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Abstract. The Community Multiscale Air Quality Model (CMAQ) has been a vital tool for air quality research and 

management at the United States Environmental Protection Agency (U.S. EPA), and at government environmental agencies 

and academic institutions worldwide. CMAQ requires a significant amount of disk space to store and archive input and output 

files. For example, an annual simulation over the contiguous United States with horizontal grid cell spacing of 12 km requires 

2–3 TB of input data and can produce anywhere from 7–45 TB of output data, depending upon modelling configuration, and 15 

desired post-processing of the output (e.g., for evaluations or graphics). After a simulation is complete, model data are archived 

for several years, or even decades, to ensure the replicability of conducted research. As a result, careful disk space management 

is essential to optimize resources and ensure the uninterrupted progress of ongoing research and applications requiring large 

scale, air quality modelling. Proper disk space management may include applying optimal data compression techniques that 

are executed on input and output files for all CMAQ simulations. There are several (not limited to) such utilities that compress 20 

files using lossless compression, such as GNU Gzip and Basic Leucine Zipper Domain (bzip2). A new approach is proposed 

in this study that reduces the precision of the air quality model emissions input to reduce storage requirements (after a lossless 

compression utility is applied) and accelerate runtime. The new approach is tested using CMAQ simulations and post-

processed CMAQ output to examine the impact on the air quality model performance. In total, four simulations were 

conducted, and nine cases were post-processed from direct simulation output to determine disk space efficiency, runtime 25 

efficiency, and model (predictive) accuracy. Three simulations were run with emissions input containing only five, four, or 

three significant digits. To enhance the analysis of disk space efficiency, the output from the altered-precision emissions 

CMAQ simulations were additionally post-processed to contain five, four, or three significant digits. The fourth, and final, 

simulation was run using the full precision emissions files with no alteration. Thus, in total, 13 gridded products (four 

simulations and nine altered-precision output cases) were analysed in this study. 30 
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Results demonstrate that the altered-precision emission files reduced the disk space footprint by 6 %, 25 %, and 48 % compared 

to the unaltered emission files when using the bzip2 compression utility for files containing five, four, or three significant 

digits, respectively. Similarly, the altered output files reduced the required disk space by 19 %, 47 %, and 69 % compared to 

the unaltered CMAQ output files when using the bzip2 compression utility for files containing five, four, or three significant 

digits, respectively. For both compressed datasets, bzip2 performed better than gzip, in terms of compression size, by 5–27 % 35 

for emission data and 15–28 % for CMAQ output for files containing five, four, or three significant digits. Additionally, 

CMAQ runtime was reduced by 2–7 % for simulations using emission files with reduced precision data on a non-dedicated 

environment. Finally, the model estimated pollutant concentrations from the four simulations were compared to observed data 

from the U.S. EPA Air Quality System (AQS) and the Ammonia Monitoring Network (AMON). Model performance statistics 

were negligibly impacted (e.g., normalized mean bias differed by less than 0.01 % for all altered-precision emission simulations 40 

and cases). In summary, by reducing the precision of CMAQ emissions data to five, four, or three significant digits, the 

simulation runtime on a non-dedicated environment was slightly reduced, disk space usage was substantially reduced, and 

model accuracy remained relatively unchanged compared to the base CMAQ simulation, which suggests that the precision of 

the emissions data could be reduced to more efficiently use computing resources while minimizing the impact on CMAQ 

simulations. 45 

1. Introduction 

The Community Multiscale Air Quality (CMAQ) model (Byun and Schere, 2006) is a sophisticated three-dimensional Eulerian 

(gridded) numerical modelling system that uses scientific first principles to simulate the chemical transformation and transport 

of ozone, particulate matter, toxic compounds, and acid deposition. Since the formation and transformation of chemical species 

are functions of complex atmospheric and chemical interactions, two primary input types are required to initialize CMAQ 50 

simulations: meteorology and emissions. First, meteorological data (such as temperature, wind, cloud formation, and 

precipitation rate) provide atmospheric conditions to drive CMAQ. The second required input field, which is the focal point 

of this study, is emissions data (i.e., emission rates from emission sources) that characterize pollutants from both man-made 

and naturally occurring sources.   

