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Dear Reviewer:  

We thank the reviewer for his thorough review of our manuscript. We provide our 
responses to reviewers’ comments in italicized text. We answer all the questions in 
sequential order. However, for clarity we follow separate numbering sequence for Major 
comments and Specific comments section. The reviewer finally reiterates his questions 
raised earlier in section Major comments, the response to these comments are provided 
in the section titled as Final comments and follow separate numbering sequence. The 
changes made in light of reviewer’s comments are identified by the label Action and 
follows the Response label. 

Major Comments 

1. Reviewer Comment: I couldn’t fully understand the contributions of this paper. Is 
it claiming to be developing new methods for inverse problems, or applying existing 
techniques to the case study? The methods for local sensitivity analysis involving 
derivatives appear to be a special case of the Hyperdifferential sensitivity analysis 
for linear inverse problems and the GSA method is essentially DGSM (see end of 
review). 

Response: Contribution of the Paper 

In this study, we focus on linear atmospheric inverse problems and provide:  

▪ Analytical expressions to conduct post hoc (that is after an inversion has been 

performed) local sensitivity analysis (LSA) by computing partial derivatives 

▪ A scientifically interpretable framework for ranking thousands of spatio-temporally 

correlated input parameters with the same or different units.  

▪ A mathematical schema for global sensitivity analysis (GSA). However, it remains 

harder to perform GSA in the absence of knowledge about uncertainties associated 

with all the inputs that go in an inversion.  

▪ Methods to assess spatio-temporal correlation between forward operators of two 

or multiple observations. This is tied to overall diagnostics of the estimated fluxes 

as fluxes remain extremely sensitive to the forward operator and improvement in 

understanding the representation of atmospheric transport through spatio-

temporal association in the forward operator can lead to significant improvement 

in designing the components of a suitable inversion framework. 

Even though we have a comprehensive awareness of the literature associated with 

atmospheric inverse modeling and the methods used to assess them but here we would like 

to refer to a review paper by Michalak et al., 2017 (see below) that does not discuss 

sensitivity analysis, or the other two contributions mentioned above. 

Reference: 

▪ Michalak, A. M., Randazzo, N. A., and Chevallier, F.: Diagnostic methods for 

atmospheric inversions of long-lived greenhouse gases, Atmos. Chem. Phys., 17, 

7405–7421, 2017. 

Response: Is it claiming to be developing new methods for inverse problems?  
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We do not claim that we are developing new methods for understanding the sensitivity of 

inputs for all classes of inverse problems and nowhere is it mentioned in the previous or 

revised versions of the manuscript. Having said that in this work we do not specifically 

borrow or apply any existing method designed for dealing with parameter sensitivity. We 

agree that our method falls within the same category as Bayesian Hyperdifferential 

sensitivity analysis (BHDSA). However, the way we conduct sensitivity analysis and rank 

the importance of inputs is different from what is proposed in the BHDSA manuscript.  

To support our argument, we highlight the following properties of linear atmospheric 

inverse problems, which necessitates a tailored approach for conducting sensitivity 

analysis.  

Properties of Atmospheric Inverse Problems: 

▪ Most of the input parameters (this includes measurements) are correlated in both 

space and time with correlation dependent on the weather conditions like the 

direction of the wind, rainfall, temperature, boundary layer height, clouds, and 

solar radiation among many others.  

▪ Inputs to an atmospheric inverse problem result in a dense vector or matrix 

(depending on how the output is arranged) containing millions of entries depending 

on the spatio-temporal resolution of the problem. Furthermore, spatio-temporal 

correlation structure of inputs is different across observational platforms like 

satellites, aircrafts, and in-situ sites, among others. This means that the spatio-

temporal correlation between observations collected from one observational 

platform is different from those obtained from another platform and there also 

exists cross-correlation across these observations (see Figure 1).  

 

Figure 1. Observation locations of carbon dioxide and methane concentrations 
obtained from different platforms in Los Angeles on 8/5/2015. 

▪ Output in some cases can only have non-negative or zero values in space and time.   

▪ The ranking of inputs should be preferably bounded, scientifically interpretable, 

and consistent.  

Due to these properties of atmospheric inverse problems some of the previously proposed 

approaches (we do not list all) cannot be directly used in their current form. 

▪ One at a time or Moris method for ranking. 
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o Space-time correlation is not accounted for in the method. 

o Even if we assume independence of inputs the approach is computationally 

infeasible for thousands of inputs. If we assume that the output results in a 

matrix or vector of 10 thousand entries and only 10 samples (which is a large 

underestimate) are used to cover the sampling space of each parameter and it 

takes 1 minute to do an inversion on a supercomputer (which is also a large 

underestimate) then it would take months to obtain the relative ranking of 

inputs. 

