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Abstract:  We developed a new demographic vegetation model, BiomeE, to improve the 23 

representation of vegetation demographic dynamics and ecosystem biogeochemical cycles in the 24 

NASA Goddard Institute of Space Studies’ ModelE Earth system model. This model includes the 25 

processes of plant growth, mortality, reproduction, vegetation structural dynamics, and soil 26 

carbon and nitrogen storage and transformations. The model combines the plant physiological 27 

processes of ModelE’s original vegetation model, Ent, with minor adaptations to fit the new 28 

allometry and vegetation structure with the plant demographic and ecosystem nitrogen processes 29 

represented in the Geophysical Fluid Dynamics Laboratory’s LM3-PPA. For global applications, 30 

we added a new set of plant functional types to represent global vegetation functional diversity, 31 

including trees, shrubs, and grasses, and a new phenology model to deal with seasonal changes in 32 

temperature and soil water availability. Competition for light and soil resources is individual-33 

based, which makes the modeling of transient compositional changes and vegetation succession 34 

possible. BiomeE will allow ModelE to simulate long-term biogeophysical and biogeochemical 35 

feedbacks between the climate system and land ecosystems. BiomeE simulates, with fidelity 36 

comparable to other models, the dynamics of vegetation and soil biogeochemistry, including leaf 37 

area index, vegetation structure (e.g., height, tree density, size distribution, crown organization), 38 

and ecosystem carbon and nitrogen storage and fluxes. Further, BiomeE also allows for the 39 

simulations of transient vegetation dynamics and eco-evolutionary optimal community 40 

assemblage in response to past and future climate changes by incorporating core ecological 41 

processes, including demography, competition, and community assembly.  42 

Key words: Biogeochemical cycles, Eco-evolutionary optimality, Ecosystem modeling, Plant 43 

traits, Vegetation dynamics 44 
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1 Introduction 47 

Terrestrial ecosystems play a critical role in climate systems by regulating exchanges of energy, 48 

moisture, and carbon dioxide between the land surface and the atmosphere (Sellers, 1997; Pielke 49 

et al., 1998; Meir et al., 2006). In turn, climate change has significantly affected vegetation 50 

photosynthesis, water use efficiency, mortality, regeneration, and structure through gradual 51 

changes in temperature and atmospheric CO2 concentration ([CO2]) together with shifts in 52 

climate extremes (Keenan et al., 2013; Huang et al., 2015; Brando et al., 2019; McDowell et al., 53 

2020). These responses have triggered structural and compositional shifts in global vegetation. 54 

For example, global forest mortality has increased in recent years  (Allen et al., 2010; Anderegg 55 

et al., 2012), tree sizes have decreased (Zhou et al., 2014; McDowell et al., 2020), and species 56 

composition has shifted to more opportunistic species (Clark et al., 2016; Brodribb et al., 2020). 57 

The shifts in vegetation function, composition, and structure can change the boundary conditions 58 

of the land surface and affect the climate system (Nobre et al., 1991; Avissar and Werth, 2005; 59 

Garcia et al., 2016; Green et al., 2017; Zeng et al., 2017). Realistic simulation of these processes 60 

is therefore critical for Earth system models (ESMs).  61 

The vegetation dynamics in ESMs are usually simulated using dynamic global vegetation 62 

models (DGVMs) (Prentice et al., 2007), most of which are simplified in their representation of 63 

ecological processes. The core assumptions of many vegetation models are a big-leaf canopy, 64 

vegetation represented by only a few plant functional types (PFTs), single cohort-based 65 

vegetation dynamics (“single-cohort” assumption, where the vegetation community at a land unit 66 

are simulated as a collection of identical plants), lumped-pool-based biogeochemical cycles and 67 

first order decay of soil organic matter. The competition of plant individuals and vegetation types 68 

is approximately simulated as a function of productivity or Lotka-Volterra equations to predict 69 
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fractional PFT coverage (e.g., SDVGM, HYBRID, TRIFFID) (Friend et al., 1997; Woodward et 72 

al., 1998; Sitch et al., 2003). These simplifying assumptions make it possible to simulate the 73 

complex interactions of biological and ecological processes at the global scale.   74 

These models are generally successful in reproducing land surface carbon, energy, and 75 

water fluxes after extensive tuning against data from sites, observational networks, and satellite 76 

remote sensing. However, the uncertainty of model predictions is high, and predictions can 77 

diverge substantially across different models (Friedlingstein et al., 2014; Arora et al., 2020). 78 

Lack of functional diversity and community assembly processes is one of the key issues in the 79 

vegetation modeling of ESMs, which makes the models unable to predict transient dynamics of 80 

vegetation composition and structure. A more mechanistic design that uses the fundamental 81 

principles of ecology to simulate the emergent properties of ecosystems for predicting ecosystem 82 

dynamics may therefore be necessary (Scheiter et al., 2013; Weng et al., 2017).  83 

To this end, extensive efforts have been made to improve the representation of transient 84 

vegetation dynamics based on ecological theories and conceptual models. Two pivotal advances 85 

have been made in ecological vegetation modeling: 1) Demographic processes and trait-based 86 

representation of processes have been developed to improve the representation of functional 87 

diversity and size (Pavlick et al., 2013; Fisher et al., 2015; Weng et al., 2015; Argles et al., 2020) 88 

and 2) eco-evolutionary optimal and game theoretical approaches have been proposed to predict 89 

the flexibility of parameters and processes (McNickle et al., 2016; Weng et al., 2017). These 90 

concepts are mainly applied in modeling photosynthesis (Prentice et al., 2014; Wang et al., 91 

2017), allocation (Farrior et al., 2013; Dybzinski et al., 2015), and evolutionarily stable strategy 92 

of plant traits (Falster et al., 2017; Weng et al., 2017). These ideas for incorporating ecological 93 
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and evolutionary principles into ESMs have been summarized in several recent review papers 94 

(Franklin et al., 2020; Harrison et al., 2021; Kyker-Snowman et al., 2022). 95 

There are still major challenges to integrating the more sophisticated ecological modeling 96 

approaches into land models, which explicitly simulate energy, water, and carbon fluxes at high 97 

frequency time steps for interacting with the atmosphere and climate systems. The details of 98 

vegetation dynamics, including leaf photosynthesis, respiration, plant growth, demographic 99 

processes, community assembly, vegetation structure, and competition output, must be well-100 

organized hierarchically and computed efficiently (Fisher and Koven, 2020; Franklin et al., 101 

2020). Representing these processes in ESMs, however, can complicate model structure and 102 

behavior, especially the interaction between physiology and vegetation composition, and cause 103 

large increases in the computational burden. Thus, the implementation of detailed vegetation 104 

demographic processes and population dynamics into ESMs would benefit from more 105 

parsimonious approaches. 106 

Including highly complex processes does not necessarily increase model predictive skills 107 

(Forster, 2017; Hourdin et al., 2017; Famiglietti et al., 2021). On the contrary, it may greatly 108 

obscure model transparency and increase uncertainty; positive feedbacks in these processes may 109 

result in large and unanticipated shifts of vegetation states. Any small differences in model 110 

settings or parameters can result in distinct predictions, especially for vegetation structure, which 111 

is supposed to be predicted by these types of models. These processes make demographic 112 

vegetation models often unreliable when compared to the well-tuned “single-cohort” vegetation 113 

models that simplify the reproduction and mortality as growth and turnover of continuous 114 

biomass pools. Additionally, the long history of land models and the requirements of backward 115 

compatibility (i.e., reversing the model to its previous versions) mean developers must often 116 
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build their new functions on top of previous modeling assumptions and coding structure (Fisher 133 

and Koven, 2020), adding up to multiple adjustments of previous processes and making the 134 

model untraceable.  135 

To explicitly model the transient dynamics of ecosystems in ESMs while preserving model 136 

traceability, we need clear assumptions, detailed physical processes, and traceable model 137 

structure. For the best chance of accurate predictions outside of the model's testing data, model 138 

processes should be based on the fundamental biological and ecological principles to predict 139 

ecosystem emergent properties, instead of fitting the emergent patterns directly as many models 140 

do currently.  To achieve this, we need to properly represent the tradeoffs of plant traits, balance 141 

the complexity of the model structure and priority for the processes that are required by the 142 

general circulation models (GCM), and also make model assumptions transparent and processes 143 

robust. These requirements make it difficult to fully implement the modeling approaches that are 144 

well-developed in the ecological modeling community (e.g., Falster et al., 2016; Berzaghi et al., 145 

