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Abstract. The Community Multiscale Air Quality Model (CMAQ) has been a vital tool for air quality research and 

management at the United States Environmental Protection Agency (U.S. EPA), and at government environmental agencies 

and academic institutions worldwide. CMAQ requires a significant amount of disk space to store and archive input and output. 

For example, an annual simulation over the contiguous United States with horizontal grid cell spacing of 12 km requires 2–3 

TB of input data and can produce anywhere from 7–45 TB of output data, depending upon modelling configuration, and 15 

desired post-processing output (e.g., for evaluations or graphics). After a simulation is complete, model data are archived for 

several years, or even decades, to ensure the replicability of conducted research. As a result, careful disk space management 

is essential to optimize resources and ensure the uninterrupted progress of ongoing research and applications requiring large 

scale, air quality modelling. Proper disk space management may include applying optimal data compression techniques that 

are executed on input and output files for all CMAQ simulations. There are several (not limited to) such utilities that compress 20 

files using losslessness compression, such as GNU Gzip and Basic Leucine Zipper Domain (bzip2). A new approach is 

proposed in this study that reduces the precision of the air quality model emissions input to reduce storage requirements (after 

a losslessness compression utility is applied) and accelerate runtime. The new approach is tested using CMAQ simulations 

and post-processed CMAQ output to examine the impact on the air quality model performance. In total, four simulations were 

conducted, and nine cases were post-processed from direct simulation output to determine disk space efficiency, runtime 25 

efficiency, and model (predictive) accuracy. Three simulations were run with emissions input containing only five, four, or 

three significant digits. To enhance the analysis of disk space efficiency, altered emissions CMAQ simulations were 

additionally post-processed to contain five, four, or three significant digits. The fourth, and final, simulation was run using the 

full precision emissions files with no alteration. Thus, in total, 13 gridded products (four simulations and nine cases) were 

analysed in this study. 30 
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Results demonstrate that the altered emission files reduced the disk space footprint by 6 %, 25 %, and 48 % compared to the 

unaltered emission files when using the bzip2 compression utility for files containing five, four, or three significant digits, 

respectively. Similarly, the altered output files reduced the required disk space by 19 %, 47 %, and 69 % compared to the 

unaltered CMAQ output files when using the bzip2 compression utility for files containing five, four, or three significant digits, 

respectively. For both compressed datasets, bzip2 performed better than gzip, in terms of compression size, by 5–27 % for 35 

emission data and 15–28 % for CMAQ output for files containing five, four, or three significant digits. Additionally, CMAQ 

runtime was reduced by 2–7 % for simulations using emission files with reduced precision data on a non-dedicated 

environment. Finally, the model estimated pollutant concentrations from the four simulations were compared to observed data 

from the U.S. EPA Air Quality System (AQS) and the Ammonia Monitoring Network (AMON). Model performance statistics 

were negligibly impacted (e.g., normalized mean bias differed by less than 0.01 % for all altered simulations and cases). In 40 

summary, by reducing the precision of CMAQ emissions data to five, four, or three significant digits, the simulation runtime 

on a non-dedicated environment was slightly reduced, disk space usage was substantially reduced, and model accuracy 

remained relatively unchanged compared to the base CMAQ simulation, which suggests that the precision of the emissions 

data could be reduced to more efficiently use computing resources while minimizing the impact on CMAQ simulations. 

1. Introduction 45 

The Community Multiscale Air Quality (CMAQ) model (Byun and Schere, 2006) is a sophisticated three-dimensional Eulerian 

(gridded) numerical modelling system that uses scientific first principles to simulate the chemical transformation and transport 

of ozone, particulate matter, toxic compounds, and acid deposition. Since the formation and transformation of chemical species 

are functions of complex atmospheric and chemical interactions, two primary input types are required to initialize CMAQ 

simulations: meteorology and emissions. First, meteorological data (such as temperature, wind, cloud formation, and 50 

precipitation rate) provide atmospheric conditions to drive CMAQ. The second required input field, which is the focal point 

of this study, is emissions data (i.e., emission rates from emission sources) that characterize pollutants from both man-made 

and naturally occurring sources.   

