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Abstract. Several metrics have been proposed and utilized to diagnose the performance of linear Bayesian and geostatistical
atmospheric inverse problems. These metrics are-mostly-related-to-assessingreduction—primarily assess reductions in prior
uncertainties, eomparing-compare modeled observations to true observations, and eheeking-check distributional assumptions.
MWWMWMMMMQShOMd be augmented with sensitivity analysis to obtain a

-atmospheric inversion performance
and improve the quahty ef—ﬁmﬁ&&ne%pheﬁ&ﬂwef%&medekand confidence in the estimated—fluxesinverse estimates. In this

study, we derive analy

comprehensive understanding of

as—closed-form expressions of local sensitivities for various inputs, including measurements, covariance parameters covari-
ates, and a forward operator.

To further enhance our understandin
we complement local sensitivity analysis with a framework for global sensitivity analysis ferJinear-atmospheric-inversion-that
shew&%he—&ppefﬂeﬁmeﬂt—ef—%heﬂﬂeeﬁ&mfwﬁrdﬁfefeﬂkthat can apportion the uncertainty in inputs to the uncertainty ef

se-associated with inverse estimates. Additionally, we propose a math-
ematical framework to construct nonstationary correlation matrices from a pre-computed forward operatorthat-encompasses

non-stationary-struetares—Fhis—, which is closely tied to the overall quality of estimated-fluxes—We-show-inverse estimates.

We demonstrate the application of our methodology in the context of an atmospheric inverse problem for estimating methane

fluxes in Los Angeles, California.

1 Introduction

ing-In_atmospheric applications
inverse models are frequently used to estimate global to regional scale fluxes of trace gases (for-discussion-see; Enting;2002)-
Atfrom atmospheric measurements (Enting, 2002). At a global scale, data assimilation (forfurther-details-on-data-assimilation;

see—Wikle-and Berliner; 2007)-thatsequentially—assimilates-ebservationsremains the primary inverse modeling framework
which assimilates observations sequentially and updates the prior estimates of fluxes by utilizing an atmospheric model cou-
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pled with chemistry
WHWMWMM%MMMA&W
inversions that assimilate all observations simultaneously by utilizing a precomputed-forward-operator-(bin-et-al2603)pre-computed
forward operator (Lin et al., 2003) that describes the relationship between observations and fluxes are commonly used (for de-

tails, see Enting, 2002). This work focuses on theselatterclass-ofinverse-methods—Itspeeifieally-the use of pre-computed
forward operators for atmospheric inverse modeling and addresses sensitivity analysis and correlation in the forward operator

in the context of Bayesian (fer-e.g., see-Lauvaux et al., 2016) and geostatistical inverse methods (see-¢.g., Kitanidis, 1996).

The s

sensitivity analysis in this work is covered under local and global themes.
Primarily, we focus on local sensitivity analysis (LSA)that-, which measures the effect of a given input on a given output -
Fhis-and is obtained by computing partial derivatives of an output e st-wi s uantity of interest for an in-
put factor (see See Rabitz, 1989, and Turdnyi, 1990). Within glebal-themethe global theme (designated as Global Sensitivity
Analysis), we focus on how uncertainty in the model output can be apportioned to different seurees-of-uneertainty-with-respeet
to-corresponding-modelinput-model inputs (Saltelli et al., 2008).
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Overall, in atmospheric trace gas inversions, mostly LSA is performed. Within this context, LSA asseses-assesses how

sensitive the posterior estimates of fluxes are with-referenee-to-regarding the underlying choices or assumptions, like (1) ob-
servations included, (2) model-data error covariance, (3) the input prior information and its error, and (4) the forward operator
(for discussionsee;-, see Michalak et al., 2017). This task is sometimes performed to arrive at a robust estimate of fluxes and
their uncertainties—tt-is-achieved-, by running an inverse model multiple times by-while varying the inputs and assessing
their impact on the estimated fluxes and uncertainties. Another eemphmeﬁfdiﬂycmway to do LSA is by computing

local partial derivatives wi f inputs that go into an inversion.

LSA can be grouped with standard information content approaches such as averagingkernel-or-modelresolution-matrix-an
averaging kernel and degrees of freedom for 51gna1 (DOFS; for details, see Sec. 2.2.1 of this manuscrlpt Rodgers, 2000, and

Brasseur and Jacob, 2017).

%&%bﬂeﬂgﬁeﬂ%—]rs%eatengowever LSA is more informative than POFS-and-averaging kernel-aloneas-itgoes-after
these approaches alone, as it examines individual components (see Sec. 2.2) that determine DOFS —Furthermore; DOES-s-a

the-impaet-and-the-and quantifies the impact and relative importance of various components of an inversionin-geverning-the
estimates-of-fluxes.

In this study, we focus on the quality of the inverse estimates of the fluxes, which means providing diagnostic metrics to
better-characterize-improve our understanding of the impact of input choices on the inverse estimates of fluxes and thus im-
prove the quality of the inverse model. Specifically, in this technical notewe-provide:-, we provide (1) analytieal-closed-form

expressions to conduct pest-hec(thatis-after-an-inversion-has-been—performed)-LSA by computing partial derivatives, (2)
a scientifically interpretable framework for ranking thousands of spatio-temperatly-spatiotemporally correlated input param-

eters with the same or different units of measurement, (3) a mathematical schema for conducting GSA-—Hewever, GSA-is

in-an-inversion;-global sensitivity analysis (GSA), and (4) a technique to assess spatio-temperal-the spatiotemporal correlation

between forward operators of two or multiple observations—This-, which is tied to the overall diagnostics of the estimated fluxes
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2 Organization-of the studyMethods and derivation

In a generic form, a linear inverse problem can be written as:

z = Hs + e, 6]

where H is a forward operator that maps model parameters s—(fluxes in the context of this work) to measurements z and
encapsulates our understanding of the physics of the measurements. The error € in Eq. (1) describes the mismatch between

measurements and the modeled measurements (see Sec. 23).

In a typical linear atmospheric inverse problem (see Fig. 1), the estimates of the-fluxes (box 8 of Fig. 1) are obtained in a
classical one-stage-one-stage batch Bayesian setup (for details, see Enting, 2002; Tarantola, 2005);-where-. In this setup, the
a priori term (box 3 in Fig. 1) is based on a fixed flux patternat-a-preseribed-spatio-temperal-reselution, and errors (box 6 in
Fig. 1) are either assumed to be independent or are governed by a preseribed-pre-defined covariance structure (for details, see
Gurney et al., 2003; Rodenbeck et al., 2003, 2006).

Within the previously mentioned setup, the choice of the input parameters, including the forms of error structureshave
profound-impaet-on-, profoundly impacts the quality of the inverse estimates of fluxes. Understanding the impact of these

inputs is critical for evaluating the quality of the estimated fluxes. Thus, mﬁ&ﬁf@t—pafkef—%hi%weﬂeﬁrst (Sec 2.1), we uti-
lize the understanding of the physics of the m

WW%MM@&WM%&W (box 6 in
Fig. 1). This+ -Second, we assess and rank the importance of the inputs
menttoned-(Sec. 2.2) shown in the middle column (the green background box) of Fig. 1 in-governing-the-estimates-of-flaxes
(box 8 of Fig. 1)-This-is-eovered-in-See-—2-2—These-twoparts-arefollowedby-a-methane(CHy, which is finally followed, by

methane (CHy) case study that demonstrates the applicability of our methods (see Sec. 32).
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Figure 1. The schema for performing a linear atmospheric inversion to obtain estimates of the fluxes of greenhouse gases. The middle
column (the green background box) lists all the inputs that are required for performing an inversion whereas the right column (the orange
background box) lists the modeling process (box 7) and the output obtained after performing an inversion (box 8). Note this work focuses on
understanding and ranking the impact of the inputs (box 3, 4, and 6 in the middle column) on the estimates of fluxes (box 8) and developing

correlation structures from the forward operator (box 5).

