions.446

4.2 Sensitivity analysis447

One of the main goals of the sensitivity analysis after performing an inversion is to identify the observations that had most448

influence on the flux estimates. Other than observations it is also important to explore the importance of other inputs to an449

inversion, like variance parameters in R. We describe the process of performing this analysis within the context of the case450

study mentioned in Sec. 4. This section discusses the relative importance of the input quantities in influencing ŝ by utilizing451

the local sensitivities.452
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Figure 3. Study area with county boundaries, measurement locations and the Spatio-Temporal Area of Dominance of measurement locations.

Site Importance Score Rank

GRA 0.26 1

ONT 0.24 2

COM 0.13 3

IRV 0.11 4

BND 0.10 5

CIT 0.07 6

FUL 0.07 7

USC 0.06 8

Table 1. The importance scores and ranking of 8 sites based on the sensitivity of the estimated fluxes (ŝ) to observations (z).
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4.2.1 Comparison and ranking of the observations453

Importance of the individual measurements in influencing ŝ can be easily computed through relative importance methodology454

described in section 3.4. Although, all entries of ∂ŝ∂z are in same units, direct ranking of observations or sites without employing455

relative importance technique can lead to misleading results. This happens due to the presence of large negative and positive456

values in ∂ŝ
∂z that are governed by the overall spatio-temporal spread, intensity of forward operators, and observations with457

large enhancements.458

Figure 4. The sensitivities ( ∂ŝ
∂zi

) and forward operator of the most and least important observation in inversions. Subplot A and C show the

sensitivity of ŝ with respect to the most (A) and least important (C) observation. The CH4 enhancement associated with these observations is

shown in the bottom left corner of the subplots and identified by the symbol zi. The right subplots B and D show forward operators associated

with the sensitivities shown in subplots A and C respectively.

For the case study in this work, we find that observations collected at the GRA site that is located nearest to the source of459

Aliso Canyon gas leak are most influential in governing ŝ as shown by site-based rankings in Table 1. These rankings primarily460

show the importance of observations from a site in influencing the estimated fluxes for the time period in consideration.461

Observation based assessment of ∂ŝ
∂z resulted in ranking an observation with the largest enhancement of 1.7 ppm to be most462

important. Contrarily, an observation for the BND site that had an enhancement of 0.02 ppm is found to be least important in463

influencing ŝ. Note this is not an observation with the lowest enhancement but with the lowest influence. The most and least464

important observation along with their corresponding forward operators are shown in Fig. 4.465
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4.2.2 Relative importance of Q,R,X,β, and z466

After the two-step normalization of ∂ŝ
∂z , ∂ŝ

∂X , ∂ŝ
∂H , ∂ŝ

∂β , ∂ŝ
∂Q , and ∂ŝ

∂R as described in section 3.4, the spatial plots of all these467

grouped quantities that we call as ∂ŝ
∂z grouped, ∂ŝ∂X grouped, ∂ŝ

∂H grouped, ∂ŝ
∂β grouped

, ∂ŝ∂Q grouped
, and ∂ŝ

∂R grouped can be created to explore468

the regions of the low and high weights (see Fig. 5) at the grid scale.469

470

Figure 5 shows that the weights of ∂ŝ
∂X grouped is lower in the regions well constrained by the observations. However, oppo-471

site is true in the case of ∂ŝ
∂Q grouped

and ∂ŝ
∂R grouped. This implies, that data constrained regions have lower posterior uncertainty472

thereby increasing the influence of prescribed or estimated uncertainty parameters. There is smoothness in the weights of473
∂ŝ
∂Q grouped

in the domain except around some sites (ONT, FUL, and IRV), which is an indication that the estimates of ŝ remain474

insensitive to the Q parameter in these regions. These relationships can be quantified by assessing correlation between local475

sensitivities and ŝ as shown in Fig. 6.476

477

There is strong evidence of multicollinearity among covariates in explaining ŝ (e.g. see first column of the Fig. 6). The478

direction of the best fit line appears to be in sync with the expectation regarding CH4 fluxes in the region during that time479

period. Thus, ∂ŝ∂z grouped is positively correlated with ŝ, which implies that higher enhancement in z leads to an increase in the480

estimated fluxes. Similarly ∂ŝ
∂β grouped

is also positively correlated with ŝ implying that any increase in the scaling factor increases481

the estimated fluxes. The negative relationship of ∂ŝ
∂X grouped and ŝ just indicates that an increase in ∂ŝ