2019; Weiskopf et al., 2022).  146 

This paper describes a vegetation demographic and soil organic decomposition model that 147 

is incorporated into the NASA Goddard Institute for Space Studies (GISS) Earth system model, 148 

ModelE (Kelley et al., 2020). Our goal is to develop a parsimonious and transparent terrestrial 149 

ecosystem model that 1) allows ModelE to simulate the ecological dynamics of terrestrial 150 

ecosystems and vegetation at the global scale and 2) sets up a modeling framework for solving 151 

some of the major challenges for incorporating important ecological mechanisms into ESMs. For 152 

(1), we have incorporated the core ecosystem processes, including plant growth, demography, 153 

community assembly, and ecosystem carbon and nitrogen cycles. For (2), we have defined a set 154 

of PFTs that are plant trait-based and a competition scheme that is individual-based. In this 155 
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paper, we describe this model in detail, and evaluate its performance compared to both 157 

observations and other state-of-the-art DGVMs. 158 

 159 

2 Model Description 160 

2.1 GISS ModelE and BiomeE overview 161 

ModelE has a land model for representing land surface hydrology (TerraE) (Rosenzweig and 162 

Abramopoulos, 1997; Schmidt et al., 2014) and a vegetation biophysics scheme (from the Ent 163 

Terrestrial Biosphere Model; TBM) (Kim et al., 2015; Ito et al., 2020; Kelley et al., 2020), with 164 

fixed vegetation traits (e.g., leaf mass per area, C:N ratio), fixed biomass, canopy height, and 165 

plant density, and seasonal leaf area index prescribed from a satellite-derived data set  (Ito et al., 166 

2020). The Ent TBM calculates canopy radiative transfer (Friend & Kiang 2005), canopy albedo, 167 

canopy conductance, photosynthesis, autotrophic respiration, and phenological behaviors (Kim et 168 

al., 2015).  The carbon allocation scheme of Kim et al. (2015) is used in ModelE with prescribed 169 

canopy structure and leaf area index (LAI), routing the carbon that would otherwise be allocated 170 

to plant tissues via growth instead directly as litter into soil carbon pools, thus conserving carbon 171 

for fully coupled carbon cycle simulations, but resulting possibly in imbalanced plant carbon 172 

reserve pools where the prescribed canopy structure is not in equilibrium with the simulated 173 

climate (Ito et al., 2020). 174 

The Biome Ecological strategy simulator (BiomeE) is derived from Geophysical Fluid Dynamics 175 

Laboratory’s vegetation model, LM3-PPA (Weng et al., 2015, 2017, 2019). It simulates plant 176 

physiology, vegetation demography, adaptive dynamics (eco-evolutionary adaptation), and 177 

ecosystem carbon, nitrogen, and water cycles (Figure 1).  In this model, the PFTs are defined by 178 

a set of combined plant traits with their values sampled from the observed ranges to represent a 179 
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specific plant type. Individual plants are categorized into cohorts and arranged in different 183 

vertical canopy layers according to their height and crown area following the rules of the Perfect 184 

Plasticity Approximation model (PPA, Strigul et al., 2008). Sunlight is partitioned into canopy 185 

crown layers according to Beer’s law (Beer, 1852; Swinehart, 1962). The cohort is the basic unit 186 

to carry out physiological and demographic activities, e.g., photosynthesis, respiration, growth, 187 

reproduction, mortality, and competition with other individuals. 188 

 189 

Figure 1 Schematic diagram of the coupling of BiomeE into ModelE 190 

Panel A shows the structure of carbon and nitrogen pools and fluxes, and the interactions of 191 
BiomeE with TerraE, the land surface model in ModelE. The lines are the flows of carbon 192 
(green), nitrogen (brown), and coupled carbon and nitrogen (black). The green box is for carbon 193 
only. The brown boxes are N pools. The black boxes are for both carbon and nitrogen pools. The 194 
C:N ratios of leaves, wood, fine roots, and microbes are fixed and those of liters and SOM pools 195 
are dynamic with input and output. Panel b shows the demographic processes of BiomeE and the 196 
key processes of population dynamics. 197 

 198 

The demographic processes generate and remove cohorts and change the size and density 199 

of plant individuals in the cohorts. With explicit description of cohort size, organization, and 200 
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composition during a model run, the model simulates competition for light and soil resources, 201 

community assembly and vegetation structural dynamics.  These processes are hierarchically 202 

organized in this model and run at various time steps: half-hourly or hourly for plant physiology 203 

and soil organic matter decomposition, daily for growth and phenology, and yearly for 204 

demography. 205 

We coupled the BiomeE model into ModelE’s land model for simulating global dynamics 206 

of vegetation and biogeochemical cycles and their feedback to the climate system. For extending 207 

this model to the global scale, we designed a new set of PFTs to represent the functional 208 

diversity of global vegetation and a new phenological scheme to deal with temperature and water 209 

seasonality. Leaf photosynthesis processes are taken from ModelE’s existing vegetation model, 210 

Ent (Kim et al., 2015), and used to calculate the carbon budget that drives vegetation dynamics. 211 

Plant growth and demographic processes and the soil organic matter decomposition and nitrogen 212 

cycle processes are from BiomeE (Figure 1). The land surface energy and water fluxes are 213 

calculated by TerraE with land surface characteristics jointly defined by the vegetation model. 214 

Plant functional types  215 

In this model, we use a set of continuous plant traits to define plant functional types, so that we 216 

can simulate plant emergent properties (such as dominant plant types, vegetation compositional 217 

changes, etc.) in response to climate changes based on the underlying plant physiological 218 

properties and ecological principles through eco-evolutionary modeling in the future. For 219 

example, life forms are defined by the continuums characterized by wood density (woody vs. 220 

herbaceous), height growth coefficient (tree vs. shrub), and leaf mass per unit area (LMA, for 221 

evergreen vs. deciduous). Deciduousness is defined by cold resistance (evergreen vs. cold 222 

deciduous), and drought resistance (evergreen vs. drought deciduous). Grasses are simulated as 223 
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tree seedlings with all stems senescent along with leaves at the end of a growing season. The 228 

individuals are reset back to their initial sizes each year and the population density is also reset 229 

by conserving current total biomass . The photosynthesis pathway is predefined as C3 or C4. 230 

Table 1 Plant functional types used in BiomeE 231 
Plant functional types Vcmax LMA 

(kg C m-2) 
Lmax,0 rW 

(kg C m-3) 
aZ T0,c b0,D PS 

pathway 
1. Tropical evergreen 
broadleaf 

18 0.07 4.8 360 30 15 0 C3 

2. Temperate/boreal 
evergreen needleleaf 

18 0.14 4.8 300 30 -80 0 C3 

3. Temperate/boreal 
deciduous broadleaf  

22 0.025 4.5 350 30 15 0 C3 

4. Tropical drought 
deciduous broadleaf 

20 0.03 4.5 250 30 15 0.2 C3 

5. Boreal deciduous 
needleleaf 

20 0.03 4.0 300 30 15 0.0 C3 

6. Cold shrub 18 0.025 3.0 360 20 15 0.1 C3 
7. Arid shrub 18 0.03 3.0 360 20 15 0.1 C3 
8. C3 grass 20 0.025 2.5 90* 10 5 0.2 C3 
9. C4 grass 15 0.025 2.5 90* 10 5 0.2 C4 
Vcmax: leaf maximum carboxylation rate, LMA: leaf mass per unit area, Lmax,0: is crown 232 
maximum leaf area index, ρW: wood density, αZ: Height coefficient, T0,c: Critical temperature for 233 
phenology offset, β0,D: critical soil moisture index for the offset of phenology, PS: 234 
photosynthesis pathway, E: evergreen, C: cold-deciduous, D: drought-deciduous. *Grass stem 235 
density is calculated as tissue biomass divided by stem volume. The tissue density of grass’s 236 
stems is as high as wood. 237 

 238 

We defined 9 PFTs for our test runs in this paper to roughly represent global vegetation 239 

functional diversity (Table 1) according to their life form (tree, shrub, and grass), photosynthesis 240 