3 Methods-and-derivation
2.1 Analysis of the forward operator

In inversions that assimilates-assimilate all observations simultaneously, first-a forward operator for each observation that-would
be-included in an inversion is obtained from a transport model. These observations eftrace-gases-can be obtained from multiple
platformsthat-inetude-, including an in-situ network of fixed locations on the surface, intermittent aircraft flights, and satellites.
In most situations, the spatio-temporal-spatiotemporal coverage of these forward operators are-is visually assessed by plotting
an aggregated sum or mean of their values over a map-of-the-spatial-domainef-the-studyspatial domain. However, standard
quantitative metrics to assess-evaluate their coverage and intensity in space and time remains-completely-remain absent. In
this study, we present two metrics for this assessmentand-these-, which are defined below. These metrics conform to triangular

inequality and therefore-can-be-defined-as-distance-funetion-are distances in their respective metric spaces.



132
133
134
135
136

137

138
139
140

141
142
143
144

145

Note that sometimes in the published literature on trace gas inversions, the forward operator obtained from a transport
model is referred to as a sensitivity matrix, Jacobian, or footprint. Henceforth, to-aveid-misinterpretation-we always refer
to the Jacobian/sensitivity matrix Heetprint-as-forward-eperatoror footprint as a forward operator to avoid misinterpretation.
We show our application through forward operators constructed by running a Lagrangian transport model. However, our-the

proposed methods can also be applied in analytical-the Eulerian framework (see Brasseur and Jacob, 2017 for details).

2.1.1 Integrated area overlap measurement index (IAOMI)

The Integrated Area Overlap Measurement Index (IAOMI) summarizes the shared information content between two forward
operators and hence indirectly between two observations. ItisthereforeIt is, therefore, a measure of the uniqueness of the flux

signal associated with an observation in-comparisor-compared to other observations.

Zmin(F, 0=0 4 Zmin(F, G) 4 Zmin(G, 0)=0

Zmax(F,0)=ZF+ Zmax(F,G) +Zmax(G,0)=ZG

Figure 2. Venn diagram that defines FOAMEIAOMI in terms of two hypothetical forward operators F and G

Intuitively, IAOMI can be better understood spatially. For a given time point, consider two forward operators F' and G as two
vector-valued functions over an area. IOAMI-Index IAOMI is the proportion of the common contribution of the two forward
operators from the intersected area with respect to the overall contribution of the two forward operators. This is demonstrated

through a Venn diagram in Fig. 2. Thus, IAOMI can be defined as:

_ Yarnacfi(F,G) Bapnacfi1(F,G)
e B2 F.G) Sy .G’

(@)

Vr,.G
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Where-where for any forward operator S, the corresponding set Ag on which forward operator is always positive, is defined

as Ag = {x : S(x) > 0} and the two vector-valued functionals f; and f5 can be given as:

maz(F,G) onArNAg
and f2(F,G)=(F on Ap NAg (3)
G on AL NAg

min(F,G) on ArNAg

fl (Fv G) =
0 otherwise

Note that the IAOMI defined in Eq. (2) can also be written as a ratio of the sum of minimums over sum of the maximums as:

o EAFuAGmm(F, G)
VF,G =
Yapuacmaz(F,G)

“)

TAOMI v can also be thought as a measure of similarity between two forward operators. It is evident from Eq. (4) that this is
a weighted Jaccard similarity index or Ruzicka index (Cha, 2007) which describes similarity between two forward operators
F and G. It follows that v is closed and bounded in [0, 1] and accounts for both the spatie-temperal-spatiotemporal spread and
the intensity of the forward operator. A stronger v implies larger overlap of intensity in space and timeand-, is analogous to
finding the common area within two curves—Fhecorresponding-, and is indicative of the magnitude of overlapping information,
a knowledge beneficial in the context of satellite observations with a higher potential for sharing information content.

A measure of dissimilarity can be obtained from v and can be defined by 1 — v. The smaller the overlap or the larger the
value of 1 — v, the larger-is-the-disstmilaritymore significant the disparity. Note the v metric is only indicative of the overlap
in the spatie-temporal-spatiotemporal intensity between two forward operators. To measure how much of the shared intensity

has come from either forward operator, we use a metric vp|(r,q) defined as:

Yarnacfi(F,G)

UF|(F,G) = Sa f3(F) )

Where-where f3(F) = I" on Ap and 0 everywhere else. Likewise, we can define vg|(r,g) Which shows proportional contri-
bution of the forward operator G on the shared intensity. Both v and v can be computed from observations taken from same or

different platforms, at same or different time or for two different in-situ measurement sites over a specified time-interval.

2.1.2 Spatio-temporal Area of Dominance (STAD)

T . F thespati |
The spatiotemporal area of dominance (STAD) stems naturally from IAOMI. For any two forward operators F, and G, we
can find out the left-over dominant contribution of F and G by computing quantities F — G and G — F that leads-te-lead to

the determination of the area-areas where F or G is dominant.
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For two forward operators F and G, STAD of F with respect to G is defined as:

F—min(F,G) onArnNAg

STADg(F,G) =
F otherwise

TAOMI and STAD of any forward operator F with respect to the forward operators F and G are linked by the following

equation:

VF,GZAFUAGH2(F’G> + EAFuAGSTADF(F,G) = ZAFF (6)

Given a number of forward operators {F,G1, Gy, -}, STAD for any particular forward operator F with respect to all other
forward operators can be generalized from Eq. (6) as Fstap(F, Gmax) where G = max; G; on Ag; Ag = U Ag, and

Ag, is the set on which forward operator Gy, is always positive (see Sec. 2.1.1 for its definition). STAD can be aggregated

over any time-periods. Intuitively, STAD determines areas in space-time where one forward operator dominates over other
forward operators—This-, which is especially useful in locating the primary seurees-of-fluxes-thatinflueneesflux sources that

influence an observation.
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JSD (Pr||Pa) =

13D (Pg||M)+ $D (Pg||M),

Note-that;-one—can-useJSP-or1-IAOMI-; see Appendix B) matrix of all pairwise forward operators as a representative
distance matrix for describing correlations in model-data errors (i.e., R in Eq. (7)). Thesecerrelation-matricesneed-to-be-at
least-positive-semi-definite—Sinee-As JSD or 1-TAOMI matrices are real, symmetric, and admit orthogonal decomposition, the

entry-wise exponential of such symmetric diagonalizable matrices is positive-semidefinite —Thus;-they-and can be incorporated

-model data mismatch matrix R (see Ghosh et al.,

2021). Furthermore, the TAOMI matrix itself is a positive semidefinite (Bouchard et al., 2013) matrix and can also be directly

incorporated in R as a measure of correlation. This is an example of how IAOMI or 1- IAOMI could be particularly useful for
satellite data based inversions with higher degree of spatial overlap of the forward operators. However, we do not explore this

area of research in this manuscript.
2.2 Local sensitivity analysis (LSA) in inversions

For linear Bayesian and geostatistical inverse problem, the solutions (see, Tarantola, 2005 for the batch Bayesian and Kitanidis,
1996 for the geostatistical case) can be obtained by minimizing their respective objective functions. These objective functions

can be given as:

L(sly,sprior, H,Q,R) = %(z — Hs)tRfl(z —Hs)+ %(s - spﬂor)thl(s — Sprior) @)
Lsly, HLQ R, ) = 5 (5~ Hs) 'R~z — Hs) + (s~ XB)'Q (s - X), ®

where-lower-ease-where lowercase symbols represent vectors and the uppercase symbols represent matrices, and this same
appreach-of-exact representation is adopted throughout the manuscript. In Eq. (7) and (8), z is an (n x 1) vector of available

measurements with unit of each entry being ppm. The forward operator H is an (n x m) matrix with unit of each entry being

1

ppm pmoles ™ 'm2sec. The matrix H is obtained from a transport model that describes the relationship between measurements

2sec™!. The covariance matrix

and unknown fluxes. Unknown flux s is an (m x 1) vector with unit of entries being pmoles m—
R of the model-data errors is an (n x n) matrix with unit of the entries being ppm?. The covariate matrix X is an (m x p)

matrix of known covariates related to s. The unit of each of the entries in every column of the covariate matrix X is the unit
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of its measurement or if it is standardized (e.g. subtract a-covartate-by-its-mean-the mean from the covariate and divide by its
standard deviation) then it is unitless. For further discussion on standardization and normalization see Gelman and Hill, 2006.
The units of (p x 1) vector 3 are such that X3 and s have the same units. The prior error covariance matrix Q is an (m x m)

. . . . . 2
matrix that represents the errors between s and X3 with unit of the entries being (umoles mfzsecfl) .