∂X grouped inversely influences482

the magnitude of the estimated fluxes. This occurs as ŝ reverts to X in regions unconstrained by observations whereas opposite483

happens in areas constrained by observations that in the context of the case study includes sources of largest fluxes.484
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Figure 5. Grouped local sensitivities of the estimated fluxes (ŝ) with respect to z, R, X, Q, and β from top-left to bottom-right respectively.

Note, in the case of ∂ŝ
∂z grouped, ∂ŝ

∂R grouped, and ∂ŝ
∂X grouped two-step normalization is performed to generate subplots associated with these quan-

tities. Derivatives with respect to: (1) observations in z, (2) parameters in R, and (3) entries in X are normalized between 0 and 1 and then

after aggregating these for every grid-cell another Min-Max normalization is performed to limit their ranges between 0 and 1. Only single

normalization is performed in case of ∂ŝ
∂Q grouped

and ∂ŝ
∂β grouped

as they consist of only one parameter.
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Figure 6. Scatterplots of relationships between ŝ and ∂ŝ
∂z grouped, ∂ŝ

∂R grouped, ∂ŝ
∂X grouped, ∂ŝ

∂Q grouped
, ∂ŝ

∂β grouped
. Note as before in Fig. 5 all the

derivatives are normalized to limit their range between 0 and 1. The correlation coefficient of the relationships shown in each scatterplot is

reported on the top right corner of the subplots. The least square line of best fit is shown in red color in every subplot.

22



5 Discussion485

This study lays out techniques to assess the quality of the inferred estimates of fluxes. Sensitivity analysis is an important486

diagnostic tool to understand the impact of the choices made with respect to inputs on the estimated fluxes. However, it is not487

a recipe for selecting the proper forms of X or the structure of Q or R before performing an inversion. Other tools or methods488

such as Bayesian Information Criterion, Variance Inflation Factor should be used to perform this task.489

490

The case study in this work is designed only to demonstrate the methodologies described in Sec. 3. We do not impose non-491

negativity constraints to obtain positive CH4 fluxes as was done in the original 2019 study (Yadav et al., 2019). This is done492

because posterior likelihood changes its functional form under non-negativity constraints and the analytical forms of senstivity493

equations presented in this work become invalid. Thus, some CH4 fluxes obtained in this study have negative values as can be494

seen in the map of ŝ in the MATLAB Livescript. However, even in these situations assessing sensitivity through an inversion495

without imposition of non-negativity is useful as it provides insights into the role of z, R, Q, and X in governing estimates of496

non-negative ŝ.497

498

Like z, the importance of Q and R parameters can be directly obtained when all parameters have the same units. This499

happens in the case study presented in this work. However, this is not guaranteed as R can be a function of variance parameters500

and spatio-temporal correlation length expressed in the distance units in space and time. Furthermore, a nonstationary error501

covariance R can have parameters that have even more complicated units. This situation is not limited to R and also applies502

to the prior error covariance Q and X. Under these conditions, a comparison between the sensitivity matrices is only possible503

after normalization. Therefore, for comparative assessment we recommend use of a multiple linear regression based relative504

importance method to rank these quantities.505

506

The overall importance of ∂ŝ
∂z is best explored by performing column based normalization and then employing the relative507

importance method. Additionally, column based normalization can be augmented by row-based normalization to assess and508

rank the influence of observations in governing gridscale estimates of ŝ. Qualitatively, column and row-based assessment in-509

crease our understanding about the spatio-temporal estimates of ŝ. This is especially important when point sources are the510

dominant sources of emissions. Moreover, it also provides an insight into temporal aggregation error (e.g. Thompson et al.,511

2011) as the information encoded in an instantaneous measurement can get lost over the coarser time-period of inversion.512