(C3 and C4), and leaf phenology (evergreen and deciduous). Crop PFTs were not included 241 

because the purpose of this paper is to describe the baseline processes of natural vegetation and 242 

soil biogeochemical cycle. These PFTs have the same physiological and demographical 243 

processes with different parameters (except C3 and C4 photosynthesis pathways) representing 244 
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varied strategies in different environments. Thus, for eco-evolutionary and ecological community 248 

assembly simulations, one PFT can switch to another by changing its parameters for searching 249 

competitively optimal plant traits in different environments. 250 

Phenology 251 

The phenology types are defined by two parameters, a critical low temperature and a critical soil 252 

moisture index, that are used to trigger leaf fall. These two parameters define 4 phenological 253 

types with their possible factorial combinations: evergreen, drought-deciduous, cold-deciduous, 254 

and drought-cold-deciduous. Evergreen PFTs have high resistances to cold (i.e., very low critical 255 

temperature) and drought (very low soil drought). Cold and drought deciduous PFTs have low 256 

critical temperature and soil drought index, respectively. These phenological types represent 257 

different strategies of dealing with environmental stresses and pressure of competition. It is 258 

possible that the evergreen would be more competitive in high seasonality regions (e.g., 259 

evergreen in boreal regions), though the first response of plants to harsh environments (e.g., cold 260 

or dry) is to shed their leaves. Our definition of phenology is designed to allow to evaluate the 261 

competitively optimal strategy in future studies. 262 

For the cold-deciduous PFTs (temperate/boreal deciduous broadleaf and cold shrub), we 263 

used the growing degree days above 5 °C (GDD5) to trigger phenological onset and a critical low 264 

temperature (Tm) for the offset. GDD5 is calculated from the days that temperature starts to 265 

increase from the coldest days in the non-growing season. The critical value of GDD that the 266 

plants require for growth (GDDc) is defined as a function of chilling days in the non-growing 267 

season (Prentice et al., 1992): 268 
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where, NCD is the days of the cold period in nongrowing season before bud burst, a0 is the 275 

minimum GDDc (50) when the cold period is sufficiently long, d is the maximum addition of 276 

GDDc (800) when there is no cold period (i.e., NCD=0), b is a shape coefficient (0.025). These 277 

parameters are tunable and should change with acclimation to new climates. 278 

The running mean temperature that represents the mean temperatures over a short period of 279 

time is calculated as: 280 

)
𝑇'(𝑖) = 𝑇((𝑖),																																						𝑤ℎ𝑒𝑛	𝑖 = 1
𝑇'(𝑖) = 0.8𝑇'(𝑖 − 1) + 0.2𝑇((𝑖)	, 𝑤ℎ𝑒𝑛	𝑖 ≥ 2 , (2) 

The critical temperature of triggering leaf senescence (Tc) is calculated as a function of the 281 

number of growing days (NGD).  282 

   𝑇! = 𝑇",! − 𝑠 ∙ 𝑒#!∙(+,-	(",&#"#/")), (3) 

where, T0,c is the highest critical temperature when NGD is sufficiently long, s is the range that a 283 

critical temperature can change, c is a shape parameter, L0 defines the lowest critical temperature 284 

(T0,c -s) when NGD is smaller than L0. The rationale in this equation is that when a growing 285 

period is not long enough, plants need a lower Tc to trigger leaf fall so that they can have a 286 

growing season that is not too short. This setting is based on the thermal adaptation analysis of 287 

Yuan et al. (2011). 288 

For the drought deciduous PFTs (tropical drought deciduous broadleaf, arid shrub, C4 289 

grass), we used a soil moisture index (sD) to start and end a growing season. 290 

 𝑠1 = ∑ 𝑀𝑖𝑛 =1.0,𝑚𝑎𝑥 @
2$#2%&,$

2(!,$#2%&,$
, 0.0AB

3
456 , (4) 
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where i is the soil layer in root zone, θ is soil water content (vol./vol.), θWP is wilting point, and 297 

θHC is soil water holding capacity. The critical soil moisture values that trigger new leaf growth 298 

and leaf fall are defined as PFT-specific parameters. We slightly tuned these two parameters 299 

according to the soil moistures where the deciduous PFTs’ leaves start to grow or fall. Usually, 300 

the critical soil moisture for starting new leaf growth is higher than the soil moisture levels that 301 

trigger leaf senescence so that the plants can have a stable growing season. 302 

Plant demography and biogeochemical cycles  303 

Allometry and Plant architecture 304 

The plant allometry and architecture are critical for plant resources allocation, light capture, and 305 

soil water and nutrients uptake. The allometry equations are the same as those used in LM3-PPA 306 

(Farrior et al., 2013; Weng et al., 2015): 307 

⎩
⎪
⎨

⎪
⎧
𝐴7 = 𝛼7𝐷2! 																		
𝑍 = 𝛼8𝐷2) 																					
𝑆 = 0.25𝜋𝜌𝛬𝛼9𝐷:;2(
𝐴/∗ = 𝑙'=>𝐴7 																		
𝐴?@∗ = 𝜑@/𝑙'=>𝐴7 								

 ,   (5) 

where D is tree diameter; AC is crown area; Z is plant height; S is woody biomass (sapwood plus 308 

heartwood); 𝛼C and 𝛼Z, are the scaling factors for crown area and plant height, respectively; 𝜃C      309 

and 𝜃Z are the exponents for crown area and tree height, respectively; 𝜋 is ratio of a circle's 310 

circumference to its diameter; ⍴ is wood density (kg C m-3); Λ is the taper factor from a cylinder 311 

to a tree with the same D; 𝐴/∗  and 𝐴?@∗  are the target surface area of leaves and fine roots, 312 

respectively;  𝜑RL is the area ratio of leaves to roots. lmax is the maximum leaf area per unit crown 313 

area, defined as a function of plant height (Z): 314 

Deleted: fall 315 
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𝑙'=>(𝑍) = 𝐿'=>,"(𝑍 + ℎ")/(𝑍 + 𝐻"),  (6) 

where Lmax,0 is the maximum crown LAI when a tree is sufficiently tall, Z is tree height, h0 is a 316 

small number that makes a minimum lmax (𝐿'=>,"	(ℎ"/𝐻")) when tree height is close to zero, and 317 

H0 is a curvature parameter. 318 

Plant growth and allocation of carbon and nitrogen to plant tissues 319 

The allocation of carbon to wood, leaves, and roots is affected by climate and forest age (Litton 320 

et al., 2007; Xia et al., 2019). However, vegetation models cannot capture these patterns well at 321 

large spatial scales, even if the adaptive responses to climate and forest ages are considered (Xia 322 

et al., 2019, 2017), partly because of the absence of explicit representation of shifts in species 323 

composition and competition between individuals (Franklin et al., 2012; Dybzinski et al., 2015). 324 

BiomeE has an optimal growth scheme that drives the allocation of carbon and nitrogen to 325 

leaves, fine roots, and stems based on the optimal use of resources and light competition (Weng 326 

et al., 2019). In this scheme, the growth of new leaves and fine roots follows the growth of 327 

woody biomass (i.e., stems), and the area ratio of fine roots to leaves is kept constant during the 328 

growing season. The allocation of available carbon between structural (e.g., stems) and 329 

functional (e.g., leaves and fine roots) tissues is optimal for light competition at given nitrogen 330 

availability.  331 

Mathematically, differentiating the stem biomass allometry in Eq. 5 with respect to time, 332 

using the fact that dS/dt equals the carbon allocated for wood growth (GW), gives the diameter 333 

growth equation: 334 

(1
(A
= B%

".:DEFG*H+(:;2+)1,-.)
  (7) 
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This equation transforms the carbon gain from photosynthesis to the diameter growth that results 336 

from wood allocation and allometry (Eq 5). With an updated tree diameter, we can calculate the 337 

new tree height and crown area using allometry equations, and the targets of leaf and fine root 338 

biomass (Eq. 5). Generally, the growing-season average allocations of carbon and nitrogen to 339 

different tissues are governed by two parameters: the maximum leaf area per unit crown area 340 

(lmax) and fine root area per unit leaf area (φRL) (Eq. 5). The optimal-growth allocation scheme 341 

combined with explicit competition for light and soil resources in our model makes it possible to 342 

simulate the underlying processes that determine emergent allocation patterns (Dybzinski et al., 343 