The chemical transport model within CMAQ typically requires multiple emission datasets which occupy a significant amount 

of disk space. Although disk space is becoming progressively cheaper and more affordable, the research and computational 55 

needs are rapidly increasing and becoming more complex. For instance, the total sizes of emission and meteorological datasets 

are about 7.0 GB and 6.8 GB, respectively for a one-day CMAQ simulation for the contiguous U.S. with a horizontal resolution 

of 12 km. The total disk space size for one day of output is 20 GB (for a typical output configuration considering only surface 

output and neglecting extra diagnostic output). Including 3D fields and diagnostic output, however, the total output disk space 

size can easily be tripled. Most studies with CMAQ on this scale create at least a full year’s worth of data, so aggressive disk 60 

space management approaches could be justified to minimize overall costs associated with running CMAQ. Aggressive disk 
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space management could be a substantial cost-savings measure, regardless of whether simulations are conducted onsite (such 

as with a high-performance computing architecture or a Linux cluster) or by using cloud computing, where data retrievals can 

quickly elevate costs. Here, we propose optimizing disk space by compressing CMAQ emission datasets as one practical 

consideration to maximize storage capacity. If successful, this option could be extended to other input types with large disk 65 

space needs, such as meteorological data. 

Compression algorithms can be described as either lossless or lossy. Lossless compression algorithms reduce disk space by 

replacing repeated sequences with a smaller, unique identifier. Thus, an entire dataset can be retrieved, once uncompressed, 

without alteration of the original dataset (hence the name, lossless). Lossy algorithms, however, in terms of numeric arrays, 

reduce disk space by manipulating the mantissa of a single floating point. Typically, trailing, or insignificant bits, are replaced 70 

with a sequence of zeros or ones. As a result, data is compressed at the cost of numeric inconsistencies between the original 

dataset and the compressed dataset. 

The concept of maximizing disk space by altering netCDF datasets has been examined previously by Zender (2016) and 

Kouznetsov (2020). Zender (2016) created a versatile toolset that compresses data based on user specifications that are applied 

to the mantissa of floating-point datasets. The first notable algorithm developed by Zender (2016) is precision-trimming, which 75 

is publicly available in the netCDF operators (NCO, http://nco.sourceforge.net/nco.html) utility. Precision-trimming sets all 

non-significant bits to zero (bit shaving) which, based on analysis, produces an undesirable bias of the compressed data (Zender 

2016). As a result, Zender (2016) introduced a Bit Grooming algorithm (default algorithm in NCO) that shaves (to zero) and 

sets (to one) the least significant bits of consecutive values. Despite the additional toolset, Kouznetsov (2021) found substantial 

artifacts, or numeric inconsistencies, in multipoint statistics caused by Bit Grooming. Due to the suboptimal results, 80 

Kouznetsov (2021) developed and evaluated multiple lossy compression algorithms with respect to NCO’s available toolsets 

from Zender (2016). Kouznetsov (2021) created a round and halfshave lossy compression algorithm which both doubled 

compression accuracy by rounding the mantissa to the nearest value that has 0 tail bits and by setting all tail bits to zero except 

for the most significant bit which gets set to one (Kouznetsov, 2021).   

Excluding analyses conducted on datasets via lossy compression algorithms, the authors are unaware of any studies that have 85 

been conducted on the compression efficiency on floating-point datasets with respect to n significant digits. Additionally, 

Zender (2016) and Kouznetsov (2021) did not conduct evaluations regarding the impact of altered datasets on numeric 

simulations. In this study, netCDF datasets will be altered and compressed to explore compression efficiency, and the resultant 

altered datasets will be used to run CMAQ simulations to quantify the impacts on runtime and on model accuracy as a result 

of dataset manipulation via a lossy compression algorithm. This study proceeds as such: in Sect. 2, a description of the 90 

methodology will be provided, followed by results in Sect. 3, then the conclusions in Sect. 4. 
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2. Methodology 

All input and output files in this study are 32-bit, binary, netCDF files which inherently contain seven or eight significant digits 

at most. To perform this study, we created a simple tool written in Fortran to truncate floating-point data in netCDF files by 

keeping n significant digits which are normalized in scientific notation. Table 1 shows several examples of this numerical 95 

manipulation.  