The analytical solutions for the unknown fluxes s in the Bayesian case (denoted by the subscript B) and the geostatistical

case (denoted by the subscript G) can be obtained from Eq. (9) and (10) as given below.

Sp= Sprior + QHt (HQHt + R) o (Z - HSPFiOI’) ©)
$¢ = X8+ QH' (HQH'+R) ™' (z— HXJ) (10)

In linear Bayesian and geostatistical inverse problems described by equations 7
and 8, the estimated fluxes can be expressed as the sum of the prior information and the update obtained from the observations.

In equations 9 and 10, the second term represents the observational constraint, while the first term describes the prior information

in Eg. 9) and the information about fluxes (through X in Eq. 10). When there is no additional information, the solution

corresponds to the prior knowledge. Since the estimate of s in Eq. (10) depends on the unknown (3, it reeds—te-be-estimated
prier-to-requires prior estimation of 3 before obtaining S¢. The solution for the (3 can be obtained from pre-determined quan-

tities as described earlier in the context of Eq. (8) and can be given as:

B=Q ATz, a1

Phaggingplugging in B in Eq. (10) leads to Eq. (12) where all symbols are defined previously or in Eq. (13).

S¢ =XQ AT 'z+ QH' T (z— AQ'A'T T 'z),  where (12)
A=HX,¥=(HQH'+R), = (HX) (HQH' + R)‘1 HX (13)

Note that, g and S in Eq. (9) and (10) are essentially functions which-that are represented by equations. Fhis-It is a
commonly adopted nomenclature that is used by researchers working in the field of atmospheric inversions. We differentiate
Eq. (9) with respect to Sphor, R, Q, z and Eq. (12) with respect to X, R, Q, z to obtain the local sensitivities. There are
two ways to differentiate § with respect to z, X, H, Q, and R. In the first case, every entry in z, X, H, Q, and R can be
considered as a parameter that results in differentiation of § with respect to these quantities. An “‘entry” refers to each element

of the matrix denoted by 74, where 7 represents the row number and j represents the column number. On the other hand, if
the structures of the covariance matrices Q and R are determined by parameters then § can be differentiated just with respect

10
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to these parameters. In the former case, Eq. (9) and (12) are used to differentiate § with respect to an entry at a time in z,
X, H, Q, and R. Such an approach of entry-by-entry differentiation is useful if the computational cost in terms of memory
constraint is important or if we would like to know the influence of a single entry on S. We provide both sets of equations in

this workmanuscript.
2.2.1 LSA with respect to observations, priors, scaling factors, and forward operators

Local sensitivity of § with respect to observations (z) can be given as:

%5 _ g (14)

0z

3;& _XQ A 4 QHIT ! - QHITIAQ AN, (15)
Z

where all quantities are as defined earlier. The units of the entries in gs are gmoles ~'m?sec ™ !ppm~! and the matrices are of

dimension (m x n). These units are inverse of the units of H. Local sensitivities with respect to an observation z; for both the

8

Baye51an and the geostatistical case can be written as a vector of sensitivities times an indicator for the 7' b entryie. 25 5-€; where

e, = 3 is a vector of zeros with the i entry equals-equal to 1.

Note by utlhzmg , we can also obtain an averaging kernel (or model resolution matrix) and DOFS (see Rodgers, 2000).

The averaging kernel matrix for any linear inverse model can be written as:

0s
V= 0z xH, (16)

where V of dimension (m x m) sis the local sensitivity of § with respect to the true unknown fluxes. Then the DOFS can be
computed by taking the trace of the averaging kernel matrix V. DOFS represents the amount of information resolved by an
inverse model when a set of observations have been assimilated (for a detailed discussion, see Rodgers, 2000 and Brasseur and
Jacob, 2017). Theoretically, the value of DOFS cannot exceed the number of observations (n) in ease-of-an underdetermined

system and the number of fluxes (m) in ease-ef-an overdetermined system.
We can directly compute local sensitivity of § with respect to the prior mean flux s, in the Bayesian case. In the geostatis-

tical case, the prior mean is modeled by two quantities X and 3. In this scenario, we need to find sensitivities with respect to

X as well as 8. These local sensitivities can be given as:

11
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08p

asprior =1-cH (17)
B0 Koo (It (MA' - XQ A"~ QH') ¥ 'H) + (XQ '~ M) & (F. ~ K.A"V"H) (18)
%6 _x _ca, (19
B

where A=HX,B=QH',C=B¥ ' Q=A"T A K. =20 'AQ"' M=CAQ !, andF, =z ¥ 'H. The sym-

98B

bol @ represents the Kronecker product. The quantity -

is of dimension (m x m) and its entries are unitless. The quantity

%ég are of the form (umoles ™ 'm?sec1) (unit of ;).

prior

%é—g is of dimension (m X p) and units of the entries in each column of

The sensitivity matrix %é‘)g is of dimension (m x mp) where every i block of m columns ((i — 1)m + A : im) of %é‘f has
units of the form (pmoles ™ 'm2sec ™) (unit of X;) ! where X; is the i" column of X. Note that - the sensitivity matrix 225
prior

in Eq. (17) can also be thought-as-considered as a proportion of posterior uncertainty to that of the prior uncertainty. In context

of the Bayesian case, proportional uncertainty reduction becomes averaging kernel.

Sometimes, it is important-essential to know the influence of the prior of any particular grid point or an area consisting of

few points-on-grid-cells within 8. Local sensitivity of § with respect to the i" entry in Sprior and Bi is a matrix of dimension

(m x 1) and can be written as 955 e, and f—gei respectively. However, the entry-wise g)sf is more complex and can be given
ij

OSprior
by:
¢ —lytypytqy—1 OX 1t -1 28 tq—1 —1yt t
=I-CH)| (I-XQ " X'HY 'H QX"+ X0 I-H'?Y HXQ X')|F 20
. = - ), XX e e
where gTXi = E;; is a single-entry matrix with a one for a X;; for which differentiation is being performed and zero ev-

erywhere else. For z, entry-by-entry differentiation can be easily performed +-since both Eq. (9) and (12) result from linear
models and are functions of the form ®z + n where ® and n are independent of z. For example, ® and n for Eq. (9) are

QH' (HQH' +R) ~!and Sprior — QH' (HQH' + R) ! HS,yior respectively and are independent of z. In this case, 22 can

0z;
be written as ®e; where e; is a single-entry vector with a one for a z; for which differentiation is being performed and zero
everywhere else. Local sensitivity %Szf can similarly be defined for the respective ®. Here both the quantities g)s(i and %SZ?
are matrices of dimension (m x 1).
- i . . _ 2

Local sensitivity of § with respect to an entry in the forward operator has units of the form ( pmoles ™' m? sec‘l) ppm~!. In
the Bayesian case, this sensitivity can be written as:
08
Té =Q®P,-BP,®C'-BC'®P, - Q@D +BD®C'+BC'®D — syio; @ C", @n

12
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where 232 is a sensitivity matrix of dimension (m xmn). In the geostatistical case, this sensitivity can be partitioned into two

ot
components i.e., gH and 5 as shown in Eq. (22) where 2 aH and 85 are obtained in an orderly sequence from Eq. (23) and

(24).