▪ Monte Carlo-based methods: Sobol Class 

o See the same computational rationale as above. Sampling from the complex 

spatio-temporal structure to compute high-dimensional integral directly or via 

Monte Carlo integration with thousands or millions of parameters would mean 

that we would be sampling for a long time.  

▪ FAST method 

o Has a similar problem of sampling from complex spatio-temporal structure as 

mentioned above. Furthermore, in atmospheric inverse problems, we need 

something that is localized in both space and time whereas FAST is only 

localized in frequency space. Wavelets have the property of being localized in 

space and time and may be utilized to compute FAST-based sensitivities. 

However, we do not investigate how different kinds of wavelets for different 

inputs, units, constraints, and space-time correlation structures will work for 

sensitivity analysis. Furthermore, there is no previous research to support that 

it has been done and whether it is computationally feasible to do this for large 

number of inputs.    

▪ Polynomial Chaos Expansion (PCE) 

o Does not work. Joint pdf of inputs is not known. See below given reference 

for the methodological constraints associated with PCE.  

Reference: 

Sudret, Bruno. "Global sensitivity analysis using polynomial chaos 

expansions." Reliability engineering & system safety 93.7 (2008): 964-979. 

▪ Derivative-based Global Sensitivity Measures (DGSM) 

We agree that DGSMs can also be applied under these scenarios. However, 

neither the method proposed and demonstrated in this work nor DGSM can 

be deployed for conducting GSA in atmospheric inverse problems except for 

the cases where number of parameters of interest is small and their 

covariance structure is known. We show a realistic example of this in the 

manuscript with Q and R parameters which is contextually highly relevant 

and their covariance can also be estimated under certain assumptions. 

However, a generic application of this method is not possible since 

covariance between spatio-temporally correlated parameters (note we refer 

to observations as parameters) is unknown in these applications. The method 
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we proposed for conducting global sensitivity analysis (GSA) in this study is 

not exactly DGSM. It is a Taylor’s series based approximate method for 

conducting GSA. However, this is not really an assumption free method. It 

assumes that covariance (or at least their variances) between the parameters 

can be obtained. It does belong to the variance-based decomposition class of 

GSA and requires partial derivatives. 

▪ Bayesian Hyperdifferential Sensitivity Analysis (BHDSA) 

o We thank the reviewer for directing our attention to the BHDSA article. We 

acknowledge that the local sensitivity analysis (LSA) approach described in our 

manuscript falls in the same category as BHDSA. However, we utilize 

analytical derivatives of the closed form MAP solution with respect to the input 

parameters in atmospheric linear inverse problems to conduct LSA. Therefore, 

we do not need to evaluate discretized sensitivity operator (described in the 

BHDSA manuscript) since we know the exact functional form of the MAP 

solutions under the setup assumed in this manuscript. Thus, we avoid 

generating data samples for conducting multiple inversions.  

Action: We have now included references and added a couple of paragraphs in the 

introductory section of the manuscript explaining why existing methods would not work for 

in the context of atmospheric inverse problem. Please also see our responses in the specific 

comments section. 

2. Reviewer Comment: Mathematical exposition: I understand that this is not an 
applied math journal, but the standard for exposition was well below this journal.  

Response: This is a subjective statement and from our side, we can only make sure that 

every symbol used in equations is properly defined and equations are clear and 

demonstrated by an implementation, which we have also done through submitted MATLAB 

Livescripts. 

It would be quite useful for us to know from the reviewer the standard for mathematical 

exposition for this journal so we can follow it.  

In our work, some of the equations are long where many matrix multiplication and 

inversion terms are repeated and therefore, we have replaced them by a single symbol that 

shortens the equations, makes them legible, and amenable for easy implementation in any 

programming language. This also reduces the computational cost as repeated operations 

are avoided.  

We cannot provide context of every equation and how they should be used.  We have 

followed mathematical formulation for the linear atmospheric inverse problems as used in 

the field for the past three decades in several papers some of which are published in this 

Journal as mentioned below.  

References: 

▪ Miller, S. M., Saibaba, A. K., Trudeau, M. E., Mountain, M. E., and Andrews, A. 

E.: Geostatistical inverse modeling with very large datasets: an example from the 

Orbiting Carbon Observatory 2 (OCO-2) satellite, Geosci. Model Dev., 13, 1771–

1785, https://doi.org/10.5194/gmd-13-1771-2020, 2020. 
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▪ Hase, N., Miller, S. M., Maaß, P., Notholt, J., Palm, M., and Warneke, T.: 

Atmospheric inverse modeling via sparse reconstruction, Geosci. Model Dev., 10, 

3695–3713, https://doi.org/10.5194/gmd-10-3695-2017, 2017. 

▪ Miller, S. M., Michalak, A. M., and Levi, P. J.: Atmospheric inverse modeling with 

known physical bounds: an example from trace gas emissions, Geosci. Model Dev., 

7, 303–315, https://doi.org/10.5194/gmd-7-303-2014, 2014. 