This aggregation error also manifests spatially and is determined by the resolution at which fluxes are obtained. Note in many513

situations these aggregation errors are unavoidable as the choice of the spatio-temporal resolution of inversions is governed by514

the density of observations in space and time.515

516

Other than aggregation error, the aggregation of the estimated fluxes also has profound implications as it affects the robust-517

ness of the estimated fluxes. It can be proved (see Appendix A) that aggregation of ŝ in space and time from an inversion518
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conducted at finer resolution leads to reduction in uncertainty. However, even though ratio of observations to the estimated519

fluxes increases the number of fluxes uniquely resolved declines at coarser resolution (see Appendix B).520

521

The computational cost to calculate analytical partial derivatives is minimal as it is a onetime operation and is bounded by522

the computational cost to perform matrix multiplications, which at max is O(n3). For the case study presented in this work we523

can compute analytical derivatives and rank approximately 4000 parameters in few minutes on a laptop. Computing derivatives524

by using the Kronecker form of equations (Eq. (20), (23) through (26), and (35) though (38)) is faster for small problems. How-525

ever for large inverse problems the storage costs associated with these equations can become prohibitive. In these situations,526

we propose the use of ij form of the equations (Eq. (22), (27) through (30), and (31) though (34)) for assessment. Furthermore,527

computational problems can also arise in ranking the inputs if we have large number derivatives (e.g. greater than 10,000)528

as the ranking method used in this work relies on eigen value decomposition that has O(n3) computational complexity. To529

overcome this problem we advise grouping of derivatives to reduce the dimension of the problem.530

531

Finally, the estimation of STAD and the importance of sites can be influenced by data gaps therefore is not advised in532

presence of vast differences in the number of observations between sites.533

6 Conclusions534

Our work makes novel and major contributions that can significantly improve understanding of linear atmospheric inverse535

problems. It provides: (1) a framework for post hoc analysis of the impact of inputs on the estimated fluxes and (2) a way to536

understand the correlations in the forward operators or atmospheric transport model. The authors are not aware of any work537

where local sensitivities with different units are compared to rank the importance of inputs in a linear atmospheric inverse538

model.539

540

With respect to forward operators, we provide mathematical foundations for IOAMI, and Jensen-Shannon based metrics.541

These two metrics can be used to construct and accommodate a non-stationary error covariance for atmospheric transport com-542

ponent of the model-data mismatch matrix R. Furthermore, IOAMI based assessments can be extended to identify STAD from543

forward operators that can help in disaggregating regions of influence of the observations over a chosen temporal duration. This544

assists in understanding the connection between the sources of fluxes and observations from a particular measurement location.545

546

The IOAMI and JSD based metrics provide an important insight into the two critical and only required components for an547

inversion that is observations and forward operators (e.g., influence of an observation to the sources of fluxes through STAD).548

This task can be accomplished prior to conducting an inversion and should be complimented by post hoc LSA, which is a549

necessity for understanding the behavior of an inverse model. Overall, LSA can answer questions like for which locations and550

in what order of precedence was an observation important in influencing the estimated fluxes. This kind of analysis is entirely551
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different from estimating uncertainty that tells us reduction in the prior uncertainty due to observations.552

553

LSA is not a replacement for statistical tests that check the underlying assumptions and model specifications in inverse554

models. Neither is it a recipe for selecting inputs to an inverse model. However, it has an important role as explained above that555

can lead to an improved understanding of an atmospheric inverse model.556

557
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Appendix561

Here we show the proofs of two mathematical statements on the robustness and quality of the estimated fluxes as mentioned in562

Sec. 5. First, we show why marginal variance of the estimated fluxes (which is the diagonal of covariance matrix of ŝ) decrease563

when estimated fluxes are post aggregated to a coarser scale or upscaled (A). Second, we show why in such case the model564

resolution (also termed as, total information resolved by the observations) also decreases (B). Note that, the nomenclature used565

in the appendix should not be confused with the nomenclature introduced in Sec. 3. The abbreviations and symbols used here566

are independent of what are used in the Sec. 3.567

Appendix A: Proof of the reduction of marginal variance of ŝ when upscaling is performed568

Post inversion upscaling of any flux field s is equivalent to pre-multiplication by a weight matrix (in fact, a row stochastic569

matrix). This can be written as:570

s̃ = Jŝ (A1)571

Where J is a row stochastic (i.e. row-sums are all unity) k×m weight matrix (k <m). Variance of s̃ can be written as JΣJt572

where var(̃s) = Jvar(̂s)J t=JΣJt. The general structure of J is as follows:573

J =


0 j12 j13 0 0 0

j21 0 j2r+1 j2r+2 0 0
...

