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Abstract. Temperate forest ecosystems play a crucial role in governing global carbon and water cycles. However, unprece-

dented global warming poses fundamental alterations to forest ecological functions (e.g. carbon uptake) and forest biophysical

variables (e.g. leaf area index). Quantification of forest carbon uptake, gross primary productivity (GPP), as the largest carbon

flux has a direct consequence on carbon budget estimations. Part of this assimilated carbon stored in leaf biomass is related to

the leaf area index (LAI), which is of critical significance in and closely linked to water cycle. There already exist a number of5

models to simulate dynamics of LAI and GPP, however, the level of complexity, demanding data, and poorly known parame-

ters often prohibit the model applicability over data-sparse and large domains. In addition, the complex mechanism associated

with coupling the terrestrial carbon and water cycles poses a major challenge for integrated assessments of interlinked pro-

cesses (e.g. accounting for temporal dynamic of LAI for improving water balance estimations and soil moisture availability

for enhancing carbon balance estimations). In this study, we propose a parsimonious forest canopy model (PCM) to predict10

daily dynamics of LAI and GPP with few required input which is also suitable for integration into state-of-the-art hydrologic

models. The light use efficiency (LUE) concept is central to PCM (v1.0), coupled with a phenology submodel. PCM estimates

total assimilated carbon based on conversion efficiency of absorbed photosynthetically active radiation into biomass. Equipped

with the coupled phenology submodel, the total assimilated carbon partly converts to leaf biomass from which prognostic and

temperature-driven LAI is simulated. The model combines modules for estimation of soil hydraulic parameters based on the15

so-called pedotransfer functions and vertically weighted soil moisture considering the underground root distribution, when soil

moisture data is available. We test the model on deciduous broad-leaved forest sites in Europe and North America selected from

the FLUXNET network. We analyze the model parameter sensitivity on the resulting GPP and LAI and identified on average

10 common sensitive parameters at each study site (e.g., LUE, SLA, etc). Model performance is evaluated in a verification

period using in situ measurements of GPP and LAI (when available) at eddy covariance flux towers. The model adequately20

captures the daily dynamics of observed GPP and LAI at each study site (Kling-Gupta-Efficiency; KGE varies between 0.79

and 0.92). Finally, we investigate the cross-location transferability of model parameters and derive a compromise parameter set

to be used across different sites. The model also showed robustness with the compromise single set of parameters, applicable
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to different sites, with an acceptable loss in model skill (on average± 8%). Overall, in addition to the satisfactory performance

of the PCM as a stand-alone canopy model, the parsimonious and modular structure of the developed PCM allows for a smooth25

incorporation of carbon modules to existing hydrologic models. Thereby, it facilitates the seamless representation of coupled

water and carbon cycle components, i.e. prognostic simulated vegetation leaf area index (LAI) would improve the representa-

tion of the water cycle components (e.g., evapotranspiration), while GPP predictions would benefit from simulated soil water

storage from a hydrologic model.

1 Introduction30

As the climate is changing, the future functionality and resilience of terrestrial ecosystems are expected to change in numerous

ways. Fundamentally, terrestrial ecosystems drive the life-sustaining exchanges of matter and energy between land and at-

mosphere (e.g., carbon dioxide/water vapor exchange). However, increased concentrations of greenhouse gases and projected

global warming (IPCC, 2021), contribute to unprecedented extreme climate events and changes in ecosystem functioning and

productivity (Malhi et al., 2020). Depending on the frequency and intensity of extreme events together with other aspects35

of anthropogenic change, ecosystem patterns and processes such as carbon dioxide uptake and water vapour release can be

altered, potentially irreversibly (Grimm et al., 2013). Given the importance of carbon dioxide as a principal greenhouse gas

that drives global climate change and the extent to which ecosystems are capable of sequestrating it, there has been growing

attention toward the quantification of carbon fluxes/stocks and understanding the role of the terrestrial ecosystems in regulating

the exchange of carbon between land and atmosphere (Beer et al., 2010). Temperate forest ecosystems, including deciduous40

broad-leaved forest (DBF), are known as an integral part of global carbon cycle and contribute to climate change mitigation

by removing carbon from the atmosphere (Reinmann and Hutyra, 2017). Forests are recognized as biomes with high carbon

sequestration capacity (Lal and Lorenz, 2012) equivalent to around 60% of the global net forest sink (Reinmann and Hutyra,

2017). The total carbon uptake from the atmosphere into the ecosystems by plant photosynthesis is known as vegetation gross

primary production (GPP). GPP is the largest flux within the carbon cycle (Schaefer et al., 2012; Foley and Ramankutty, 2003)45

and has a direct effect on moderating climate and environment by sequestering anthropogenically emitted CO2. In turn, these

ecosystems are also vulnerable to the adverse effects of changing climate (Luyssaert et al., 2007; Senf et al., 2018; Forzieri

et al., 2021) where the spatial pattern of vulnerability is controlled by environmental conditions (Forzieri et al., 2021), Specif-

ically, environmental constraints, such as temperature, water availability, and radiation control vegetation productivity and

regulate the rate of GPP (Yuan et al., 2014). The DBF biomes are characterized by favourable climate in four distinct seasons50

with a temperature-driven canopy structure. The plant canopy capacity and seasonality are expressed by leaf area index (LAI)

(Wang et al., 2019). The LAI is defined as one half the total green leaf area per unit horizontal ground surface area. LAI can

be estimated by field measurements and be simulated by the fractional accumulated carbon stored in the leaf pool within the

carbon cycle. This key biophysical plant variable affects not only sequestering carbon from the atmosphere via photosynthesis

but also the release of water to the atmosphere through transpiration (Yang et al., 2017). However, accounting for a dynamic55

representation of vegetation characteristics (e.g., leaf area index) relevant for accurate estimation of water balance components
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(e.g., plant transpiration) in most of conceptual hydrologic models is not properly considered, especially for the assessment of

climate change impacts on water balance components (Wegehenkel, 2009; Asaadi et al., 2018). Many models have been suc-

cessfully developed to estimate GPP, spanning a range of complexity and representation of physical and biological processes

(Che et al., 2014; Arora, 2002; Ostle et al., 2009). The GPP models are generally divided into three categories of empirical,60

enzyme kinetic (EK), and light use efficiency (LUE) models (Schaefer et al., 2012). The first category, the empirical models,

are data-oriented approaches where statistical relationships between inferred GPP from flux observations (eddy covariance -

EC) and observed environmental conditions are established; and those inferred relationships are then expanded to large scales

ranging from regional to global levels (Beer et al., 2010; Schaefer et al., 2012). The second category, the enzyme kinetic (EK)

approach, represents leaf scale GPP as a result of a complex set of biophysical and biochemical reactions. This includes first,65

the light reaction (in which light energy splits water molecules, travelling from the soil to leaf chloroplasts, into O2, electrons,

and H+ to produce electron carrier molecule (the reduced form of nicotine adenine dinucleotide phosphoric acid; NADPH) and

energy storage (adenosine triphosphate; ATP). Later, in the next step for dark reaction (Calvin cycle), the rubisco enzyme uses

the ATP energy from the light response to sequestrate the atmospheric CO2 into organic carbon (Farquhar et al., 1980; Collatz

et al., 1992). This approach requires the specification of a relatively large number of parameters for governing processes, whose70

acquisition (through direct measurements) is not straightforward - specifically at scales larger than the leaf level. Finally, the

last category for the GPP estimation is a widely used approach based on the light use efficiency (LUE) concept, relevant for

its applications over larger scales at regional and global (Potter et al., 1993; Yuan et al., 2007). By implementing simplified

relationships that hold at the ecosystem level and avoiding a detailed parameterization of leaf-level processes, the LUE concept

is particularly relevant for quantifying carbon budget at landscape and larger scales (Street et al., 2007; Wei et al., 2017). In this75

approach, ecosystem GPP is related to absorbed photosynthetically active radiation (APAR) as a product of incident photosyn-

thetically active radiation (PAR) by a fraction of PAR (fPAR) absorbed by plant leaves through a biome specific LUE parameter.

The LUE is a vegetation conversion efficiency factor of absorbed radiation into biomass and is defined as the amount of carbon

produced per unit of absorbed PAR (Yuan et al., 2014). The amount of sequestrated carbon as biomass will then be allocated

to different plant carbon pools (i.e. leaf, stems, and roots) controlled by the relative demand exerted by these pools at different80

periods (Arora, 2002). Several LUE models have been successfully applied for estimating the ecosystem GPP such as, CFLUX

(Turner et al., 2006), EC-LUE (Yuan et al., 2007), MODIS-GPP (Running et al., 2004), VPM (Xiao et al., 2004), and CASA

(Potter et al., 1993) at different spatial and temporal scales (Wei et al., 2017; Law et al., 2000; Coops et al., 2005). However,

despite the large potential of these LUE models, they are highly dependent on satellite-based data such as remotely sensed LAI

and fPAR (Wang et al., 2017). These two key biophysical variables are generally sensitive to cloud contamination (Chen et al.,85

2019; Zhu et al., 2013) leading to temporal and spatial gaps, particularly over areas like central Europe. It has also been docu-

mented that the satellite-based fPAR and LAI products are subjected to uncertainty, and that may induce errors in quantifying

GPP (Wang et al., 2017). Overall, several factors, including either high demand of required data and computation in detailed

models or dependency of simplified LUE models on satellite data might hinder the application of existing models. Concerning

estimation of LAI and its impact on water balance, the utilization of carbon uptake and leaf biomass growth has been used in90

the TETIS-VEG ecohydrology model (Francés et al., 2007; Pasquato et al., 2015). The TETIS-VEG model is however adapted
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for the evergreen forest, thus it is not applicable over deciduous broad-leaved forest with a distinct seasonal leaf development

dynamic. Another approach to simulate GPP and LAI is adopted in simplified growing production day time-stepping scheme