▪ Yadav, V. and Michalak, A. M.: Improving computational efficiency in large linear 

inverse problems: an example from carbon dioxide flux estimation, Geosci. Model 

Dev., 6, 583–590, https://doi.org/10.5194/gmd-6-583-2013, 2013. 

Action: We have checked for all the instances of the issues mentioned in section 3’s 

comment 3 and made the necessary changes. These are listed under section 3’s comment 

3.  

3. Reviewer Comment: The notation is not setup properly and inconsistently used. 

Response: We request the reviewer to provide examples so that we can address his concern. 

Action: We have checked our manuscript for consistency of symbols and corrected them 

for errors and wherever required provided more context and explanation of the symbols.   

4. Reviewer Comment: There were a lot of vague statements (I did not fully tabulate 
this list).  
Response: We request the reviewer to provide specific examples so that we can address his 

concern. We have responded to all the reviewer’s concerns with respect to the issues raised 

under specific comments section. Please also see the above-mentioned actions (see 

comment 3 under major comments) we have taken considering the reviewer’s comments.  

 

Action: No action required. 

Specific Comments 

1. Reviewer Comment: Title: I think working in the word sensitivity is better here 
than “assessing”.  

Response: We deliberately did not use the word sensitivity as sometimes the forward 

operator/ forward model in linear atmospheric inverse problems is referred to as Jacobian 

which contains sensitivity of observations to emissions. Furthermore, this paper also deals 

with deriving correlation functions and therefore just using the word sensitivity reduces 

the scope of the paper. Thus, we think these are metrics for evaluating the quality of the 

solution of the linear atmospheric inverse problems.  

Action: Regardless, we have changed the title of the manuscript to: Metrics for evaluating 

the “quality” in linear atmospheric inverse problems as this covers overall theme of our 

study.   

2. Reviewer Comment: The abstract does not clarify, of what quantity (i.e. MAP 
estimate) the sensitivity is being computed. GHG is not expanded and Jacobian 
should be capitalized throughout.  
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Response: Agreed  

Action: We have revised the abstract and added “estimated fluxes” as the quantity (see 

line 5 and 12 of the abstract) for which the sensitivity is being computed. We have removed 

the word GHG from the abstract.   

3. Reviewer Comment: The word Jacobian (to me) is misleading because this is a 
linear problem – there are other Jacobians used in the paper.  

Response: We are not exactly clear what the reviewer meant by “there are other Jacobians 

used in the paper”. There is only one definition of the Jacobian in our previous manuscript 

as described in section 3.2. However, for the sake of clarity, we have now removed the 

word “Jacobian” from the revised manuscript.  

Action: In the revised manuscript we have defined Jacobian (used only at one place in the 

manuscript) in the context of linear atmospheric inverse problems in section 3.1, i.e., 

before we start describing our metrics for assessing the Jacobian. Note we do not use the 

word Jacobian in the revised manuscript anymore to avoid confusion as pointed out by the 

reviewer. We have replaced it with the more general term i.e., forward operator. The 

forward model/operator in the context of this study (linear atmospheric inverse problems) 

has a specific meaning which is not applicable in the case of all inverse problems. In the 

previous version of the manuscript by Jacobian, we meant the forward operator which 

encodes the sensitivity of observations to the sources of emissions obtained from an 

atmospheric transport model. For description see: 

Reference:  

▪ Michalak, Anna M., Lori Bruhwiler, and Pieter P. Tans. "A geostatistical approach 

to surface flux estimation of atmospheric trace gases." Journal of Geophysical 

Research: Atmospheres 109.D14 (2004). 

4. Reviewer Comment: The introduction does not clearly list the contributions (as 
mentioned earlier) and is missing some references.  

Response: Agreed  

Action: We have now included two paragraphs in the introduction listing previous works 

on sensitivity analysis and their applicability and lacuna for conducting sensitivity 

analysis in the linear atmospheric inverse problems.  

Section 3.  

1. Reviewer Comment: The inversion is not setup properly before 3.1.1-3.1.3 are 
explained. I essentially did not understand anything in these subsections. I am not 
sure what sets are being considered, how this relates to the inversion, etc. There 
is a small discussion at the end of 3.1.3 but it is referring to things that haven’t yet 
been defined.  

Response: A linear trace gas atmospheric inverse problem requires many inputs before an 

inversion can be performed. Among these inputs is an output from a transport model (in 
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generic terms a forward operator or model) that consists of sensitivities of observations to 

emissions (called as H in the manuscript). An example of these sensitivities is shown in 

Figure 2 for some of the sites included in this case study.  

Here, the term “sensitivity” is not to be confused with sensitivity analysis. 

 

Figure 2. Example footprints or sensitivities of observations to emissions (H) for a selected 
location in space, time and altitude above ground level.  