2011; Farrior et al., 2013; Farrior, 2019; Weng et al., 2019). 344 

Reproduction and Mortality 345 

At a yearly time-step, the cumulative carbon and nitrogen allocated for reproduction by a canopy 346 

cohort over the growing season length, T, is converted to seedlings according to the initial plant 347 

biomass (S0) and germination and establishment probabilities (pg and pe, respectively). 348 

Generally, the population dynamics can be described by a variant of the von Foerster equation 349 

(von Foerster, 1959): 350 

𝑁(𝑆", 𝑡) = 	
I/I0
J1 ∫ 𝑁(𝜏)𝐺?(𝜏)𝑑𝜏

K
"     

(&(L,A)
(A

=	−𝜇(𝑠, 𝑡)𝑁(𝑠, 𝑡). 
(8) 

where N(S0, t) is the spatial density of newly generated seedlings, N(τ) is the spatial density of 351 

this cohort of trees at time τ, GF is the carbon allocation to seeds, and μ is PFT-specific mortality 352 

parameter. 353 

Each PFT has a canopy-layer-specific background mortality rate that is assigned from the 354 

literature. These background rates are assumed to be size-independent for the canopy layer trees, 355 
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but size-dependent for understory trees. Many factors affect tree mortality, such as light, size, 356 

competition crown damage, hydraulic failure, trunk damage etc. (Lu et al., 2021; Zuleta et al., 357 

2022). These factors result in high mortality rates of seedlings and old trees (i.e., a “U-shaped” 358 

mortality curve). We use the following equation to delineate a mortality rate that varies with 359 

social status (crown layers), shade effects, and tree sizes: 360 

𝜇(𝑠, 𝑡) = 𝜇"(1 + 𝑓/𝑓L)𝑓1  (9) 

where fL is the shade effects on mortality (𝑓/ = √𝐿 − 1 ), fS is seedling mortality when a tree is 361 

small (𝑓L = 𝐴J1𝑒#M2"∙1 ), and fD represents the size effects on the mortality of adult trees (𝑓1 =362 

𝑚L
N3"("5"1)

6;N3"("5"1)
 ) . L is the layer this plant is in (L=1 for the canopy layer and 2 for the second, 363 

and so on), ASD is the maximum multiplier of mortality rate for the seedlings in the understory 364 

layers, BSD is the rate of mortality decreasing as tree diameter (D) increases, ms is the maximum 365 

multiplier of mortality rate for large-sized trees, D0 is the diameter at which the mortality rate 366 

increases by ms /2, and AD is a shape parameter (i.e., the sensitivity to tree diameter).  367 

Crown self-organization and layering 368 

Tree crowns are arranged into different vertical canopy layers according to tree height and 369 

crown area if their total crown area is greater than the land area following the rules of the PPA 370 

model (Strigul et al., 2008). In PPA, individual tree height is defined as the height at the top of 371 

the crown, and all leaves of a given cohort are assumed to belong to a single canopy layer.      372 

The height of canopy closure for the top layer is referred to as critical height (𝑍∗, the height of 373 

the shortest tree in the layer) and is defined implicitly by the following equation: 374 

𝑘(1 − 𝜂) = ∑ ∫ 𝑁4(𝑍, 𝑡)𝐴7@,4(𝑍∗
O
𝑍∗4 , 𝑍)𝑑𝑍  (10) 



17 
 

where 𝑁4(𝑍, 𝑡) is the density of PFT i trees of height Z per unit ground area; 𝐴7@,4(𝑍∗, 𝑍) is the 375 

crown area of an individual PFT i tree of height Z; 𝜂 is the proportion of each canopy layer that 376 

remains open on average due to wind and imperfect spacing between individual tree crowns, and 377 

k is the ground area. The top layer includes the tallest cohorts of trees whose collective crown 378 

area sums to 1−𝜂 times the ground area; lower layers are similarly defined.  379 

All the trees taller than the critical height can get full sunlight and all trees below this 380 

height are shaded by the upper layer trees. Trees within the same layer do not shade each other, 381 

but there is self-shading among the leaves within individual crowns. Cohorts in a sub-canopy 382 

layer are shaded by the leaves of all taller canopy layers. In each canopy layer, all cohorts are 383 

assumed to have the same incident radiation on the top of their crowns. Note, the gap fraction 𝜂 384 

is necessary to allow additional light penetration through each canopy layer for the persistence of 385 

understory trees in monoculture forests in which the upper layer crowns build a physiologically-386 

optimal number of leaf layers (Farrior et al., 2013). The grasses only form one layer. Those 387 

individuals who cannot stay in that layer because of limited space will be killed (i.e., when the 388 

total grass crown area is larger than the land area). 389 

Ecosystem carbon and nitrogen biogeochemical cycles 390 

Ecosystem biogeochemical cycles (carbon and nitrogen in this model) are driven by plant and 391 

microbial demographic processes. There are seven pools in each plant: leaves, fine roots, 392 

sapwood, heartwood, fecundity (seeds), and non-structural carbohydrates and nitrogen (NSC and 393 

NSN, respectively). The carbon and nitrogen in plant pools enter soil pools with the mortality of 394 

individual trees and the turnover of leaves and fine roots. Soil has a mineral nitrogen pool for 395 

mineralized nitrogen and five soil organic matter (SOM) pools for carbon and nitrogen: 396 
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metabolic litter (x1), structural litter (x2), microbial (x3), and fast (x4) and slow-turnover (x5) SOM 397 

pools. 398 

The microbial pool plays a central role in the transfer and decomposition of SOM. The 399 

decomposition processes are simulated by a model modified from Manzoni et al. (2010). The 400 

technical details have been described in Weng et al. (2019, 2017). The decomposition rate of a 401 

SOM pool is determined by the basal turnover rate together with soil temperature and moisture 402 

following the formulation of the CENTURY model (Parton et al., 1988, 1987). The microbial 403 

carbon use efficiency (transfer from litter to microbial matter) is a function of litter nitrogen 404 

content, following the model of Mazoni et al. (2010). 405 

The N mineralization in decomposition is determined by microbial nitrogen demand, 406 

SOM’s C:N ratio, and decomposition rate. In the high C:N ratio SOM, microbes must consume 407 

excess carbon to get enough nitrogen for growth. By contrast, in the low C:N ratio SOM, 408 

microbes must release excess nitrogen to get enough carbon for energy. Depending on the C:N 409 

ratios of SOM, soil microbes may be limited by either C or N.  410 

The out-fluxes of C and N from the ith pool (dCi and dNi, respectively) are calculated by: 411 

𝑑𝐶4 = 𝜉(𝑇,𝑀)𝜌4𝑄𝐶4, 

𝑑𝑁4 = 𝜉(𝑇,𝑀)𝜌4𝑄𝑁4 , 
(11) 

where ξ is the response function of decomposition to soil temperature (T) and moisture (M), ρi is 412 

the basal turnover rate of the ith litter pool at reference temperature and moisture, QCi is the C 413 

content in ith pool, and QNi is the N content in the ith pool.  414 

The new microbial growth (dM) is calculated as the co-limit of available carbon and 415 

nitrogen mobilized at this step: 416 
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𝑑𝑀4 = 𝑀𝑖𝑛(𝜀" · 𝑑𝐶4 , 𝛬'4!PQ$N · 𝑑𝑁4), (12) 

where ε0 is default carbon-use efficiency of litter decomposition (0.4) and Λmicrobe is a microbe’s 417 

C:N ratio, which is a fixed value (10 in this model). The soil heterotrophic respiration (Rh) is the 418 

microbial respiration (i.e., the difference between carbon consumption and new microbial 419 

growth), and the total N mineralization rate (Nmineralized) is calculated as the sum of mineralized N 420 

in the SOM pools and microbial turnover:  421 

𝑅R = ∑ 𝑑𝐶4D
45S − ∑ 𝑀4

D
45T , 

𝑁'43NP=U4VN( = ∑ 𝑑𝑁4D
45S −∑ 𝑚4/𝛬+WXYZ[\D

45S   
(13) 

The Rh releases to atmosphere as CO2. Mineralized N enters the mineral N pool for plants to use. 422 

