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Abstract. Over the last two decades, there have been significant advances to improve the 3D modelling of geological structures 

by incorporating geological knowledge into the model algorithms. These methods take advantage of different structural data 

types and do not require manual processing, making them robust and objective. Igneous intrusions have received little attention 

in 3D modelling workflows, and there is no current method that ensures the reproduction of realistic intrusion shapes. Existing 

techniques are strongly dependent on the availability of data and manual processing to refine models. Intrusions are usually 10 

partly or totally covered, making the generation of realistic 3D models challenging without the modeller’s intervention. In this 

contribution, we present a method to stochastically model intrusions based on the Object-Distance Simulation Method. We 

adapted this method considering typical datasets and rules of intrusion emplacement mechanisms. Using the geometric 

elements of intrusions (inflation direction, propagation direction) and stochastic simulations of intrusion thickness, we can 

generate realistic intrusions shapes while honouring observations and accounting for the spatial variability in thickness. The 15 

method is tested in synthetic and real-world case studies and the results indicate that the method can reproduce expected 

geometries without manual processing. A comparison with Radial Basis Function (RBF) interpolation shows that our method 

can better reproduce intrusion shapes, particularly when considering scenarios with sparse datasets. 

1 Introduction 

Significant advances in 3D geological modelling have shown how incorporating prior geological knowledge into interpolation 20 

algorithms can significantly improve the 3D representation of the geometry of structures (e.g.,  Godefroy et al., 2017; Godefroy 

et al., 2018; Grose et al., 2018; Grose et al., 2019; Hillier et al., 2014; Laurent et al., 2013, 2016; Thibert et al., 2005). 

Geological knowledge of a geological feature can be incorporated to the 3D modelling workflow using different approaches. 

For instance, by parameterizing its 3D geometry, by defining its expected geometries, or by using complete structural datasets. 

Laurent et al. (2016) introduced a fold frame constrained by field observations that provides a parametric description of 25 

expected fold geometries within the entire model volume. The fold frame provides a spatial reference system for each 

deformation event, facilitating the construction of 3D models of poly-deformed terranes. Grose et al. (2017) used fold frame 

coordinates to characterize the geometry of folds with application to both synthetic and real case studies. A similar approach 

was proposed by Laurent et al. (2013), extended by Godefroy et al. (2018) and Grose et al. (2021b) to model faults, where a 

quantitative description of fault kinematics is incorporated into the modelling workflow. Godefroy et al. (2018) showed that 30 
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such an approach leads to significantly improved models compared to those based only on interpolation of data. The 

improvement was significant, especially in models built using few or poor-quality observations.  

 

In the case of igneous intrusions, there are currently no methods that incorporate prior knowledge into the modelling algorithm. 

3D models of intrusions are commonly characterized by a surface representing its contact boundary. This boundary is 35 

numerically described using the same frameworks as those used to build other geological interfaces such as stratigraphic 

contacts or faults. There are two main approaches to represent a surface within a geological 3D model (Wellmann and Caumon, 

2018): (a) explicit methods, where geological surfaces are built by interpolating the points that lie on the surface, and these 

points and their arrangement directly define the surface, and (b) implicit methods, where a scalar field constrained by data 

points is interpolated, and geological interfaces are represented by equipotential surfaces of this scalar field. The best fit surface 40 

for observations of an intrusion relies on the data, interpolation approach and manual processing to refine the model. The 

quality and density of the input data vary depending on what data type is used to build the model. Typical datasets include 

surface observations, drilling data and modelling from geophysical surveys (e.g., Braga et al., 2019; Cervantes 2019; Eshaghi 

et al., 2016; Rawling et al., 2011). The estimated geometries are consistent with observations of the intrusions but do not 

include any geological rules and may not necessarily honour realistic intrusion geometries. Plutons, laccoliths, sills and layered 45 

intrusions develop tabular bodies, with their horizontal dimension greater than their vertical dimension (e.g., Cruden et al., 

2017; Cruden et al., 1999; McCaffrey and Petford 1997; Vigneresse et al., 1999). The resulting 3D bodies built using data-

driven methods might not honour these geometries without manual processing in sparse data environments. This is particularly 

important for 3D models of intrusions since they are usually only partly exposed if not totally covered and consequently 

inferred from geophysical interpretations or simulations, and intrusion observations (location and orientation of the contacts) 50 

are usually sparse. The estimation also does not assess the global uncertainty and spatial variability of the model (Haldorsen 

and Damsieth, 1990), which can be critical for models built with few or unevenly distributed data.  

 

To address the problem of poor 3D representation of intrusions, we propose a general workflow based on the Object-Distance 

Simulation Method (ODSIM, Henrion et al., 2008; 2010). Our method integrates conceptual knowledge of magma 55 

emplacement mechanisms into the ODSIM framework, enabling the reproduction of realistic intrusion geometries. As these 

concepts are integrated in the method, the results are objective and reproduceable. In practice, the method can use different 

types of datasets and build models of different types of intrusions, such as sills, plutons and laccoliths. The approach has two 

main steps. We initially build the intrusion network surface, an object representing the intrusion roof or floor contact. The 

network surface is constrained by host-rock mechanical anisotropies and incorporates knowledge of magma’s mechanical 60 

behaviour into a purely geometric approach. The second step consists of modelling the extent of the intrusion body by utilizing 

the intrusion network object and a structural frame. This structural frame comprises a parameterization of the magma 

propagation and growth directions. We demonstrate the potential of this method with both synthetic and real-world case 

studies. We assess the value of this method by comparing the resulting 3D model of a sill intrusion with its 3D model built 
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using a classical interpolation framework. The results show that the method can reproduce expected intrusion geometries, even 65 

for sparse data scenarios.  

2 Related work 

2.1 Object-distance Simulation Method 

The Object-distance simulation method (ODSIM) was developed to model geological bodies whose geometry is affected by 

pre-existing geological features (Henrion et al., 2008; 2010). It was initially tested on karsts and meandric channels, and used 70 

to model salt domes (Clausolles et al., 2019). The ODSIM simulates a stochastically perturbed 3D scalar field around a skeleton. 