These sensitivities are essentially 5d pulse functions indexed by latitude, longitude, 

altitude, and time with sensitivity serving as the 5th dimension (see Figure 2). An example 

2d plot of this pulse function (for fixed altitude, and time) for the ONT site is shown in 

Figure 3. When we assess the correlation between two of these pulse functions in terms of 

shared sensitivity of observations to emissions (forward operator/map or Jacobian H) then 

it can be expressed or defined on a set of grid points as done in the previous version of the 

manuscript in section 3.1.1 
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Figure 3. Sensitivity of observation taken at time 2015-10-23-19-00 to methane 
emissions for ONT site with coordinates 34.064N and-117.583W located at altitude 
41 m above ground level is shown below. Note altitude is fixed in Figure 3.  

We do not need an inversion to obtain a forward operator for a particular spatio-temporal 

location and altitude (above sea level) on Earth’s surface (see Shiga et al. (2013) and 

Lopez-Cotez (2017) for creating H for hypothetical locations before performing inversion).  

Section 3.1.1 and 3.1.2. focus on quantifying the correlation between sensitivities of 

observations to emissions in the forward operator H.  These correlation functions are 

based on distance metrics that consider the closeness of sensitivities of observations to 

emissions in space and time. To the authors’ knowledge, such kind of scientifically 

interpretable correlation functions have not been defined in the context of linear 

atmospheric inverse problems which can also be expressed in the units of H like in Figure 

2&3 (Note units can be different in different inverse problems). 

 We can use these correlation functions to define a correlation matrix shown in Figure 4. 

This correlation matrix is based on the correlation computed through IOAMI and JSD for 

locations shown in Figure 2. This can then be used as one of the components of model-data 

error covariance in R (also see MATLAB Livescript in the supplementary material) in an 

inversion. The choice of such components of R can have a significant impact on the 

performance of inversions (see Locatelli et al. 2013). This is what is mentioned at the end 

in section 3.1.3. Note that such analysis of H through correlation functions can be done 

independently even without performing an inversion.  

 

Figure 4. Example of the correlation matrix based on IOAMI. Note it consists of 
autocorrelation for observations collected at different time at same locations and cross 
correlation between observations collected at different sites. 

References: 

▪ Lopez-Coto, Israel, et al. "Tower-based greenhouse gas measurement network 

design—the national institute of standards and technology north east corridor 

testbed." Advances in Atmospheric Sciences 34.9 (2017): 1095-1105.    
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▪ Shiga, Yoichi P., et al. "In‐situ CO2 monitoring network evaluation and design: A 

criterion based on atmospheric CO2 variability." Journal of Geophysical 

Research: Atmospheres 118.4 (2013): 2007-2018. 

▪ Locatelli, R., et. al., Impact of transport model errors on the global and regional 

methane emissions estimated by inverse modelling, Atmos. Chem. Phys., 13, 9917–

9937, https://doi.org/10.5194/acp-13-9917-2013, 2013. 

Action: Considering the reviewer’s concerns we have now included a flowchart and 

defined all the components of atmospheric inverse models that we have used in the 

manuscript (see Figure 1 in the revised manuscript). We have simplified the definition of 

the set used in section 3.1.1. In the revised manuscript they are described in section 3.1.1 

(line number 128-130).  

2. Reviewer Comment: Section 3.2: Someone not familiar with this material will 
struggle since it has not been discussed properly. I suggest reorganizing this 
section bringing some of this material earlier.  
 

Response: In the previous version of this manuscript, we have referred to other previous 

studies on linear atmospheric inverse problems, which provided enough background of the 

setup we use (see a reference given below). Therefore, we do not describe the background 

to inverse problems in detail in section 3.2.   
 

Action: We have now included a brief background paragraph in the organization section 

(Section 2) and provided a diagrammatic description of atmospheric inversions (see 

Figure 1 in the revised manuscript). This is mostly a modified version of figure 1 in Gourdji 

et al. 2008. 

Reference: 

▪ Gourdji, Sharon M., et al. "Global monthly averaged CO2 fluxes recovered using 

a geostatistical inverse modeling approach: 2. Results including auxiliary 

environmental data." Journal of Geophysical Research: Atmospheres 113.D21 

(2008).  

3. Reviewer Comment: Notation/Writing: This is not consistent throughout the 
paper. Sometimes subscripts refer to sizes, other times they mean elements. 
Sometimes boldfaced, sometimes not. Sometimes lower/upper case. Sentences 
should not start with variables. When units are being described, the entries of 
vectors have units, not the vectors themselves.  

Response: We thank the reviewer for this comment.  

Action: We have corrected the inconsistencies that the reviewer mentioned here along with 

the ones we found.   

4. Reviewer Comment: Line 157: it’s -> its. This occurred in other places also 
 
Response: We thank the reviewer for pointing this out. 