(SGPD-TS) model (Xin et al., 2019). The SGPD-TS model, however, does not use the leaf biomass growth concept, rather

it establishes a linear relationship between steady-state GPP and LAI. In this way, GPP is used as a proxy of LAI, utilising95

a conversion ratio when maximum GPP has been reached. However, it has been shown that modelled GPP saturates at high

LAI values (Lee et al., 2019). This may potentially introduce uncertainty when calculating the conversion ratio to simulate

LAI. Another more general challenging aspect for these models is the specification of effective model parameters such that

they can seamlessly operate at different scales and locations. Previous applications often have been limited to a calibration site

(Francés et al., 2007); but they need to be thoroughly cross-validated for their applicability across a diverse range of climatic100

conditions. The overarching aim of this study are to propose a parsimonious model (i) to simulate daily dynamics of GPP and

LAI over deciduous broad-leaved forest at a medium level of complexity (ii) also suitable for integration in existing hydrologic

and ecologic models. We simulate processes related to the carbon cycle in the canopy at a forest stand of undetermined size,

utilizing the LUE approach with implementation of a phenology submodel. The parsimonious approach and level of model

complexity are adapted based on readily available observational datasets across eddy flux tower stations. We apply a global105

sensitivity analysis to investigate model parameters’ sensitivity to the model’s output variables (i.e., GPP and LAI). Finally, we

assess the generality and robustness of the underlying model parameterizations and demonstrate the model applicability over

different sites conducting a cross-location transferability experiment.

2 Methodology

2.1 Model overview110

The PCM model developed and presented in this study aims at providing a parsimonious representation of daily development

of biomass of leaf (Bl) coupled to simulated gross primary productivity (GPP) over deciduous broad-leaved forest (DBF)

ecosystems. Analogous to most of the LUE models treating the entire vegetation canopy as a big extended leaf (Guan et al.,

2021), the PCM operates over forest stand scale and adapts parameters mainly from a biome properties look-up table (BPLUT)

(Running et al., 2000). Parameters such as specific leaf area index (SLA) in PCM represent an effective community-weighted115

parameters. Figure 1 shows a schematic representation of the PCM structure including carbon fluxes/stocks and interconnected

processes related to plant canopy for DBF biomes. We focus on simulating Bl, which is related to LAI via the specific leaf area

index parameter. The simulated LAI is, in turn, used in the calculation of the GPP.

PCM uses a daily time step during which it simulates the processes of carbon uptake, leaf respiration, carbon allocation, and

carbon decay from the leaf pool (canopy) using a mass balance equation (Istanbulluoglu et al., 2012; Yue and Unger, 2015;120

Pasquato et al., 2015; Melton and Arora, 2016; Ruiz-Perez et al., 2017). The main governing equation to simulate the daily

development of GPP(t) and Bl(t) is:

dBl(t)
dt

=
(
GPP(t)−Re(t)

)
λ(t)−D(t) (1)
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where Bl(t) is leaf biomass, GPP(t) is gross primary productivity, Re(t) is leaf respiration, λ(t) is carbon allocation

coefficient and D(t) is leaf decay components at day t. All terms on the right hand side are calculated in the modules of the125

PCM. The LAI (related to Bl(t) in Eq. 1) is defined as:

LAI(t) = Bl(t) ·SLA · fcov (2)

where SLA is specific leaf area index, and fcovis the vegetation fractional coverage. In the following sections, the modeling

approaches implemented for each submodel component are described in detail. A summary of the model inputs and underlying

parameters is provided in Tables 2 and 3, respectively.130

2.1.1 Gross Primary Productivity

The theoretical soundness and practical convenience of the LUE concept in estimating terrestrial GPP has been the main core of

several model developments (Monteith, 1972; Wei et al., 2017; Running et al., 2000; Arora, 2002; Schaefer et al., 2012; Zhang

et al., 2015) at the regional and global scales (Potter et al., 1993; Yuan et al., 2007; Xiao et al., 2004; Running et al., 2000). In

this study, we likewise utilize the LUE approach, which theoretically relies on the concept of interception of photosynthetically135

active radiation by plant leaves and converting it into biomass through energy to biomass efficiency factor (i.e. LUE factor).

As expressed in Eq. 1, the PCM simulation starts with assimilation of the carbon flux (GPP) by leaf component. The GPP flux

(Eq. 3) is estimated as a product of incident photosynthetically active radiation (PAR), by fPAR, which is a fraction of PAR

being absorbed by plant leaf, and an LUE factor, multiplied by a modifier factor when environmental constraints present (ε).

GPP(t) = LUE · ε(t) ·PAR(t) · fPAR(t) (3)140

where LUE is biome-specific unstressed (or maximum) vegetation light use efficiency parameter. fPAR is calculated as

following (Ruimy et al., 1999; Xiao et al., 2004; Wu, 2012; Yuan et al., 2007):

fPAR(t) = c · (1− e−(k·LAI(t))) (4)

where c refers to maximum absorption at full light interception in deciduous broad-leaved forest biomes (Monsi and Saeki,

1953; Ruimy et al., 1994) and k is the light extinction coefficient parameter.145

ε (Eq. 4) is an overall and integrated modifier that corresponds to environmental stress factors. The overall modifier factor

diminishes light use efficiency of vegetation from its potential value during unfavorable environmental conditions (Potter et al.,

1993). These unfavorable conditions include for example high and/or low temperature fT, water availability fSM, and elevated

vapor pressure deficit fVPD stress factors (Zhang et al., 2015; Pasquato et al., 2015).

In general, calculation of ε across different LUE models can be expressed either in minimum (Eq. 5) or multiplicative (Eq. 6)150

approaches to integrate different environmental stress factors. On the one hand, models such as Eddy Covariance-Light Use

Efficiency (EC-LUE; (Yuan et al., 2007)) uses Liebig law of minimum stress that emphasise the most limiting resource to

constrain GPP (Eq.5). On the other hand models such as Carnegie-Ames-Stanford Approach (CASA; (Potter et al., 1993)) and
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Vegetation Photosynthesis Model (VPM; (Xiao et al., 2004)) follow a multiplicative approach of stresses (Eq.6). In the present

study, we opt for the first approach to integrate different stress factors and to calculate the ε.155

The first approach (minimum) is expressed as follows (Running et al., 2000; Sitch et al., 2003; Prince and Goward, 1995).

ε(t) = min(fT(t), fVPD(t), fSM(t)) (5)

The second approach can be written in a multiplicative way as:

ε(t) = fT(t) · fVPD(t) · fSM(t) (6)

The individual stress factors are dimensionless scalars ranging between zero (full stress) and one (no stress), and are intro-160

duced in more detail in the following section.

2.1.2 Environmental constrains and GPP

I) Temperature stress factor (fT): The first reduction factor, fT, on GPP due to air temperature is calculated by including two

factors corresponding to low temperature ρl (cold) and high temperature ρh (heat) stress effects (Eqs. 7,8,9) (Sitch et al., 2003;

Fischer et al., 2016; Rödig et al., 2017).165

fT(t) = ρl(t) · ρh(t) (7)

The stress induced by the cold stress factor (ρl) can be calculated as:

ρl(t) = (1 + ek0·(k1−T (t)))−1, (8)

where,

k0 = 2ln(0.01/0.99)
(Tlow−Tcold)

, k1 = 0.5(Tlow +Tcold)170

The heat stress factor is calculated as:

ρh(t) = 1− 0.01 · ek2·(T (t)−Thot), (9)

k2 = ln(0.99/0.01)
(Thigh−Thot)

175

where T (t) is daily mean air temperature, Tlow and Thigh are DBF biome-specific parameters representing high and low

temperature limits for CO2 assimilation, respectively. Thot and Tcold are the monthly mean air temperature of the warmest

and coldest months, respectively, that a DBF biome can cope with, respectively (Boons-Prins, 2010; Bohn et al., 2014; Fischer

et al., 2016; Rödig et al., 2017).

II) Vapour Pressure Deficit stress factor (fVPD): The canopy photosynthesis rate is strongly related to changes of vapour180

pressure deficit (VPD) (Konings et al., 2017; Xin et al., 2019), as photosynthesis declines due to stomata closure (Yuan et al.,

2019) when atmospheric VPD increases. It can be modelled as follows in Eq. 10 (Jolly et al., 2005):

fVPD(t) = max
(

min
(

1− V PD(t)− vmin

vmax− vmin
,1
)
,0
)

(10)
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where V PD(t) is daily vapour pressure deficit, vmin and vmax denote lower and upper thresholds for photosynthetic activi-

ties, respectively. The fVPD value of one indicates no stress on GPP, whereas there is full stress when the fVPD becomes zero;185

values between zero and one result in partial and linear reduction on the GPP.

III) Soil Moisture stress factor (fSM): In general, the impact of soil water deficit on photosynthesis in vegetation models is

represented as a generic soil moisture stress function using either modeled or field observation soil moisture content (Cox et al.,

1999; Granier et al., 2000; Fischer et al., 2016). Here, we use field observations from different vertical soil profiles including

volumetric soil moisture content and soil textural properties (wherever available) to calculate the soil moisture stress factor,190

fSM.