The skeleton object can be constructed either in a deterministic fashion or by using object-based simulation when the target 

volume is poorly constrained. Examples of a deterministic approach would be using precise mapping of the karst cave to 

construct the skeleton representing the cave centre line. Object-based simulations are a good alternative when prior knowledge 

of the spatial distribution of the target body is available. When neither of these conditions is met, the skeleton can be built 75 

using stochastic simulations. Borghi et al. (2012) developed a method to simulate 3D karstic conduits as the minimum effort 

path between the inlets and outlets of a drainage system. The method considers the geological model of the study area, internal 

heterogeneities of the host rock and constraints from karsts genesis. The algorithm starts by parameterizing the geological 

model of pre-existing features. Then, a velocity field is computed within the volume of the model to represent mechanical 

anisotropies that may control the development of the karst. Different velocities are assigned to distinct geological features, 80 

generating a contrast between components that might be and might not be involved in the genesis of the karst system. A time 

map is computed with the velocity field, which is used to find the shortest path representing the most probable karst network.  

 

A distance scalar field D(p) is computed around the skeleton, over the points of a previously defined grid G. The skeleton is 

defined implicitly as the isovalue 0 of the distance field D(p) on grid G, and the boundary of the geological body is defined by 85 

the isovalue λ of D(p), where λ ≠ 0. This scalar field could be any type of distance scalar field, including velocity fields, as 

proposed by Rongier et al. (2014). The scalar field D(p) is stochastically perturbed using a spatially correlated random field 

ϕ(p) that acts as a threshold for the target body’s extent around the skeleton. The geological body is defined using an indicator 

function as follow: 

 90 

 

The data conditioning is obtained when ϕ(p) is higher than or equal to the distance between the data and the skeleton. It can 

be reached by transforming the data to threshold values after the simulation of ϕ(p), or using the data to condition ϕ(p) if using 

Sequential Gaussian Simulation (e.g., Clausolles et al., 2019). 

(1) 
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2.2 Structural frames in 3D implicit modelling 95 

Following the conceptual ideas of Jessell et al. (2010), Laurent et al. (2016) introduced a structural frame for folds that provides 

a parameterization of the folded foliation at any point in the model. This parameterization enables the production of 3D models 

that honour both geological knowledge and structural data. In practice, this framework adds more constraints to a discrete 

implicit interpolation scheme, thus better reproducing folded geometries away from the data. The structural frame is 

constrained by field measurements, such as fold axis and fold axial foliation, allowing the model to use different structural 100 

data types.  

 

The fold frame has three curvilinear axes, notated as 𝑋̃, 𝑌̃, and 𝑍 that correspond to the principal finite strain directions. Each 

axis is expressed as a 3D scalar field defined throughout the model, referred to as x, y, and z, respectively. Three local direction 

vectors ex, ey, and ez are implicitly defined by the scalar fields, and describe the relative orientation of deformed foliations and 105 

structural elements. Two rotation angles plus these local direction vectors are used to define the local orientation of the folded 

foliation. Grose et al. (2017) developed a method to directly calculate these rotation angles from field observations of the 

folded foliation or lineation. A semi-variogram is used to test the periodicity of the folding within the structural frame 

coordinates. For distances smaller than the half-wavelength of the fold, the authors propose to use Radial Basis Functions to 

interpolate the angles between data points. For greater distances, the fold geometry can be fitted to periodic functions such as 110 

Fourier Series. The structural frame is critical in this workflow since the geostatistics are calculated in the fold frame coordinate 

system, allowing the assessment of the variability of the angles without the effects of younger deformation.  

 

Laurent et al. (2013) presented a 3D curvilinear fault frame providing a parameterization of fault-related displacements that 

works as a basic fault operator. This method was tested in different geological settings with normal, reverse and strike-slip 115 

faults, obtaining kinematically consistent results. The fault frame has three coordinates described by three 3D scalar fields, 

representing a distance to the fault surface, the local normal to the fault and the slip direction, and a third coordinate orthogonal 

to the other two. Godefroy et al. (2018) developed a fault operator that extends this approach by adjusting it to stratigraphic 

data using numerical optimization.  

 120 

Grose et al. (2021a) developed a generic structural frame that compiles both, the fold and fault frames frameworks described 

above. This generic structural frame is implemented in the open-source 3D modelling library LoopStructural (Grose et al., 

2021a, b). In LoopStructural, the generic structural frame has three coordinates that follow the major structural directions of 

the feature being modelled. The coordinates are interpolated sequentially, starting by the one which typically have more 

observations, e.g., the first coordinate of the fault frame is the one that represents the fault surface. The second and third 125 

coordinates are interpolated using observations and orthogonality constraints. Structural frames are a key object in 
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LoopStructural that enables the modelling of complex geological features and differentiate the Loop platform from any other 

3D modelling package. 

3 Modelling igneous intrusions: general overview 

This section describes the processes that control intrusion morphologies and how they are incorporated into the modelling 130 

approach. A detailed description of the algorithm and its implementation is presented in Section 5. Essentially, our method is 

based on the Object-Distance Simulation Method (ODSIM, Henrion et al., 2008; 2010), adapted and modified to intrusions. 

An intrusion structural frame and conceptual models of the intrusion shapes are combined with the skeleton and spatially 

correlated random fields to constrain the geometry of intrusive bodies. 

3.1 Arresting mechanisms of intrusions 135 

Igneous intrusions comprise a significant volume of the Earth’s crust and are found in all tectonic settings. They are part of 

Volcanic and Igneous Plumbing Systems, which involve magma production, transport and emplacement (Burchardt 2018). 

Magma production occurs due to partial melting of rocks in the upper mantle or crust (e.g., Brown 2007; Petford et al., 2000; 

van Wyk de Vries and van Wyk de Vries 2018). Magma can be vertically and laterally transported to its final emplacement 

location by the intrusion of dykes, sills and inclined sheets (e.g., Brown 2007; Magee et al., 2016). The emplacement of magma 140 

is controlled by mechanical interactions and the density contrast between the magma and its surroundings (e.g., Brown 2007; 

Hutton 1988a; Petford et al., 2000).  

 

The emplacement of the magma is initiated when a vertically propagating magma conduit (i.e., dyke) is arrested. Regardless 

of the magma composition and depth of emplacement, host rock heterogeneities and mechanical properties strongly control 145 

the intrusion location and final morphology. Examples of these heterogeneities are stiffness contrasts between adjacent layers 

(e.g., Barnett and Gudmundsson 2014; Brun and Pons 1981), unconformities (e.g., Hogan and Gilbert 1995), host rock 

discontinuities (e.g., Clemens and Mawer 1992), stress barriers (e.g., Barnett and Gudmundsson 2014), and shear zones (e.g., 

Guineberteau et al., 1987; Weinberg et al., 2004).  

 150 

For the purpose of 3D modelling, host rock heterogeneities such as geological contacts and faults can be described by surfaces. 