 

Action: We have fixed this error in the revised manuscript. 
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5. Reviewer Comment: Line 169: it can be simplified using the notation below in 
172.  

Response: We thank the reviewer for pointing this out. 

Action: We have simplified the expression in line 214 i.e., Eq. (13) (line 169 in the previous 

manuscript) in the revised manuscript. 

6. Reviewer Comment: Line 173: One differentiates a function rather than an 
equation.  

Response: Right. However, often a function is represented as an equation. Therefore, we 

can differentiate an equation. Of course, we understand that the converse may not be true. 

An equation may simply be tautologies. However, in the context of atmospheric inversions, 

often these functions are referred to as equations and we tried to stay close to their 

nomenclatures. We refer the reviewer to the definition of a function mentioned on a 

university webpage. See below.  

https://tutorial.math.lamar.edu/classes/calci/Functions.aspx 

Action: No action required. 
 

7. Reviewer Comment: When referring to equations, one typically puts a 
parenthesis, e.g. (10).  

Response: We thank the reviewer for making this point.  

Action: We have fixed this in the revised manuscript.  

8. Reviewer Comment: Line 178: The inputs to the inverse problems are data and 
hyperparameters. The transport model is typically fixed, as is the drift matrix X. 
What does it mean to differentiate wrt them? Why is that useful in applications? 
Are these matrices functions of some hyperparameters? 

Response: In atmosphere inverse problems (which may be true for other inverse problems) 

we want to holistically know the impact of all inputs that went into governing the solution 

of the inverse problem. This would also include X and the forward operator or transport 

model.  

What does it mean to differentiate wrt X and H? 

Differentiating with respect to X and the transport model implies evaluating the impact of 

entries in these matrices on the inverse estimates of emissions. Below here we describe 

their meaning in the context of linear atmospheric problems:  

Why we need to differentiate with respect to entries in a fixed transport model? 

Atmospheric transport: Established models do a relatively good job in modeling 

atmospheric transport on flat terrain under stable weather conditions but do an extremely 

poor job in complex terrain and mountains. Furthermore, if the winds are highly variable 

then this poses another challenge (e.g. predicting wind gusts vs average wind speed). 

Technically, all these errors should be accounted for in the model-data error covariance 

but these are mostly mis-specified (see a selected reference below for the impact of 

misspecification; Note, this literature is long and there are many articles only on this 

https://tutorial.math.lamar.edu/classes/calci/Functions.aspx
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particular problem) and their consequences can be extremely serious. In these situations, 

we want to understand the impact of atmospheric transport on the inverse solution vis-à-

vis other inputs.  

In the case study presented in this work, Figure 4 subplot B shows atmospheric transport 

associated with the most important observation. A slight shift in the location of highest 

intensity in subplot B can be quite serious as we can have a situation where we have an 

observation that indicates a high concentration of greenhouse gas but the transport 

predicts the spatial location to be miles (just an example) away.  In these circumstances, 

we would end up assigning emissions to a location, which probably did not even have any 

sources to begin with. Thus, knowledge of the sensitivity of fluxes to transport can be very 

useful here. This can also help in better construction of model-error covariance.  

Reference: Locatelli, R., et. al., Impact of transport model errors on the global and 

regional methane emissions estimated by inverse modeling, Atmos. Chem. Phys., 13, 9917–

9937, https://doi.org/10.5194/acp-13-9917-2013, 2013. 

Why we need to differentiate with respect to entries in a prior or X? 

A misspecification of prior or X can also lead to disastrous consequence on the estimate. 

For mathematical justification see: 

Reference:  

▪ Nguyen, H.; Cressie, N.; Hobbs, J. Sensitivity of Optimal Estimation Satellite 

Retrievals to Misspecification of the Prior Mean and Covariance, with Application 

to OCO-2 Retrievals. Remote Sens. 2019, 11, 2770. https://doi.org/10.3390

/rs11232770 

Note atmospheric inverse problems sometimes are highly underdetermined where 

observation to state vector ratio can be even lower than 1:100. In such a scenario if we are 

wrong with the prior then posterior updates can lead to completely incorrect conclusions. 

We would not go into further details as the reference given above covers it in detail.  

Finally, sometimes in atmospheric inverse problems, we also want to be extremely cautious 

and like to analyze the impact of every input to an inverse problem as the answer to the 

question can have significant health and economic implications.  

Reference:https://ww2.arb.ca.gov/sites/default/files/2020-

07/aliso_canyon_methane_emissions-arb_final.pdf 

Are these matrices functions of some hyperparameters? 

In our case no. However, almost all of the inputs can have hyperparameters. This is 

especially the case in the Hierarchical Bayesian framework. We can also consider a prior 

at a particular location in space and time to have hyperparameters in some cases. 