D3¢ 0B

8H X37H + 87H where (22)
g—fl:—L®Gz—PZAQ‘1Xt®KT+GZHQ®Kt+N®GZ+L®PZ—PZHQ@Kt—N®Pi (23)
ve . L a8

8H_Q®PZ_CZ®C —CHQ®P,-XK'z C CABH (24)

The expanded form of some of the symbols in Eq. (21) through (24), which have not been expanded yet can be written

as D = UHsyior, G, =2/ T 'AQ AT L= 'X' N=Q 'A'"T'HQ,P, =¥ 'z, and K = T 'AQ~!. The

85@ 8[3
OH’> oH’

and 5 D& are sensitivity matrices of dimensions (m x mn), (p x mn), and (m x mn) respectively. The units

are of the form (umolesflmzsecfl)Qppmf

quantities

fas

1
of the entries o SH .

There might be times when we would like to know the sensitivity of the transport (H) with respect to certain source locations

only. In this case, we can use 77 form of Eq. (21) through (24) to obtain BSB in parts. In this formulation, g Isfj can be given
as:
D85 OH H\'
aHij = Cﬁ” (C(Hsprior - Z) - Sprior) (Q CHQ) (aHzg ) R4 (Z - Hsprior) (25)
95c 0B | 0
=X h 26
oH, “om, om, " (26)
0B : OH ‘ H' ooiagt gt OH = =
K XN - CAS H K'H T AS'-1)+ QX I-¢AS) | 27
oM, ( ot | +QH') + Qan( )+ o, ( ) z (@7
e oH' , oH 9B
= - —CH v (z-A8)-C XB+A . 28
OH,, (Q 0H,; ~ OH, QaH” ) =—AB OH,, B+ oH;; | %)
where S = AQ ! and the matrix d‘gl is a single-entry matrix with a one for a H;; entry for which the differentiation is being
performed and zero everywhere else. The quantltles asB -, 682@ , 8873’ and 8?1%_,» are sensitivity matrices of dimensions (m x 1),
(mx1), (px1),and (m x 1) respectively. Units of BSB and 6SG are the same as their kronecker product counterparts.

2.2.2 LSA with respect to error covariance matricesand-prior-infoermation-

In order to compute the local sensitivities of § with respect to Q and R, consider that they are parametrized as Q(6q) and
R(6r) where Oq and Og are the parameter vectors. The differentiation with respect to error covariance parameters in Q and
R can be accomplished from Eq. (29) through (32) where the subscript i indicates the i covariance parameter for which

differentiation is being performed.

13



333

334

335

336

337
338
339

340

341

342

343

344
345
346
347

348

349
350
351
352
353
354
355
356
357

9Q o

=(I-CH \Il z—H rior 2
95q _(_ —1AT g1 _ Tg—1 Tg—1 —1ATg—1 6Q -1/, _ —1AT g1
=-XQTA' YT H+I-QH' ¢ H+QH ¥ AQ ' A'vY'H To Y z- AQ'ATO 12)

90q, 90, Ql

(30)
0Sp OR
——=-C—¥" — Hprior 31
89}%1; 60R ( Sp ) ( )
08¢ :(_XQ—lAT—B+CAQ_1AT)lII_1a—R Hz—AQTTATE ) (32)
g, 90x,

653 [ei el 8§B 6SG

All the quantltles  Boe Do , and are sensitivity matrices of dimension (m X 1) and the units of the entries of

08
9bq

shown in Eq. (33) through (36).

are of the form (umoles m sec_l)(unit of O, or Or,) . It is also possible to find 2 8Q and as r directly as

88%3 =H'¥ ' (z— Hsyior) ® (I-H' & 'B’) (33)
% —(G.—2') ¥ 'Ha ((B-MA'+LA) ¥ 'H-1) (34)
0B o1 rre —1

R - ¥ (z — Hsprior) @ ¥~ HQ (35)
%ST({; —(G.—2)¥ ' © (B-MA'+L'A") &} (36)

First two quantities %%? and aSG are sensitivity matrices of dimension (m x m?). The second set of quantities %sé; and aSG

are sensitivity matrices of d1mens10n (m x n?). Equations (33) through (36) are useful when Q and R are fully or partially
non-parametric. However, dimensions of these matrices can be quite large and users needs to be careful in realizing the full

matrix.
2.3 Global sensitivity analysis (GSA): a variance-based approach

GSA is a process of apportioning the uncertainty in an-ettptt-estimate-output to the uncertainty in each-input-parameterthe
input parameters. The term “global” stems from the-idea-ef-accounting for the effect of all input parameters simultaneously.

LSA, where the impact of a slight change in

each parameter on the functional output is considered separately while keeping all other parameters constant. Although quite

This is different from

important—a-significant, detailed GSA is challenging as it requires knowledge of the probabilistic variations of all possible

combinations (also known as covariance) of the input parameters-—tn-atmespherie-inverse-problems;itis-hard-to-know-thejoint
vartation-of-albHinput-parameters,which in most situations is unavailable. However, sometimes it might be possible to know the

approximate joint variation of a small subset of the input parameters (e.g. the covariance between Q and R parameters). In-such
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leverage previously computed
artial derivatives. It uses a first-order Taylorwpwemﬁeﬁﬁeuﬁmiparameter estimates to ebtain-an

approximate-representation—This-appreach-compute global sensitivities, This technique has been used in many research works,

including environmental modeling (e.g., Hamby, 1994) and life cycle assessment (Groen et al., 2017; Heijungs, 1996), among

others.

Broadly, we can consider § as a function of the covariates Q, R, H, X (or Sprior), and z i.e. § = f(Q, R, H, X(or Sprior),2).
We can then compute how uncertainties of the individual components of f are accounted for in the overall uncertainty of § by
applying multivariate Taylor series expansion of § about its mean. Approximation up to first-order polynomial of the Taylor

series expansion leads to the equation:

08" 03
Var (s8) = ( 82 Wy 82) + Error, where
where 0 = (0g,0r, 0, 0% (Or Sprior), 0) is the vector of parameters and W = Var(@) is the covariance matrix of the param-

eters.Jtis-however-

It is challenging to estimate some-of-the-individual-covariance quantities such as the cross-covariance between 8 g and O gr
or between O, and B¢ to get the best possible decompesition-estimate of the total uncertainty of S. Assuming no cross-
covariance between Q and R and ignoring other parameters not related to the variance parameters, the diagonal of the variance

of the posterior fluxes can be approximated as:

L N ~ 2
Var(s) = 3 (;;) Var (0g, ) +Z (a(ZZ)Var(GRk) , 37)

=1 6=0

Where-where the subscript i on the right-hand side of Eq. (37) refers to the i entry of the derivative vector, which is a scalar
and parameters 0, and Op, refer to the j and k'™ parameters of the sets 8¢ and O g respectively. From Eq. (37), we can see
how uncertainty in the flux estimate is apportioned into-variance-components-between variance of 8¢ and 0 gof-an-inversion
framewerk. No normalization is necessary in such a framework of-GSA-sinee-as, variance components on the right hand side
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of Eq. (37) sthe-varianee-components-are naturally weightedi -, resulting in the
same units of measurement. Once the two eempenents-parts of V3, (i.e. Eq. (37)) are computed, they can also be summed over

the solution space (e.g. number of gridcells x number of time-periodsperiods) of § and ranked to find the relative importance

of the parameters.

Even after simplification, implementation of Eq. (37) is diffiealt-complex as it requires knowledge of the uncertainties
associated with the parameters of Q and R that are generally not known. Nete-that;-it-is-also-possible-to-have-a—complete

>

discuss GSA in the context of the case study presented in this work, but we have shown its application with respect to Q and
R in the MATLAB Livescript.