The dynamics of the mineral N pool is represented by the following equation: 423 

(&9$:0;<=
(A

= 𝑁(NIQL4A4Q3 + 𝑁'43NP=U4VN( − 𝑈 − 𝑁UQLL,                                   (14) 

where Ndeposition is N deposition rate, assumed to be constant over the period of simulation; Nm is 424 

the N mineralization rate of the litter pools (fast and slow SOM and microbes); U is the N uptake 425 

rate (Kg N m-2 hour-1) of plant roots; and Nloss includes the loss of mineralized N by 426 

denitrification and runoff. The N deposition (Ndeposition) is the only N input to ecosystems, and we 427 

set nitrogen fixation as zero in this version of the model.  428 

 429 

3 Model Test runs 430 

For our comparison of model performance against observations and other models, we used 431 

the full demographic version of BiomeE (described above) and also designed a “single-cohort” 432 

version of the model to benchmark our demographic implementations. In the single-cohort 433 

model, the mortality of trees is simulated as the turnover of woody biomass, and the fecundity 434 
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resources (carbon and nitrogen) are used to build the same-sized parent trees, instead of 435 

seedlings growing from understory layers. If the total crown area of the trees in this cohort is 436 

greater than the land area, the extra trees will be removed to make the total crown area less than 437 

or equal to the land area. At equilibrium, the turnover of woody biomass is equal to the new 438 

growth each year and the new trees generated from fecundity resources are killed by self-439 

thinning. The single-cohort model uses the mean state of the canopy layer trees to represent the 440 

characteristics of the whole community. This single-cohort model performs like the traditional 441 

biogeochemical models and simplifies vegetation computation.  442 

 443 

Figure 2. Prescribed global distribution of plant functional types. Data is from the Ent 444 
Global Vegetation Structure map. 445 

 446 

In the test runs, the distribution of PFTs was obtained from the Ent vegetation map (Ito et 447 

al., 2020), which was derived from 2004 MODIS land cover and PFT data products (Friedl et al., 448 

2010) and climate data (Figure 2). For these simulations, croplands and pastures were replaced 449 

by the potential natural vegetation types. We slightly tuned leaf maximum carboxylation rate 450 

(Vcmax) to fit the general pattern of global GPP, while keeping other parameters unchanged. 451 
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Forcing data are from the TRENDY project CRU-NCEP data (Sitch et al., 2015) and have 456 

a 6-hour time step at a spatial resolution of 0.5°x0.5°.  These data are available at the website 457 

https://www.uea.ac.uk/web/groups-and-centres/climatic-research-unit/data.  458 

We aggregated these data into 2.0°x2.5° grid cells and used thirty years’ of data (1988~2017) to 459 

force the model to run for 600 years, which is long enough for the model to approach equilibrium 460 

states for both vegetation and soil carbon pools. These data include temperature, precipitation, 461 

shortwave radiation, longwave radiation, specific humidity, and wind speed (U and V 462 

directions). We interpolated the radiation data (RS) into half-hour timesteps based on the sun 463 

zenith angle (θS) and radiation penetration rate calculated from data. 464 

𝑅J(𝑡) = f
@(>

J∗!QL!QL	2?(9])	g 𝑆
∗ 𝑐𝑜𝑠 𝑐𝑜𝑠	𝜃L(𝑡)	 ,                                   (15) 

where S* is solar constant (1362 W/m2).  Other variables are linearly interpolated to the model 465 

time steps, which is half hourly in this study. Atmospheric CO2 concentration is set at the model 466 

default level (350 ppm) in our model runs. 467 

Data sources for model evaluation 468 

The LAI data were from the Ent vegetation dataset (Ito et al., 2020), where the LAI was derived 469 

from 2004 MODIS LAI data (Tian et al., 2003, 2002). Gross primary productivity (GPP) data 470 

are from a global retrieval of GPP using remote sensing observations. These data are on a 1°×1° 471 

geographic grid at a monthly time step based on an Artificial Neural Network retrieval algorithm 472 

(Alemohammad et al., 2017). This algorithm uses six remotely sensed observations as input: 473 

Solar Induced Fluorescence (SIF), Air Temperature, Precipitation, Net Radiation, Soil Moisture, 474 

and Snow Water Equivalent. The data are available from 2007 to 2015. The tree height data are 475 

from spaceborne light detection and ranging (lidar) global map of canopy height at 1-km spatial 476 
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resolution developed by Simard et al. (2011). These authors used the 2005 data from the 480 

Geoscience Laser Altimeter System (GLAS) aboard ICESat (Ice, Cloud, and land Elevation 481 

Satellite) to derive global forest canopy heights. Biomass data are from a Global 1-degree Maps 482 

of Forest Area, Carbon Stocks, and Biomass, 1950-2010 developed by Hengeveld et al. (2015). 483 

Soil carbon data are from Food and Agriculture Organization (FAO) Harmonized World Soil 484 

Database (version 1.2), updated by Wieder et al. (2014). 485 

MsTMIP model simulation data 486 

We chose six model simulations (BiomeBGC, CTEM, CLM4, LPJ, Orchidee, VEGAS) from the 487 

Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) (Huntzinger et 488 

al., 2013) to compare against our model simulations. These models are well-developed and 489 

widely used in Earth system models, representing the state-of-art of current land vegetation 490 

model development. MsTMIP provided prescribed land use types for all the participant models. 491 

However, it is up to the participant models to simulate disturbance impacts on ecosystems 492 

(Huntzinger et al., 2013). MsTMIP conducted five sets of experimental runs with different 493 

climate forcing, land-use history, atmospheric CO2 concentration, and nitrogen deposition. In 494 

this study, we compared to the SG1 simulation experiment because it is driven by the 1901~2010 495 

climate forcing data with constant CO2 concentration and constant land cover (Huntzinger et al., 496 

2013), which are the closest to our model runs.  497 

Selected Grid Cells for Comparison 498 

To illustrate model behavior, we selected 8 grid cells that cover boreal forests, temperate 499 

forests, tropical forests, C4 grasslands, and arid shrublands to show the simulated ecosystem 500 

development patterns across the climate zones with different dominant PFTs (Table 2). Brazil 501 

Tapajos (TPJ), Oak Ridge (OKR), Harvard Forest (HF), Manitoba old black spruce site (MNT), 502 
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and Bonanza Creek (BNC) are covered by tree PFTs. Konza long-term ecological research 505 

station (LTER) (KZ) is C4 grass. Walnut Gulch Kendall (WGK) and Sevilleta LTER (SV) are 506 

covered by arid shrubs. These sites were chosen because they have extensive data on vegetation 507 

and climate conditions for future comparisons.  508 

Table 2 Sites for simulated ecosystem development illustration 509 

Site Dominant  

PFT 

Coordination Mean 

Temperature 

(°C) 

Annual 

Precipitation 

(mm) 

Bonanza Creek (BNC) Broadleaf deciduous  63.92°, -145.38° -3.1 269 

Manitoba old black 

spruce site (MNT)  

Evergreen needleleaf 55.88°, -98.48° -3.2 520 

Harvard Forest (HF) Broadleaf deciduous 42.54°, -72.17° 8.5 1050 

Oak Ridge (OKR) Broadleaf deciduous 35.96°, -84.29° 13.7 1372 

Konza LTER (KZ) C4 grass 39.08°, -96.56° 12.4 835 

Sevilleta LTER (SV) Arid shrub 34.36°, -106.88° 12.7 365 

Walnut Gulch Kendall 

(WGK) 

Arid shrub 31.74°, -109.94° 17.7 350 

Brazil Tapajos (TPJ) Broadleaf evergreen  -2.86°, -54.96° 26 1820 

 510 

4 Results 511 

 4.1 Simulated vegetation structural and ecosystem carbon dynamics      512 

In the forest sites, the simulated vegetation structure by the full demographic model changes with 513 

the growth, regeneration, and mortality processes (Figure 3). The temporal dynamics of the 514 

canopy development can be separated into three stages according to the canopy crown dynamics: 515 