The chemical transport model within CMAQ typically requires multiple emission datasets which occupy a significant amount 55 

of disk space. Although disk space is becoming progressively cheaper and more affordable, the research and computational 

needs are rapidly increasing and becoming more complex. For instance, the total sizes of emission and meteorological datasets 

are about 7.0 GB and 6.8 GB, respectively for a one-day CMAQ simulation for the contiguous U.S. with a horizontal resolution 

of 12 km. The total disk space size for one day of output is 20 GB (for a typical output configuration considering only surface 

output and neglecting extra diagnostic output). Including 3D fields and diagnostic output, however, the total output disk space 60 

size can easily be tripled. Most studies with CMAQ on this scale create at least a full year’s worth of data, so aggressive disk 
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space management approaches could be justified to minimize overall costs associated with running CMAQ. Aggressive disk 

space management could be a substantial cost-savings measure, regardless of whether simulations are conducted onsite (such 

as with a high-performance computing architecture or a Linux cluster) or by using cloud computing, where data retrievals can 

quickly elevate costs. Here, we propose optimizing disk space by compressing CMAQ emission datasets as one practical 65 

consideration to maximize storage capacity. If successful, this option could be extended to other input types with large disk 

space needs, such as meteorological data. 

Compression algorithms can be described as either lossless or lossy. Lossless compression algorithms reduce disk space by 

replacing repeated sequences with a smaller, unique identifier. Thus, an entire dataset can be retrieved, once uncompressed, 

without alteration of the original dataset (hence the name, lossless). Lossy algorithms, however, in terms of numeric arrays, 70 

reduce disk space by manipulating the mantissa of individual floating point-numbers. Typically, trailing, or insignificant bits, 

are replaced with a sequence of zeros or ones. As a result, data is compressed at the cost of numeric inconsistencies between 

the original dataset and the compressed dataset. 

The concept of maximizing disk space by altering netCDF datasets has been examined previously by Zender (2016) and 

Kouznetsov (2020). Zender (2016) created a versatile toolset that compresses data based on user specifications that are applied 75 

to the mantissa of floating-point datasets. The first notable algorithm developed by Zender (2016) is precision-trimming, which 

is publicly available in the netCDF operators (NCO, http://nco.sourceforge.net/nco.html) utility. Precision-trimming sets all 

non-significant bits to zero (bit shaving) which, based on analysis, produces an undesirable bias of the compressed data (Zender 

2016). As a result, Zender (2016) introduced a Bit Grooming algorithm (default algorithm in NCO) that shaves (to zero) and 

sets (to one) the least significant bits of consecutive values. Despite the additional toolset, Kouznetsov (2021) found substantial 80 

artifacts, or numeric inconsistencies, in multipoint statistics caused by Bit Grooming. Due to the suboptimal results, 

Kouznetsov (2021) developed and evaluated multiple lossy compression algorithms with respect to NCO’s available toolsets 

from Zender (2016). Kouznetsov (2021) created a round and halfshave lossy compression algorithm which both doubled 

compression accuracy by rounding the mantissa to the nearest value that has 0 tail bits and by setting all tail bits to zero except 

for the most significant bit which gets set to one (Kouznetsov, 2021).   85 

Excluding analyses conducted on datasets via lossy compression algorithms, the authors are unaware of any studies that have 

been conducted on the compression efficiency on floating-point datasets with respect to n significant digits. Additionally, 

Zender (2016) and Kouznetsov (2021) did not conduct evaluations regarding the impact of altered-precision datasets on 

numeric simulations. In this study, netCDF datasets will be reduced-precision and compressed to explore compression 

efficiency, and the resultant reduced-precision datasets will be used to run CMAQ simulations to quantify the impacts on 90 

runtime and on model accuracy as a result of dataset manipulation via a lossy compression algorithm. This study proceeds as 

follows: in Sect. 2, a description of the methodology will be provided, followed by results in Sect. 3, then the conclusions in 

Sect. 4. 
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2. Methodology 

All input and output files in this study are 32-bit, binary, netCDF files which inherently contain seven or eight significant digits 95 

at most. To perform this study, we created a simple tool written in Fortran to truncate floating-point data in netCDF files by 

keeping n significant digits which are normalized in scientific notation. Table 1 shows several examples of this numerical 

manipulation. We applied this tool to alter the precision of two different datasets (input emission and CMAQ model output) 

by keeping n significant digits.  

For this study, CMAQ v5.3.1 (USEPA 2019, Appel et. al. 2021) was run with 459 columns, 299 rows, and 35 vertical layers 100 

with a horizontal grid-scale resolution of 12 km (Fig. 1.a). Emission input files consist of two area sources and nine point 

sources (hourly). The area source emission files contain 57 and 62 variables and the point source files contain anywhere from 

54 to 58 variables (containing one vertical layer). Ten, CMAQ output files, nine of them are hourly, were generated in this 

study: Three output files were generated for simulation restart purposes (SOILOUT, CGRID which contains only one hour 

data, and MEDIA), two files contained average (APMDIAG and ACONC) and hourly (CONC) species concentrations, three 105 

files held wet deposition (WETDEP1; 140 variables), dry deposition (DRYDEP; 174 variables), and deposition velocity 

(DEPV; 104 variables) output, and lastly, the final file contained biogenic emission diagnostic output (B3GTS)..  