In the first step of our method, we define the intrusion network surface. This object is similar to the skeleton as per the ODSIM 

and represents the roof or floor contact of the intrusion. When the intrusion is poorly constrained by data, we adopt the method 

proposed by Borghi et al. (2012, see section 3.1) to build the intrusion network surface. The outcome is a simulated planar 

network of connected mechanical anisotropies that approximates the locations of the intrusion roof or floor contacts (Figure 155 

1). 
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In this step, it is important to understand the geometry of the pre-intrusion geology and its anisotropy as accurately as possible. 

Contacts, faults and foliations are fundamental because intrusions utilize these anisotropies to intrude the host rock and 

propagate (e.g., Barnett and Gudmundsson 2014; Brun and Pons 1981; Clemens and Mawer 1992; Gudmundsson 2011; 160 

Morgan 2018; Souche et al., 2019). Observation points of the intrusion contacts are used to assess the anisotropies that were 

exploited during its emplacement. Where no observations are available, anisotropies can be simulated (using the user’s 

geological knowledge of the area) and incorporated into the model. For example, if an intrusion has stepped up in the 

stratigraphy, but there are no observations of structures facilitating the step, a fault can be simulated and incorporated into the 

algorithm to build the intrusion network. A mechanical anisotropy can be simulated by sampling its orientation (i.e., dip and 165 

strike) from a probability distribution and a range of values consistent with the local geology. Using these parameters, the 

anisotropy can be interpolated in a location provided by the modeller and incorporated into the algorithm when building the 

intrusion network. In this way, the intrusion geometry will be consistent with the surrounding host rock. 

 

 170 

Figure 1. Schematic representation of the intrusion network surface. (a) Geological model of pre-intrusion units and structures. (b) 

Intrusion network of the model, constrained using intrusion’s contact points (red dots). 

3.2 Propagation of magma and intrusion growth 

Once magma has been arrested, intrusion growth is controlled by host rock anisotropies until it reaches its maximum lateral 

and vertical extent. The growth of plutons depends on host rock mechanical properties (Cruden and Weinberg, 2018) and can 175 

occur by both vertical and/or lateral displacement of the host rock. (e.g., Cruden 1998; Cruden et al., 1999; Grocott et al., 

1999). Sills grow by horizontal propagation of their lateral tips and by vertical inflation (e.g., Hutton 2009). If two or more sill 

segments propagate in the same direction but at different stratigraphic levels, they eventually coalesce, developing connectors 

such as steps or bridges (e.g., Hutton 2009; Köpping et al., 2021; Magee et al., 2019; Schofield et al., 2012). The sill inflation 
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direction is parallel to the intrusion opening vector, which may or may not be orthogonal to the intrusion plane (Magee et al., 180 

2019). 

 

The concepts of propagation and intrusion growth are incorporated into the modelling method using a structural frame. The 

intrusion structural frame provides a curvilinear coordinate system for each intrusion sheet or pluton, similar to those used for 

the 3D modelling of faults and folds (Godefroy et al., 2018; Grose et al., 2021a, 2021b; Laurent et al., 2013, Grose et al., 185 

2021a, Figure 2a), and it has three axes (Figure 2b). Axis 𝐺̃ is parallel to the inflation or growth direction of the intrusion, and 

is considered the major structural direction to interpolate the structural frame. Axis 𝑃̃, considered as the intermediate structural 

direction, is parallel to the propagation direction of the intrusion, and axis 𝐿̃ is orthogonal to the long axis of the intrusion or 

the propagation direction. The scalar fields relative to these axes, notated as g, p, and l, respectively, are interpolated using an 

implicit discrete interpolation approach (e.g., Caumon et al., 2013; Frank et al., 2007; Irakarama et al., 2020), and are 190 

constrained using either field measurements or conceptual idea of their orientation.  

 

 

Figure 2. (a) Generic structural frame, figure from Grose et al. (2021a). (b) Schematic representation of the intrusion structural 

frame.  195 
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In general, intrusions develop specific shapes depending on their type. For example, most plutons, laccolith, sill and layered 

intrusions are described as having horizontal dimensions greater than their vertical dimension (e.g., Cruden et al., 2017; Cruden 

et al. .1999; McCaffrey and Petford 1997; Vigneresse et al. .1999). In cross-section, sills and dykes are planar sheet like 

intrusions (e.g., Galland et al., 2018; Jackson et al., 2013; Kavanagh 2018), while plutons are frequently wedge or tablet-

shaped (Cruden 2006; Cruden and McCaffrey 2001; Vigneresse 1995; Vigneresse et al., 1999). Intrusions that are not tabular 200 

in shape are generally found in shear zones, which can facilitate the ascent and emplacement of the  magma (e.g., Hutton, 

1988b; Guineberteau et al., 1987; Weinberg et al., 2004).  

 

We identify specific geometrical figures to describe the broad scale shapes of different types of intrusions (Figure 3), namely 

a parallelepiped to describe a sill or an oblique cone to describe a wedge-shaped pluton. These geometrical shapes are 205 

parameterized using the structural frame coordinates and are used as conceptual models of the intrusion shape. To add 

variability to the intrusion boundary, we perturb these geometries using a spatially correlated random field conditioned to 

observation points of the intrusion contact. In this way, we reproduce realistic shapes of the intrusions accounting for field 

measurements and geological knowledge of magma systems. 

 210 

 

Figure 3. Examples of conceptual geometrical models of intrusions. (A) Schematic sill from Schofield et al. (2012). A parallelepiped 

is parameterized using the intrusion frame coordinates (g,p,l) and is used to represent the coarse scale geometry of the sill. (B) 

Schematic wedge-shaped pluton from Vigneresse et al. (1999). An oblique cone is parameterized using the intrusion frame 

coordinates (g,p,l) and is used to represent the coarse scale shape of the pluton. The pluton’s deepest point corresponds to the vertex 215 
of the cone. These conceptual geometrical models are perturbed using a spatially correlated random field conditioned to the data, 

allowing to reproduce realistic intrusion shapes while honouring the spatial variability between the data points.  

 4 Algorithm and implementation 

In this section, we describe the algorithm for the two steps of the method. In the first step, the modelling of the intrusion 

network is illustrated with a synthetic example of a sill complex (Case study 1, CS1), where a middle sill exploits a pre-existing 220 

structure and steps up in the horizontal stratigraphic sequence (Figure 4). The middle sill intrusion network is shown in Section 
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4.1, and the final model, including the three sills, is shown in section 4.2. In this example, synthetic data of each sill roof and 

floor contact was used to build the model. Floor data points were used to stochastically simulate each intrusion network surface. 