1) open forest stage, 2) self-thinning stage, and 3) stabilizing stage.  In the open forest stage, the 516 

crown area index (CAI) is less than 1.0 and all the individuals are in full sunlight. The tree 517 

crowns grow rapidly to occupy the open space (Figure 3: a). In the self-thinning stage, the open 518 
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space is filled by the crowns of similar sized trees (i.e., the forest is closed) and canopy trees are 523 

continuously pushed to the lower layer(s) (i.e., self-thinning) and the CAI continues to increase 524 

due to the limited space with growing tree crowns (i.e., the new spaces vacated from the canopy 525 

trees’ mortality cannot meet the space demand from crown growth).  The sizes of trees in the 526 

canopy layer are still similar in this period (Figure 3: b and c) and the critical height (the height 527 

of the shortest tree in the canopy layer) keeps increasing in this period. In the stabilizing stage, 528 

when the space generated by the mortality of canopy trees is larger than the growth of canopy 529 

tree crown area, no trees are pushed to the lower layer and the lower layer trees start to enter the 530 

canopy layer and fill the space, leading to a sharp decrease in critical height (Figure 3: b) and the 531 

mixing of different sized trees in the canopy layer. The CAI is decreasing as well because of the 532 

high mortality rates of the understory layer trees. As time goes on, the growth, regeneration, 533 

mortality, and space filling processes are equilibrated, and the forest structure is then stabilized. 534 

The tallest plant height (Figure 3: c) shows the height of the trees in the tallest cohort. It 535 

keeps growing as this cohort exists. The sharp decreases indicate the replacements by or merging 536 

with another shorter cohort because the density of trees in this cohort is very low (0.0001/ha in 537 

this case) or the similarity between the tallest and the second tallest is high. The total basal area 538 

(Figure 3: d) is an index of the sum of all trees at a site. It keeps increasing during forest 539 

development and is equilibrated earlier than height and crown structure. 540 
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 545 

Figure 3. Vegetation structural dynamics with the full demographic BiomeE at the field 546 

sites listed in Table 2. Critical height is an index of the model PPA, which separates the trees 547 

that are in full sunlight if taller than critical height and those that are fully shaded if shorter than 548 

critical height. 549 

 550 

Among these sites, at equilibrium, the tropical forest site (TPJ) has the highest crown area index 551 

(around 2.2), followed by warm temperate forest at OKR, mixed forest at HF, and boreal forests 552 

at BNC and MNT (Figure 3). The shrubs and grasslands in arid regions have the lowest crown 553 

area index (CAI), with basal area following similar patterns. For forested sites, tree height is 554 

tallest at TPJ, followed by OKR, HF, MNT, and BNC. The shrubs are short according to their 555 

allometry parameters and the height of grasses during non-growing season is zero. The critical 556 

height, which separates canopy layer trees from the understory layers, follows the same order as 557 

Deleted: Fig.558 



26 
 

that of tree height with high fluctuations with cohort changes. (More cohort details are in 559 

Supplementary Information Figures S1-S8) 560 

 561 

Figure 4: Site ecosystem development simulated by BiomeE with full demography for the 562 
field sites listed in Table 2 563 

 564 

      For the temporal dynamics in the full demographic simulations (Figure 4), the 565 

simulated GPP aligns closely with LAI and they reach their equilibrium states at similar times 566 

across sites (Figure 4: a,b). According to the definition of maximum crown LAI (lmax) in Eq. 6, 567 

the grass LAI (i.e., Konza) reaches the maximum each year, except the first year due to the low 568 

initial density (Figure 4: a). The biomass accumulation is much slower in forests because of the 569 

longer time needed for forest structure (size distribution) to reach equilibrium. Soil carbon 570 

equilibration is faster in the warm regions than in cold regions overall because of the higher 571 

turnover rate of SOM pools in warm regions. At equilibrium, forested sites have higher LAI, 572 
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biomass, and carbon stocks per area compared to the shrub and grass sites overall. Vegetation 577 

biomass is lowest at the grassland site, Konza LTER, because, within the model, grassland 578 

ecosystems cannot accumulate persistent woody biomass. 579 

 580 

Figure 5. Seasonal patterns of LAI and gross primary production in the sample grids. Two 581 
years of data are shown in this figure. The key to location abbreviations is in Table 2. 582 

 583 

The PFTs at TPJ and MNT are evergreen trees. Their LAI does not change over the whole 584 

year (Figure 5: a). The forest in OKR has the longest growing season in the three deciduous 585 

forest grids, followed by HF and BNC. BNC’s growing season is only around 120 days, about 586 

half of OKR’s growing season. The growing season of grasses in KZ starts in late May and ends 587 

in September. The two arid-adapted shrub sites (SV and WGK) are controlled by water 588 

availability. In TPJ (tropical evergreen forest), the trees have photosynthesis throughout the 589 
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entire year (Figure 5: b). In MNT, photosynthesis only happens in warm seasons with the leaves 593 

kept in the crowns (evergreen needleleaf). The deciduous trees in OKR and HF have high 594 

photosynthesis rates during the growing season. The photosynthesis rates in SV and WGK are 595 

generally low because of the dry environments. However, the precipitation events can drive 596 

photosynthesis rates high in these arid regions.  597 

 598 
Figure 6. Spatial patterns of LAI and GPP in Jan and July simulated with full demography 599 
setting. Panels a and b are the LAI and photosynthesis of January in the year of 600 (the last year 600 
of model run). Panels c and d are July’s in the same year. 601 

 602 

At the global spatial scale, only evergreen needle-leaved forests keep their leaves in 603 

northern high latitude regions during January (Figure 6), though photosynthesis in this region 604 

ceases because of the low temperature. In July, northern high latitude regions green up and their 605 

photosynthesis rates are high in wet regions. The single cohort BiomeE predicted similar pattern 606 

because the phenology model is same (Figure S9). 607 
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 611 

4.2 Global Comparisons with Observations 612 

The simulated LAI roughly capture the spatial pattern of MODIS LAI (Figure 7: a and b), 613 

though there are high variations at each grid (Figure 8: a). Generally, the simulated LAI in well 614 

vegetated grids, e.g., boreal forest regions, is underestimated by our model because the crown 615 

LAI is calculated as a function of tree height and a parameter of maximum crown LAI (Table 1 616 

and Eq. 6). The LAI in the grids that were converted to different land use types is overestimated 617 

because we assume all terrestrial grids are covered by potential vegetation in our test runs. 618 

Compared with SIF GPP (Alemohammad et al., 2017), simulated GPP is higher than the SIF 619 

GPP generally, though lower in arid regions (Figure 7: c, d and Figure 8: b). The simulated tree 620 

height (Figure 7: e, f and Figure 8: c) is mostly taller compared to observations (Simard et al., 621 

2011) because most forests have been altered by human activities (Pan et al., 2013). However, 622 

the model and observations cover approximately the same range of tree heights (up to 40 m). 623 

Simulated biomass is much higher than the observations (Figure 7: g, h and Figure 8: d) because, 624 

in the observations, many forest regions have been transformed to low biomass land use types 625 

(such as croplands) or represent earlier successional stages with less accumulated carbon (i.e., 626 

not equilibrium states). 627 

Simulated soil carbon does track the observations (Figure 7: i, j and Figure 8: e) better than 628 

biomass, likely because soil carbon stocks are more stable compared to biomass in response to 629 

disturbances and human activities. For areas where the model underpredicts soil carbon, the 630 

difference could arise from the missing biogeochemical processes that may lead to high carbon 631 

accumulation in some regions (e.g., peats) (Davidson and Janssens, 2006; Briones et al., 2014; 632 
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Euskirchen et al., 2014) and the relatively high uncertainties in the soil carbon data (Tifafi et al., 644 

2018). 645 

 646 

Figure 7. Spatial patterns of BiomeE (full demography) simulations and those from data. 647 
“Obs.” means different ways retrieved from observations. Obs. LAI is from Ent vegetation data 648 
(Modis LAI 2004) (Ito et al., 2020; Tian et al., 2003). Obs. GPP is derived from Solar Induced 649 
Fluorescence (SIF) data with a machine learning approach (Alemohammad et al., 2017). The 650 
data are available from Jan. 2007 to Dec. 2015. The tree height data are from spaceborne light 651 
detection and ranging (lidar) global map of canopy height at 1-km spatial resolution developed 652 
by Simard et al. (2011). Biomass data are from Hengeveld et al. (2015). Soil carbon data are 653 
from FAO Harmonized World Soil Database (version 1.2), updated by Wieder (2014). 654 

 655 
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 676 

Figure 8. Grid comparison of full demographic BiomeE simulations with observations 677 
estimates. The red line in each panel is the 1:1 line. This figure uses the same data as those in 678 
Figure 7. 679 