Essentially, the soil moisture influence on plant productivity depends not only on soil moisture over the entire profile but also

on the available soil water to the plant roots. Therefore, to estimate the availability of water to plants, the characteristics of the

root system, including rooting depths and its distribution at different soil depths, are essential factors to be considered (Ostle

et al., 2009). Thus, we include plant rooting distribution in our analysis, following Jackson et al. (1996), to take into account195

the root fraction at different soil depths, and weight the soil moisture content layer-wise according to the present fraction of

roots in that layer. In doing so, we calculated cumulative root fraction (Rci) from the surface to a certain depth (d) in the soil

profile for each layer (i) using the biome specific parameter, β as follows (Eq. 11) (Jackson et al., 1996):

Rci = 1−βdi (11)

Then, using the cumulative root fraction up to each layer, the root fractions in each layer Rii are estimated and then multiplied200

with the corresponding observed soil moisture content of that layer to calculate the soil moisture contribution from each layer

individually. Later, by summing up the soil moisture contributions from all individual layers (θi), a daily effective soil moisture

content, θ(t), over the soil column is obtained (Eq. 12-14).

Rii = Rci−Rci−1 (12)

205

θi = θi ·Rii (13)

θ(t) = Σ(θi) (14)

Similarly to other stress terms, the soil moisture stress factor varies between 0 and 1; and is quantified as follows (Eq. 15).

fSM(t) = max
(

min
( θ(t)− θr
θMSW− θr

,1
)
,0
)

(15)210

where θ(t) is daily effective soil moisture, θr and θMSW are water storage corresponding to the permanent wilting point

and the critical point below which transpiration is limited, respectively. θMSW, representing minimum soil water content for

unstressed photosynthesis (Hartge, 1980; Granier et al., 1999; Fischer et al., 2014), is calculated as follows:

θMSW = θr + scw · (θs− θr) (16)
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where θs is soil water content at field capacity, scw is a constant threshold commonly set at 0.4, and a calibration parameter215

in PCM. scw is a physiological threshold defined as critical relative soil water content at which tree transpiration begins to

decrease Granier et al. (1999). According to Granier et al. (1999); Fischer et al. (2016) the scw value does not vary significantly

between soil and plant species and can be considered as a constant value. The θr and θs correspond to soil matric potentials of

-1.5 and -0.033 MPa, respectively.

When the daily effective soil moisture content is above a minimum soil water content (θMSW; Eq. 16), there is no stress220

to limit photosynthesis, while below the θMSW point, there is a linear increase in stress as water content decreases until θr is

reached. At this point, the soil water stress factor becomes zero with full limitation on photosynthesis and GPP (Harper et al.,

2021).

2.1.3 Canopy respiration

To allow estimation of daily changes in carbon in the leaf pool (Eq. 1), the release of carbon to the atmosphere from leaf225

respiration (Re) has to be calculated. This flux is part of gained carbon (i.e., GPP) consumed for self-maintenance requirements

in the leaf pool. In fact, canopy net primary productivity (NPPcanopy), which is net available carbon ready to be allocated

among different plant pools, is the sum of photosynthetically carbon uptake by plants (GPP) reduced by carbon loss via leaf

respiration (Re) (Pasquato et al., 2015; Running et al., 2000; Melton and Arora, 2016).

We use the well-established modified Arrhenius equation (Eq. 17) (Lloyd and Taylor, 1994; Sitch et al., 2003; Perez, 2016)230

to calculate the leaf respiration. The Re flux is a function of air temperature, carbon mass of leaf pool, and a tissue-specific

carbon to nitrogen ratio, given as:

Re(t) =
rr ·Bl(t)
CNr

· ep1·
(

1
p2
− 1
T (t)+p3

)
(17)

where rr represents the leaf respiration rate, Bl the carbon mass of leaf pool (leaf biomass), p1, p2, p3 are parameters in the

Arrhenius equation, CNr is carbon to nitrogen ratio in leaves, and T is daily mean air temperature.235

2.1.4 Vegetation phenology module

We incorporated a phenology submodel into our model using the approach defined in Yue and Unger (2015). This submodel

calculates temperature-dependent phenological factors for spring and autumn, fST and fAT respectively. These factors range

from 0 to 1 throughout the year, to determine the timing of spring budburst (once the spring temperature dependent factor sets up

to increase above zero), maturity (when the spring temperature-dependent factor approaches to 1), autumn senescence (once the240

product of autumn temperature-dependent and photo-period factors start off to decrease below 1), and dormancy phenophases

(once the product of autumn temperature-dependent and photo-period factors approach zero). The second phenological factor

in the autumn and dormancy phenology is photo-period (fdl) factor and depends on day length. The photo-period factor together

with the temperature-dependent factor regulate the leaf senescence. The phenology submodel determines the above-mentioned

four phenological transition dates on which a simple allocation of assimilated carbon to the leaf pool is based. Below, we245

provide details of each phenological factor and events.
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I) Spring phenology (fSP): The growing season starts with the budburst day, which is the beginning of canopy development

and the time when green tips of leaf show up. It is estimated using a temperature-dependent phenological factor fST as follows

(Eq. 18):

fST =





min
(
1, GDD−Gb

Lg

)
GDD≥Gb

0 otherwise
(18)250

where GDD is growing degree day, Gb is budburst threshold value, Lg is a parameter for growing length in degree day. The

accumulation of growing degree day (GDD) (Eq. 19) from winter solstice day is calculated as below:

GDD =
n∑

i=1

max(T10−Tb,0) (19)

where T10 is 10-day average air temperature, Tb is base temperature for the budburst (5◦C).

Gb in the estimation of fST (Eq. 18) is a threshold value for budburst to occur and is calculated as follows:255

Gb = a+ b · e(r·NCD) (20)

where a, b, and r are parameters for the budburst threshold. NCD is counted as number of chill days between the previous winter

solstice day and the beginning of the successive year. Given the GDD and Gb estimates, temperature-dependent phenological

factor (fST) is then applied to calculate the spring phenology (fSP) (Eq. 21).

fSP = fST (21)260

II) Autumn phenology (fAP): For the autumn phenology the product of two phenological factors, temperature fAT and

photo-period fdl factors, is considered to estimate timing of senescence and dormancy. The autumn temperature-dependent

factor, fAT, (Eq. 22), is obtained as follows:

fAT =





max(0,1 + (FDD−Fs)
Lf

) FDD≤ Fs

1 otherwise
(22)

where Fs is a threshold in degree day for leaf fall, and Lf is a threshold in degree day for the duration and length of the leaf265

falling period (more detail can be found in Yue and Unger (2015)). FDD (Eq. 23) is an accumulative falling degree day from

summer solstice day which is known as a cumulative cold summation method (Yue and Unger, 2015) and it can be calculated

as:

FDD =
m∑

i=1

min(T10day −Ts,0) (23)

where T10day is 10-day average air temperature,Ts is base temperature for leaf fall at 20◦C.270

In addition to temperature factor fAT, autumn senescence timing is regulated via photo-period factor fdl, which is calculated
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based on day length (dl) period, together with lower (dlmin) and upper (dlmax) limits of day length affecting leaf fall as in

Eq. 24.

fdl =





max(0, dl−dlmin
dlmax−dlmin

) dl ≤ dlmax

1 otherwise
(24)

where dl is the day length in minutes. dlmin and dlmax are the lower and upper limits of day length for the period of leaf fall,275

respectively. The autumn phenology (fAP) is finally calculated as a product of fAT and fdl (Eq. 25):

fAP = fAT · fdl (25)

The predicted phenological transition dates from spring fSP and autumn fAP phenology factors determine the budburst-

maturity and senescence-dormancy events, respectively. Based on this information, a fractional allocation to and decay from

the leaf pool is considered (as detailed below).280

2.1.5 Carbon allocation to and decay from the leaf pool

The next step of the carbon pathway in Eq. 1 is allocation to and decay of assimilated carbon from the leaf pool. The leaf

biomass state variable (Bl) in Eq. 1 is updated at a daily time-step, based on changes in gain and loss of carbon in the leaf pool.

The allocation and decay processes are both key physiological processes in the vegetation models to govern the partitioning of

growth among different plant carbon pools and are critical determinants of plant productivity (Haverd et al., 2016; Xia et al.,285

2017). There are two widely used allocation schemes used in vegetation models based on: (1) fixed allocation coefficients,

and (2) allocation driven by allometric constraints. The first scheme uses a fixed allocation ratio to individual plant’s carbon

pools (e.g. used in CASA (Friedlingstein et al., 1999) or BIOM-BGC(Hidy et al., 2016)). In this scheme, the allocation ratio is

constant within different plant development stages. In the second scheme, a fraction of carbon is allocated in such a way that

it satisfies allometric relationships that exist between various plant compartments (Malhi et al., 2011; Gim et al., 2017). In the290

case of allocation to leaf, the allometric relationship is based on the relative mass of canopy – so-called maximum Lb – that a

plant can support with a certain stem mass and height. We adopted an allocation scheme that mainly depends on an updated

daily carbon status of the leaf pool. We use the maximum values of balanced LAI supported by the system (Eq. 26) based on

a previous study conducted by Fleischer et al. (2013). Instead of considering it as a fixed value, we vary Lb within a range of

±1m2/m2, and consider it as one of the model parameters.295

λ(t) = 1− LAI(t)
Lb

(26)

where λ(t) is the carbon allocation ratio to the leaf pool and Lb is the maximum LAI that can be supported by plants.

Provided with the identified major phenological transition dates from the phenology submodel – i.e., budburst, maturity or

steady growth, senescence, and dormancy – the calendar year is accordingly divided into four main stages. During the early

growing season, once the climate condition becomes favourable to plant growth and budburst occurs, carbon allocation to leaf,300

λ (Eq. 26), is relatively a large fraction. This means that the largest part of carbon will be partitioned towards leaf and is being
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used for growth during the early growing season (Gim et al., 2017). Given the value for balanced LAI supported by the system

(Fleischer et al., 2013), the carbon allocation slowly decreases with an increase in LAI until the leaf mass reaches that balanced

LAI. As soon as the canopy approaches a full leaf state (i.e. maturity phenophase), the carbon allocation ratio to the leaf is held

at its minimum – a small portion is used for maintenance respiration during this steady growth stage. We set the leaf allocation305

ratio during the maturity phase to a value of 5% from the assimilated carbon, following the recent version of the Noah-MP

model’s leaf allocation scheme (Gim et al., 2017).