The long axis of each sill was approximated using the spatial distribution of the data, and the growth direction was assumed 

to be perpendicular to the intrusion network.  225 

 

For the second step, we demonstrate the workflow to model the Voisey’s Bay intrusion, Labrador, Canada (Case study 2, CS2, 

Figure 5 and 6). For this example, we randomly sampled data from geological maps and cross-sections presented by Saumur 

and Cruden (2015) to reproduce a dataset composed of field measurements. The floor data points were picked from the drill 

holes in cross-sections. We assumed a horizontal stratigraphy and no post-intrusion deformation. Roof data points were used 230 

to simulate the intrusion network, and growth was assumed to be perpendicular to this surface. The intrusion long axis was 

approximated using the spatial distribution of the data. 

 

At the end of Section 4 we present the 3D models of case studies 1 and 2 in Figures 7 and 8, respectively. 

4.1 Intrusion network modelling: Case study 1 – Synthetic Sill Complex (CS1) 235 

The first step of the method is to build the intrusion network surface. This object represents the approximate location of the 

intrusion roof or floor contact and can be obtained using a deterministic approach or stochastic simulations. Not using a 

skeleton per se is because intrusions are frequently not entirely exposed, and only roof or floor contact can be mapped, making 

it challenging to identify the centre line of a body. 

 240 

A deterministic approach to obtain the intrusion network uses the top or base contact of a sill mapped on seismic images or 

the roof contour of a pluton mapped in the field. When the intrusion is poorly exposed, we suggest using the method developed 

by Borghi et al. (2012, Figure 4). The intrusion network is simulated as the shortest path connecting all the anisotropies that 

influenced the intrusion emplacement. To achieve this, we use a 3D implicit model of pre-intrusion units and structures, and 

observation points of the intrusion roof or floor contacts (Figure 4a). If the exact location of a fault is unknown, the fault can 245 

be simulated by sampling its orientation from a probability distribution defined by the modeller. The orientation parameters 

are then used to interpolate the fault surface, object that is added to the model and therefore considered when looking for the 

shortest path. The geology of the area is parameterized using a pre-defined grid G and indicator functions to differentiate 

between host rock and anisotropies that are significant for the intrusion emplacement (e.g., geological contacts and structures, 

Figure 4b). The indicator functions are transformed into a velocity field using velocity parameters assigned to each type of 250 

anisotropy (Figure 4c). Borghi et al. (2012) highlighted that the velocity parameters should be interpreted only as model 

parameters. In the case of intrusions, the velocity parameters will generate contrast between geological anisotropies that are 

involved or not in the emplacement process. In other words, these values are determined arbitrarily by the user and do not 

represent the properties of the rock directly or any dynamic parameter of the emplacement but the relative ease of propagation 
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in a given direction. The model is divided into sections, and a time map is computed on each section using the velocity field 255 

and the Fast-Marching Method (Sethian 1999, Figure 4d). The Fast-Marching Method computes the time a front takes to arrive 

at any point of the section, starting from a boundary curve. The arrival time is obtained at each point of the grid G by solving 

the Eikonal equation: 

 

 260 

 

where K is the speed of the front, and T is the arrival time of the front (Jones et al., 2006). On each section, we define Jin and 

Jout as the points of intersection between an anisotropy of interest and each section’s border. If more than one anisotropy 

intersects a section’s border, then a temporal criterion of the emplacement can be used to define which of points in G will be 

Jin and Jout. Jin is defined using the anisotropy that was probably exploited first by the intrusion, and Jout using the anisotropy 265 

that was exploited last. The starting point to compute the time map is Jout. 

 

Finally, the intrusion network is defined as the shortest path between Jin and Jout, starting from Jin. This path is computed on 

discrete sections and then joined to build the intrusion network surface (Figure 4e). The outcome of this step is a set of point 

within the intrusion network surface, and are stored in an indicator function INET(x) as follow: 270 

 

 

 

4.2 Intrusion body modelling: Case study 2 – Voisey’s Bay intrusion (CS2) 

As stated by the Object-distance Simulation Method (ODSIM, Henrion et al., 2008; 2010), the representation of the geological 275 

body will be given by all the points found between the skeleton and a certain distance that varies along with the skeleton. For 

intrusions, the problem of identifying these distances can be translated into finding the intrusion thickness variation, i.e., the 

distance between roof and floor contacts, and the intrusion width variation along its longitudinal axis.  

 

To address this problem, we incorporate an intrusion structural frame into the ODSIM workflow. Threshold distances are 280 

stochastically simulated along the structural frame coordinates. These distances are used in the same sense as in the ODSIM, 

and the geological body is defined as the set of points that lie between these thresholds. Specifically, we define two sets of 

threshold distances. Thresholds distances to constraint the intrusion vertical extent related to its thickness variation, and 

threshold distances to constraint the intrusion lateral extent, related to the intrusion width variation.  

 285 

(2) 

(3)

) 
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We use Sequential Gaussian Simulation to compute these threshold distances, so the spatial correlation between points is 

honoured. The examples presented in this contribution were carried out using the implementation of Sequential Gaussian 

Simulation available in the GeostatsPy python package (https://pypi.org/project/geostatspy/). The GeostatsPy library is a 

translation of the GSLIB: Geostatistical Library (Deutsch and Journel, 1998) functions to Python. 

 290 

 
Figure 4. Workflow to build the intrusion network, modified from Borghi et al., 2012. The workflow is illustrated using CS1, a 

synthetic sill emplaced in a faulted sequence. (a) The geology of the area is parametrized using a pre-defined grid and indicator 

functions to differentiate between host rock and mechanical anisotropies significant for the intrusion emplacement. (b) The indicator 

functions are transformed into a velocity field using velocity parameters assigned to each type of anisotropy. (c) The model is divided 295 
into sections, and a time map is computed on each section using the velocity field and the Fast-Marching Method (Sethian, 1999). 

The starting point to compute the time map is Jout (red arrows). (d) Using the time map, the algorithm looks for the shortest path 

between the boundaries of the model, following the mechanical anisotropies. The stating points for the search is the shortest path is 

Jin (yellow arrow).  

300 
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4.2.1 Interpolation of a structural frame for intrusions 

As a reminder, the intrusion structural frame has three axes, denoted as 𝐺̃, 𝑃̃, 𝐿̃ that respectively correspond to the growth 

direction of the intrusion, propagation direction of the intrusion, and a direction orthogonal to the long axis of the intrusion. A 

distance scalar field represents each axis referred as g, p and l, respectively (Figure 5).  