Besides the variance-based method, there are many other
approaches-to-perform-GSAdifferent approaches for performing GSA, as described in the-introductory-section-but-either-they
are-Appendix. A. However, they are either computationally expensive or assume independence of the input parameters, which
is not the case in atmospheric inverse problems. We do not pursue other approaches for quantifying GSA associated with Q

and R as they would lead to similar results and would not add anything substantial to the contributions of this study.
2.4 Ranking importance of covariates, covariance parameters, and observations from LSA

In atmospheric inverse modeling, we encounter two situations while ranking the importance of parameters. These are ranking of
parameters when they have the same or different units. The situation of ranking of parameters-with-same-units-arise-parameters
with the same units arises when we want to study the influence of a group of parametersiike-observations—that-have-, like
observations with the same units. Comparatively, the situation-ofranking of parameters with different units arise-occurs when
we want to study-the-influenee-explore the impact of groups of parameters that-have-different-units-with dissimilar units
of measurements, like observations in z in comparison to the variance of observations in R. Both these situations can be
accounted through-GSA-thatisfor in GSA described in Sec. 2.3. However, GSA in most scenarios in atmospheric inverse
modeling cannot be futty-performed due to the reasons mentioned earlier. Therefore, in this workwe-adepted—, we adopt a
regression-based approach to rank the importance of parameters. The proposed approach utilizes output from LSA, accounts
for multicollinearity, and results in importance scores that are bounded between 0 to 1. We define the regression model for

ranking as:

s=Ev+¢, (38)
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where § are fluxes obtained from an inversion, and E is an (m x number of derivatives) matrix of the previously estimated
sensitivities. The vector of unknown coefficients «y is of dimension (number of derivatives x 1), and £ is an (m x 1) vector of

unobserved errors associated with the regression model. To exemplify, E in Eq. (38) can be arranged as:

B [aé 08 0§ ] (39)

0z 0Q IR

In a regression-based approach, as described in Eq. (38), multicollinearity between independent variables in E can pose

a problem for determining the importance of independent variables in influencing I'. To avoid this problem, we computed
compute relative importance weights by using the method outlined in Johnson, 2000. These weights are computed-obtained by

first deriving uncorrelated orthogonal counterparts of the covariates in E and then regressing §, on E to get importance weights

for each covariate. The weights-are-standardized by-the-coefficient of determination then standardizes the weights, i.e., R? such
that they range between 0 to 1 with the sum-of-at-the-weights-being-aggregated sum of 1. Implementation of this method is

included in the Livescript submitted with this manuscript.

Note Least Absolute Shrinkage and Selection Operator (LASSO) or Principal Component Analysis (PCA) can also be

employed-to-compute ranking rank parameters under multicollinearity. However, both these methods result in weights-that-are

unbeunded-unbounded weights. Furthermore, “inference after selection” is ambiguous in-tinearregression-which-is-theease
for LASSO coefficients (see Berk et al., 2013 or chapter 6 of Hastie et al., 2015 for details). Consequently, interpreting the

LASSO coefficients as ranks may not be the best approach.

The regression-based approach described above can be-employed-whenwe-want-to-rank parameters with both-the same and
different units of measurement. However, an additional normalization step is required #-we-are-interested-in-getting-to get the
overall rank of the parameters that-have-different-units-with varying units of measure, like in z, Q, and R. To perform this
normalization, first, each column in every sensitivity matrix (e.g. %, %, and so forth) that is to be ranked is normalized (min-
max normalization; see Vafaei et al., 2020) between 0-to—+-—FeHewing-whieh( to 1. After which, all columns for a sensitivity

matrix are summed and renormalized to vary between O-to—+—Fhisresults-0 to 1, resulting in one column thatisrepresentative

98

92 groupe d) in latter

of representing a sensitivity matrix for a particular group. We denote this by the subscript “grouped” (e.g.

sections.

Once the normalized sensitivity vectors are obtained for each group, the regression methodology as described above can
be used to rank the importance of each group. The ranking methodology proposed above does not account for the non-linear
relationship between estimates of the fluxes and the derivatives. If this is a concern, then the strength of the nentinearnon-linear

relationship among the derivative vectors can be first obtained by computing distance correlation between fluxes and the local

derivatives of the parameters. After-which-we-can-employ-variable-transformation<e-g-If necessary, variable transformation
techniques such as Box-Cox transformation ;-(see Sakia, 1992) before-apptying-can be employed before adopting the regres-
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sion methodology described above.

Note that m

inversion methods, DOFS is used to assess the information content provided by observations. DOFS = 0 in these inversions
implies that no informational gain happenedin-an-inversion. In this case, the estimated flux reverts baek-to prior. In Eq. (38),

this means that the « coefficient that corresponds to Q would have the largest-most significant impact. Likewise if DOFS is

large, then the ~y coefficients for z and R would be larger (and likely correlated). We show this correspondence in Sec. 3.

Finally, all €4
model can be used for-understanding-to understand the relationship between dependent and independent variables—Hewever;

however, what covariates to include in E depends on the specific case study under consideration.

diagnostic methods applied in the context of any regression-based

3 Results: Los-Angelesmethane-inversion-ease-stady

To demonstrate the applicability of our methods, we utilize data from our published work on CHy fluxes in the Los Angeles
megacity (see Yadav et al., 2019). In this previous work, fluxes were estimated for South Coast Air Basin (SOCAB) region (see
Fig. 3) at 0.03° spatial (1826 grid-cells) and 4-day temporal resolution from the Jan 27, 2015 through Dec 24, 2016. However,
in the current work, we utilize input data from Oct 23, 2015, through Oct 31, 2015¢that-, which is a single inversion period, to

contextualize the applicability of our methods. This period overlaps with the beginning of the well-studied Aliso Canyon gas

leak (Conley et al., 2016). We

thiswas-the-approach-adopted-in-the-previous—stadyAs in previous work, R and Q are assumed to be diagonal with separate

arameter for each site in R and a single parameter that governs the scaling of errors in Q. Similarly, X is a column vector

consisting of the prior estimates of CH, fluxes.

For each observation included in the case study, a forward operator was obtained by using Weather Research Forecasting-
Stochastic Time Inverted Lagrangian Model (see Yadav et al., 2019). These forward operators are used to demonstrate the
application of the methodology for building 10ANMI-andJSB-based- JAOMI and JSD-based correlation matrices in the MATLAB

Livescript. They are also used in-conjunction—with-measturements—with measurements and prior information to estimate the
fluxes and perform LSA.

3.1 STAD from the forward operators

In this work, we identify STAD for the 4-day period for which the inversion was performed. The spatial domain of the study
over this time-period is uniquely disaggregated by STAD, as shown in Fig. 3. The STAD for different sites are-is mostly

18



483
484
485
486
487
488

489
490
491
492
493
494
495
496
497
498

spatially contiguousbutfer-some-sites—. Still, for some monitoring sites, we found isolated grid cells whieh-that were not
within the eentiguous-adjacent zones. We have-manually combined these with STAD for the nearest site to create a spatially
continuous map, as shown in Fig. 3. The discontinuous version of the STAD shown in Fig. 3 is included in the Livescript.
The discontinuities in the STAD result mestty-from-mainly from an unequal number of observations across sites and indicates

indicate that aggregation over longer-time-period-a more extended period is required to completely-identify-a-noisefreeidentify
anoise-free STAD. We do not investigate the time-period-period of this aggregation as this is beyond the scope of this work.
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Figure 3. Study area with county boundaries, measurement locations and the Spatio-temporal Area of Dominance of measurement locations.

The black dotted line shows the area constrained by observations, as shown in Yadav et al., 2019.

Overall, the-STAD for each site indicates spatial regions of fluxes that-contributes-over a period that contribute most to the

observational {e-e—CH4-enhaneemen ghar—1h —tari-anowsus—+o b-divide the spatio-temporal-variations-in-fluxes o

enhancements-by-the-STAD-regions—signal observed at a site allowing us to associate the change in fluxes to the specific area

in the basin where reductions or increases in emissions are likely to have occurred. Some information in the observational

signal is shared between observations from different sites. This shared information (though not shown) can be computed as

art of STAD and forms part of overall basin-scale estimates of fluxes that combines measurements from all sites. Note that

STAD does not represent the network’s coverage, i.e., regions of emissions constrained by observations. These regions are
shorter than STAD (see the grey outline in Fi

. 3). They are obtained before performing an inversion by identifying areas of

continuous spatiotemporal coverage as provided by atmospheric transport (Fig. 4) or by assessing the model resolution after
erforming an inversion (for an explanation, see Yadav et al., 2019).
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Figure 4.
teecationsHeatmap of the aggregated forward operators for the case study period.