After the steady growth and maturity phase, the leaf senescence phase approaches and the leaf-loss processes start to play

the main role in moderating the mass-balance of canopy and the corresponding LAI seasonality. The loss of carbon via the leaf

fall in PCM is simulated based on the calculated senescence and dormancy transition dates via the phenology submodel, such310

that when the simulation time-step approaches to the senescence date, the model linearly decreases the leaf biomass until the

leaf biomass reaches to nearly zero at the beginning of the dormancy phase.

Concerning the leaf loss processes, PCM also accounts for the leaf losses due to cold stress (OC) (Eq. 27), drought stress

(OD) (Eq. 29), and normal loss of the leaf (ON ) (Eq. 30) following schemes of the CLASSIC model (Melton and Arora, 2016).

The leaf loss due to the cold stress is given by:315

OC(t) =OCmax · (Cs(t))3 (27)

where, OCmax is the maximum leaf loss rate parameter and Cs is a cold stress factor value. The cold stress factor (Eq. 28),

ranging between 1 (full stress) and 0 (no stress), is calculated as:

Cs(t) =





1 T(t) ≤ (Tc− 5)

1− T(t)−(Tc−5)
5 (Tc− 5) < T(t) < Tc

0 Tc ≥ T(t)

(28)

where T(t) is air temperature and Tc is a biome specific temperature threshold below which leaf damage is expected.320

Similar to the OC , the leaf loss rates due to drought stress OD (Eq. 29) is calculated using the fSM stress factor (through the

soil moisture stress submodel) and a OCmax maximum leaf loss rate parameter associated with the drought stress.

OD(t) =ODmax · (1− fSM(t))3 (29)

The third leaf loss term represents the loss rates due to a Normal decay ON driven by biome specific leaf lifespan (τ = 1 for

DBF in Eq. 30) given by:325

ON(t) = 1/(365 · τ) (30)

Finally, the total decay of leaves D(t) consists of contributions from all individual losses (Melton and Arora, 2016); and can

be given as follows (Eq. 31):

D(t) = Bl(t) ·
(
1− e−(OC(t)+OD(t)+ON(t))

)
(31)
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where OC, OD, and ON are the leaf loss rates due to cold stress, drought stress, and normal decay, respectively.330

In summary, the proposed PCM model comprises the submodels mentioned above in a hierarchical chain, starting with the

carbon uptake via the initial leaf biomass state variable and continues with daily partitioning of that assimilated carbon together

with daily decay from leaf compartment to calculate the leaf biomass production increment. This biomass increment is later

added up to the state variable from the previous time step to update the leaf biomass for the current time step. Finally, to update

the LAI that is required for the GPP estimation over the next time step, the current leaf biomass is converted to LAI according335

to Eq. 2.

2.2 Model set-up and experimental design

2.2.1 Study sites and datasets

This study focuses on deciduous broad-leaved forests biome type and We selected tower sites distributed over Europe and

North America to ensure a representative spatial coverage. Sites were excluded if data of fewer than five years were avail-340

able. We further screened out the data at each site to the years with minimal gap in input data, in particular, photosyn-

thetic photon flux density variable and its associated frequent and long missing data at some sites. Applying the above cri-

teria, nine sites with varying temporal coverage were retained for the analyses (Fig. 2). The general site information is pre-

sented in Table 1. Daily flux and meteorological forcing data are from ecosystem stations available from the free fair-use

FLUXNET2015 Tier 1 global collection database (https://fluxnet.org/data/download-data/, last access: June 2021) (Pastorello345

et al., 2020). The input data required to drive the PCM comprises: air temperature (T), photosynthetic active radiation (PAR)

(i.e. converted from PPFD in µmol m−2 s−1) and vapor pressure deficit (VPD) (Table 2). The tower-based GPP estima-

tions, GPP_NT_VUT_REF from the FLUXNET2015 dataset are used for model calibration. We used the first year of the

time series as a warm-up period, during which the chilling days and thermal requirement in phenology submodel are counted.

Optional variables to establish the model include soil moisture (SM) and soil textural properties, are required to simulate350

the soil moisture stress development. However, we investigate the soil moisture stress impact only at the Hohes Holz (DE-

HoH) site in Germany with soil moisture data available up to 80 cm depth. In regard to calculating the soil moisture stress

in PCM, a pedotransfer function following Zacharias and Wessolek (2007) is implemented to estimate site-specific θs and θr

values. This (pedotransfer) submodel receives soil textural properties (sand, clay contents, and bulk density) obtained from

field observations of spatially distributed soil profiles as input. It provides the required field capacity (θs) and permanent wilt-355

ing point (θr) to calculate θMSW and the corresponding soil moisture stress term fSM in the calculation of ε (Eq. 5). To

maintain the consistency with the vertically weighted soil moisture, θs and θr are estimated as weighted average values of

individual layer-specific θs and θr taking the respective root fractions as a weighting factor. Other required parameters in the

model related to different processes, are listed in Table 3. The LAI field measurements were collected via personal commu-

nication to site contact persons; and based on the responses a subset of 4 sites (DE-HoH, DE-Hai, US-MMS, and US-Ha1360

(https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=hf069, last access: 05 January 2022)) are used to

evaluate the modeled LAI. The observation-based LAI measurements are obtained using common procedures of LAI-2000
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instrument (Gower and Norman, 1991) and fisheye technique (Bonhomme, R. and Chartier, P., 1972). These two methods are

considered as the closest methods yielding similar values among other techniques and, therefore, provide consistent measure-

ments(Ariza-Carricondo et al., 2019).365

2.2.2 Model structure and set up

The impact of water availability on the canopy photosynthesis (i.e., soil water deficit and atmospheric water deficit), in vegeta-

tion models is structured in two ways; individually or in combination with each other. In some models, water stress is quantified

as an overall stress from both atmosphere and soil-moisture (GLO-PEM; Prince and Goward, 1995), (Biom-BGC; Hidy et al.,

2016), while some other models account for the water stress due to either the atmospheric drought (CASA; Potter et al., 1993),370

MOD17 algorithm (Running et al., 2000)) or soil moisture drought (EC-LUE; Yuan et al., 2007). In order to determine, how

stress should be represented in the final version of PCM, we conduct two sets of preliminary model experiments to examine: (1)

whether inclusion of fSM, additionally to the other stress factors affects the results, and (2) the effect of alternative integration

approaches (i.e. Liebig law and multiplicative approaches, see Section 2.1.1) on simulated GPP over the DE-HoH site during

the drought 2018. Since the best model skill of the PCM was achieved, when incorporating all stress factors (fT, fVPD, and375

fSM) in the calculation of the overall environmental stress; and using the minimum integration approach (Eq. 6), this structure

was selected for the final setup (see Figures in Supplement, Figure S1 and Figure S2). With regard to specific considerations in

LAI simulations, the model starts with the simulation using a fixed initial LAI state variable to begin the carbon assimilation

once weather conditions become more favourable for plant growth. Following the CABLE model parameterizations (Li et al.,

2018), we set the initial LAI value to 0.35. We also consider a local maximum LAI (so-called Lb in this study), obtained from380

reported values in literature (Fleischer et al., 2013), that individual mature forest can sustain at canopy closure. However, the

local maximum LAI is, later in the calibration step, allowed to vary within ±1m2m−2 of the reported value. The Lb constrains

the simulated LAI up to the reported value at each site across years.

2.2.3 Global sensitivity analysis

Despite the simplicity of parsimonious models, assessing model robustness remains a fundamental step when building and385

developing a model. One of the powerful and invaluable tools for robustness assessment is global sensitivity analysis (GSA) to

test the underlying model parameterizations and inform about sensitive model parameters for the subsequent parameter infer-

ence. In general, the GSA can be performed to understand the influence of parameters perturbations on modeled simulations

and to determine the informative parameters that contribute the most to an output behavior (Iooss and Lemaître, 2014; Cuntz

et al., 2016; Rakovec et al., 2014). In this study during the GSA, the parameters vary over boundaries reported in literature’s.390

In case there were no bounds available for some parameters (e.g., phenological parameters from Yue and Unger (2015)), we

varied them at ± 20% level of their default values. We utilize the Sobol’ variance-based sensitivity method (Saltelli et al.,

1999) with Sobol2002 formula (Saltelli, 2002), in which decomposition of the output variance is performed in terms of Sobol’

indices. The Sobol’ First order index (Si) and total-order Sobol’ index (ST) express the share of output variance associated

with a given parameter i and the share of output variance where all parameters are varied except the parameter i, respectively.395
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These indices range between 0 to 1; with zero value indicating that the model output is entirely insensitive to the respective

parameter changes. The closer the value to 1, the more important and sensitive the respective parameter is. Generally, the

model parameters deem sensitive, if the sensitivity index is above a certain threshold value. Here in this study, we report the

total-order Sobol’ index and set the selection threshold at 1% (Tang et al., 2007), meaning that if the variation of a given

parameter contributes to a change greater than 1%, then that parameter is recognized as an informative parameter. In contrast,400

non-informative parameters are reported as parameters with Sobol’ indices below 1%. Given the focus of the present study on

two main output variables (i.e. GPP and LAI), we use the time mean for both outputs over the entire period for the sensitivity

analysis at each study site. However, the results are expected to differ not only according to the site and selected target output

but also between the individual years if a specific year is of interest to be investigated (Göhler et al., 2013; Hou et al., 2012). To

conduct the sensitivity analysis, we opt to choose all coefficients in the empirical equations as adjustable parameters (Table 3).405

It helps to explore the model sensitivities of often hidden parameters to properly constrain the model (Cuntz et al., 2016).