 305 

Coordinate g measures the distance to the intrusion network surface along 𝐺̃ and its gradient is parallel to the inflation or 

growth direction of the intrusion. If there are no inflation measurements, the gradient is assumed to be orthogonal to the 

intrusion network surface. Coordinate p represents a distance measured along 𝑃̃ from a reference point inside the intrusion. 

The gradient of this scalar field is a normalized vector parallel to the propagation direction of the intrusion. Coordinate p can 

be constrained using field measurements of the intrusion’s propagation direction (e.g., anisotropy of magnetic susceptibility 310 

measurements) or assumed parallel to the intrusion’s long axis. Coordinate l measures a distance from the intrusion’s long 

axis, and its gradient is orthogonal to coordinate p gradient. 

 

The interpolation of the three intrusion frame coordinates is computed using a discrete interpolation technique (e.g., Caumon 

et al., 2013; Frank et al., 2007). In this approach, the implicit function is calculated for each node of a pre-defined volumetric 315 

grid. The scalar field value at each node is obtained by solving a linear system constrained by data points where the scalar field 

value or its gradient is known. The structural frame is computed using LoopStructural (Grose et al., 2021a; 2021b), where the 

coordinates are interpolated using a discrete interpolator,  e.g., finite difference interpolator on a cartesian grid (Irakarama et 

al., 2020) or piecewise linear interpolation on a tetrahedral mesh (Frank et al., 2005, 2007). The coordinates are interpolated 

sequentially where g coordinate is interpolated first using the points of the intrusion network surface, which represent the 320 

isovalue 0 of this scalar field, and inflation measurements. The p coordinate is interpolated using observations of the 

propagation direction (or geological knowledge describing the propagation direction). Conceptually, the isovalue 0 of p 

coordinate should be related to the position of the intrusion feeder. However, for the purpose of the modelling, this isosurface 

can be anywhere in the model. The l coordinate can be interpolated using points along the intrusion long axis to represent its 

isovalue 0, and an additional constraint enforcing the orthogonality between p and l. The scalar fields can be interrogated at 325 

any location of the model, so the (g, p, l) coordinates are known for any point in the model. 
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Figure 5. Structural frame of CS2, Voisey’s Bay intrusion. Observation points were extracted from the geological maps and cross-

sections presented by Saumur and Cruden (2015). The stratigraphy is assumed to be horizontal. Using the spatial distribution of the 330 
data, we approximate the intrusion long axis. Coordinate g is constrained using roof data points and an inflation direction 

perpendicular to the stratigraphy. Coordinate p is constrained assuming a gradient parallel to the long axis, and coordinate l is 

constrained using points along the long axis and a gradient perpendicular to the propagation direction.  

4.2.2 Stochastic simulation of threshold distances  

Once the structural frame is defined, we aim to find threshold distances that will approximate the boundary of the intrusion. 335 

Specifically, finding distances in 𝐿̃ along 𝑃̃ and distances in 𝐺̃ within 𝑃𝐿̃ will provide a comprehensive description of the 

intrusion boundary.  

 

To find these threshold distances, we use Sequential Gaussian Simulations to compute three spatially correlated random field 

ϕL1, ϕL2 and ϕG. These random fields represent the residual values given by the difference between a conceptual model of the 340 

expected intrusion shape and its actual shape. The spatially correlated random fields ϕL1 and ϕL2 are used to constraint the 

lateral extent to each side of the intrusion long axis, while ϕG is used to constraint the vertical extent. We identify two 

conceptual models for each intrusion: one to represent the intrusion geometry in 𝑃𝐿̃ (lateral extent) and one to represent its 

roof or floor geometry (vertical extent). The conceptual models are parameterized using the structural frame coordinates. 
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 345 

Consider a set of observation points i = {1, …, n} and their respective (gi, pi, li) coordinates. The random fields are conditioned 

with the following residual values ϕi (Figure 6a): 

 

 

where ϕL1 and ϕL2 are the residual distances in 𝐿̃ along 𝑃̃ for each side of the intrusion, ϚL is the conceptual model of the 350 

intrusion geometry in 𝑃𝐿̃, ϕG are the residual distances in 𝐺̃ and ϚG is the conceptual model of the intrusion’s floor/roof 

geometry. Examples of Ϛs(p) are an ellipse for an elongated pluton or a rectangle for a sill. Examples of Ϛg(p,l) are a cone for 

a wedge-shaped pluton or a parallelepiped for a sheet intrusion. The modeller must select the conceptual geometrical model 

according to prior knowledge of the intrusion type and local geology. A fourth random field gINet is simulated to ensure the 

conditioning of the intrusion network contact to the input data used to build this object. The outcome of this simulation are 355 

distances to the intrusion network surface along the 𝐺̃ axis.  

 

A probability distribution and a variogram control the simulation of each random fields. The distribution model is computed 

using the input data for each simulation, and is transformed to normal-score data for the simulation. The variogram can be 

customized by the modeller. However, we suggest using a variogram model that favours slight variability, so there are no sharp 360 

changes along the contact boundary. All our examples were built using isotropic variograms with infinite range and no nugget 

effect.  

 

The simulations of the four spatially correlated random fields are performed in a pre-defined grid. The residual values are 

back-transformed into threshold distances (Figure 6b). For this, each point j of the grid is evaluated in the conceptual models 365 

ϚL and ϚG, and the threshold distances 𝑙𝑡1,𝑡2
𝑗

 in 𝐿̃ and 𝑔𝑡
𝑗
 in 𝐺̃ are given by: 

 

(4) 
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Figure 6. Example of spatially correlated random fields, Voisey’s Bay intrusion. (A) Conceptual models and input data. In this 370 
example, the intrusion lateral extent (left plot) is constrained using an elliptical conceptual model (blue line) and residual values 

between the li coordinates of the observation points (gi,pi,li) and the conceptual model at pi. The vertical extent (right plot) is 

constrained using an oblique cone conceptual model and residual values between the gi coordinates of the observation points (gi,pi,li) 

and the conceptual model at (pi,si). The red-tones lines represent the conceptual model and data along different l coordinates. (B) 

Resulting simulation after one realization. Both simulations were performed with an isotropic variogram model γ of infinite range 375 
and no nugget effect, which allow to obtain smoother surfaces. 