3.2 Sensitivity analysis

One of the main goals of the sensitivity analysis after performing an inversion is to identify the observations that had the
most influence on the flux estimates. Other than observations, it is also impertant-essential to explore the importance of other
different inputs to an inversion, like variance parameters in R. We describe the process of performing this analysis within the

context of the case study mentioned in Sec. 3—Fhis-seetion-, which discusses the relative importance of the input quantities in

influencing Sby-utiizing-the-, by utilizing local sensitivities.

3.2.1 Comparison and ranking of the observations

Importance of the-individual measurements in influencing 8, can be easily computed through the relative importance method-
ology described in section 2.4. Although ~-all entries of 95 are in same units of measurement, direct ranking of observations
or sites without employing the relative importance technique can lead to misleading results—Fhis-, which happens due to the
presence of large negative and positive values in % that are governed by the overall spatio-temporal-spread;-spatiotemporal

spread, the intensity of forward operators, and observations-with-large-high enhancements.
For the case study in this work, we find that observations collected at the GRA site that is located nearest to the source of

the Aliso Canyon gas leak are most influential in governing §, as shown by site-based rankings in Table 1. These rankings pri-

marily show the importance of observations from a site in influencing the estimated fluxes for the time-period in consideration
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Site Importance Score  Rank

GRA 0.26 1
ONT 0.24 2
COM 0.13 3
IRV 0.11 4
BND 0.10 5
CIT 0.07 6
FUL 0.07 7
UsC 0.06 8

Table 1. The importance scores and ranking of 8 sites based on the sensitivity of the estimated fluxes (S) to observations (z).
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Figure 5. The sensitivities (%) and forward eperator—operators of the most and least important ebservation—in—inversions—Subplot
observations are shown here. Subplots A and C shew-depict the sensitivity of § with respect to the most (A) and least important-(C)

observationimportant observation, respectively, during the case study period. The CHs enhancement asseetated-with-corresponding to these
observations is shown in the bottom left corner of the subplots and identified-denoted by the symbol z;. The right subplots, B and Dshew-,

display the forward operators associated with the sensitivities shown in subplots A and C, respectively.
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—Observation-based-assessment-of-and are obtained by summing the weights for each observation by employing the relative
importance methodology.

Outliers have a significant impact on these rankings. The high weight associated with even one observation from a site can
make that site more important compared to other sites. For example, if we remove the observation with the highest weight
from each site, ONT is the most important site, followed by GRA, CMP. IRV, CIT, FUL, BND, and USC. As part of sensitivity
analysis, examining the influence of the observations associated with high weights is crucial because they are likely to have an
enormous impact on the flux estimates. Site level importance should be judged not only by examining the aggregated ranking
as presented in Table 1 but also by looking at the distribution of weights shown through the boxplot in the Livescript associated
with section 3.2; A site with evenly distributed weights is more important than one whose importance is just due to the presence
of a few observations with high weights.

The ranking of each observation in influencing the estimates of fluxes can be obtained by examining the weights of the
column vectors of %fes&keek%&famémgaﬁebsew&ﬁeﬂm, and is provided in the Livescript. To exemplify, this rankin
of weights showed that observation from the GRA site with the enhancement of 1.7 ppm was most important, whereas an

observation from the farg

had-with an enhancement of 6-02-ppm-is-0.02 ppm was found to be least important in influencing sS. Note this is not an

observation with the lowest enhancement but with the lewestinfluence—The-most-andleastimportant-observation-alone—wi

thetrcorrespondingforward-operators-are-shewntn-least influence (Fig. 5).
3.2.2 Relative importance of Q,R, X, 3, and z

gs 08 08 08 08 and 95 a5 described in section 2.4 ~the spatial plots of all these
oz’ 59X’ OH® 9B’ Q0 IR 43 P P

95 08 o8 08 95 nd 25

0z grouped” 0X grouped” 9H grouped” 98 grouped” 9Q grouped’ OR grouped
the regions of the low and high weights (see Fig.5 6) at the grid scale.

After the two-step normalization of

grouped quantities that we call as

can be created to explore

OX grouped

i&frue—iﬂ—ehefase«af—g—é—dam&%me of these quantities are correlated and should be seen in conjunction. For example, R
groupe

08

describes errors in z, among other errors, and implies that == —This-implies-that-data-constrained-regions-have Jower
OR grouped

v

0Q grouped e
estimates-of Srematninsensitiveto-and

< S 08 should be evaluated together to understand their importance in influencin

flux estimates. Similarl describes errors in s — X3 implying that 25 and 25 should be assessed together to

understand their importance in influencing flux estimates. A larger value of 23 + 95 is likely to be found around
08

in-situ sites due to increased model resolution. However, if around these locations 5= is larger in comparison of 28
then it suggests that errors in R should be adjusted and therefore observations should be more important in governing the
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flux estimates around in-situ sites. In this case study, this is due to the Q-p in-these-regions:Thes
caused by the Aliso Canyon leak and the presence of large point sources near in-situ sites. Overall, for the exact location, a

p—t

f 95

The increased model resolution also results in lower importance o and 25 , around sites. However, areas
&

unconstrained by observations are likely to have larger 22 et __as seen in Fig. 6 for , and

erouped
08

uantities. If in locations constrained by observations, <= is lareer in comparison to 25 _then Xin these locations
i £ 08 05

is incorrect and needs adjustment. Likewise, in the case o a larger == is generally accompanied by lower
T

o5 _and vice versa, which is also visible in the correlation subplots C and D in Fig. rovides

information about the grid-cells that are determining the value of B and in this case study as expected this is around Aliso
Canyon leak whose X is being adjusted due to the larger flux from that region. This can also be seen in subplot E in Fig. 7
where it is positively correlated with §.

4 Discussion

This study lays out techniques to assess the quality of the inferred estimates of fluxes. Sensitivity analysis is an important
diagnostic tool to understand the impact of the choices made with respect to inputs on the estimated fluxes. However, it is not
a recipe for selecting the proper forms of X or the structure of Q or R before performing an inversion. Other tools or methods

such as Bayesian Information Criterion, Variance Inflation Factor should be used to perform this task.

The case study in this work is designed only to demonstrate the methodologies described in Sec. 2. We do not impose
non-negativity constraints to obtain positive CHy fluxes as was done in the original 2019 study (Yadav et al., 2019). This is
done because posterior likelihood changes its functional form under non-negativity constraints and-that invalidate the analyt-
ical forms of senstivity-sensitivity equations presented in this workbecome-invalid. Thus, some CHy fluxes obtained in this
study have negative values as can be seen in the map of § in the MATLAB Livescript. However-even-Even in these situations
assessing sensitivity through an inversion without the imposition of non-negativity is useful-helpful as it provides insights into

the role of z, R, Q, and X in governing estimates of non-negative S.
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Figure 6. Grouped local sensitivities of the estimated fluxes (§) with respect to z, R, X, Q, and 3 from top-left to bottom-right respectively.

f@ 98

: Jor]
Note, in the case o 9z grouped’ OR. grouped’ d 9X grouped

two-step normalization is performed to generate subplots associated with these quan-
tities. Derivatives with respect to: (1) observations in z, (2) parameters in R, and (3) entries in X are normalized between O and 1 and then
after aggregating these for every grid-cell another Min-Max normalization is performed to limit their ranges between 0 and 1. Only single

normalization is performed in case of 25

d 2 as they consist of only one parameter.
oQ grouped B grouped Y Y P
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Figure 7. Scatterplots of relationships between § and 28 98 08 95 08 . Note as before in Fig. 6 all the

0z grouped”’ R grouped’ OX grouped’ aQ grouped’ E)e) grouped
derivatives are normalized to limit their range between 0 and 1. The correlation coefficient of the relationships shown in each scatterplot is

reported on the top right corner of the subplots. The least square line of best fit is shown in red color in every subplot.