9. Reviewer Comment: Line 185: The equation is not referred to as Lambda but one 
of the terms there is Lambda. 

Response:  We refer to this as Lambda in the GMDD version of this manuscript as in 

previous works (see below-given references) it has been referred to as Lambda. 

https://doi.org/10.3390/rs11232770
https://doi.org/10.3390/rs11232770
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We did not find any place in the GMDD version of the manuscript where we used Lambda 

as one of the terms.  

References:  

▪ Michalak, Anna M., Lori Bruhwiler, and Pieter P. Tans. "A geostatistical approach 

to surface flux estimation of atmospheric trace gases." Journal of Geophysical 

Research: Atmospheres 109.D14 (2004). 

▪ Gourdji, S. M., et al. "Regional-scale geostatistical inverse modeling of North 

American CO 2 fluxes: a synthetic data study." Atmospheric Chemistry and 

Physics 10.13 (2010): 6151-6167. 

▪ Gourdji, Sharon M., et al. "Global monthly averaged CO2 fluxes recovered using 

a geostatistical inverse modeling approach: 2. Results including auxiliary 

environmental data." Journal of Geophysical Research: Atmospheres 113.D21 

(2008). 

Action: To avoid confusion we have removed Lambda term in the equation 

7. Reviewer Comment: Line 203: When differentiating a vector wrt a matrix, one should 
get a tensor. I think what is happening is that you are vectorizing X and then 
differentiating. But the notation is not clear. Same with line 227.  

Response: We do get a tensor. We chose to write the equation in a Kronecker form (see 

page 2 last paragraph in Sören & Giesen 2018 that says that tensor and Kronecker form 

are equivalent). This is demonstrated in the code that is attached as a supplementary 

material with the manuscript. This mathematical formulation is also described in 

Lutkepohl 1997 and Magnus and Neudecker 2019.  

References:  

▪ Laue, Sören, Matthias Mitterreiter, and Joachim Giesen. "Computing higher order 

derivatives of matrix and tensor expressions." Advances in neural information 

processing systems 31 (2018). 

▪ Lutkepohl, Helmut. "Handbook of matrices." Computational statistics and Data 

analysis 2.25 (1997): 243. 

▪ Magnus, Jan R., and Heinz Neudecker. Matrix differential calculus with 

applications in statistics and econometrics. John Wiley & Sons, 2019. 

8. Reviewer Comment: I agree that full GSA is very complicated. It’s not clear how 
this is GSA. Is this essentially derivative based global sensitivity? Once again, I did 
not really understand what was being discussed.  

Response: We thank the reviewer for the comment. The global sensitivity analysis (GSA) 

presented here leverages local sensitivities but actually belongs to the class of variance-

based methods. It is derivative based but it doesn’t require partial derivatives over the 

entire parameter space (Derivative based Global Sensitivity measures, Sobol et al., 2010). 

This is an approach that addresses the contribution to the total variance of the estimated 

fluxes. We can say that this is an approximate method unlike the exact decomposition 

method of Sobol using conditional variances. It applies a simple first-order Taylor’s 
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approximation around parameter estimates to obtain an approximate representation. This 

approach has been used previously by many researchers (see Hamby et al., 1994, Groen 

et al., 2017 and Heijungs, R 1996).  

While we acknowledge that GSA can be done in several ways, e.g. by Sobol’s variance 

decomposition method, and via Derivative based global sensitivity measures (DGSM; 

Constantine et al.), it is prohibitively expensive to directly apply Sobol’s method or DGSM 

(owing to the difficulty of computing high-dimensional integrals).  However, we 

acknowledge that both DGSM and the method we adopt here can be used when the number 

of parameters of interest is small and their covariance structure is known. We show a 

realistic example of this in the manuscript with Q and R parameters which is contextually 

highly relevant and their covariance can also be estimated under certain assumptions. 

However, a generic application of this method is not possible since covariance between 

spatio-temporally correlated parameters (note we refer to observations as parameters) is 

unknown in these applications. This is also mentioned above in response to reviewer’s first 

comment. 

We thank the reviewer for mentioning the active-subspace method. In atmospheric inverse 

problems, it is not possible to directly compute active subspaces owing to the fact that it is 

expensive to compute empirical covariance of the gradient vector. Empirical covariance 

requires samples of the gradient vectors at a chosen point. Choosing these points in high-

dimensional space requires knowledge of the distribution of high-dimensional parameter 

vectors and requires running the inversion multiple times. Furthermore, it is difficult to 

know the joint probability distribution of the parameter space (i.e., knowing the joint 

dependence of the prior-error variance, model-data error variance, transport model 

parameters, etc.). In fact, this is one of the reasons, we couldn’t fully apply Taylor’s series-

based method.  