We applied this tool to alter the precision of two different datasets (input emission and CMAQ model output) by keeping n 

significant digits. For this study, CMAQ v5.3.1 (USEPA 2019) using 12 km grid spacing. We conducted four annual CMAQ 

simulations for 2016: one with unaltered emission data (simulation orig) and three with altered emissions data by setting n to 

five (A05), four (A04), and three (A03) for all emission input files (gridded_no_rwc, gridded_rwc, ptnonipm, ptegu, ptagfire, 100 

ptfire, ptfire_othna, pt_oilgas, cmv_c3_12, cmv_c1c2_12, and othpt) utilized by CMAQ for this study. On the output side, 

direct CMAQ output (ACONC, APMDIAG, DRYDEP, and WETDEP1) from the A05, A04, and A03 (in which A0n signifies 

an altered simulation which utilized altered emissions data to n significant digits) simulations was similarly altered to possess 

five, four, or three significant digits (denoted as FX05, FX04, and FX03, respectively in which FX0n signifies an altered case 

which was post-processed by an A0n simulation’s CMAQ output). Emission input and CMAQ output data were compressed 105 

by gzip (GNU Gzip, https://www.gnu.org/software/gzip) and bzip2 (https://www.sourceware.org/bzip2) for all simulations 

and cases to determine compression efficiency in terms of the reduction of disk space. In summary, there are four separate 

simulations (called orig or abbreviated as A0n) and nine additional, altered output cases (abbreviated as FX0n). For example, 

a CMAQ simulation that was run with emissions data that was processed with n equals five significant digits, then post-

processed to possess three significant digits, is denoted as A05FX03 (see Table 2 for more simulations and cases).  110 

Simulated numeric, or predictive, accuracy was analyzed against concentrations of particulate matter with diameter less than 

2.5 μm (PM2.5), ozone (O3), ammonia (NH3), the wet deposition rates of sodium (Na), ammonium (NH4), chlorine (Cl), nitrate 

(NO3), sulfate (SO4), and the dry deposition rate of O3 for all simulations and cases. PM2.5 and O3 were evaluated at in situ 

stations from the United States Environmental Protection Agency’s (U.S. EPA) Air Quality System (AQS; Fig. 1.b) dataset. 

NH3 was evaluated at in situ stations utilizing observations from the Ammonia Monitoring Network (AMON; Fig. 1.c). Hourly 115 

observations of O3 were processed to calculate the maximum 8-hour daily average concentrations (MDA8) and paired in space 

and time with calculated MDA8 O3 from post-processed CMAQ output. Likewise, daily averaged NH3 and PM2.5 observations 

were used to evaluate CMAQ. Observed values are paired with the volume-average pollutant estimate from CMAQ’s surface 

layer’s grid cell containing the air quality monitoring site (i.e., nearest neighbor). Statistical metrics were also calculated by 

pairing gridded values from the orig simulation (considered observed values) and the altered simulations and cases (considered 120 

the predicted values). Tabulated statistical metrics for grid–grid pairing was computed by taking the mean of specific hourly, 

statistical metrics. 

Typical statistical metrics including mean bias (MB), correlation coefficient (r), root-mean-square-error (RMSE) and 

normalized mean bias (NMB) are used to evaluate all chemical species in this analysis at different temporal intervals and for 
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different pairing methodologies (either grid-point or grid-grid) which includes regional stratification (based on regions from 125 

Fig. 1.a) for several figures. The utilized statistical metrics are denoted below in Eq. (1) through Eq. (4). 

MB =
1

𝑁
∙ ∑ (𝑌𝑖 − 𝑋𝑖)

𝑁
𝑖=1  ,           (1) 
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1
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∙
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∑ (𝑋𝑖)𝑁
𝑖=1

∙ 100 % ,          (4)  130 

Where N is the total number of observed and predicted pairs, X is the observed value, Y is predicted value, σ is the standard 

deviation of a distribution, and the overbars in Eq. (2) refers to the mean of a distribution. 

Although many compression toolsets exist and optimization is dependent on multiple factors (Kryukov et al., 2020), gzip and 

bzip2 are the most public, reliable, and widely used compressors. Both utilities are lossless compression algorithms which are 

available for Linux users. In terms of functionality, gzip uses a compression algorithm called, Deflate (Deutsch, 1996) which 135 

reduces sequences of datasets by incorporating a combination of LZ77 dictionary coding (Ziv and Lempel, 1977) and Huffman 

entropy coding (Huffman, 1952). In comparison, bzip2 uses the Burrows-Wheeler (Burrows and Wheeler, 1994) algorithm 

which chronologically reduces sequences of datasets by processing sequences through multiple layers of compression 

algorithms. In terms of compression ratio, bzip2 is notably better than gzip, however, with respect to compression speed, gzip 

is significantly faster than bzip2. Due to their availability and efficiency, both gzip and bzip2 are utilized in this study (default 140 

settings). 

Table 1: Multiple example transformations of floating points from their original forms (first column) to their altered forms (second 

to fourth column). 