(5) 
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The intrusion body is identified using an indicator function: 

 

where 1 indicates the point (𝑔𝑗 , 𝑝𝑗 , 𝑙𝑗) is inside the intrusion and 0 outside. The boundary of the intrusion is defined as:  

 380 

where B is a distance scalar field that combines the structural frame scalar fields minus the threshold distances, so the boundary 

of the intrusion is represented by the isosurface B=0, inside the intrusion B<0 and outside the intrusion B>0.  

 

Figure 7 shows the resulting model of the CS1 (synthetic sill complex), and Figure 8 shows the 3D model of the CS2, Voisey’s 

Bay intrusion. This method is implemented in the intrusion module of LoopStructural (Grose et al., 2021a, b), and an intrusion 385 

can be built using the create_and_add_intrusion function from the GeologicalModel application programming interface. 

 

 

Figure 7. 3D model of CS1, synthetic sill complex. The red surface represents the sills boundary, and the black dots shows the location 

of the input contact points. 390 

 

(6) 

(7) 
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Figure 8. 3D model of CS2, Voisey’s Bay intrusion, Labrador, Canada. The red surface represents the intrusion boundary, and the 

black dots shows the location of the observation contact points. 

5 Case study 3 - Sill intrusion in NW Australia (CS3) 395 

This last section assesses the value of modelling intrusions using structural frames and geometrical conceptual models by 

building four models (models A, B, C and D) of a sill intrusion in the offshore NW Australia shelf imaged in 3D seismic 

reflection data (Köpping et al., 2021). The difference between the 3D models arises from the method used to build them and 

the amount and type of input data. Models A and B are built using an implicit surface interpolation approach, and they differ 

in the number of input constraints for each model. Models C and D are built using our proposed method, and the difference 400 

between them is that model D incorporates geometrical constraints from the emplacement history proposed by Köpping et al. 

(2021) for this sill.  

 

The input data for the models is a sub-sample of the dataset presented by Köpping et al. (2021). The original dataset consists 

of the sill base and top contact points picked from seismic imagery and covers approximately 4042 km2 with > 2.5 million data 405 

points (Figure 9a). According to Köpping et al. (2021, Figure 9), the intrusion is composed of a 13.4 km long, N-trending and 

strata concordant inner sill, which transitions into transgressive inward-dipping inclined sheets along its eastern margin and 

southwestern margin. Where inclined sheets are developed, the horizontal dimension of the inner sill is relatively narrow (~3.4 

km). In the north section of the sill, where no inclined sheet is developed on the western margin, the inner sill widens up to 6.4 

km, and has a convex-outwards and lobate western termination. The authors present a detailed characterization of the vertical 410 

thickness variation within the sill (Figure 9b). The eastern half of the inner sill is ~166 to ~249 m thick, rapidly decreasing 

westward to ~111 to ~166 m. The inclined sheets, the southern sill tip and the northwestern lobate termination are presented 

as tuned reflection packages, and their thickness can only be defined by the limits of separability and visibility of the data (~7 

to ~56 m). 

 415 

Köpping et al. (2021) propose an emplacement model for the sill, schematically represented in Figure 9c. The sill comprises 

one segment that propagated and inflated northward from a SW-NE trending fault, and another segment that propagated to the 
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southwest of this fault. This SW-NE trending structure is located in the middle of the sill and likely also facilitate magma 

ascent. The transgressive inward-dipping inclined sheets formed along pre-existing faults in the east and south west. The 

straight geometry of the southwestern limb is interpreted to be controlled by pre-existing fractures and/or faults. 420 

 

The pre-processing of the data, workflow and results of the four models are presented in the following subsections. The input 

data and resulting 3D models are presented in Figure 10. 

 

Figure 9. Data and models from Köpping et al. (2021): (a) Top and base contacts points picked on seismic images, (b) two-way time 425 
thickness model, and (c) schematic diagram of the emplacement history of the sill, in plan view.
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5.1 Model A and B - Radial Basis Function (RBF) implicit interpolation 

Models A and B were built using LoopStructural (Grose et al., 2020, 2021a), specifically the SurfE interpolator. SurfE 

(https://github.com/MichaelHillier/surfe) implements a generalized radial basis function interpolator (Hillier et al., 2014). 

Radial basis function interpolation is a meshless interpolation and the scalar field can be constrained with different types of 430 

data, including value and gradient constraints. Models A and B are built using the signed distance interpolation of SurfE (single 

surface method).  

 

The input data for these models consist of value and gradient constraints. In both models, the value constraints represent the 

intrusion contact location, and a value of 0 is assigned to each of these points. Gradient constraints correspond to vectors 435 

perpendicular to the stratigraphy with a direction towards the outside of the intrusion. For model A (Figure 10a), a sub-sample 

of approximately 0.1% of the original dataset is used as value constraints, and a selection of these points located in the strata 

concordant inner sill is used as gradient constraints. For model B (Figure 10b), we increase the amount of value and gradient 

constraints. In particular, the gradient constraints are distributed within the inner and outer sills.  

5.2 Model C and D - Structural frame and conceptual models 440 

Models C and D are built using our adaptation of the Object-Distance Simulation Method (ODSIM, Henrion et el. 2008, 2010) 

combined with structural frames and geometrical conceptual models. The main difference between these two models is that 

model D integrates geometrical constraints from the sill emplacement history proposed by Köpping et al. (2021). The resulting 

3D models are shown in Figure 10. 

 445 

The contact data for both models consist in a sample of approximately 0.1% of the original dataset, the same data points used 

for model A. These points are classified depending on their location as top, base and lateral contacts. The intrusion network of 

model C is interpolated using the sill’s base contact points. To constraint the gradient of coordinate g of the structural frame, 

we use a selection of the input data points located in the strata concordant inner sill as inflation data, with a direction 

perpendicular to the stratigraphy towards the top contact. To constraint coordinates p and l, we approximate the long axis of 450 

the intrusion considering the spatial distribution of the data. Points within the long axis represent the isosurface 0 of coordinate 

l and the propagation direction is assumed to be parallel to the long axis (Figure 10c).  

 

For model D, we consider the sill as being composed of two segments emplaced at opposite sides of an NE-SW striking fault 

(Köpping et al., 2021, Figure 10c). The northern segment propagates into the fault’s hanging wall towards the N-NW, while 455 

the southern segment propagates within the footwall towards the SE and then SSW. The two segments are modelled separately. 

For both segments, the intrusion network is built using a shortest path algorithm in order to include the effects of the marginal 
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faults on the sill geometry.  To interpolate the structural frames coordinates, we used the same inflation data of model C, and 

propagation directions according to the emplacement history model (Figure 10d).  