Like z, the importance of Q and R parameters can be directly obtained when all parameters have the same units —This
happens-of measurement as in the case study presented in this workstudy. However, this is not guaranteed as R can be a func-
tion of variance parameters and spatio-temporal-correlation-tength-spatiotemporal correlation lengths expressed in the distance
units in space and time. Furthermore, a nonstationary error covariance R can have parameters that have even more complicated
units. This situation is not limited to R and-but also applies to the prior error covariance Q and X. Under these conditions,
a-comparison—between—comparing the sensitivity matrices is only possible after normalization. Therefore, forcomparative
assessment-we-recommend-use-of-we recommend using a multiple linear regression-based-regression-based relative impor-
tance method to rank these quantities for comparative assessment.

The overall importance of % is best explored by performing eetumnbased-column-based normalization and then employ-
ing the relative importance method. Additionally, column based normalization can be augmented by row-based normalization
to assess and rank the influence of observations in governing gridseale-grid-scale estimates of §. Qualitatively, column and
row-based assessment increase our understanding about the spatio-temporal-spatiotemporal estimates of §-This-", which is es-
pecially important when point sources are the dominant sources of emissions. Moreover, it also-provides-an-insightinto-provides

25



595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

619

620
621
622
623
624
625
626
627

insight into the temporal aggregation error (e.g. Thompson et al., 2011) as the information encoded in an instantaneous mea-
surement can get lost over the coarser time-period-ofinversion-inversion period. This aggregation error also manifests spatially
and is determined by the resolution at which fluxes are obtained. Note-in-many-situationsIn many situations, these aggregation
errors are unavoidable as the choice of the spatio-temperal-spatiotemporal resolution of inversions is governed by the density

of observations in space and time.

Other than aggregation error, the aggregation of the estimated fluxes also has profound implications as it affects the robust-
ness of the estimated fluxes. It can be proved (see Appendix C1) that aggregation of § in space and time from an inversion
conducted at finer resolution leads to reduction in uncertainty. However, even though ratio of observations to the estimated

fluxes increases, the number of fluxes uniquely resolved declines at coarser resolution (see Appendix C1).

The computational cost to calculate analytical partial derivatives is minimal as it is a onetime operation and is bounded by
the computational cost to perform matrix multiplications, which at max is O(n?). For the case study presentedin-this-werk—,
we can compute analytical derivatives and rank approximately-4000-for approximately 4000 parameters in few minutes on a
laptop. Computing derivatives by using the Kronecker form of equations (Eq. (18), (21) through (24), and (33) though (36))
is faster for small-smaller problems. Howeverfer-large-inverse-problems, for large problems, the storage costs associated with
these equations can become prohibitive. In these situations, we propose the use of ij form of the equations (Eq. (20), (25)
through (28), and (29) though (32)) for assessment. Furthermore, computational problems can also arise in ranking the inputs
if we have targe-numbernumerous derivatives (e.g. greater than 10,000), as the ranking method used in this work relies on eiges
vatue-eigenvalue decomposition that has O(n?) computational complexity. To overcome this problem, we advise grouping of

derivatives to reduce the dimension of the problem.

Finally, the estimation of STAD and the importance of sites can be influenced by data gapstherefore—; therefore, it is not

advised in presence of vast differences in the number of observations between sites.

5 Conclusions

Our work makes nevel-and-major-a novel and significant contributions that can significantly-impreve-improve the understand-
ing of linear atmospheric inverse problems. It provides (1) a framework for post hoc analysis of the impact of inputs on the

estimated fluxes and (2) a way to understand the correlations in the forward operators or atmospheric transport model. The
authors are not-aware-unaware of any work where local sensitivities with different units of measurement are compared to rank

the importance of inputs in a linear atmospheric inverse model.

Withrespeetto-Concerning forward operators, we provide mathematical foundations for ¥oAMand-Jensen-Shannon-based
TIAOMI and JSD-based metrics. These two metrics can be used to construct and-accommedate-a-non-stationary-a nonstationary
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628 error covariance for the atmospheric transport component of the model-data mismatch matrix R. Furthermore, 10AMI-based
629 IAOMI-based assessments can be extended to identify STAD from forward operators that can help in disaggregating regions
630 of influence of the observations over a chosen temporal duration. This assists in understanding the connection between the
631 sources of fluxes and observations from a particular measurement location.

632

633 The 10AMI-and-JSD-based-IAOMI and JSD-based metrics provide an impertant-essential insight into the two critical and
634 only required components for an inversionthat-is—: observations and forward operators (e.g., influence-of-an-the influence of
635 observation to the sources of fluxes through STAD)—Fhis-task-, which can be accomplished prior-to-before conducting an
636 inversion and should be eemplimented-complemented by post hoc LSA, which is a-neeessity-necessary for understanding the
637 behavior of an inverse model. Overall, LSA can answer questions like for which locations and in what order of precedence
638 was an observation important in influencing the estimated fluxes. This kind of analysis is entirely different from estimating
639 uncertaintythat-tells-usreduetionin-, which tells us the prior uncertainty reduction due to observations.

640

641 LSA is not a replacement for statistical tests that check the-inverse models’ underlying assumptions and model specifi-
642 cationsin-inverse-models. Neither is it a recipe for selecting inputs to an inverse model. However, as explained above, it has
643 an importantrole-asexplained-above-essential role that can lead to an improved understanding of an atmospheric inverse model.
644

645

646 (© 2022, Jet Propulsion Laboratory, California Institute of Technology

647 Code and data availability. All the code and data utilized in this study are submitted as supplementary material.

648 Appendix

649 Appendix A: Review of previously employed methods to conduct sensitivity analyses

650 Earlier, many methods have been proposed and utilized to perform sensitivity analysis. These can be categorized as global and
651

652 (OAT), Polynomial Chaos Expansion (PCE) (e.g. Sudret, 2008), Fourier amplitude sensitivity test (FAST) (e.g. Xu and Gertner, 2011

653 ), Sobol’s method (e.g. Sobol, 2001) and Derivative based global sensitivity measures (DGSM) (e.g. Sobol and Kucherenko, 2010
654 ) among others. These existing GSA methods (1) assume independence of parameters (e.g.. FAST and OAT), or (2) computationally
655 Sobol’s method
656 DGSM, PCE). Therefore, these traditional methods cannot be directly applied in linear atmospheric inverse problems, which
657  consists of tens of thousands of non-normal, spatiotemporally correlated parameters (including observations). Constantine and Diaz, 2017
658 proposed an active subspace-based GSA that uses a low-dimensional approximation of the parameter space. But it is still

local sensitivity anal . Global sensitivity analysis (GSA) includes Morris’s (e.g. Morris, 1991) one step at a time method

expensive (e.g. or (3) require knowledge of the joint probability distribution of the parameter space (e.g.
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659 computationally expensive for problems with thousands of parameters (see case study in Constantine and Diaz, 2017).

660
661
662

663 unlike Bayesian HDSA, we do not generate samples from the prior estimate to compute multiple MAP points since we have
664 limited knowledge of the prior distribution of the spatiotemporally correlated parameters. We derive the functional form of the
665 local sensitivity equations based on the closed-form MAP solution. Qur method is simple and amenable to tens of thousands
666  of parameters. Note that, like all linear atmospheric inverse problems, one of the critical goals of this work is to study the
667 importance of thousands of spatiotemporally varying parameters by ranking them. and computation of the local sensitivities is
668 a means to achieve that goal.

Compared to GSA, a local sensitivity method like Bayesian Hyper Differential Sensitivity Analysis (HDSA) (Sunseri et al., 2020

669 Appendix B: Jensen-Shannon distance (JSD) for forward operators

670 The dissimilarity between forward operators can also be measured via entropy (for definition, see MacKay et al., 2003) based

671 distances, which can capture differences between two probability distributions. One such metric is Jensen-Shanon distance
672 (JSD) (Nielsen, 2019), which can be used to compute the distance between two forward operators after normalizing them b
673 their total sum. For a forward operator F this can be given as:

£
674 Pp, b (B1)

675 where F). denotes k™ entry of F resulting in normalized forward operator P. We can then use JSD to compute distance between
676 two normalized forward operators from equation B:

677 JSD(Pp||Pe) =

678 13D (Pp||M)+ 1D (Pg||M)

679 where D stands for Kulback-Leibler (KL) divergence (see MacKay et al., 2003 for details). KL divergence D of any probabilit

680 i ili and M stands for
681
682

683 1-IAOMI) are comparable since both of them are measures of dissimilarity.
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Appendix C: Uncertainty and model resolution under aggregation

Here we show the proofs of two mathematical statements on the robustness and quality of the estimated fluxes as mentioned in
Sec. 4. First, we show why marginal variance of the estimated fluxes (which is the diagonal of covariance matrix of §) decrease
when estimated fluxes are post aggregated to a coarser scale or upscaled (A). Second, we show why in such case the model
resolution (also termed as, total information resolved by the observations) also decreases (B). Note that, the nomenclature used
in the appendix should not be confused with the nomenclature introduced in Sec. 2. The abbreviations and symbols used here

are independent of what are used in the Sec. 2.