Original (orig) Altered 5 (A05) Altered 4 (A04) Altered 3 (A03) 

0.005666635 0.0056666 0.005667 0.00567 

3.437405 × 10−6 3.4374 × 10−6 3.437 × 10−6 3.44 × 10−6 

0.0005319762 0.00053198 0.000532 0.000532 

3.437 × 10−6 3.437 × 10−6 3.437 × 10−6 3.44 × 10−6 

 

Table 2: Setup of all simulations (orig, A05, A04, and A03) and cases analyzed in this study.  145 

Unaltered Emissions Data Altered Emissions Data 
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a) Simulation: orig b) Simulation: A05 c) Simulation: A04 d) Simulation: A03 

 

Altered CMAQ Output 

e) Case: A05FX05 h) Case: A04FX05 k) Case: A03FX05 

f) Case: A05FX04 i) Case: A04FX04 l) Case: A03FX04 

g) Case: A05FX03 j) Case: A04FX03 m) Case: A03FX03 

 

 

 

Figure 1: Regions for spatial and temporal stratification (a), AQS stations (b), and AMON stations (c) for the proceeding evaluation.  

https://doi.org/10.5194/gmd-2022-82
Preprint. Discussion started: 27 June 2022
c© Author(s) 2022. CC BY 4.0 License.



7 

 

3. Results 150 

3.1. Data Storage 

CMAQ input and output data are stored for future analyses and to ensure the reproducibility of modeling studies which 

demands a tremendous amount of disk space for input and output files. Therefore, we propose to ease the disk space burden 

by utilizing efficient compression algorithms. For this section of the analysis, two popular, reliable, and efficient compression 

utilities, gzip and bzip2, were utilized to determine compression efficiency with respect to emission input (emissions mentioned 155 

in section 2.) files and CMAQ output (mentioned in section 2. including CGRID, CONC, and SOILOUT) files. Both 

compression utilities were applied daily to compress emission input and CMAQ output files throughout the entirety of 2016 

(Fig. 2). 

The gzip compression utility reduced the file sizes by an average of 1 %, 5 %, and 21 %, or about 5 GB, 26 GB, and 111 GB, 

relative reduction in file size of the compressed daily A05, A04, and A03 emissions datasets for 2016, respectively, compared 160 

to the orig case. The reduction in file size (using gzip) was more substantial when applied to direct CMAQ output, with an 

average reduction in file size of 4 %, 19 %, and 47 %, or about 167 GB, 839 GB, and 2016 GB for A05, A04, and A03, 

respectively. With the bzip2 utility, the reduction in magnitude is much larger than with gzip, with an average reduction of file 

size equal to 6 %, 25 %, and 48 %, or 27 GB, 126 GB, and 241 GB, respectively for A05, A04, and A03 emissions files and 19 

%, 47 %, and 69 %, or 856 GB, 2142 GB, and 3115 GB, respectively, for the compressed CMAQ output. Thus, bzip2 is found 165 

to be a more effective tool than gzip by roughly 5 %, 20 %, and 27 % for emission data and 15 %, 28 % and 23 % for CMAQ 

output, for A05, A04, and A03 (preprocessed and postprocessed data), respectively. 
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Figure 2: Relative compression size of two utilities, gzip (solid line) and bzip2 (dotted line), on daily emission files (labelled as Emiss.) 

and direct CMAQ output (labelled as CMAQ) for 2016 with ndigit (via the FX program) set to 5, 4, and 3 (labelled as Altered 05, 170 
Altered 04, and Altered 03, respectively). Negative values indicate better compression efficiency. 

3.2. Runtime 

We examined daily runtime for CMAQ using emissions data prepared with truncations of A05, A04, and A03 compared with 

running CMAQ with unaltered (orig) emissions data (Fig. 3). Even though the simulations were not performed in a dedicated 

environment (results are not entirely consistent due to the allocation of resources when the simulations were initialized), the 175 

daily runtimes for A05, A04, and A03 were consistently lower than the runtime of the orig simulation. The total runtimes for 
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the A05, A04, and A03 simulations were 3.13, 2.94, and 12.84 hours faster than the orig case (2 %, 2 %, and 7 %, respectively 

of relative reduction of runtime). 