In total, we conducted four annual CMAQ simulations for 2016: one with unaltered emission data (simulation orig) and three 

with altered-precision emissions data by setting n to five (A05), four (A04), and three (A03) for all emission input files 

(gridded_no_rwc, gridded_rwc, ptnonipm, ptegu, ptagfire, ptfire, ptfire_othna, pt_oilgas, cmv_c3_12, cmv_c1c2_12, and 110 

othpt) utilized by CMAQ for this study. On the output side, direct CMAQ output (ACONC, APMDIAG, DRYDEP, and 

WETDEP1) from the A05, A04, and A03 (in which A0n signifies an altered simulation which utilized altered-precision 

emissions data to n significant digits) simulations was similarly altered to possess five, four, or three significant digits (denoted 

as FX05, FX04, and FX03, respectively in which FX0n signifies an altered-precision case which was post-processed by an A0n 

simulation’s CMAQ output). Emission input and CMAQ output data were then compressed separately by gzip (GNU Gzip, 115 

https://www.gnu.org/software/gzip) and bzip2 (https://www.sourceware.org/bzip2) for all simulations and cases to determine 

compression efficiency in terms of the reduction of disk space. In summary, there are four separate simulations (called orig or 

abbreviated as A0n) and nine additional, altered-precision output cases (abbreviated as FX0n). For example, a CMAQ 

simulation that was run with emissions data that was processed with n equals five significant digits, then post-processed to 

possess three significant digits, is denoted as A05FX03 (see Table 2 for a full list of simulations and cases).  120 

Simulated numeric, or predictive, accuracy was analyzed against concentrations of particulate matter with diameter less than 

2.5 μm (PM2.5), ozone (O3), ammonia (NH3), the wet deposition rates of sodium (Na), ammonium (NH4), chlorine (Cl), nitrate 

(NO3), sulfate (SO4), and the dry deposition rate of O3 for all simulations and cases. PM2.5 and O3 were evaluated at in situ 

stations from the United States Environmental Protection Agency’s (U.S. EPA) Air Quality System (AQS; Fig. 1.b) dataset. 

NH3 was evaluated at in situ stations utilizing observations from the Ammonia Monitoring Network (AMON; Fig. 1.c). Hourly 125 

observations of O3 were processed to calculate the maximum 8-hour daily average concentrations (MDA8) and paired in space 
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and time with calculated MDA8 O3 from post-processed CMAQ output. Likewise, daily averaged PM2.5 observations and 

two-week averaged NH3 observations were used to evaluate CMAQ . Observed values are paired with the volume-average 

pollutant estimate from CMAQ’s surface layer’s grid cell containing the air quality monitoring site (i.e., nearest neighbor). 

Statistical metrics were also calculated by pairing gridded values from the orig simulation (considered observed values) and 130 

the altered-precision simulations and cases (considered the predicted values). Tabulated statistical metrics for grid–grid pairing 

was computed by taking the mean of hourly, statistical metrics. 

Typical statistical metrics including mean bias (MB), correlation coefficient (r), root-mean-square-error (RMSE) and 

normalized mean bias (NMB) are used to evaluate all chemical species in this analysis at different temporal intervals and for 

different pairing methodologies (either grid-point or grid-grid) which includes regional stratification (based on regions from 135 

Fig. 1.a) for several figures. The utilized statistical metrics are denoted below in Eq. (1) through Eq. (4). 

MB = 1
𝑁𝑁
∙ ∑ (𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖)𝑁𝑁
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r = 1
𝑁𝑁−1
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∙ 100 % ,          (4)  140 

Where N is the total number of observed and predicted pairs, X is the observed value, Y is predicted value, σ is the sample 

standard deviation of a distribution, and the overbars in Eq. (2) refers to the sample mean of a distribution.Although many 

compression toolsets exist and optimization is dependent on multiple factors (Kryukov et al., 2020), gzip and bzip2 are the 

most public, reliable, and widely used compressors. Both utilities are lossless compression algorithms which are available for 

Linux users. In terms of functionality, gzip uses a compression algorithm called, Deflate (Deutsch, 1996) which reduces 145 

sequences of datasets by incorporating a combination of LZ77 dictionary coding (Ziv and Lempel, 1977) and Huffman entropy 

coding (Huffman, 1952). In comparison, bzip2 uses the Burrows-Wheeler (Burrows and Wheeler, 1994) algorithm which sorts 

all possible rotations of an input lexically and forms an output by concatenating the last character from the sorted list. In terms 

of compression ratio, bzip2 is notably better than gzip, however, with respect to compression speed, gzip is significantly faster 

than bzip2. Due to their availability and efficiency, both gzip and bzip2 are utilized in this study (default settings). 150 
Table 1: Examples of precision-reducing transformations of floating points from their original forms (first column) to their altered-
precision forms (second to fourth column). 