 680 

4.3 Comparison with MsTMIP models 681 

We compared the performance of our model with MsTMIP models at the 8 locations that were 682 

used to show ecosystem development patterns (Table 2). For most of these sites, LAI in BiomeE 683 

is lower compared the other MsTMIP models (Figure 9: a), while the estimated GPP is within 684 

the range of MsTMIP predictions (Figure 9: b). LAI differences are a consequence of the 685 

formulations within BiomeE, as described further in the Discussion (5.2 Model predictions and 686 

performance). Specifically, BiomeE simulates leaf growth by using a maximum crown LAI, 687 

which is lower than the real forest LAI.  688 
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 694 
Figure 9 Site-level comparison with MsTMIP models.  695 

The BiomeE predictions are from the full demography. The abbreviations of the 8 sites 696 
(corresponding to model grid cells) and their coordination, dominant PFTs, and climatic 697 
conditions are in Table 2. (See Figures S12 and S13 in Supplementary Information for the single 698 
cohort BiomeE simulations.) 699 

 700 

The low LAI does not affect crown total photosynthesis because leaves in lower canopy 701 

layers contribute little to the total carbon assimilation. BiomeE predicted biomass (Figure 9: c) 702 

and soil carbon (Figure 9: d) generally fall towards the higher end of the MsTMIP simulations, 703 

except for the more arid grass- and shrub-dominated sites. We note, however, that there are wide 704 

differences in estimates for vegetation and soil carbon across the models, likely because of 705 

different treatments of mortality and decomposition functions in these models.  706 
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 709 

Figure 10 Latitudinal patterns of GPP, NPP, Biomass, and soil carbon as simulated by 710 
BiomeE (with full demography) and MsTMIP models. ‘MIP Mean’ is the mean of the six 711 

MsTMIP model simulations. 712 

 713 

More broadly, the latitudinal mean of BiomeE simulated GPP is at the lower end of MsTMIP 714 

model predictions (Figure 10: a). Since BiomeE’s GPP was tuned to fit remote sensing data 715 

derived GPP, the MsTMIP models may over-estimate global GPP. BiomeE simulated net 716 

primary production (NPP) (Figure 10: b), plant carbon (Figure 10: c), and soil carbon (Figure 10: 717 

d) are within the range simulated by the MsTMIP models. This indicates that BiomeE has 718 

slightly lower respiration than the MsTMIP models. In the arid regions (e.g., around latitude 40-719 

50 oS), we simulated a lower GPP than that of MsTMIP models because of high drought 720 

sensitivity in our model. 721 
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 732 
Figure 11 Comparison between the simulations of the full demography and the single 733 

cohort settings of BiomeE. 734 

 735 

The demographic processes have significant impacts on the simulations of GPP, biomass, soil 736 

carbon, and vegetation structure compared to the single-cohort BiomeE (Figure 11). The full 737 

demographic BiomeE includes an understory layer of plants, resulting in higher LAI in high LAI 738 

regions and also slightly higher GPP. However, the total biomass predicted by the two model 739 Deleted: Higher GPP in the model with full demography 740 
leads to a high allocation to leaves and fine roots. 741 
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versions are similar because of the tradeoffs in allocation between leaves and stem growth and 742 

tree size distribution and because most biomass is in woody tissues (Please refer to the Figures 743 

S10 and S11 in the Supplementary Information for the single cohort BiomeE simulations).  In the 744 

full demography model, tree mortality removes all the biomass, including leaves, fine roots, and 745 

stems, while in the single-cohort model, the mortality is represented as the turnover of woody 746 

biomass. Consequently, the full demography model has higher emergent turnover rate for the 747 

whole vegetation.  748 

 749 
Figure 12 Spatial patterns of the differences between the simulations of the BiomeE: full 750 

demography minus the single-cohort simulations. 751 

 752 

Compared to the single-cohort model, the full demography model predicts higher LAI and 753 

GPP in warm and wet regions and lower LAI and GPP in cold and dry regions (Figure 12: a, b). 754 

The full demography model also predicts much lower biomass and soil carbon than the single-755 

cohort model in cold and dry regions (Figure 12: c). The reduced biomass input from full 756 
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demography alone is causing the difference in SOM dynamics since the two models share the 765 

same SOM pools and turnover/decomposition processes. Demographic processes greatly reduce 766 

model stability because reproduction and survival rates are low in dry and cold regions. By 767 

contrast, the single-cohort model does not simulate these processes explicitly and instead uses a 768 

simplified routine turnover of materials that allows plants to stay in extremely dry or cold 769 

conditions. 770 

 771 

4.4 Eco-evolutionary simulation and sensitivity test 772 

This model has the potential to predict competitively dominant PFTs in the continuum of plant 773 

traits through succession simulations according to the principles of evolutionarily optimal 774 

competition. We illustrate this with a set of simulations conducted at a series of ecosystem 775 

nitrogen content (from 269 to 575 g N/m2) with five PFTs sampled from the continuums of LMA 776 

(σ, from 0.06 to 0.14) and target root/leaf area ratio (jRL, from 0.8 to 1.2 corresponding to each 777 

LMA). The differences in ecosystem total nitrogen represent the environmental conditions that 778 

can result from soil and climate conditions. The simulations were set as nitrogen-closed (i.e., no 779 

input and output of nitrogen). At the lowest ecosystem total nitrogen (Figure 13: a), the PFT with 780 

highest LMA (0.14 kg C/m2 leaf) wins. With increases in ecosystem nitrogen (Figure 13: b - d), 781 

the winner shifts to lower LMA PFTs. This means that in infertile soils or cold climates with 782 

slower biogeochemical cycles (e.g., tundra and boreal forests), the eco-evolutionarily optimal 783 

PFTs should have high LMA leaves, and vice versa. This pattern is consistent with the 784 

predictions of a theoretical model derived in Weng et al. (2017). This simulation is also a case of 785 

the sensitivity test of vegetation dynamics at different environmental conditions. Vegetation can 786 
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shift their compositions and dominant plant traits to maintain an eco-evolutionarily optimal state, 798 

and thus amplify or attenuate the responses of ecosystem carbon cycle to climate changes. 799 

 800 

Figure 13. Simulated competitively dominant PFTs at different total ecosystem nitrogen. 801 

The simulations are set as nitrogen-closed (i.e., no input and output of nitrogen). The number in 802 

the title of each panel is the initial soil nitrogen. We used five PFTs that only differed in their 803 

LMA (σ) and target root/leaf area ratio (jRL) corresponding to each LMA in each simulation. 804 

 805 

5 Discussion 806 

We developed a parsimonious terrestrial ecosystem model for ModelE to simulate vegetation 807 

dynamics and ecosystem biogeochemical cycles. This model includes a cohort-based 808 

representation of vegetation structure, a height structured light competition scheme, demographic 809 

processes, and coupled carbon-nitrogen biogeochemical cycles. This model has four major 810 
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modules that organize the hierarchical processes of ecosystems together into a cohesive 811 

modeling structure: 1) plant physiology (photosynthesis, respiration), 2) plant phenology and 812 

growth, 3) vegetation structural dynamics, and 4) soil biogeochemical cycles (Figure 1). Each 813 

module is cohesive and has a minimum set of variables as the input from other modules. 814 

 815 

5.1 Model formulation 816 

In designing this model, we considered the simulation of competitively optimal strategy of plants 817 

in different climates based on fundamental ecological rules (Purves and Pacala, 2008; Falster and 818 

Westoby, 2003; Franklin et al., 2020). These strategies are mainly related to light competition, 819 

water conditions, nutrient use efficiency, and disturbances (e.g., fire), and represented by the 820 

traits of wood density, height growth, leaf longevity, and photosynthesis pathways. PFTs are 821 

used in this model as an integrative unit representing combinations of plant traits for simulating 822 

(1) the spontaneous dynamics of carbon, water, and energy fluxes as the core functions of an 823 

ESM-based land model and (2) the transient vegetation structural and compositional dynamics 824 

and ecosystem biogeochemical cycles in response to climate variations. 825 

We adopted a generic design for the PFTs. Since the PFTs are samples of plant traits in 826 

their natural ranges, the numbers of PFTs are flexible, depending on what strategies the users 827 

wish to simulate (as the test simulations in Figure 13). This approach substantially simplifies the 828 

parameterization of PFTs because it becomes selection of strategies in different trait values (i.e., 829 

parameters). Thus, the PFTs are adaptive and variable in different environmental conditions, 830 

making it possible to reduce the number of PFTs while representing functional diversity and the 831 

optimal adaptation to climate conditions.  832 
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To represent the major variations in plant functional diversity, we chose four plant traits as 840 

the primary axes to define PFTs: wood density, LMA, height growth parameter, and leaf 841 

maximum carboxylation rate. Wood density is relatively conservative (Swenson and Enquist, 842 