 

Figure 3: Relative daily run time with respect to different adjusted emission input for the A03, A04, and A05 simulations for 2016. 180 

3.3. Accuracy 

The accuracy of each case is first examined grid-to-point between modeled output and in situ observations (Fig. 1; AQS and 

AMON) for all available modeled pairs throughout 2016. Resultantly, each case performed with negligible differences when 

compared against the orig case in terms of statistical parameters provided for daily PM2.5, MDA8 O3, and daily NH3 (Tables 

3–5). For example, the bulk statistic range of NMB for daily PM2.5, MDA8 O3, and daily NH3 amongst all cases is 1.845 185 
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× 10−3 %, 1.088 × 10−4 %, and 7.873 × 10−4 %. Therefore, at most, simulations deviated from one another by 1.845 × 10−3 

% (for PM2.5) utilizing bulk statistical metrics of NMB. Similarly, the range for all statistical metrics (Table 3–5) are quite 

small. 

Bulk statistical results (Tables 3–5) are encouraging; differences are small ignoring regional or temporal stratification. To 

determine if statistical results fluctuate spatially (by region) and or temporally (by season), RMSE was computed for 9 different 190 

sub-regions (regions are portrayed in Fig. 1) across the United States for four seasons (Winter, Spring, Summer, and Fall) from 

the mentioned observation and model pairs. Each region’s RMSE was stacked together, by simulation and case, and plotted as 

‘accumulated RMSE’ by species. Likewise, results have negligible differences for daily PM2.5, MDA8 O3, and daily NH3, 

respectively (Fig. 4) for all regional and temporal stratifications and for all simulations and cases.  

Results indicate that all simulations and cases have negligible differences in terms of bulk statistical metrics across the U.S. 195 

and considering regional and temporal stratifications. To identify small scale, temporal discrepancies, absolute bias (|Yi − Xi|) 

was calculated for all daily PM2.5, MDA8 O3, and daily NH3 observation and model pairs for all simulations and cases. 

Similarly, results suggest little impact in terms of range of maximum and minimum absolute bias. In fact, the ranges of 

maximum absolute bias for daily PM2.5, MDA8 O3, and daily NH3, computed from the biases of each simulation and case, are 

0.16 μg m−3, 0.13 ppb, and 0.001 μg m−3 respectively (Table 6). In contrast, the 24-hour fine particle limit for PM2.5 exposure 200 

is 35 μg m−3 and the 8-hour exposure limit for O3 is 70 ppb (U.S. EPA Criteria Pollutants, https://www.epa.gov/criteria-air-

pollutants/naaqs-table). Thus, the ranges of maximum absolute bias for PM2.5 and O3 do not exceed air quality criteria (0.16 

μg m−3 < 35 μg m−3 and 0.13 ppb < 70 ppb) which suggests the differences in simulations and cases are negligible. 

Statistical results conducted on in situ observations were redone (methodologically) at the grid level for hourly PM2.5, O3, and 

NH3, using the orig simulation (as the observed field) with respect to the altered simulations and cases (predicted fields). 205 

RMSE was first calculated for all hourly grid–grid pairs for PM2.5, O3, and NH3. Next, the average, hourly RMSE was 

calculated for each season and region based on spatial and temporal masking using the regions portrayed in Fig. 1.a. All 

stratifications were grouped together as accumulative, stacked bar plots for different seasons by simulation or case. Although 

differences are evident (Fig. 5), the scale of such differences is quite small. For example, the total accumulative RMSE for 

PM2.5, O3, and NH3 (sum of all region’s RMSE) did not exceed 0.1 μg m−3, 0.4 ppbV, and 0.1 ppbV, respectively for all cases 210 

and for all seasons. 

Additionally, the maximum absolute bias for all grid cells was determined spatially between the orig simulation and the altered 

simulations and cases throughout 2016 for PM2.5, O3, and NH3 from gridded, hourly (CMAQ) output. For PM2.5, all simulations 

and cases performed similarly in which no visual differences are apparent (Fig. 6). For O3 (Fig. 7) and NH3 (Fig. 8), however, 

the differences become relatively large for cases n = 3. In fact, for both species, spatial and magnitude error visibly increases 215 

with fewer significant digits (simulations and cases). For example, maximum absolute bias is largest for the A03 simulations 

and even worse for the FX03 altered cases ignoring the artifact of error across the Northeast U.S. for O3 for the A05 simulations 

and cases (induced by the A05 simulation). The maximum absolute bias ranges, found by taking the range of all altered cases, 
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for PM2.5, O3, and NH3 are 46.77 μg m−3, 0.4265 ppbV, and 18.78 ppbV, respectively (Table 7). The minimum absolute bias 

ranges for PM2.5, O3, and NH3 are 5.573 μg m−3, 0.5091 ppbV, 9.778 ppbV (Table 7), respectively. Based on range, error can 220 

potentially be quite large compared to the statistics provided in Fig. 5, however, large-scale error is not persistent based on the 

small accumulated RMSE for all regions grouped by CMAQ simulation and case (Fig. 5. Y-limits did not exceed 0.1 

μg m−3,0.4 ppbV, and 0.1 ppbV for PM2.5, O3, and NH3 respectively) and by predominately low magnitude, maximum absolute 

bias in Fig. 6–8. Therefore, significant error is associated with brief spikes of certain species within and around source regions. 