 460 

The simulations of both models are performed using isotropic variograms with infinite range and no nugget effect, and simple 

kriging. To simulate the lateral extents 𝑙𝑡1,𝑡2
𝑗

(𝑝𝑗) we use an elliptical conceptual model Ϛ𝐿(𝑝𝑖) and lateral contact points. For 

the simulation of the top contact, we use a parallelepiped as the conceptual model Ϛ𝐺(𝑝𝑖) and the top contact points. 
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Figure 10. 3D models of CS3, sill intrusion in the offshore Western Australia shelf. Models A and B were built using Radial Basis 465 
Function interpolation, and Model C and D were built using the method proposed in this work. To the left, plan view of the input 

data for each model. To the right, different views of the resulting 3D models. 
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5.3 Comparison between the models 

Visual inspection shows that, in general, RBF interpolation and our method can reproduce the coarse-scale geometry of the 470 

sill, with a N-trending inner sill transitioning to inward dipping outer sills. Considering the distribution of the data picked from 

seismic images (Figure 9a, Köpping et al., 2021), our method is more accurate at constraining the shape of the terminations of 

the sill, while the RBF interpolation extrapolates the isosurface that represents the intrusion contact away from the data. This 

is exacerbated in model A due to the reduced input data compared to model B. In RBF interpolation, the value of the basis 

function depends on the distance ‖𝑥 − 𝑥𝑖‖ where x is the position to evaluate the function and xi the location of the data point, 475 

which may generate blobby geometries away from the data (Wellmann and Caumon, 2018). Models A and B present holes 

within the intrusion related to the absence of on-contact or planar constraints. Models C and D do not capture some of the sill 

thinnest parts, such as the southern tip, the northwestern lobate termination and the eastern inclined sheet of the northern 

segment of model D. In these areas, the grid elements have larger dimensions than the width or length of the sill, and therefore 

the isosurface represented by B=0 (see section 4.2.2) is not captured in the scalar field values assigned to each grid nodes. This 480 

occurs in more extensive areas in Model D, specifically the northern segment’s eastern and western margins. As the simulations 

were performed using variograms with infinite range and search radius covering the entire intrusion body, the threshold values 

depend on the whole input dataset of each model. While model C thresholds reflect the effects of both the southern and northern 

segments data, model D thresholds are restricted to the data of each segment.  

 485 

Figure 11. Volumes of Models A and C used to compute a normalized error between the geometry given by the data and the geometry 

given by each model.  
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To assess how realistic are the resulting 3D models, we compare the intrusion dimension and geometry given by the data and 

given by each of the models. To compare the intrusion dimension, we estimate the volume enclosed by the input contact data 490 

Vp and the volume enclosed by each model Vi, where i={A, B, C, D}. We compute the symmetric difference between each Vi 

and Vp, and we estimated a normalized error as: 

 

Where Vi
a is the volume not modelled within Vp, and Vi

b is the volume modelled outside Vp (Figure 11, Table 1). A small 

normalized error indicates the volumes Vi
a and Vi

b are relatively small compared to the volume enclosed by the input data Vp. 495 

The 3D models built with RBF interpolation exhibit a greater volume modelled outside Vp, resulting in a more significant 

normalized error. Models C and D present similar volume errors, with model C showing a slightly better figure due to the 

smaller volume VC
a.  

 

To assess the geometry of the intrusion, we visually inspect 12 cross-sections, and we measure the thickness of each model. 500 

Figure 12 shows the sections along the Y-axis. Model A shows substantial differences compared to the other models, and it 

does not reproduce the expected sheet-like shape of a sill, nor a clear transition from the inner to the outer sill. Models B, C 

and D capture the inclined geometry of the outer sills; however, model C seems to flatten the eastern inclined sheet. This is 

because model C’s intrusion network is interpolated using the base contact points, and this interpolation does not necessarily 

honour the geometry of the stratigraphy and structures. As the intrusion network controls the geometry of coordinate g of the 505 

structural frame, the parameterized conceptual model and the residual values will be affected by its geometry. Models C and 

D are slightly better at recovering the straight top and base contacts, while model B exhibits wavy contacts in some parts of 

the model. 

 

The thickness of the models is measured in pre-defined locations, and it is compared with the thickness given by the data 510 

(Figure 13). As Köpping et al. (2021) describe, the data shows that the intrusion thickness decreases from E to W within the 

inner sill and towards the tips and inclined outer sills. Model A does not show any evident trend, and the thickness is generally 

larger than the thickness given by the data. Model B thins down towards the western lobate termination but it does not capture 

the decreased thickness observed in the outer sills and the southern tip. Models C and D show a decreasing trend towards the 

western and southern tips but tend to amplify the difference with the data closer to the outer sills.  515 

 

(8) 
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Table 1. Input data and results of the dimension and geometric comparison between the models. 

 
 

 520 

 

Figure 12. Comparison of the intrusion geometry between models, EW sections. The grey polygons show the geometry 

given by the dataset presented by Köpping et al. (2021)
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We compute the difference between the thicknesses measured on each model and the thickness given by the data (Figure 13b, 

Table 1). This difference’s mean and standard deviation are significantly lower in model B with respect to model A, showing 525 

the effect of adding more constraints. Model C and D have a similar mean and standard deviation, and these figures are slightly 

lower in model C.  

 

 

Figure 13. Thickness comparison. (a) Thickness measurements along 6 NS sections and 6 EW sections. (b) Difference between 530 
thickness measurements on each model and thickness given by the data. 
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6 Discussion 

To date, 3D models of intrusions are built with classical interpolation workflows, where on-contact data is used to estimate 

boundaries. Post-processing is usually required to generate realistic shapes, making the model dependent on the modeller’s 

expertise and challenging to reproduce. Even though such an approach is capable of honouring hard data, it cannot reproduce 535 

spatial variability. In this contribution, we have proposed a method to address these limitations by implementing the Object-

Distance Simulation Method (Henrion et al., 2008, 2010) and a structural frame for intrusions (Laurent et al., 2013, 2016; 

Godefroy et al., 2017, Grose et al., 2021a,b). The structural frame incorporates conceptual knowledge of intrusion 

emplacement mechanisms into the modelling framework and uses different field measurements. It also enables the assessment 

of simplified intrusion morphology by providing a curvilinear coordinate system. This coordinate system allows the intrusion 540 

geometry to be visualised along its long axis. This is particularly useful for complex systems of intrusions, such as sills that 

step up and down within the stratigraphy, with variable propagation direction. Figure 14 shows a comparison of the thickness 

and width variation between the magma lobes of the CS1. This case study illustrates a synthetic sill complex comprised of 

three magma lobes propagating in slightly different directions. The middle sill steps up, exploiting a pre-existing structure. 