Original (orig) Altered 5 (A05) Altered 4 (A04) Altered 3 (A03) 

0.005666635 0.0056666 0.005667 0.00567 

3.437405 × 10−6 3.4374 × 10−6 3.437 × 10−6 3.44 × 10−6 
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0.0005319762 0.00053198 0.000532 0.000532 

3.437 × 10−6 

100150.0 

3.437 × 10−6 

100150.0 

3.437 × 10−6 

100200.0 

3.44 × 10−6 

100000.0 

 

Table 2: Setup of all simulations (orig, A05, A04, and A03) and cases analyzed in this study.  

Unaltered Emissions Data Altered-Precision Emissions Data 

a) Simulation: orig b) Simulation: A05 c) Simulation: A04 d) Simulation: A03 

 

Altered-precision CMAQ Output 

e) Case: A05FX05 h) Case: A04FX05 k) Case: A03FX05 

f) Case: A05FX04 i) Case: A04FX04 l) Case: A03FX04 

g) Case: A05FX03 j) Case: A04FX03 m) Case: A03FX03 

 155 
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Figure 1: Regions for spatial and temporal stratification (a), AQS stations (b), and AMON stations (c) for the proceeding evaluation.  

3. Results 

3.1. Data Storage 160 

CMAQ input and output data are stored for future analyses and to ensure the reproducibility of modeling studies which 

demands a tremendous amount of disk space for input and output files. Therefore, we propose to ease the disk space burden 

by utilizing efficient compression algorithms. For this section of the analysis, two popular, reliable, and efficient compression 

utilities, gzip and bzip2, were utilized to determine compression efficiency with respect to emission input (emissions mentioned 

in section 2.) files and CMAQ output (mentioned in section 2. including CGRID, CONC, and SOILOUT) files. Both 165 

compression utilities were applied daily to compress emission input and CMAQ output files throughout the entirety of the 

2016 simulation (Fig. 2). 
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The gzip compression utility reduced the file sizes, on average by 1 %, 5 %, and 21 %. This translates into about 5 GB, 26 GB, 

and 111 GB, actual difference between compressed orig case and the compressed A05, A04, and A03 emissions datasets for 

the entire year of 2016, respectively. The reduction in file size (using gzip) was more substantial when applied to reduced-170 

precision CMAQ output, with an average reduction in file size of 4 %, 19 %, and 67 %. This means  about 167 GB, 839 GB, 

and 2016 GB actual difference between orig case and  FX05, FX04, and FX03, respectively for the entire year. With the bzip2 

utility, the reduction in magnitude is much larger than with gzip, with an average reduction of file size equal to 6 %, 25 %, and 

48 % (actual differences are about 27 GB, 126 GB, and 241 GB, respectively for A05, A04, and A03 emissions files and 19 %, 

47 %, and 69 % (atual differences are about 856 GB, 2142 GB, and 3115 GB, respectively, for the compressed CMAQ output. 175 

Thus, bzip2 is found to be a more effective tool than gzip by roughly 5 %, 20 %, and 27 % for emission data and 15 %, 28 % 

and 23 % for CMAQ output, for  reduced-precision by keeping 5, 4, and 3 significant digits (reduced-precision emission and 

reduced-precision output data), respectively. 
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Figure 2: Relative compression size of two utilities, gzip (solid line) and bzip2 (dotted line), on daily emission files (labelled as Emiss.) 180 
and direct CMAQ output (labelled as CMAQ) for 2016 with ndigit (via the FX program) set to 5, 4, and 3 (labelled as Altered 05, 
Altered 04, and Altered 03, respectively). Negative values indicate better compression efficiency. 

3.2. Runtime 

We examined daily runtime for CMAQ using emissions data prepared with truncations of A05, A04, and A03 compared with 

running CMAQ with unaltered (orig) emissions data (Fig. 3). Even though the simulations were not performed in a dedicated 185 

environment (results are not entirely consistent due to the allocation of resources when the simulations were initialized), the 

daily runtimes for A05, A04, and A03 were lower than the runtime of the orig simulation in most of the days. The total runtimes 

for the A05, A04, and A03 simulations were 3.13, 2.94, and 12.84 hours faster than the orig case (2 %, 2 %, and 7 %, 
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respectively of relative reduction of runtime). There are two possible explanations for such behavior: First, during the execution 

of each case, CMAQ competed for I/O resources with other tasks on the system. As a result, an I/O bottleneck could explain 190 

spikes in relative run-time on certain simulation days (Fig. 3). Second, a change in emission input (due to the reduced-precision 

emission data) could alter the pathway for the aerosol dynamics calculation. This change in emission input can also reduce the 

number of iterations in the chemistry solver. 