The final aspect of this evaluation explores aspects of important species using boxplots (minimum, 25th percentile, median, 225 

75th percentile, and maximum) of hourly, spatially averaged r, BIAS, NMB, and RMSE for all grid-to-grid pairs for deposition 

rates with respect to the orig case. Boxplots were created for the wet deposition rates of sodium (Na), ammonium (NH4), 

chlorine (Cl), nitrate (NO3), sulfate (SO4), and the dry deposition rate of O3 for all altered simulations and cases. Overall, all 

species and cases perform similarly with respect to the orig case, and hence, amongst each other (Fig. 9). Additionally, FX03 

performed worst and FX05 performed best with respect to the orig case (in terms of similarity).  230 

Table 3: Annual bulk statistical metrics for all grid-point pairs for daily averaged PM2.5 (𝛍𝐠 𝐦−𝟑) binned by simulation or case 

(row). 

Case Bias NMB (%) r RMSE 

orig -0.02828948 -0.37369379 0.53041275 5.01579136 

A05FX05 -0.02826335 -0.37334858 0.53041176 5.01580798 

A05FX04 -0.02825803 -0.37327833 0.53041128 5.01581581 

A05FX03 -0.02815542 -0.37192291 0.53041549 5.01582310 

A05 -0.02826358 -0.37335166 0.53041173 5.01580801 

A04FX05 -0.02828796 -0.37367363 0.53041358 5.01578126 

A04FX04 -0.02828248 -0.37360124 0.53041339 5.01578634 

A04FX03 -0.02817979 -0.37224478 0.53041693 5.01580237 

A04 -0.02828831 -0.37367825 0.53041352 5.01578145 

A03FX05 -0.02829498 -0.37376643 0.53041301 5.01577697 

A03FX04 -0.02828955 -0.37369463 0.53041289 5.01578215 

A03FX03 -0.02818791 -0.37235202 0.53041394 5.01582105 

A03 -0.02829509 -0.37376787 0.53041302 5.01577689 

Range 1.397 × 10−4 1.845 × 10−3 5.650  × 10−6 4.621  × 10−5 

 

Table 4: Annual bulk statistical metrics for all grid-point pairs for MAD8 O3 (ppb) binned by simulation or case (row). 

Case Bias NMB (%) r RMSE 

orig -1.70888518 -4.07590175 0.76393761 7.93497772 

A05FX05 -1.70888101 -4.07589180 0.76393721 7.93498192 

A05FX04 -1.70888319 -4.07589700 0.76393702 7.93498491 

A05FX03 -1.70884936 -4.07581631 0.76393705 7.93497690 
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A05 -1.70888073 -4.07589112 0.76393725 7.93498117 

A04FX05 -1.70888893 -4.07591070 0.76393754 7.93497943 

A04FX04 -1.70889025 -4.07591383 0.76393745 7.93498084 

A04FX03 -1.70885773 -4.07583627 0.76393726 7.93497642 

A04 -1.70888837 -4.07590935 0.76393758 7.93497873 

A03FX05 -1.70889237 -4.07591889 0.76393656 7.93499351 

A03FX04 -1.70889496 -4.07592507 0.76393625 7.93499862 

A03FX03 -1.70886892 -4.07586296 0.76393549 7.93500341 

A03 -1.70889202 -4.07591806 0.76393658 7.93499319 

Range 4.560 × 10−5 1.088 × 10−4 2.120 × 10−6 2.699 × 10−5 

 235 

Table 5: Annual bulk statistical metrics for all grid-point pairs for daily averaged NH3 (𝛍𝐠 𝐦−𝟑) binned by simulation or case (row). 