Overall, we apply the global sensitivity analysis in all study sites for the common 29 parameters and analyse the sensitivity

of the soil moisture stress parameters together with other parameters only for the DE-HoH site at which representative soil

moisture data at different depths, down to 80 cm into the soil, was available. Given the importance of the number of model

evaluations required to conduct the Sobol’ sensitivity analysis (Nossent and Bauwens, 2012) and the stability of sensitivity410

indices, we also check the convergence of the Sobol’ indices through a visual assessment of diagnostic plots.

2.2.4 Parameter estimation

Based on the results of sensitivity analysis, informative and non-informative parameters are identified. Later, we fixed the

non-informative parameters to their corresponding reported values in literature (see Table 3 for details) and the remaining

informative parameters are inferred using a Monte Carlo approach (Kuczera and Parent, 1998). The parameters were calibrated415

against the GPP_NT_VUT_REF time series from the corresponding flux tower measurements (global Fluxnet Tier1 network

accessed on 13 February 2021) (Pastorello et al., 2020). It is important to note that besides the maximum LAI value we did

not use LAI field observations in the calibration process as LAI is not readily available from the FLUXNET dataset. Instead

some LAI observations (obtained from site contacts) were used in the model verification step. The first year of the dataset is

considered a spin-up period. The rest of the time-series are divided into two sub-periods. The first half is used for the calibration420

phase, and the remaining years to independently evaluate the model performance (i.e., over the out-of-calibration set). A total

of 10 000 parameter sets was sampled from their a priori defined ranges (Table 3) in each study site to estimate the parameters

and simulate the GPP flux and LAI. Model performance was quantified using a group of performance metrics, including

Kling-Gupta efficiency (KGE) (Gupta et al., 2009), Root Mean Square Error (RMSE), and coefficient of determination (R2).

We selected an ensemble of informative model runs that simultaneously lie within the top 5% of all the performance metrics.425

2.2.5 Site-specific verification and model generalization

The second half of the GPP time series at each study site was used for the model verification step. In addition to the at-

site verification, it is also equally important to consider the generality of the model structure including underlying model
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parameterizations. To this end, we considered an independent (spatial) verification approach – so called cross-validation – for

assessing the robustness of model parameterizations beyond the conditions during which they were calibrated. The relevance of430

the cross-validation to the modeling framework, is that transferable models can be used beyond the spatial and temporal limits

of their underlying data, especially in the face of pervasive scarcity of observational data to constrain model parameterizations

(Yates et al., 2018). Therefore, as the next step in our modeling framework, and after performing the site-specific calibration

and verification, a cross-validation of the model is conducted to come up with a compromise solution (here parameter set)

applicable across the study sites, following the approach of Zink et al. (2016). In doing so, the behavioral parameter sets found435

from on-site calibration for each study site are grouped together as one unique set of all possible behavioral parameters. Then

the model is run using all possible parameter sets and the respective performance metric (i.e., KGE) for each parameter set

at each investigated site is estimated. After that, the mean values of KGEs corresponding to each parameter set over all study

sites are calculated. Finally, a set of parameters associated with the highest mean KGE score is recognised as a compromise

solution. Here the goal of this analysis is to investigate the generality of the underlying model structure, and to allow inference440

of a common (compromise) set of model parameters for the PCM for a broader applicability (i.e., beyond the calibration sites).

3 Results and Discussion

In the following, we first show and discuss findings from the global sensitivity analysis and site-specific parameter calibration.

This is followed by a discussion of the site-specific model performance. Finally, we present the results of a cross-validation to

test the generality of underlying model parameterizations. This also allows us to propose a standard set of PCM parameters for445

locations where calibration is not possible.

3.1 Sensitivity analysis

Here, we explore the sensitivity of the output variables (i.e. GPP and LAI) to the model parameter variations using Sobol’

method at each study site. Although a direct comparison of PCM parameters sensitivities from this study with similar models

in other studies is difficult due to difference in model structures and representation of photosynthesis processes, one can gain450

insights by comparative assessments among conducted studies. For instance, the light utilization in LUE-oriented GPP models

is based on photon absorption and photosynthetic efficiency of incident light (Frost-Christensen and Sand-Jensen, 1992).

Hence, one can compare the significance of the LUE parameter of our model with that of the quantum yield of photosynthesis

which is a measure of photosynthetic efficiency in the Farquhar equation (Farquhar et al., 1980) in several land surface models.

As it can be seen from Figure 3a (mean GPP) and b (mean LAI), different sensitive parameters are associated with the different455

output variables. However, for the same output variable, all sites more or less share a similar informative set of parameters,

although the magnitudes differ. In the following, we show and discuss the sensitivity of the model outputs to different PCM

parameters.
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3.1.1 Parameter sensitivity for GPP estimation

We first investigate the sensitivity of GPP output to the model parameters. Figure 3a shows the total-order Sobol’ index of all460

parameters contributing to the GPP output. The boxes in Figure 3a indicate variation of the sensitivity of a given parameter

across different sites. Only a small number of them have ultimate control on the simulated GPP out of the 34 model parameters

(Figure 3a). This is in agreement with previous studies using LPJ-DGVM (Zaehle et al., 2005), BETHY (White et al., 2000),

and BIOME-BGC (Knorr, 2000) models showing only a few of investigated parameters significantly influence the modelled

carbon fluxes outputs (including GPP).465

The most sensitive parameter for the GPP estimates turned out to be the light use efficiency, LUE in (Eq. 3). This agrees with

numerous other studies confirming that the light use efficiency is a significant parameter affecting GPP. For instance, Zaehle

et al. (2005) conducted a probability-based sensitivity analysis using the LPJ-DGVM ecosystem model, utilizing Farquhar pho-

tosynthesis scheme, and found that carbon fluxes (including GPP) are highly sensitive to parameters related to photosynthesis

process, particularly the intrinsic quantum efficiency parameter (so called αq in their model), which is related to the LUE in470

PCM. Similarly, Ma et al. (2020) using a GSA in the Flux-based Ecosystem Model and based on the Farquhar photosynthesis

scheme, found canopy quantum efficiency of photon conversion among the most sensitive parameters with a strong influence

on forest GPP. The multiplicative coefficient of canopy reflectance, C, and the light extinction coefficient, k, parameters in

the fPAR formulation (Eq. 4) based on Lambert-Beer’s law show also substantial sensitivities. Notably, these parameters are

typically fixed to constant values by default in the fPAR formulation, controlling PAR availability and utilization, in similar475

studies Xiao et al. (e.g. 2004); Xin et al. (e.g. 2019).

The next group of sensitive parameters are those involved in the imposed environmental stresses on GPP: I) The vmin

parameter (Eq. 10) exhibits some sensitivity and controls the impact of vapour pressure deficit stress on simulated GPP (fVPD).

Balzarolo et al. (2019) also reported the impact of VPD variable in general on radiation use efficiency and on resultant GPP. II)

Next environmental factor constraining the GPP is soil moisture stress. Here, we identify β (Eq. 11) and θr (Eq. 15) as sensitive480

parameters. We can only consider and discuss the soil moisture stress-related parameters in the DE-HoH site due to the lack

of soil moisture data at other sites. The investigated sensitivity of fSM-related parameters are shown in the supplementary

Figure S3. Similar findings of a pronounced impact of parameters controlling soil moisture availability (e.g., θr and β) on

simulated GPP has been reported by Li et al. (2016) for the CABLE and JULES models. From a soil science perspective, the

θr is often a fixed value of soil water content corresponding to soil matric potential of 1500 kPa (Zhang and Han, 2019) and485

is typically not considered as a parameter. However, our result shows that the θr might not be considered as fixed. While the

functional form of θr can be deduced based on pedo-transfer functions (Zacharias and Wessolek, 2007), empirical coefficients

of such functions representing the linkages between θr and soil textural properties (e.g., sand, clay contents) can be regarded

as model parameters (Samaniego et al., 2010; Kumar et al., 2013; Schweppe et al., 2021).

The SLA parameter (Eq. 2), as one of the structural parameters, is also a major contributor to the simulated GPP. Its sen-490

sitivity can be explained by the direct effect of SLA on LAI calculation (Eq. 2) through which the carbon assimilation (GPP)

is eventually taking place (Eq. 4, 3). Arsenault et al. (2018) and Li et al. (2016) also reported the SLA parameter among very
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sensitive model parameters, when simulating carbon fluxes (including GPP) in the Noah-MP and CABLE land surface models,

respectively.

Finally, the last group of sensitive parameters in modeled GPP are those involved in the phenology submodel. The parameter495

Fs (Eq. 21), determining the timing of leaf fall, appeared as a major informative parameter for all sites. Although, some

parameters were only sensitive in some sites including those for the leaf budburst threshold- namely, b and r (Eq. 19). The

b appeared sensitive only at DE-HoH and the parameter r is sensitive at CA-Oas and US-Oho. Generally, the implemented

phenology submodel controls the plant active period and at the same time accounts for the impact of temperature factor on leaf

development and resultant GPP. This might be a reason why temperature-related parameters in the temperature stress factors500

(Eqs. 8 and 9) are not found to be informative in the sensitivity analysis. This is because temperature mainly controls the start

and end of the growing season in the phenology submodel. This period indicates favourable condition for plant growth when

the temperature stress is mostly not active. Therefore, corresponding parameters do not significantly influence the modelled

GPP. In agreement with our results, Yuan et al. (2007) also reported little impact of environmental stresses due to temperature

on GPP during the growing season. Another interesting point emerging from Figure 3a is the insensitivity of GPP output to the505

LAI-balanced (maximum), Lb. This effect can also be seen in LAI simulation (e.g., at DE-HoH site) where a group of daily

LAI at the maturity phase in Figure 7 lead to not much of the difference in the corresponding GPP outputs (i.e., in Figure 5.