...
. . . . . .

...
...

0 0 0 jkm 0 0

=


jt1

jt2
...

jtk

 (A2)574

However, J is mostly sparse and values in few places. Rest of the entries are zeros. Essentially, J can have any number of575

non-zero entries in a row that may or may not be consecutive. This is because although on a map, adjacent grids are averaged,576
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they may not be adjacent upon vectorization. Moreover, geometry of the map may not be exactly square or rectangular. This577

means, depending on the upscaling factor and geometry, for any particular grid, there may or may not any neighboring grid for578

averaging. However, the rows are linearly independent as nearby grids are considered once for averaging. The properties of J579

are as follows:580

1. J1 = 1 or jti1 = 1 ∀i= 1,2, ·, ·,k581

2. jtijr = 0 for i 6= r582

We can rearrange the columns of J and the rows of Σ accordingly without loss of any structure such that non-zero entries583

are consecutive for each row of J. Matrix JΣJ′ under column permutation can be written as:584

JΣJt = JπΣπJtπ =


lt1 0 . . . 0

0 lt2 . . . 0
...

...
. . . .

0 0 . . . ltk



k×m
Ξ11 Ξ12 . . . Ξ1k

Ξ21 Ξ22 . . . .
...

...
. . . .

Ξk1 . . . . Ξkk



m×m
l1 0 . . . 0

0 l2 . . . 0
...

...
. . . .

0 0 . . . lk



p×k

(A3)585

=


lt1Ξ11l1 . . . . lt1Ξ1klk

. lt2Ξ22l2 . . . .

...
...

. . . .

ltkΞk1l1 . . . . ltkΞkklk



k×k

(A4)586

where Jπ and Σπ are the permuted J and Σ respectively. However, for notational clarity, we use l and Ξ as the sub-vector587

and sub-block-matrix of the Jπ and Σπ respectively. Note that, any lti is a row-vector of dimension (1,di), and Ξii is a square588

matrix of dimension (di,di) where
∑k
i=1 di =m. Thus, diagonal entry ltiΞiili is a scalar quantity. For any ith diagonal entry,589

the corresponding scalar quantity can be written as
∑
jrl lij lirΞjr. By symmetry of Ξ, this reduces to590

ltiΞiili =
∑
r

l2irΞ
2
lr + 2

∑
j>r

lij lirΞjr (A5)591

By Cauchy Squartz inequality on Ξjr, this can be written as592

∑
r

l2irσ
2
lr − 2

∑
j>r

lij lirσjjσrr ≤
∑
r

l2irσ
2
rr + 2

∑
j>r

lij lijσjr ≤
∑
r

l2irσ
2
rr + 2

∑
j>r

lij lijσjjσrr (A6)593

lir√σir −∑
r≥2

lir
√
σir

2

≤
∑
r

l2irσ
2
rr + 2

∑
j>r

lij lijσjjσrr ≤

(∑
ir

lir
√
σrr

)2

(A7)594

minrσrr

lir −∑
r≥2

lir

2

≤
∑
r

l2irσ
2
rr + 2

∑
j>r

lij lijσjjσrr ≤maxrσrr

(∑
ir

lir

)2

(A8)595
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This implies (by property 1 of the weight matrix J) that the ith diagonal entry is bounded by:596

minrσrr

lir −∑
r≥2

lir

2

≤ J′iΣiiJi ≤maxrσrr ≤
di∑
r=1

σrr (A9)597

where
∑di
r=1σrr is the sum of the marginal variance of the ith block of un-averaged ŝ. Thus, sum of the marginal variance598

of s̃ which is the sum of the ith diagonal JtiΣiiJi is also smaller or equals to the sum total of marginal variance of ŝ. Clearly,599

we see that under upscaling or averaging, diagonal of the variance matrix shrinks in magnitude from the un-averaged one. As600

a consequence, it implies that marginal variance of the posterior mean decreases.601