Case Bias NMB (%) r RMSE 

orig -0.42796669 -35.05920328 0.51400293 1.28576807 

A05FX05 -0.42796733 -35.05925543 0.51400262 1.28576885 

A05FX04 -0.42796814 -35.0593213 0.51400369 1.28576660 

A05FX03 -0.42795978 -35.05863723 0.51399115 1.28580217 

A05 -0.42796762 -35.05927875 0.51400259 1.28576893 

A04FX05 -0.42796643 -35.0591816 0.51400300 1.28576777 

A04FX04 -0.42796650 -35.05918764 0.51400269 1.28577030 

A04FX03 -0.42796002 -35.05865625 0.51399133 1.28579903 

A04 -0.42796635 -35.05917526 0.51400305 1.28576768 

A03FX05 -0.42796899 -35.0593916 0.51399920 1.28577519 

A03FX04 -0.42796939 -35.05942449 0.51400001 1.28577173 

A03FX03 -0.42796703 -35.05923092 0.51398972 1.28579406 

A03 -0.42796888 -35.05938233 0.51399862 1.28577635 

Range 9.610 × 10−6 7.873 × 10−4 1.397 × 10−5 3.557 × 10−5 
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Figure 4: Stacked bar plots of RMSE (y) stratified by region (color), simulation and case (x), and season (subplot) for daily PM2.5, 

MDA8 O3, and daily NH3 calculated from in situ observation.  240 

Table 6: Maximum and minimum biases (modeled – observation) for all simulations and cases (row) by variable (column) 

throughout 2016 utilizing in situ observations. 

Case 
PM2.5 (𝛍𝐠 𝐦−𝟑) Ozone (ppb) Ammonia (𝛍𝐠 𝐦−𝟑) 

Max. Min. Max. Min. Max. Min. 

orig 511.6467 -161.4475 139.835 -80.685 11.3 -7.64904 

A05FX05 511.6467 -161.4475 139.835 -80.685 11.3 -7.64904 

A05FX04 511.6567 -161.4475 139.825 -80.68 11.3 -7.64903 

A05FX03 511.5867 -161.4457 139.745 -80.682 11.301 -7.64906 
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A05 511.6467 -161.4475 139.835 -80.685 11.3 -7.64904 

A04FX05 511.6367 -161.4475 139.845 -80.685 11.3 -7.64904 

A04FX04 511.6367 -161.4475 139.855 -80.685 11.301 -7.64904 

A04FX03 511.5867 -161.4457 139.745 -80.682 11.301 -7.64905 

A04 511.6367 -161.4475 139.845 -80.685 11.3 -7.64904 

A03FX05 511.7467 -161.4474 139.845 -80.684 11.3 -7.64908 

A03FX04 511.7467 -161.4474 139.855 -80.683 11.3 -7.64908 

A03FX03 511.7367 -161.4455 139.875 -80.682 11.3 -7.64912 

A03 511.7467 -161.4474 139.845 -80.684 11.3 -7.64908 

Range 0.16 0.002 0.13 0.005 0.001 9.00 × 10−5 
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Figure 5: Stacked bar plots of RMSE (y) stratified by region (color), simulation and case (x), and season (subplot) for hourly PM2.5, 245 

O3, and NH3 calculated from grid–grid pairs with respect to the orig simulation. 
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Figure 6: Maximum absolute bias (versus the orig simulation) for PM2.5 calculated from hourly output for all simulations and cases. 

 

Figure 7: Maximum absolute bias (versus the orig simulation) for O3 calculated from hourly output for all simulations and cases. 250 
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Figure 8: Maximum absolute bias (versus the orig simulation) for NH3 calculated from hourly output for all simulations and cases. 

Table 7: Maximum and Minimum biases (orig – altered) calculated from hourly CMAQ output for all simulations and cases with 

respect to the orig simulation 

 255 

Case 
PM2.5 ( 𝛍𝐠 𝐦−𝟑) Ozone (ppbV) Ammonia (ppbV) 

Max. Min. Max. Min. Max. Min. 