This is in agreement with the previous studies of Lee et al. (2019); Jung et al. (2007), which showed that GPP output saturates

and becomes insensitive at LAI values above 4 m2 m−2.

3.1.2 Parameter sensitivity for LAI estimation510

We further explore the parameter sensitivity for LAI output similar to the GPP described above. In general, a similar set of

sensitive parameters were identified for GPP and LAI outputs across sites (Figure 3b). However, some differences were also

detected: parameters such as Lb, fcov , Lg , p2, and p3 show substantial sensitivity, while the sensitivity to vmin was almost

negligible. Regarding the similarity of parameters between GPP and LAI, it is worth noting that the calculations of GPP and

LAI depend on each other since assimilated carbon (i.e.,GPP) is partly converted to leaf biomass from which the LAI is515

calculated, and used in turn for the GPP calculation in the next time step. Therefore, LAI output should roughly be sensitive

to the same set of parameters as the GPP output. The result in Figure 3b shows that LUE, C, and k, directly involved in the

GPP formulation, have considerable influence on the LAI output. These parameters, in particular the LUE, strongly control the

assimilated carbon and consequently affect the modelled LAI.

Figure 3b also shows a major contribution of SLA (Eq. 2), fcov (Eq. 2), and Lb (Eq. 24) to the LAI output. Similarly to the520

LUE for GPP, the SLA is central for the calculation of LAI (Eq. 2) and thus shows by far the largest sensitivity. Since the LAI

output in the model depends on GPP, the studies reporting the SLA impact on GPP might apply for LAI output as well (Li et al.,

2016; Arsenault et al., 2018). The fcov parameter represents the fractional vegetation coverage per unit area and is a critical

parameter in calculating forest GPP (Ma et al., 2015). Ma et al. (2015) assumed 100% forest coverage in their calculation

of GPP, from which LAI was calculated. They showed how this inappropriate assumption (i.e., 100% forest coverage) can525

exaggerate the forest area when calculating forest GPP (and consequently the LAI) rather than considering a realistic coverage.
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Here in the PCM, the fcov parameter is allowed to vary between 60% to 95% as an adjustable parameter (based on Fluxnet2015

Dataset description of percent coverage greater than 60% at DBF sites; http://sites.fluxdata.org/). We observe that fractional

vegetation coverage substantially influences the simulation of LAI. In agreement with Ma et al. (2015), our result supports the

importance of the fractional coverage (fcov) as an important structural parameter in carbon cycle modelling studies. The Lb530

parameter (Eq. 24), also exhibits a marked sensitivity for the LAI output (Figure 3b) because this parameter is a direct factor

allowing the canopy to reach to its maximum. Next important contribution of parameters to the LAI output are those governing

the leaf phenology in the phenology submodel, Lg (Eq. 18), Fs (Eq. 22), b (Eq. 20), r (Eq. 20) (Figure 3b). To the best of our

knowledge, these parameters have not been studied elsewhere within a sensitivity analysis framework, and therefore we could

not perform any comparative assessment. Parameters b and r contribute to the simulation of leaf budburst day, Fs contributes535

to the identification of leaf fall day, and Lg parameter influences the LAI output estimation through its influence on the length

of the growing season. The Fs parameter exhibits higher sensitivity and a larger between-site variation than other parameters

(Figure 3b). This parameter represents the necessary amount of cold accumulation in degree day to trigger the leaf fall event.

For instance, lower cold degree days accumulation would lead to an early leaf fall and leaf shedding. Therefore, the between-

site variation of this parameter might not be surprising, given the differences in temperature and accumulated cold degree days540

among study sites.

Other additional parameters that showed sensitivity for the LAI output are p2, and p3 (Eq. 17). These parameters belong to

the canopy respiration process in the modified Arrhenius equation (Eq. 17). They are typically considered as fixed parameters

e.g., in TETIS-VEG model (Perez, 2016), in LPJ-ML model (Schaphoff et al., 2017), while here we varied these parameters

within 20% of their nominal value. Notably, these parameters showed greater sensitivity for the LAI estimation than that of545

the GPP. It might partly be due to the reduced assimilated carbon (GPP) by canopy respiration which in turn might decrease

the available carbon to be allocated to leaf biomass and affect the resultant LAI. Furthermore, the evaluation of Sobol’ indices

convergence (see Figure 4) showed relative stability of sensitivity indices at around 8 000 model evaluations.

3.2 Site specific model assessment

We conduct site-specific parameter estimation for all available eddy-covariance (EC) flux tower study sites (Figure 5). For550

this, only informative parameters identified in the sensitivity analysis are calibrated and the others are fixed (Table 3). For

model parameter calibrations we used the first half of the available time series and the remaining years for verification (Table

1). Calibration and verification of the model are only performed for the GPP flux because direct LAI measurements are not

available at all of the flux sites. Figure 5 shows the seven-day mean of simulated GPP for a set of ensemble members for

each study site during both the calibration and verification periods. Since the different sites were operational at different times555

and some sites (e.g. DE-Hai) cover a relatively long time period, we show only five years of simulation at each site: the

last three years of calibration and the first two years of verification periods (Figure 5). A complete simulation for each site

during the entire available times series is provided in the Supplementary Figure S4. In addition, Table 4 summarizes the model

performance in simulating GPP during calibration and verification periods at different sites. In general, the model achieved

KGE values of above 0.65, RMSE of less than 2.5 gCm−2day−1, and R2 values of above 0.65 over all study sites. We560
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compare the performance of our model to other modeling studies, whenever there is either an identical site to our study or

a similar biome type (i.e., DBF) presented. To this end, our results are similar to Yue and Unger (2015) who found a high

correlation of more than 0.8 and RMSE lower than 3 g C m−2 d−1 for the GPP simulations at DBF forest sites in a global

setting using the Yale Interactive terrestrial Biosphere model. Another study conducted by Asaadi et al. (2018) showed a quite

good model performance using the CLASS-CTEM land surface model (Melton and Arora, 2014) applied at US-Ha1(1998-565

2013) and US-MMs (1999-2006) flux tower sites, with R2 value of 0.99 accompanying RMSE of 0.62, and R2 value of 0.98

accompanying RMSE of 1.07 g C m−2 d−1 at US-Ha1 and US-MMs, respectively. In a recent study, Holtmann et al. (2021)

assessed the daily carbon fluxes over the DE-HoH forest during 2015-2017 using the FORMIND model (Fischer et al., 2016).

They showed that the simulated and measured GPP correlates with an R2 of 0.82 and RMSE of 9 MgCha−1a−1 equivalent to

2.46 g C m−2 d−1 using FORMIND model.570

Taken together, our model exhibits a reasonable validity and performs equally well in estimating temporal dynamics of GPP

(Table 4) compared to other more complex land surface and biogeochemical models. The PCM shows skill in capturing GPP at

most of the investigated sites; although it overestimates GPP at the IT-Ro1 during summer. IT-Ro1 is located in a Mediterranean

climate exposed to dry summers (Vicca et al., 2016). The forest ecosystems in Mediterranean type climate are affected by water

limitation which can affect the GPP flux significantly (Cueva et al., 2021). The lack of soil moisture data probably contributed575

to the misrepresentation of GPP at this site. This is in agreement with previous studies that found similarly poor modeling

performance across sites located in the Mediterranean climate in central Italy in dry summer periods when simulating GPP

(Maselli et al., 2012; Chiesi et al., 2011; Fibbi et al., 2019). In addition, water limitation impact on GPP could be related to

the irregular occurrence of extreme events (e.g., European-wide drought 2018). Such conditions were observed at DE-HoH

and DE-Hai sites, where the model overestimated GPP during late summer of 2018 coincided with Europe-wide drought 2018580

(Buras et al., 2020). In the next step, we also examine the model’s overall performance in reproducing GPP in terms of multi-

year average of GPP at each site. Figure 6 shows that the model can generally explain the spatial variation of GPP with an R2

as high as 0.90.

As an independent verification step, we evaluate the PCM simulations of LAI against field-measurements data at some study

sites where observational data were made available via personal contacts with site investigators. Figure 7 compares simulated585

values of LAI with their field measurements at four sites (US-MMS, US-Ha1, DE-Hai, and DE-HoH). In general, a good spatial

and temporal consistency between the simulated LAI and the field-measurement LAI can be seen from the plots (Figure 7).

The R2 corresponding to the US-MMS, US-Ha1, DE-Hai, and DE-HoH sites are 0.90, 0.85, 0.78, and 0.90, respectively.

Furthermore, the comparisons yield RMSE of 0.96, 1.58, 2.21, 1.4 m2m−2 to the US-MMS, US-Ha1, DE-Hai, and DE-HoH

sites, respectively. Table 5 summarizes the model performance in simulating LAI during a common period of observed and590

modeled data.

The simulated LAI captures reasonably well the observed LAI seasonality at almost all the sites. It demonstrates the capabil-

ity of the model in capturing canopy status at different phenophases. However, there are some pronounced deviations between

modelled and observed LAI at some sites (US-Ha1, DE-HoH) during the dormancy phase and autumn leaf decline period.