 
Figure 3: Relative daily run time with respect to different adjusted emission input for the A03, A04, and A05 simulations for 2016. 195 



11 
 

3.3. Accuracy 

The accuracy of each case is first examined grid-to-point between modeled output and in situ observations (Fig. 1; AQS and 

AMON) for all available model-measurement pairs throughout 2016. Resultantly, each case performed with negligible 

differences when compared against the orig case in terms of statistical parameters provided for daily PM2.5, MDA8 O3, and 

two-week averaged NH3 (Tables 3–5). For example, the bulk statistic range of NMB for daily PM2.5, MDA8 O3, and two-week 200 

average NH3 amongst all cases is 1.845 × 10−3 %, 1.088 × 10−4 %, and 7.873 × 10−4 %. Therefore, at most, simulations 

deviated from one another by 1.845 × 10−3 % (for PM2.5) utilizing bulk statistical metrics of NMB. Similarly, the range for 

all statistical metrics (Table 3–5) are quite small. 

Bulk statistical results (Tables 3–5) are encouraging; differences are small ignoring regional or temporal stratification. To 

determine if statistical results fluctuate spatially (by region) and or temporally (by season), RMSE was computed for 9 different 205 

sub-regions (regions are portrayed in Fig. 1) across the United States for four seasons (Winter, Spring, Summer, and Fall) from 

the mentioned observation and model pairs. Each region’s RMSE was stacked together, by simulation and case, and plotted as 

‘accumulated RMSE’ by species. Likewise, results have negligible differences for daily PM2.5, MDA8 O3, and two-week 

average, respectively (Fig. 4) for all regional and temporal stratifications and for all simulations and cases.  

Results indicate that all simulations and cases have negligible differences in terms of bulk statistical metrics across the U.S. 210 

and considering regional and temporal stratifications. To identify small scale, temporal discrepancies, absolute bias (|Yi − Xi|) 

was calculated for all daily PM2.5, MDA8 O3, and two-week averaged observation and model pairs for all simulations and 

cases. Similarly, results suggest little impact in terms of range of maximum and minimum absolute bias. In fact, the ranges of 

maximum absolute bias for daily PM2.5, MDA8 O3, and two-week averaged NH3, computed from the biases of each simulation 

and case, are 0.16 μg m−3, 0.13 ppb, and 0.001 μg m−3 respectively (Table 6).  215 

Statistical results conducted on in situ observations were redone (methodologically) at the grid level for hourly PM2.5, O3, and 

NH3, using the orig simulation (as the observed field) with respect to the altered-precision simulations and cases (predicted 

fields). RMSE was first calculated for all hourly grid–grid pairs for PM2.5, O3, and NH3. Only cells that are within each region 

(Fig. 1.a), within the contiguous US, were used to calculate hourly RMSE for all available regional pairs. Next, the average, 

hourly RMSE was calculated for each season and region based on spatial and temporal masking using the regions portrayed 220 

in Fig. 1.a. All stratifications were grouped together as accumulative, stacked bar plots for different seasons by simulation or 

case. Although differences are evident (Fig. 5), the scale of such differences is quite small. For example, the total accumulative 

RMSE for PM2.5, O3, and NH3 (sum of all region’s RMSE) did not exceed 0.04 μg m−3, 0.3 ppbV, and 0.05 ppbV, respectively 

for all cases and for all seasons. 

Additionally, the maximum absolute bias for all grid cells was determined spatially between the orig simulation and the altered 225 

simulations and cases throughout 2016 for PM2.5, O3, and NH3 from gridded, hourly (CMAQ) output. For PM2.5, all simulations 

and cases performed similarly in which no visual differences are apparent (Fig. 6). For O3 (Fig. 7) and NH3 (Fig. 8), however, 
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the differences become relatively large for cases n = 3. In fact, for both species, spatial and magnitude error visibly increases 

with fewer significant digits (simulations and cases). For example, maximum absolute bias is largest for the A03 simulations 

and even worse for the FX03 altered-precision cases ignoring the artifact of error across the Northeast U.S. for O3 for the A05 230 

simulations and cases (induced by the A05 simulation). The maximum absolute bias ranges, found by taking the range of all 

altered-precision cases, for PM2.5, O3, and NH3 are 46.77 μg m−3, 0.4265 ppbV, and 18.78 ppbV, respectively (Table 7). The 

minimum absolute bias ranges for PM2.5, O3, and NH3 are 5.573 μg m−3, 0.5091 ppbV, 9.778 ppbV (Table 7), respectively. 