A05FX05 4.40819836 -4.69252777 0.260878 -0.08337 0.893507 -0.61453 

A05FX04 4.40777397 -4.69240379 0.263882 -0.08437 0.893806 -4.01074 

A05FX03 51.17382812 -9.62011719 0.499962 -0.50085 19.64355 -4.86621 

A05 4.40821075 -4.69258881 0.260483 -0.08343 0.893517 -0.61455 

A04FX05 4.99303246 -4.70221233 0.136284 -0.16548 0.875244 -1.14815 

A04FX04 4.99263382 -4.70223236 0.136154 -0.16448 1.275146 -4.01074 

A04FX03 51.1640625 -9.51953125 0.503494 -0.50282 19.64355 -5.02832 

A04 4.99302673 -4.70224953 0.13604 -0.16512 0.867432 -1.14854 

A03FX05 11.09228516 -6.66992188 0.223785 -0.22272 4.146118 -7.44141 

A03FX04 11.54589844 -10.265625 0.225784 -0.22272 4.446045 -7.0415 

A03FX03 41.18359375 -9.46972656 0.562561 -0.59249 19.64355 -10.3923 

A03 11.17675781 -7.01953125 0.224041 -0.22235 4.187866 -7.47461 

Range 46.76605415 5.57322121 0.426521 0.509121 18.77612 9.777804 
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Figure 9: Boxplots of hourly and spatially averaged statistics (column) for multiple deposition species (row) throughout 2016. 
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4. Conclusion 

We have demonstrated that altering data by keeping a specified number of significant digits in terms of emission input and/or 

simulated output, increased compression efficiency based on two different, popular compression utilities (gzip and bzip2). For 260 

emission data, bzip2 performed far better than gzip and provided compression reduction, on average, by 6 %, 25 %, and 48 % 

for emission data, and 19 %, 47 %, and 69 % for output data for the A05, A04, and A03 cases respectively, compared to the 

orig case. In terms of daily simulation runtime for the entire simulation year, the A05, A04 and A03 simulations consistently 

faster than the orig simulation in a undedicated HPC system.  

As for accuracy, results for all studied simulations, either with altered emission only, or with altered emission plus altered 265 

output, produced numerically insignificant differences. For example, the bulk statistic ranges of NMB for daily PM2.5, MDA8 

O3, and NH3, compared to all cases and simulations at in situ locations, are 1.845 × 10−3 %, 1.088 × 10−4 %, and 7.873 

× 10−4 %. Similarly, small range in values is replicated for all other bulk statistical metrics such as MB, r, and RMSE. Results 

stratified by region and season mimic bulk statistics. Based on the in situ evaluation, simulation performance is very similar 

amongst all cases, with visible differences for the A03 simulation and the FX03 cases in which error is spatially detected in 270 

Fig. 6-8.  

Statistical inconsistencies arise when comparing grid–grid values of hourly PM2.5, O3, and NH3 versus the orig simulation. 

Results indicate that similarities amongst the orig simulation decreases with fewer significant digit simulations and cases when 

analyzing the stacked and stratified (region and season) RMSE bar plot (Fig. 5). More specifically, performance with respect 

to the orig simulation is worse for the A03 simulation and as well, for the FX03 cases. Such discrepancies do not occur 275 

consistently based on results provided by boxplots of statistical metrics of deposition rates (Fig. 9). Instead, errors appear to 

be confined to source regions at specific instances based on the maximum absolute (hourly) error spatial plots with respect to 

the orig simulation (Fig. 6-8). 

In summary, altering datasets by truncation to retain fewer significant digits significantly improved data compression and 

slightly improved runtime. Based on the thorough, yet spatially limited, in situ evaluation, this study has shown this proposed 280 

technique did not compromise model performance based on an evaluation of simulations and cases at in situ locations 

compared to current air quality thresholds for daily PM2.5, MDA8 O3, and daily NH3. These results show the benefit of altering 

data by keeping five significant digits but strongly suggest keeping four significant digits and keeping three significant digits 

can be considered. In addition, this proposed technique could be beneficial for groups that perform complex air quality 

modeling and want to improve disk space management while negligibly impacting the quality of the simulations. Based on the 285 

success of this study, we propose testing these techniques on the rest of CMAQ input files such as initial conditions, boundary 

conditions and meteorological data to determine the viability of these techniques to more adeptly manage disk space without 

compromising the quality of the CMAQ simulations used for research and to develop air quality management strategies. 
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Code and data availability 290 

The source code of the tool to alter data by keeping a specific number of significant digits and a run script which includes 

usage instructions, for this tool is available from DOI: 10.5281/zenodo.6620983. CMAQ 5.3.1 is available at 

https://www.epa.gov/cmaq/access-cmaq-source-code. Original, unaltered CMAQ input data for this study is available at 

https://dataverse.unc.edu/dataset.xhtml?persistentId=doi:10.15139/S3/MHNUNE. Original, unaltered CMAQ input data for 

this study from 1/1 – 1/5/2016 is available at DOI: 10.5281/zenodo.6624164. 295 
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