Given the deciduous nature of those ecosystems , it is likely that the higher winter values of field measurements compared595
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to simulated LAI reflects the presence of understory vegetation (Asaadi et al., 2018) or instrument’s reading of present stand

and/or dead leaf on trees after onset of leaf shedding. We also notice a slightly lagging phase in simulated LAI during the

spring as compared to the field-measurements data, for instance at the DE-Hai site. Such discrepancy may be due to the lack

of accounting for dependence of green-up rate on non-structural carbohydrate from previous years as a buffer to initiate leaf

onset (Asaadi et al., 2018), which is currently not represented in the PCM.600

3.3 Spatial model verification and model generalization

Eventually, we conduct cross-validation of parameter transferability for all sites against tower-derived GPP data (Section 2.2.5).

Figure 8 summarizes the results of this analysis, providing a comparison between the range of obtained Kling-Gupta efficiency

performance metric (KGE) from on-site calibration and KGE obtained from a compromised solution. It can be seen that the

model with a compromise parameter set still shows a reasonable predictive skill (KGE > 0.5), while leaving space for skill605

improvement with a site-specific parameter (∆KGE ≈ 0.10). The poorest performances are associated with the northernmost

site DK-Sor and the Mediterranean IT-Ro1 site. The associated bias in those sites is likely related to GPP response to the

maximum LUE parameter obtained from compromise solution applied over all the sites. As it was shown in the sensitivity

analysis (see Section 3.1.1), the variation of GPP is predominantly driven by the LUE variation thus a constant fixed maximum

LUE across all sites might be a reason for the limited performance at the sites located in maximum latitude and water-limited610

regions. It has been shown that maximum LUE varies in different geographical locations (Jung et al., 2007), and this is in

line with our on-site calibration result indicating largest maximum LUE at DK-Sor (northernmost site with a cold and moist

climate) and lowest at IT-Ro1 (a relatively drier Mediterranean site) sites. Thus applying a compromise value for LUE at these

two site would result in a bias in GPP estimation. Previous studies (Wang et al., 2010; Madani et al., 2014) showed a large

variation in maximum LUE not only between different biomes but also even within an individual biome and plant functional615

type. Concerning the large spatial variability of maximum LUE, several factors such as spatial heterogeneity of vegetation,

canopy densities, ages, soil nutrition, leaf nutrient content have been mentioned in previous studies (Wang et al., 2010; Madani

et al., 2014). Some methods such as spatially explicit estimation of optimum LUE (Madani et al., 2014) or introducing pixel-

level maximum LUE (Wang et al., 2010) have been employed in satellite-based LUE models to overcome this shortcoming.

They argued that the assumption of a constant maximum LUE (i.e. based on standard MODIS-base GPP algorithm and a620

Biome Property Look-Up Table; Heinsch et al., 2003), needs to be reexamined so that spatial heterogeneity between individual

plant functional types is represented. Therefore, the uncertainty introduced by the fixed maximum LUE may be reduced and

ecosystem productivity modeling would be improved.

3.4 Limitation and opportunities

While the model performs well, in general, on simulating the GPP, some inconsistencies in the observed and modelled GPP625

across sites help to identify the model limitation and introduce future opportunities to improve the model performance. One

of the mismatches is that the model lacks to adequately capture the observed decline in GPP during 2019 (Figure 5) at the

DE-HoH. This may be related to a possible legacy impact of the drought year 2018 into the successive year 2019 (Buras et al.,
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2020; Schuldt et al., 2020; Schnabel et al., 2021; Reichstein et al., 2013). Here we infer that the reduction in the tower GPP

in 2019 might be due to a change in the LUE parameter. Based on calibration from previous non-drought years, the obtained630

LUE value might lead the model to overestimate GPP in early 2019. Indeed, calibrating the model to the drought years of 2018

and 2019 yielded a lower LUE parameter (reduction of LUE value by 12%), which might support the possible legacy impact

of last year drought on LUE parameter. Another possible explanation, alternatively or collectively to the plant legacy effect,

would be variation/depletion of deep soil moisture storage (Jung et al., 2009). Since the model does not represent established

internal feedback for carrying over effect after extreme events (Reichstein et al., 2013) and only consider the soil moisture up635

to 80 cm depth, thus the current model version would not reflect on such a process and GPP is likely to be overestimated.

Another limitation in our simulation is a lack to account for a possible effect of diffuse light on GPP response in the current

model structure. We observed the potential role of diffuse light on GPP during some mismatch periods between eddy flux

tower and modelled GPP across some of the sites (e.g., DE-HoH year 2107, FR-Fon year 2012, and US-Ha1 year 2010) (see

Figure S1). The model underestimates GPP during these periods based on a lower PAR input, however, the observations show640

greater GPP despite lower input PAR. This is in line with findings of Knohl and Baldocchi (2008), where they investigated the

effect of diffuse light on the forest ecosystem and discussed how diffuse radiation can lead to an increase in carbon uptake.

Enhancement of GPP due to diffuse light is related to more evenly distribution and more efficient light penetration within

canopy (Yuan et al., 2014). Integration of such effect in the current model by introducing a time-varying LUE (condition-

varying) (Wei et al., 2017) instead of the fixed LUE would improve the simulation. In particular, under unprecedented global645

warming and climate change, future changes in cloud cover and aerosol concentration are expected to modify the solar radiation

and the subsequent ecosystem productivity (Durand et al., 2021; Meyer et al., 2014). Regarding LAI simulation, one limitation

is that, at some points, the model cannot increase in LAI in the initial onset of LAI as fast as that of observation in the early

growing period. In previous studies, it has been shown that the inclusion of non-structural carbon storage at the beginning

of green-up might help to overcome this issue (Asaadi et al., 2018) and refine the model simulation results further. Aside650

from the current model limitations subjected to further improvement, the model exhibits a reasonable validity and performs

equally well in estimating the temporal dynamics of GPP and LAI development compared to more complex land surface

and biogeochemical models. The PCM being parsimonious makes it suitable for further reaching applications in coupled

models. Dynamic development of LAI is relevant to GPP estimation and beneficial for hydrologic models providing them with

prognostically driven LAI time series based on vegetation responses to temperature, particularly in the context of water budget655

responses to climate variability.

We aim, as a next step, to implement the presented model into the existing open-source mesoscale Hydrologic Model

(mHM; Samaniego et al., 2010; Kumar et al., 2013, available at https://www.ufz.de/mhm) with a proven predictive power in

simulating root-zone soil moisture dynamics (Boeing et al., 2021). The spatially simulated soil moisture derived from mHM

would provide an alternative to (limited) soil moisture observations required for GPP simulation. In particular, in the face of660

ongoing and future climate changes and increasing occurrence of droughts (Harper et al., 2021), reliable simulations of soil

moisture are invaluable information to capture plant drought responses for the carbon cycle and climate feedbacks (Harper
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et al., 2021). Finally, in doing so, we expect an improved capability of the hydrological model to represent the coupled water

and carbon (i.e., GPP/LAI in this study) components.

4 Conclusion665

In view of ongoing natural and anthropogenic changes, assessing the extent to which terrestrial plants can sequester atmospheric

carbon and affect water balance through LAI implication are essential for effective climate-adaptation and resilience plans. In

this study, we developed a parsimonious canopy model (PCM) with a medium level of complexity to simulate canopy GPP

and LAI. In the PCM model the carbon uptake drives leaf biomass accumulation based on a mass balance approach. The

model employs the light use efficiency principle in which the core concept is the conversion of absorbed photosynthetically670

active radiation into biomass. An integrated phenology submodel, from which allocation of carbon to and decay from the leaf

pool is guided, is incorporated to predict the timing of leaf development and characterising different phenological stages. The

PCM model performed reasonably well in reproducing the daily development of GPP and LAI in deciduous broad-leaved

forest biome across Europe and North America. The model runs with a few required inputs; air temperature, VPD, PAR,

and soil moisture (optional, recommended in dry regions and drought events). Although the proposed model runs with a675

number of parameters for representing the relevant processes (29 parameters without the soil moisture-related parameters), a

global sensitivity analysis showed that only 10 parameters (on average across sites) were sensitive and had to be inferred via

calibration. The result reaffirms that light use efficiency and specific leaf area index parameters are by far the most informative

parameters in GPP and LAI simulations, respectively. The on-site calibrated maximum LUE parameter showed relatively large

variation within the sites with greater maximum LUE at Dk-Sor and lower value at IT-Ro1. It implies that applying a fixed680

biome-specific maximum LUE does not hold applicable over different locations. Moreover, modelled GPP during growing

season was shown to be almost insensitive to LAI changes. This indicates that GPP is saturated at a particular value of LAI

and any further increase in LAI does not necessarily increase the resultant GPP. We also tested the robustness and generality

of the underlying model structure, identifying a compromise set of model parameters applicable to all sites (region-wide). The

results show that the model application is possible without site-specific calibration and yet yielding reasonable model quality.685

The model’s skill in capturing the LAI dynamics – that was not used in the parameter inference process – further confirms

the robustness of the presented model structure. Given the scarce soil moisture information, we expect that simulated soil

moisture derived from a hydrological model would improve the representation of GPP simulations, particularly at semiarid

regions or in drought events. We envision that the medium complexity of the presented model allows a seamless integration

into large scale hydrological models to better represent ecohydrological aspects of ecosystems. We plan to implement the690

PCM model into the existing hydrologic models (e.g., open-source mesoscale Hydrologic Model; mHM), thereby enabling an

improved representation of coupled water and carbon fluxes, in the face of a changing environment. To allow for a seamless

estimation of carbon and water fluxes, we plan to include implementation of a robust regional parameter inference approach

(e.g., establishing regionalized LUE parameter through a multiscale parameterization approach (Samaniego et al., 2010)) and

performing extensive cross-validation experiments to ensure credible model simulations across a wide range of spatial domains.695
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pressure deficit, SM: soil moisture, and PAR: photosynthetic active radiation. Rectangles are the processes in the model (LUE is model

parameter. Photoperiod is calculated day-length based on latitudinal distribution). Numbers refer to the corresponding equations in the text.
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Figure 2. Location of the FLUXNET2015 sites investigated in this study.