Based on range, error can potentially be quite large compared to the statistics provided in Fig. 5, however, large-scale error is 

not persistent based on the small accumulated RMSE for all regions grouped by CMAQ simulation and case (Fig. 5). Total 235 

accumulated values did not exceed 0.04 μg m−3 ,0.3 ppbV, and 0.05 ppbV for PM2.5, O3, and NH3 respectively) and by 

predominately low magnitude, maximum absolute bias in Fig. 6–8. Therefore, significant error is associated with brief spikes 

of certain species within and around source regions. 

The final aspect of this evaluation explores aspects of important species using boxplots (minimum, 25th percentile, median, 

75th percentile, and maximum) of hourly, spatially averaged r, BIAS, NMB, and RMSE for all grid-to-grid pairs for deposition 240 

rates with respect to the orig case. Boxplots were created for the wet deposition rates of sodium (Na), ammonium (NH4), 

chlorine (Cl), nitrate (NO3), sulfate (SO4), and the dry deposition rate of O3 for all altered-precision simulations and cases. For 

all deposition rates, the altered-precision ndigit 3 cases (FX0503, FX0403, and FX0303) performed worst, relatively speaking, 

with respect to the original simulation despite negligible RMSE error differences. The altered-precision ndigit 4 cases 

(FX0504, FX0404, and FX0304) performed nearly identically to the ndigit 5 cases for all deposition rates excluding the wet-245 

deposition rate of sodium and the dry deposition rate of ozone (a relatively small increase in error). The altered-precision 5 

cases (FX0505, FX0405, and FX0305) and the altered simulations (A05, A04, and A03) performed nearly identically to the 

original simulation for all deposition rates. Interestingly, amongst the altered-precision simulations (A05, A04, and A03), A05 

performed worst (very negligible error) with respect to the original simulation for all deposition rates, excluding the wet 

deposition rate of chlorine, when considering NMB, MB, and r. Overall, all species, simulations, and cases performed similarly 250 

with respect to the orig case, and hence, amongst each other (Fig. 9). 

Table 3: Annual bulk statistical metrics for all grid-point pairs for daily averaged PM2.5 (𝛍𝛍𝛍𝛍 𝐦𝐦−𝟑𝟑) binned by simulation or case 
(row). 

Case Bias NMB (%) r RMSE 
orig -0.02828948 -0.37369379 0.53041275 5.01579136 

A05FX05 -0.02826335 -0.37334858 0.53041176 5.01580798 
A05FX04 -0.02825803 -0.37327833 0.53041128 5.01581581 
A05FX03 -0.02815542 -0.37192291 0.53041549 5.01582310 

A05 -0.02826358 -0.37335166 0.53041173 5.01580801 
A04FX05 -0.02828796 -0.37367363 0.53041358 5.01578126 
A04FX04 -0.02828248 -0.37360124 0.53041339 5.01578634 
A04FX03 -0.02817979 -0.37224478 0.53041693 5.01580237 
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A04 -0.02828831 -0.37367825 0.53041352 5.01578145 
A03FX05 -0.02829498 -0.37376643 0.53041301 5.01577697 
A03FX04 -0.02828955 -0.37369463 0.53041289 5.01578215 
A03FX03 -0.02818791 -0.37235202 0.53041394 5.01582105 

A03 -0.02829509 -0.37376787 0.53041302 5.01577689 
Range 1.397 × 10−4 1.845 × 10−3 5.650  × 10−6 4.621  × 10−5 

 

Table 4: Annual bulk statistical metrics for all grid-point pairs for MAD8 O3 (ppb) binned by simulation or case (row). 255 

Case Bias NMB (%) r RMSE 
orig -1.70888518 -4.07590175 0.76393761 7.93497772 

A05FX05 -1.70888101 -4.07589180 0.76393721 7.93498192 
A05FX04 -1.70888319 -4.07589700 0.76393702 7.93498491 
A05FX03 -1.70884936 -4.07581631 0.76393705 7.93497690 

A05 -1.70888073 -4.07589112 0.76393725 7.93498117 
A04FX05 -1.70888893 -4.07591070 0.76393754 7.93497943 
A04FX04 -1.70889025 -4.07591383 0.76393745 7.93498084 
A04FX03 -1.70885773 -4.07583627 0.76393726 7.93497642 

A04 -1.70888837 -4.07590935 0.76393758 7.93497873 
A03FX05 -1.70889237 -4.07591889 0.76393656 7.93499351 
A03FX04 -1.70889496 -4.07592507 0.76393625 7.93499862 
A03FX03 -1.70886892 -4.07586296 0.76393549 7.93500341 

A03 -1.70889202 -4.07591806 0.76393658 7.93499319 

Range 4.560 × 10−5 1.088 × 10−4 2.120 × 10−6 2.699 × 10−5 
 

Table 5: Annual bulk statistical metrics for all grid-point pairs for two-week averaged NH3 (𝛍𝛍𝛍𝛍 𝐦𝐦−𝟑𝟑) binned by simulation or case 
(row). 