Appendix D:

C1 Proof of the reduction of marginal variance of S when aggregation is performed

Post inversion aggregation or upscaling of any flux field s is equivalent to pre-multiplication by a weight matrix (in fact, a row

stochastic matrix). This can be written as:
s=Js, (C1)

Where-where J is a row stochastic (i.e. row-sums are all unity) k£ X m weight matrix (k < m). Variance of S can be written

as JXJ" where var(§) = Jvar(8)J!=JXJ". The general structure of J is as follows:

0 Ji2  Jis 0 00 i1
Jo1 0 Jory1 Jorg2 O O i5
e R - (€2)

0 o 0 jwm O O ik
However, J is mostly sparseand-values-in-, with non-zero values in only a few places. Rest-The rest of the entries are zeros.
Essentially, J can have any number of non-zero entries in a row that may or may not be consecutive. This is becausealthough-on
a-map;, although adjacent grids are averaged on a map, they may not be adjacent upon vectorization. Moreover, the geometry
of the map may not be exactly square or rectangular. Fhis-meansTherefore, depending on the aggregation or upscaling factor
and geometry, for-any-partieular—grid;-there may or may not be any neighboring grid for averaging around a particular grid.

However, the rows are linearly independent, as nearby grids are considered only once for averaging. The properties of J are as

follows:
lLJl=1lorjil=1 Yi=1,2,k
2. jtj, =0fori#r

We can rearrange the columns of J and the rows of ¥ accordingly without loss of any structure such that non-zero entries

are consecutive for each row of J. Matrix J3J’ under column permutation can be written as:
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718

719

720

721

722

723
724
725
726
727

kxm mxm pXk

1 0 ... 0 By Ei ... B L 0 ... 0
. , 0o I 0 By Boo 0 1
I =7J,.%.J = (C3)
0 0 1 =i Bk 0 0 1;
. kxk
11._.1111 11—'1k1k
. 12:42212 e . (C4)
1 Ep ]y . oo Rl

where J; and 3, are the permuted J and X respectively. However, for notational clarity, we use 1 and = as the sub-vector
and sub-block-matrix of the J and 3 respectively. Note that, any lf is a row-vector of dimension (1,d;), and E; is a square
matrix of dimension (d;,d;) where Zle d; = m. Thus, diagonal entry 1!2;;1; is a scalar quantity. For any i diagonal entry,

the corresponding scalar quantity can be written as > jrl li;1irZ;r. By symmetry of =, this reduces to

Ll = 25 +2) Ll (C5)

s j>r

By Cauchy Squartz inequality on Z;,., this can be written as

Zl 0 =23 Lijlin0ji00y < le o 42 lijlijog, < le 0 42 lijlijoji0m (C6)

j>r j>r Jj>r

2
lir\/a_ ler\/a < le Oy +2lejl1]0]ngT = (Zhr\/ﬁ) (C7)

r>2 j>r

2
min,.o,.. [ L — Zlir < Zl O 2 ijlijoi0m, < max.o,, <Zz> (C8)

r>2 j>r

This implies (by property 1 of the weight matrix J) that the i diagonal entry is bounded by:

2
d;

minrarr lir - ler < J;Eii']i < max, o < Zarr (C9)

r>2 r=1
where Zf’;l o is the sum of the marginal variance of the ith-bleekof un-averaged-i™ block of unaveraged 8. Thus, sum of the
marginal variance of § which is the sum of the i diagonal J EE“-J i is also smaller or eguals-equal to the sum total of marginal
variance of §. i i
W@M%WWWMW marginal variance of the posterior mean decreases as
aresult of the diagonal of the variance matrix shrinking in magnitude upon averaging.
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728 Appendix D:

729 C1 Proof of the reduction in model resolution when aggregation is performed

730 Upsealed-Aggregated forward operator H can be written as:

731 H = HBwhere is the upscaling matrix, (C1)

732 where B is the upscaling matrix. Dimension of B has the dimension of transpose of J. Struetual-Structural form of B is similar
733 to the form of J explained in C2. Non-zero entries of B are in the same place as J’ with magnitude replaced by unity. This is
734 evident from the fact that forward operator is summed instead of being averaged for upsealingaggregation. Properties of B are
735 as follows:

736 1. B1=1

737 2. JB = diag(N)**¥ where N is the vector of number of neighboring grideetts-grid-cells for any particular grideett-grid-cell i.e.
738 N =(Ny,...,Np)

mXxXm
C: 0 ... o0
0 C ... O
739 3. BJ=| L is a block diagonal matrix. Any block C; of JA can be expressed as a varying di-
0 N O
740 mension (depending on the number of neighboring grids of any particular grideelgrid-cell) matrix of form:
Ni X Ni
€L 1
N; N; 1
741 c,=1|: - : =11t C2
o N (2)
€L 1
N; N;
742 4. BJ is symmetric and positive semi-definite
743 First three properties are simple observations from the construction. So, here we provide proof of the fourth property.

744  Proof. By construction, Det(BJ — MI) = Det(Cq — AI)....Det(Ck — AI). So, eigen-values-cigenvalues of BJ are the list of
745 eigen-valueseigenvalues of the block matrices. It can be proved that 1 and O are the only two distinct eigen-vatueseigenvalues

746 of C, for any ¢. Below here is a brief argument on that:

747

748 (N%lll‘) 1=5-1N; = 1-1 implies one eigen-value-cigenvalue of C; is 1. Observe that, rank (N%llt) =rank(1) = 1.
749 Hence, dimension of null space dim (N (N%_llt>> =k —rank (N%llt) =k — 1. This implies that the other eigen—valae
750 eigenvalue of C; is O with multiplicity & — 1.

751
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So, not only C; is symmetric but also the eigen—values-eigenvalues C; are always non negative. Consequently, all eigen
vatues-eigenvalues of BJ are of similar form i.e. BJ is symmetric positive semidefinite. O

Finally, model resolution matrix for inversion can be written as %H where H is the forward operator operator. Post inversion

aggregated model-resolution can be written as:

05 - 05
A =A—HB ByEq (Cl)andCl (C3)
0z 0z

The question is what happens to the trace of the model-resolution under the upsealed-easeaggregated scenario? We provide a
proof for the simple batch Bayesian case in lemma C1. Proof for the geostatistical case is similar and left for the enthusiastic

readers.
Lemma 1.
Mres = QH’yp'H

MreS,gqreqaed = JQH YY" 'HB  then

trace (Mres  ggreqarea) < trace(Mres) (C4)

Proof. odel resolution for the aggregated ease-scenario can be written as:
trace (Mres,ggregated) = trace(JQH’¢~'HB) = trace(BJQH'vy~'H) = trace(WS) where W = BJ, S = QH'+ ' H,
(C5)

Where-where S and W are both of dimension (m x m). S is a positive semidefinite matrix since both Q and H’¢yp~'H are

Sme

positive semidefinite. For W™ and positive semidefinite, trace of their product can be bounded by the following

quantities (see Kleinman and Athans, 1968 and discussion in Fang et al., 1994):

Amin (W)trace(S) < trace(WS) < Apin (W)trace(S) (C6)

By Property 4 of the weight matrix B, we know that A, (W) =0 and A, (W) =1, hence the above reduces to 0 <
trace(WS) < 1-trace(S). Hence is the proof by C5.
O
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