Figure 3. Distribution of total-order Sobol’ indices for GPP (a) and LAI (b) outputs across all sites. Each colored box on the Y-axis represents

parameters involved in a specific process as following: brown: GPP-related parameters (Eq. 3, 4); dark green: LAI-related parameters (Eq. 2,

26); Cyan: Environmental stresses-related parameters (Eq. 10); blue: phenology-related parameters (Eq. 18, 20, 22); grey: canopy respiration-

related parameters (Eq. 17). The vertical dotted red line corresponds to the threshold of 1%
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Figure 4. Illustration of evolution of total-order Sobol’ indices (total-order indices convergence) for sensitive parameters with increasing

number of samples for GPP (a) and LAI (b) outputs, at DE-HoH site taken as an example including soil moisture stress-related parameters.

Table 1. Descriptions of flux tower sites from FLUXNET2015 global database collection.

Site ID Site Name Latitude Longitude Elevation(m) Mean Annual Temperature (◦C) Mean Annual Precipitation (mm) Time Period Source

DK-Sor Soroe 55.48 11.64 40 8.2 660 1996-2014 DOI: 10.18140/FLX/1440155

CA-Oas Saskatchewan - Western Boreal 53.62 -106.19 530 0.34 428.53 1996-2010 DOI: 10.18140/FLX/1440043

DE-HoH Hohes Holz 52.08 11.21 193 9.1 563 2014-2019 Own dataset

DE-Hai Hainich 51.07 10.45 430 8.3 720 2000-2018 DOI: 10.18140/FLX/1440148

FR-Fon Fontainebleau-Barbeau 48.47 2.78 103 10.2 720 2005-2014 DOI: 10.18140/FLX/1440161

IT-Ro1 Roccarespampani 1 42.40 11.93 235 15.15 876.2 2000-2008 DOI: 10.18140/FLX/1440174

US-Ha1 Harvard Forest EMS Tower 42.53 -72.17 340 6.62 1071 1991-2012 DOI: 10.18140/FLX/1440071

US-Oho Oak Openings 41.55 -83.84 230 10.1 849 2004-2013 DOI: 10.18140/FLX/1440088

US-MMS Morgan Monroe State Forest 39.32 -86.41 275 10.58 1032 1999-2014 DOI: 10.18140/FLX/1440083
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Figure 5. Time series of observed and simulated GPP at each study site during the three last years of calibration and the two first years of

verification periods. The vertical dash line marked the calibration-verification periods. The black dots indicate the tower estimated GPP. The

light grey shed corresponds to the ensemble sets of modeled GPP outputs at each time step. The dark grey line refers to the median of model

ensembles.
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Figure 6. Estimated GPP based on flux tower measurements vs. modelled GPP ± standard deviation (error bars) across the 9 studied sites.

The solid line indicates the 1:1 line, and the dashed line indicates the regression line. Each dot represents one of the sites and refers to

site-averaged GPP over the entire available time series.

Figure 7. Time series of observed and simulated LAI at study flux tower sites during the common years of field measurements and simula-

tions. The black dots indicate the field measurement LAI. The light grey shed corresponds to the ensemble sets of modeled LAI outputs at

each time step. The dark grey line refers to the median of model ensembles.
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Figure 8. Comparison between KGE obtained from ensemble simulated GPP performing at-site calibration and the KGE obtained from

compromised solution.

Table 2. List of input and state variables (at daily time step) in PCM.

Input variables Unit Description

T ◦C mean air temperature

PPFD µmolm−2 s−1 photosynthetically active radiation

VPD hPa vapour pressure deficit

SM % soil moisture

Soil textural properties % sand, clay, and bulk density

Lat degree Latitude of site

State variables Unit Description

Bl gC m−2 biomass of leaf

D gC m−2 leaf biomass decay

LAI m2m−2 leaf area index

fPAR % fraction of photosynthetically active radiation
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Table 3. Model parameters in PCM

Calibration model parameters, based on sensitivity analysis Unit Description Lower Boundary Upper Boundary References

K - extinction coefficient 0.45 0.60 Ruimy et al. (1999); Yuan et al. (2007)

C - Beer–Lambert law parameter 0.85 1 Monsi and Saeki (1953)

LUE gC MJ−1 light use efficiency 1.04 2.25 Cheng et al. (2014); Yuan et al. (2010)

Lb m2 m−2 maiximum balanced LAI 4 6.5 Fleischer et al. (2013)

SLA m2g−1 specific leaf area 0.01 0.03 Kattge et al. (2011); Gim et al. (2017); Dyderski et al. (2020)

fcov % vegatation fractional coverage per unit area 0.60 0.95 Fluxnet site description

PWP % permanent wilting point 7 13 Intermediate output of PCM model

β - root distribution coefficient 0.966 1 Jackson et al. (1996)

vmin hPa mean VPD at which LUE = LUEpotential 6.5 10 Heinsch et al. (2003); Cheng et al. (2014)

Lg DegreeDay phenological growing length 300 450 Yue and Unger (2015)

Fs DegreeDay phenological threshold for leaf fall -500 -112 Yue and Unger (2015), calibrated

b DegreeDay phenological parameter for budburst threshold Gb 440 660 Yue and Unger (2015)

r - phenological parameter for budburst threshold Gb -0.012 -0.008 Yue and Unger (2015)

p2 - 2nd parameterin Arrhenious equation 44.96 67.44 Sitch et al. (2003)

p3 - 3rd parameterin Arrhenious equation 36.96 55.44 Sitch et al. (2003)

Fixed model parameters based on sensitivity analysis

FC % field capacity 23 23 Intermediate output of PCM model

scw - critical threshold value of soil moisture 0.4 0.4 Granier et al. (1999)

Thot
◦C mean air temperature of warmest month 19 19 Rödig et al. (2017); Sitch et al. (2003)

Tlow
◦C low temperature limit for CO2 assimilation -2 -2 Rödig et al. (2017); Sitch et al. (2003)

Tcold
◦C mean air temperature of coldest month 10 10 Rödig et al. (2017); Sitch et al. (2003)

Thigh
◦C high temperature limit for CO2 assimilation 38 38 Rödig et al. (2017); Sitch et al. (2003)

vmax hPa mean VPD at which LUE = 0 25 25 Heinsch et al. (2003); Cheng et al. (2014)

Lf DegreeDay phenological falling length 410 410 Yue and Unger (2015)

dlmin minutes phenological day length threshold for leaf fall 585 585 Yue and Unger (2015)

dlmax minutes phenological day length threshold for leaf fall 695 695 Yue and Unger (2015)

a DegreeDay phenological parameter for budburst threshold Gb -110 -110 Yue and Unger (2015)

r - phenological parameter for budburst threshold Gb -0.01 -0.01 Yue and Unger (2015)

Tb ◦C base temprature for budburst occurrence 5 5 Yue and Unger (2015)

Ts ◦C base temprature for senescence occurrence 20 20 Yue and Unger (2015)

CNr gC gN−1 leaf C:N ratio 25 25 White et al. (2000)

p1 - 1st Arrhenious parameter 308.56 308.56 Sitch et al. (2003)

Tc
◦C temperature threshold for determining cold stress 5 5 Melton and Arora (2016)

rr gC gN−1 leaf respiration coefficient 0.066 0.066 Kattge et al. (2011); Sitch et al. (2003); Rödig et al. (2017)

ODmax day−1 maximum drought stress loss rate 0.15 0.15 Melton and Arora (2016)

OCmax day−1 maximum cold stress loss rate 0.005 0.005 Melton and Arora (2016)
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Table 4. Summary statistics for the comparison between model estimated GPP and tower estimated GPP at different sites. Statistics include

KGE, root mean square error (RMSE), and R2. GPP units are [g C m−2 d−1]. The statistics refer to ensemble medians of model estimated

GPP.

Site
Calibration Verification

Period KGE RMSE R2 Period KGE RMSE R2

DK-Sor 2007-2010 0.89 2.09 0.89 2011-2013 0.89 2.15 0.89

CA-Oas 1997-2004 0.92 1.5 0.89 2005-2010 0.90 1.4 0.91

DE-HoH 2015-2017 0.88 1.8 0.88 2018-2019 0.75 2.5 0.80

DE-Hai 2001-2015 0.93 1.9 0.85 2016-2018 0.91 2.01 0.84

FR-Fon 2006-2010 0.95 1.7 0.91 2011-2014 0.91 1.94. 0.85

US-Ha1 2004-2008 0.92 2.03 0.86 2009-2012 0.88 2.56 0.80

IT-Ro1 2002-2004 0.79 2.45 0.65 2005-2006 0.86 1.87 0.78

US-Oho 2005-2010 0.87 2.22 0.85 2011-2013 0.85 2.39 0.82

US-MMS 2000-2007 0.9 2.1 0.85 2008-2014 0.89 1.9 0.87

Table 5. Summary statistics for the comparison between model estimated LAI and Field measurement LAI at different sites. Statistics include

R2 and RMSE. LAI units are [m−2m−2]. The statistics refer to ensemble medians of model estimated LAI.

Site Period RMSE R2

US-MMS 2000-2014 0.96 0.90

US-Ha1 2005-2012 1.58 0.85

DE-Hai 2002-2009 2.21 0.78

DE-HoH 2018-2019 1.4 0.90
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