Case Bias NMB (%) r RMSE 
orig -0.42796669 -35.05920328 0.51400293 1.28576807 

A05FX05 -0.42796733 -35.05925543 0.51400262 1.28576885 
A05FX04 -0.42796814 -35.0593213 0.51400369 1.28576660 
A05FX03 -0.42795978 -35.05863723 0.51399115 1.28580217 

A05 -0.42796762 -35.05927875 0.51400259 1.28576893 
A04FX05 -0.42796643 -35.0591816 0.51400300 1.28576777 
A04FX04 -0.42796650 -35.05918764 0.51400269 1.28577030 
A04FX03 -0.42796002 -35.05865625 0.51399133 1.28579903 

A04 -0.42796635 -35.05917526 0.51400305 1.28576768 
A03FX05 -0.42796899 -35.0593916 0.51399920 1.28577519 
A03FX04 -0.42796939 -35.05942449 0.51400001 1.28577173 
A03FX03 -0.42796703 -35.05923092 0.51398972 1.28579406 
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A03 -0.42796888 -35.05938233 0.51399862 1.28577635 
Range 9.610 × 10−6 7.873 × 10−4 1.397 × 10−5 3.557 × 10−5 

 

 260 

Figure 4: Stacked bar plots of RMSE (y-axis) stratified by region (color), simulation and case (x-axis), and season (subplot) for daily 
PM2.5, MDA8 O3, and two-week averaged NH3 calculated from in situ observation.  

Table 6: Maximum and minimum biases (modeled – observation) for all simulations and cases (row) by variable (column) 
throughout 2016 utilizing in situ observations. 

Case 
PM2.5 (𝛍𝛍𝛍𝛍 𝐦𝐦−𝟑𝟑) Ozone (ppb) Ammonia (𝛍𝛍𝛍𝛍 𝐦𝐦−𝟑𝟑) 

Max. Min. Max. Min. Max. Min. 
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orig 511.6467 -161.4475 139.835 -80.685 11.3 -7.64904 
A05FX05 511.6467 -161.4475 139.835 -80.685 11.3 -7.64904 
A05FX04 511.6567 -161.4475 139.825 -80.68 11.3 -7.64903 
A05FX03 511.5867 -161.4457 139.745 -80.682 11.301 -7.64906 

A05 511.6467 -161.4475 139.835 -80.685 11.3 -7.64904 
A04FX05 511.6367 -161.4475 139.845 -80.685 11.3 -7.64904 
A04FX04 511.6367 -161.4475 139.855 -80.685 11.301 -7.64904 
A04FX03 511.5867 -161.4457 139.745 -80.682 11.301 -7.64905 

A04 511.6367 -161.4475 139.845 -80.685 11.3 -7.64904 
A03FX05 511.7467 -161.4474 139.845 -80.684 11.3 -7.64908 
A03FX04 511.7467 -161.4474 139.855 -80.683 11.3 -7.64908 
A03FX03 511.7367 -161.4455 139.875 -80.682 11.3 -7.64912 

A03 511.7467 -161.4474 139.845 -80.684 11.3 -7.64908 
Range 0.16 0.002 0.13 0.005 0.001 9.00 × 10−5 
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Figure 5: Stacked bar plots of RMSE (y-axis) stratified by region (color), simulation and case (x-axis), and season (subplot) for 
hourly PM2.5, O3, and NH3 calculated from grid–grid pairs with respect to the orig simulation. 
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Figure 6: Maximum absolute bias (versus the orig simulation) for PM2.5 calculated from hourly output for all simulations and cases. 270 

 
Figure 7: Maximum absolute bias (versus the orig simulation) for O3 calculated from hourly output for all simulations and cases. 
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Figure 8: Maximum absolute bias (versus the orig simulation) for NH3 calculated from hourly output for all simulations and cases. 

Table 7: Maximum and Minimum biases (orig – altered) calculated from hourly CMAQ output for all simulations and cases with 275 
respect to the orig simulation across all grid cells 

 

Case 
PM2.5 ( 𝛍𝛍𝛍𝛍 𝐦𝐦−𝟑𝟑) Ozone (ppbV) Ammonia (ppbV) 

Max. Min. Max. Min. Max. Min. 
A05FX05 4.40819836 -4.69252777 0.260878 -0.08337 0.893507 -0.61453 
A05FX04 4.40777397 -4.69240379 0.263882 -0.08437 0.893806 -4.01074 
A05FX03 51.17382812 -9.62011719 0.499962 -0.50085 19.64355 -4.86621 