The P-G and P-S coordinate plots in Figure 14 show how the thickness and width of each sill vary while they propagate away 545 

from the feeder.  

 

The Object-Distance Simulation Method allows the generated models to honour spatial variability between data points. In our 

method, spatial variability of the intrusion contact between the data is modelled by simulating four spatially correlated random 

fields that control the intrusion extent, and it is restrained using conceptual models of the expected intrusions geometries. The 550 

modeller must choose a conceptual model, which is then parameterized using the input data and the structural frame coordinates. 

The parameters that control the simulations are a probability of occurrence (density) and a variogram. Since the conceptual 

model is constrained using the input data, it is expected that the probability distribution is restricted to small values, and the 

variability should be low at any lag distance of the variogram. The range of probable values must be relatively small, avoiding 

the generation of unrealistic shapes, such as sharp changes in intrusion thickness or width. One limitation of our method is that 555 

the modeller has to determine which conceptual model to use. However, the conceptual model can be selected after assessing 

the data and the regional context. Also, the definition of the conceptual model would be comparable to defining a conceptual 

model while drawing shapes or adding arbitrary (non-quantified through proper geostatistical analysis) structural trends to the 

model. Having a set of possible conceptual models is objective, unbiased and enables the modeller to test different geometries. 

A workflow to automatically find the best fitting conceptual model can be implemented in the future. Following the approach 560 

of Grose et al. (2018; 2019), fitting the conceptual model to the observations can be considered as an inverse problem. 
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Figure 14. Synthetic sill complex model. The magma segments propagate in slightly different directions. The middle sill exploits a 

pre-existing structure and propagates thought a higher stratigraphic level. The segments are thicker closer to the source, and 565 
coalesce between them developing step geometries. The plots show a comparison of the thickness and width variation between the 

three sills. 

Stochastic simulation enables the generation of several realizations that honours the same model parameters. The models after 

all realization can be compared and used to determine the global and local uncertainty of the model given the input data. Zones 

of the intrusion with higher uncertainty can be determined and prioritize for further data collection and model refinement.  570 

 

In general, the 3D models of CS1 and CS2 (Figure 7 and 8) are in good agreement with natural intrusions geometries 

(e.g.,Cruden et al., 2017, 1999; Galland et al., 2018; Jackson et al., 2013; Kavanagh 2018; McCaffrey and Petford 1997; 

Vigneresse 1995; Vigneresse et al., 1999). The method can reproduce realistic morphologies of different types of intrusion, 

even with sparse datasets. Considering CS3 (Figure 10), our method reproduces more realistic sill geometries compared to 575 

RBF interpolation, especially when considering a restricted dataset, such as in models A, C and D. In particular, our method 

can replicate the tabular geometry of this sill intrusion, constrain its terminations and thickness variations, as well as generating 

a model of similar dimension, including thickness variation trends, to what is observed in contact data. Parameterization of the 

intrusion using the structural frame is crucial and enables a rigorous simulation of the intrusion extent in the direction in which 

the intrusion grew. Models C and D used a handful amount of propagation and growth direction data (see Table 1), and the 580 
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models do not need a dense dataset to produce realistic intrusion shapes. It is also possible for the modeller to add geometrical 

constraints knowing the emplacement history of the intrusion. For CS3 (sill intrusion in NW Australia) we were able to model 

the steep inclined sheets by adding marginal faults to the intrusion network workflow of model D. This type of geometry would 

be difficult to reproduce using a classic interpolation approach unless a large dataset were provided as in model B. However, 

having a dense dataset is rarely the case, and models of intrusions are usually built using sparse and unevenly distributed 585 

datasets. 

 

The main limitation of the proposed method is that the surface representing the intrusion contact (i.e., scalar field B=0) depends 

on the size of the model grid elements. Consider a part of the intrusion that is narrower or thinner than the size of a grid element, 

in this case, the nodes around the intrusion will indicate threshold values lt and gt smaller than their respective l and g 590 

coordinates, and they will not be indicated as being inside the intrusion. The scalar field value on these nodes will be B>0, and 

therefore no isosurface B=0 will be found between them. This scenario is observed in the narrower zone of Voisey’s Bay 

intrusion model (CS2, Figure 8). According to the data, the intrusion transitions to a narrow and thin sill-like intrusion, which 

the model does not capture. This is also observed in the thinnest parts of the sill intrusion in NW Australia presented in section 

5 (CS3, models C and D in Figure 10). This limitation can be addressed using a higher resolution mesh, however this introduces 595 

computing limitations (time and memory usage). Adaptative meshing algorithms should also be considered in the next iteration 

of the implementation. 

7 Conclusions 

Current methods to build 3D models of igneous intrusions are strongly dependent on data availability and manual processing. 

They do not consider geological knowledge of intrusion emplacement mechanisms objectively and do not use all types of 600 

measurements collected in the field. In this context, the generation of realistic intrusion shapes is challenging to reproduce 

from one model realization to another. To address these problems, we developed a method to build 3D models of intrusions 

that accounts for geological knowledge, models of the host rocks and typical datasets. The method is a modified version of the 

Object-Distance Simulation Method (ODSIM), specifically adapted to intrusions. We incorporate an intrusion structural frame 

into the ODSIM framework that accounts for intrusion growth and propagation. This structural frame provides a curvilinear 605 

coordinate system for each intrusion sheet or pluton within the model. A conceptual model of the intrusion shape is 

parameterized using the structural frame coordinates and then stochastically perturbed using spatially correlated random fields. 

The conceptual models include a conceptual idea of the intrusion shape objectively, and the random fields add the expected 

spatial variability between the data points. The test of different scenarios using different conceptual models can be performed 

without the modeller’s bias, and models can be reproduced for further assessments. Fitting of all the data is not always feasible 610 

and may be dependent on the grid size. Further work on the method will include automatically fitting the conceptual models 

to the data and adaptative meshes to improve the intrusion resolution.  
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Code and data availability 

The examples presented in this contribution were generated using the open source 3D modelling package LoopStructural. 

LoopStructural v.1.4.4 can be downloaded from https://doi.org/10.5281/zenodo.6381007 or installed using pip install 615 

LoopStructural. The input data and Jupyter notebooks of all the examples presented in this work can be downloaded from 

https://doi.org/10.5281/zenodo.6381034 
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