Appendix B: Proof of the reduction in model resolution when upscaling is performed602

Upscaled forward operator H̃ can be written as:603

H̃ = HB where B is the upscaling matrix (B1)604

Dimension of B has the dimension of transpose of J. Structual form of B is similar to the form of J explained in A2. Non-zero605

entries of B are in the same place as J′ with magnitude replaced by unity. This is evident from the fact that forward operator606

is summed instead of being averaged for upscaling. Properties of B are as follows:607

1. B1 = 1608

2. JB = diag(N)k×k where N is the vector of number of neighboring gridcells for any particular gridcell i.e. N = (N1, . . . ,Nk)609

3. BJ =


C1 0 . . . 0

0 C2 . . . 0
...

...
. . . .

0 . . . . Ck



m×m

is a block diagonal matrix. Any block Ci of JA can be expressed as a varying di-610

mension (depending on the number of neighboring grids of any particular gridcell) matrix of form:611

Ci =


1
Ni

. . . 1
Ni

...
. . .

...
1
Ni

. . . 1
Ni


Ni×Ni

=
1

Ni
11t (B2)612

4. BJ is symmetric and positive semi-definite613

First three properties are simple observations from the construction. So, here we provide proof of the fourth property.614

Proof. By construction, Det(BJ−λI) =Det(C1−λI) . . . .Det(Ck−λI). So, eigen values of BJ are the list of eigen values615

of the block matrices. It can be proved that 1 and 0 are the only two distinct eigen values of Ci for any i. Below here is a brief616
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argument on that:617

618 (
1
Ni

11t
)

1= 1
Ni

1Ni = 1 ·1 implies one eigen value of Ci is 1. Observe that, rank
(

1
Ni

11t
)

= rank(1) = 1. Hence, dimen-619

sion of null space dim
(
N
(

1
Ni

11t
))

= k− rank
(

1
Ni

11t
)

= k− 1. This implies that the other eigen value of Ci is 0 with620

multiplicity k− 1.621

So, not only Ci is symmetric but also the eigen values Ci are always non negative. Consequently, all eigen values of BJ are622

of similar form i.e. BJ is symmetric positive semidefinite.623

Finally, model resolution matrix for inversion can be written as ∂ŝ
∂z

H where H is the forward operator operator. Post inversion624

aggregated model-resolution can be written as:625

∂s̃

∂z
H̃ = A

∂ŝ

∂z
HB By Eq. (A1) and B1 (B3)626

The question is what happens to the trace of the model-resolution under the upscaled case? We provide a proof for the simple627

batch Bayesian case in lemma B. Proof for the geostatistical case is similar and left for the enthusiastic readers.628

Lemma 1.

Mres = QH′ψ−1H629

Mresaggregated = JQH′ψ−1HB then630

trace(Mresaggregated)≤ trace(Mres) (B4)631

Proof. Model resolution for the aggregated case can be written as:632

trace(Mresaggregated) = trace(JQH′ψ−1HB) = trace(BJQH′ψ−1H) = trace(WS) where W = BJ, S = QH′ψ−1H

(B5)

633

Where S and W are both of dimension (m×m). S is a positive semidefinite matrix since both Q and H′ψ−1H are positive634

semidefinite. For Wm×m and Sm×m positive semidefinite, trace of their product can be bounded by the following quantities635

(see Kleinman and Athans, 1968 and discussion in Fang et al., 1994):636

λmin(W)trace(S)≤ trace(WS)≤ λmin(W)trace(S) (B6)637

By Property 4 of the weight matrix B, we know that λmin(W) = 0 and λmax(W) = 1, hence the above reduces to 0≤638

trace(WS)≤ 1 · trace(S). Hence is the proof by B5.639
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