We realize that it might be possible to leverage the closed-form analytical expressions of 

the gradients, prior domain knowledge of the parameters, or by other computational means 

to compute empirical covariance of the gradient vectors along with partial SVD to obtain 

the first few eigenvectors. In this paper, in the GSA section, our goal is to show how an 

approximate decomposition/apportionment of the uncertainties can be obtained with 

respect to the prior error and the model data error variance parameters when we don’t 

know their joint dependence. If we can compute their joint dependences, then we will be 

able to fully apply this and also the active subspace method. Note that, regardless of the 

methods, it is extremely challenging to estimate the joint variation of the transport model 

components, prior-error variance, and model-data error variance components.   

Action: We have now included a paragraph in section 3.3 and edited introduction and 

discussion to describe this.  

References: 

▪ Kucherenko, S. (2010). A new derivative-based importance criterion for groups of 

variables and its link with the global sensitivity indices. Computer Physics 

Communications, 181(7), 1212-1217. 

▪ Hamby, D. M. (1994). A review of techniques for parameter sensitivity analysis of 

environmental models. Environmental monitoring and assessment, 32(2), 135-154. 
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▪ Groen, E. A., Bokkers, E. A., Heijungs, R., & de Boer, I. J. (2017). Methods for 

global sensitivity analysis in life cycle assessment. The International Journal of Life 

Cycle Assessment, 22(7), 1125-1137. 

9. Reviewer Comment: The authors raise a good point here cautioning against 
sensitivity metrics since they are of different units but little has been done to address 
them. There are techniques in sensitivity analysis that the authors should consult 
(DGSMs and activity scores are some techniques, see Constantine and Diaz) 

Response: Please see our explanation in paragraph 4 of comment 8 in section 3.   

In this manuscript, we use a variation of multiple linear regression to rank sensitivities. 

The section 3.4 of the manuscript provides a clear description of the methodology that we 

adopted to rank these sensitivities. Our methodology can compute the rank of parameters 

with same and different units. For more details see answer to comment 5 in Final comment 

section.  

Action: To address this question we have included explanation in the introduction and in 

section 3.3. 

10. Reviewer Comment: I didn’t understand the figures since sometimes the sizes of 
the quantities are not clear. Are entrywise sensitivities being plotted? 

Response: Yes, entry-wise quantities are being plotted in the figures.  

Action: We have now mentioned the dimensions of the matrices that are being plotted in 

the main text (e.g. see line 398-399 in the revised manuscript).  

11. Reviewer Comment: Appendix: The notation was especially problematic here.  

Response:   It is not clear from the reviewer’s comment about the places in the previous 

version of the manuscript where the reviewer encountered notational inconsistencies.  

Action: In the revised version, we have corrected all the inconsistencies that we found in 

the previous version of the manuscript. 

Final Comments 

1. Reviewer Comment: Title I don’t think the paper is novel in the methodology, but as 
an application to atmospheric inverse problems I think it has potential. 

Response: From the outset, the paper is written from the perspective of linear atmospheric 

inverse problems and we have actually specified that in the first paragraph of the 

manuscript. We do not claim that our method is applicable to all different kinds of inverse 

problems.  

Action: In the revised manuscript, we have edited the abstract to reflect the scope of the 

manuscript.  

2. Reviewer Comment: In its current version, I don’t think it is worthy of publishing. In 
addition to the comments I raised, I would encourage the authors to think of the 
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following questions to improve the utility. What is the computational cost of these 
approaches? 

Response: Please see all the answers to the previous questions that address the reviewer’s 

previous concerns. We are aware of the computational cost of the previously suggested 

different methods to assess the sensitivity of inputs.  

Atmospheric inverse problems have unique properties which make existing methods 

untenable. These properties are described at the beginning of our responses. Doing GSA 

(except in the case of covariance parameters) is computationally extremely expensive and 

not possible that is why we decided to use LSA to understand the input factors which 

influence the inverse estimate of the emissions. The computational cost to obtain partial 

derivatives is minimal in comparison to other methods and is bounded by the 

computational cost to perform matrix multiplications which at max is O(n3). Storage issues 

can arise in which case ij form of equations can be used to compute partial derivatives. 

Note computation of partial derivatives is just a calculation of analytical expressions 

mentioned in the manuscript. The main goal is to understand what is influencing (ranking 

of importance of factors) the grid-scale inverse estimates of the fluxes in space and time.  

 Action: The discussion with respect to the computational cost associated with the 

approach for sensitivity analysis proposed in this work is given in the Discussion-

paragraph beginning from line 517 in the revised manuscript.  

3. Reviewer Comment: Can they be computed when the forward model is not 
available entrywise? 

Response: No. As mentioned in the first paragraph of the manuscript the analytical 

expressions are simply not applicable.  

Action: No action required. 
 

4. Reviewer Comment: What are the challenges involved and how can they be 
efficiently implemented? 

Response: We think the reviewer here implies previously suggested methods the answer to 

which is given as part of the reviwer’s first major concern. If the question relates to the 

method proposed here, then please see the answer to the 2nd point under Major concern 

2.  