A05 4.40821075 -4.69258881 0.260483 -0.08343 0.893517 -0.61455 
A04FX05 4.99303246 -4.70221233 0.136284 -0.16548 0.875244 -1.14815 
A04FX04 4.99263382 -4.70223236 0.136154 -0.16448 1.275146 -4.01074 
A04FX03 51.1640625 -9.51953125 0.503494 -0.50282 19.64355 -5.02832 

A04 4.99302673 -4.70224953 0.13604 -0.16512 0.867432 -1.14854 
A03FX05 11.09228516 -6.66992188 0.223785 -0.22272 4.146118 -7.44141 
A03FX04 11.54589844 -10.265625 0.225784 -0.22272 4.446045 -7.0415 
A03FX03 41.18359375 -9.46972656 0.562561 -0.59249 19.64355 -10.3923 

A03 11.17675781 -7.01953125 0.224041 -0.22235 4.187866 -7.47461 
Range 46.76605415 5.57322121 0.426521 0.509121 18.77612 9.777804 
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Figure 9: Boxplots of hourly and spatially averaged statistics (column) for multiple deposition species (row) throughout 2016. 
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4. Conclusion 280 

We have demonstrated that altering data by keeping a specified number of significant digits in terms of emission input and/or 

simulated output, increased compression efficiency based on two different, popular compression utilities (gzip and bzip2). For 

emission data, bzip2 performed far better than gzip and provided compression reduction, on average, by 6 %, 25 %, and 48 % 

for emission data, and 19 %, 47 %, and 69 % for output data for the A05, A04, and A03 cases respectively, compared to the 

orig case. In terms of daily simulation runtime for the entire simulation year, the A05, A04 and A03 simulations were faster 285 

than the orig simulation in an undedicated HPC system for most simulation days.  

As for accuracy, results for all studied simulations, either with altered-precision emission only, or with altered-precision 

emission plus altered-precision output, produced numerically insignificant differences. For example, the bulk statistic ranges 

of NMB for daily PM2.5, MDA8 O3, and two-week averaged NH3, compared to all cases and simulations at in situ locations, 

are 1.845 × 10−3 %, 1.088 × 10−4 %, and 7.873 × 10−4 %. Similarly, small range in values is replicated for all other bulk 290 

statistical metrics such as MB, r, and RMSE. Results stratified by region and season are similar to those for bulk statistics. 

Based on the in situ evaluation, simulation performance is very similar amongst all cases, with visible differences for the A03 

simulation and the FX03 cases in which error is spatially detected in Fig. 6-8.  

Statistical inconsistencies arise when comparing grid–grid values of hourly PM2.5, O3, and NH3 versus the orig simulation. 

Results indicate that similarities amongst the orig simulation decreases with fewer significant digit simulations and cases when 295 

analyzing the stacked and stratified (region and season) RMSE bar plot (Fig. 5). More specifically, performance with respect 

to the orig simulation is worse for the A03 simulation and as well, for the FX03 cases. Such discrepancies do not occur 

consistently based on results provided by boxplots of statistical metrics of deposition rates (Fig. 9). Instead, errors appear to 

be confined to source regions at specific instances based on the maximum absolute (hourly) error spatial plots with respect to 

the orig simulation (Fig. 6-8). 300 

In summary, altering datasets by truncation to retain fewer significant digits significantly improved data compression and 

slightly improved runtime. Based on the thorough, yet spatially limited, in situ evaluation, this study has shown this proposed 

technique did not compromise model accuracy based on an evaluation of simulations and cases at in situ locations compared 

to current air quality thresholds for daily PM2.5, MDA8 O3, and two-week averaged NH3. These results show the benefit of 

altering data by keeping five significant digits but strongly suggest keeping four significant digits and keeping three significant 305 

digits can be considered. In addition, this proposed technique could be beneficial for groups that perform complex air quality 

modeling and want to improve disk space management while negligibly impacting the accuracy of the simulations. Based on 

the success of this study, we propose testing these techniques on the rest of CMAQ input files such as initial conditions, 

boundary conditions and meteorological data to determine the viability of these techniques to more adeptly manage disk space 

without compromising the quality of the CMAQ simulations used for research and to develop air quality management 310 

strategies. 
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Code and data availability 

The source code of the tool to alter data by keeping a specific number of significant digits and a run script which includes 

usage instructions for this tool, is available from DOI: 10.5281/zenodo.6620983. CMAQ 5.3.1 is available at 315 

https://www.epa.gov/cmaq/access-cmaq-source-code. Original, unaltered CMAQ input data for this study is available at 

https://dataverse.unc.edu/dataset.xhtml?persistentId=doi:10.15139/S3/MHNUNE. Original, unaltered CMAQ input data for 

this study from 1/1 – 1/5/2016 is available at DOI: 10.5281/zenodo.6624164. 
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