One thing we note is that some of the matrices involved in the sensitivity expressions can 

be big as the number of parameters increases. However, as long it is possible to do efficient 

matrix multiplication optimizing for memory, it would be possible to compute these 

quantities in a reasonable time. We checked computations of these methods for ~4 

thousand parameters on a personal laptop and they don’t require more than a few minutes. 

See MATLAB Livescript in the supplemental section for an implementation.  

Action: See response for bullet 2 in the Final Comments section. 
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5. Reviewer Comment: How does one compare sensitivities of different quantities (with 
different units) and rank the sources of sensitivity?  

Response:  

Case 1: Ranking multiple parameters with same units 

Consider we have to rank importance of observations (called as parameters in the 

manuscript) with same units in influencing the estimate of fluxes for the inverse 

problem described in this work. LSA of fluxes with respect to each observation will 

result in a vector of partial derivatives (e.g. one column vector for one observation). In 

the case of multiple observations, it is highly likely that these derivative vectors are 

correlated to each other. In this situation, we want to find out (when derivative vectors 

are correlated) which observation is most important. 

It is important to note that two derivative vectors with completely reverse signs can 

have the same norm but not be independent of each other. Therefore, they can have a 

completely different relationship to the MAP estimate of fluxes. It is less informative to 

say that the MAP estimate is equally sensitive to both observations. In fact, it may turn 

out that one observation “may be” completely redundant in influencing the estimate of 

fluxes and is just increasing the computational cost of the inverse problem.  

We adopted a regression-based approach (see section 3.4 in the manuscript for details 

and also check below-given reference) to address the issue of multicollinearity among 

derivative vectors of the observations and rank the importance of the observations. This 

is also closer to the scientific goal in question. Such an approach besides taking 

multicollinearity into account opens up all kinds of avenues for analysis that goes with 

regression. Overall, we can consider this to be one potential approach for ranking the 

importance of observations.  

Reference:  

▪ Johnson, Jeff W. "A heuristic method for estimating the relative weight of predictor 

variables in multiple regression." Multivariate behavioral research 35.1 (2000): 1-

19. 

Case 2: Multiple parameters with different units 

Two cases arise in this situation i.e., (1) ungrouped parameters with different units, 

and (2) grouped parameters with different units. In the case of ungrouped parameters, 

the approach as described with respect to Case 1 can be used. The second case arises 

when we have to rank the overall importance of a group of parameters like all 

observations vis-à-vis covariance parameters and prior information. This case 

requires that we create one column vector associated with one group that captures the 

overall sensitivity pattern associated with that group.  

Inter-group derivatives can have large/small negative, positive and extreme values that 

depend on the unit of the quantity of interest. In this situation, we need to do some kind 

of normalization which does not allow negative and positive values to cancel each other 

and creates a pattern that is representative of the overall sensitivity of a group (in the 

context of this work 0-1 normalization as described in section 3.4) to the MAP estimate. 

A simple division by L2 norm to make them unit free and summing/averaging the 



17 
 

columns up to group may not work because the summation of scaled vector derivative 

would result in cancellation of negative and positive values. It might be possible to use 

the Mahalanobis norm here that can correctly weigh the signed extreme points, but it 

is not easy to find the covariance/weight matrix. Therefore, we resort to a double 

normalization and grouping. Please see section 3.4 for a description. Once we 

normalize and group the derivatives, we can then rank the importance of the grouped 

inputs with different units by using the regression-based approach described in the 

context of Case 1 (mentioned above). Note this is also exemplified in the MATLAB 

Livescript submitted with this manuscript.  

Also, note that ranks of parameters within a group are internally consistent as scaling 

does not affect the importance of parameters with respect to the MAP estimate within 

a group.    

Assumptions associated with comparison 

We have assumed that there exists a linear relationship between derivative vectors and 

the emissions estimate, which may or may not be true. Consequently, the ranking 

proposed in the manuscript does not account for the non-linear relationship between 

estimates of fluxes and the derivatives. If this is a concern then the strength of the 

nonlinear relationship among derivative vectors can be first obtained by computing the 

distance correlation between fluxes and the local derivatives of the parameters and 

then performing transformation (e.g., Box-Cox transformation) before applying the 

regression technique.  

References on distance correlation: 

▪ Gábor J. Székely. Maria L. Rizzo. "Brownian distance covariance." Ann. Appl. 

Stat. 3 (4) 1236 - 1265, December 2009. https://doi.org/10.1214/09-AOAS312 

▪ Gábor J. Székely. Maria L. Rizzo. "Partial distance correlation with methods for 

dissimilarities." Ann. Statist. 42 (6) 2382 - 2412, December 

2014. https://doi.org/10.1214/14-AOS1255 

Final Author Comment: If the reviewer has any concern about the scope then we request 
the reviewer to see our response to comment 3 of Dr. Rayner (first reviewer) 
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