2007; Chave et al., 2009), mostly ranging from 200 to 500 kg C m-3, while herbaceous stem 843 

density ranges from 400~600 kg C m-3 (Niklas, 1995). However, herbaceous stems are usually 844 

hollow, making the ratio of total biomass to its volume low, and grasses shed their stems each 845 

growing season, resulting in faster stem turnover. It is a strategic difference from woody plants, 846 

which keep the woody tissues to build up their trunks and thus display their leaves on top of 847 

trunks for light competition (Dieckmann et al., 2007; Falster and Westoby, 2003). LMA is the 848 

key leaf trait that determines leaf life longevity and leaf types (i.e., evergreen vs. deciduous) ) 849 

(Osnas et al., 2013), and represents the strategy for the competition in different soil nutrient 850 

levels (Tilman, 1988; Reich, 2014; Weng et al., 2017) and resistance to stresses of water and 851 

temperature (Oliveira et al., 2021). 852 

The phenological type is simulated as an emergent property of plant physiological 853 

processes and strategies of dealing with seasonal air temperature and soil water variations. Three 854 

parameters – growing degree days, running mean daily temperature, and critical soil moisture – 855 

are used to define all possible phenological types. These three parameters are widely used in a 856 

variety of phenology models (e.g., Sitch et al., 2003; Prentice et al., 1992; Arora and Boer, 857 

2005). However, phenology is not just a physiological response to the seasonality of climate 858 

conditions. Evergreen plants are distributed in periodically cold or dry climates. It is a 859 

competitively optimal strategy in infertile soil conditions (Aerts, 1995; Givnish, 2002; Coomes et 860 

al., 2005). The benefits and costs of keeping different leaves in cold or dry periods should be 861 
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realistically simulated based on eco-evolutionary theories for phenology modeling (e.g., Levine 874 

et al., 2022; Weng et al., 2017). 875 

As for soil organic matter decomposition, the CASA model, which has 13 pools with 876 

different transfer coefficients and turnover rates (Randerson et al., 1997; Potter et al., 1993, 877 

2003), is currently used in ModelE;. The soil biogeochemical cycle models developed thereafter 878 

have more sophisticated processes, especially those of microbial activities and carbon use 879 

efficiency (Manzoni et al., 2010; Wieder et al., 2014; Wang and Goll, 2021), and simplified 880 

carbon pools, mostly following CENTURY model structure (Parton et al., 1987). We chose an 881 

intermediate complexity scheme that has only two SOM pools but a functional microbial pool for 882 

decomposing SOM (Manzoni et al., 2010; Weng et al., 2017) so that the dynamics of SOM’s 883 

C:N ratio, carbon use efficiency, and nitrogen mineralization can be reasonably simulated while 884 

keeping the model structure parsimonious.  885 

 886 

5.2 Model predictions and performance 887 

In this paper, we only evaluated the carbon cycle in the model simulations, though the 888 

nitrogen cycle is also simulated in tandem with the carbon cycle in the model. We did not 889 

extensively tune model parameters to fit observations because the purpose of this paper is to 890 

describe the formulation of the model. The core processes of this model, e.g., photosynthesis, 891 

respiration, phenology, growth, allocation, demography, soil biogeochemical cycles, are from 892 

well-developed models and have been shown able to capture observational patterns. Data 893 

assimilation approaches can be implemented when parameter tuning becomes essential (Luo et 894 

al., 2011; MacBean et al., 2016). 895 
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The simulations demonstrate that this model can capture the global patterns of LAI, GPP, 905 

tree height, biomass, and soil carbon (Figure 7), even though the parameters are not extensively 906 

tuned. For example, global GPP patterns are consistent with those derived from SIF data 907 

(Figure7: c, d and Figure 8: b), and simulated tree heights span the same ranges of those derived 908 

from data. The simulated LAI is segregated by PFTs (Figure 8: a), largely because of the 909 

different parameter values of the maximum crown LAI for each PFT. The simulated biomass and 910 

soil carbon is generally higher than those of observations, though simulated soil carbon is lower 911 

in some cold regions.  912 

Several factors likely explain the apparent discrepancies between simulated and observed 913 

LAI, GPP, biomass, and soil carbon in the model. First, the model uses a potential PFT 914 

distribution and does not account for land cover change and land use history. For example, 915 

carbon dense ecosystems (e.g., forests) have been extensively replaced by croplands and 916 

pastures. Second, while vegetation in the real world reflects a variety of successional stages and 917 

the effect of various disturbance events, our model analyses are based on equilibrium simulations 918 

without explicit disturbances, such as fire, deforestation and regrowth. Third, the model assumes 919 

mineral nitrogen is saturated and can consistently meet demands for plant growth. We did not fix 920 

the land cover mismatches by compromising ecosystem physiological processes because we 921 

cannot put all these effects into current model structure (i.e., mortality) when many processes are 922 

missing.  923 

LAI is an illustrative variable for understanding why compromises are necessary when 924 

integrating ecological and demographic processes into an ESM. LAI, as a critical prognostic 925 

variable in vegetation models, links both plant physiology and biogeophysical interactions with 926 

climate systems (Richardson et al., 2012; Kelley et al., 2020; Park and Jeong, 2021). While LAI 927 
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is usually simulated by a fixed allocation scheme, even if the allocation ratios are dynamic with 940 

vegetation productivity or environmental conditions (Montané et al., 2017; Xia et al., 2019), the 941 

prediction of LAI is often simplified as the balance between leaf growth and turnover.  942 

In practice, for ESMs, modelers tend to tune the LAI to fit observations and get the 943 

required albedo and water fluxes whatever the parameters of photosynthesis and respirations are.  944 

The uniform leaves within a crown would make the lower layer leaves have a negative carbon 945 

gain if the LAI was tuned close to that observed in tropical and boreal evergreen forests (around 946 

5~7).  Therefore, the photosynthesis rate must be tuned to fit the canopy photosynthesis by 947 

keeping these carbon negative leaves.  The crown with carbon negative leaves do not affect the 948 

ecosystem carbon dynamics in the “single-cohort” models because the whole canopy net carbon 949 

gain can be tuned to fit the observations.  950 

However, for the demographic models, the trees with different sizes are explicitly 951 

represented and placed in different layers. The vegetation community can create an understory 952 

condition where seedlings cannot survive because of light limitation and negative carbon gains 953 

(Weng et al., 2015). Since the leaf traits in the crown profile are functions of light, water and 954 

nitrogen (Niinemets et al., 2015), a more complex crown development module is required to 955 

simulate branching and leaf development and deployment processes. A tree should be able to 956 

optimize its LAI to maximize its fitness as a result of interactions among crown structure, light 957 

interception, and community-level competition (Anten, 2002; Niinemets and Anten, 2009; 958 

Hikosaka and Anten, 2012).  For balancing the model complexity and computing efficiency, we 959 

defined a much small target LAI in this model to avoid carbon negative leaves.  960 

The parameter Vcmax used in this model is also much lower than measured in young leaves 961 

(Bonan et al., 2011) because the aging of leaves is considered in the mean value of Vcmax of all 962 
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leaves with different ages. The mean Vcmax of the whole canopy leaves is much lower than the 1017 

new leaves that are usually used to measure Vcmax. If the leaves were not specifically chosen, the 1018 

mean of measured Vcmax is much lower than those used in models as shown in Verryckt et al. 1019 

(2022). This also indicates that Vcmax in current vegetation models is over-estimated.  1020 

In our model, the formulation of allometry makes the whole-tree’s photosynthesis and 1021 

respiration proportional to crown area, and thus the growth rate of tree diameter independent of 1022 

crown area. The allocation scheme between the growth of stems and functional tissues (i.e., 1023 

leaves and fine roots) is the strategy of resources foraging for light and soil resources, including 1024 

height-structured competition for light. The vital rates drive vegetation structural changes and 1025 

biogeochemical cycles (Purves et al., 2008). Our model makes it possible to simulate vegetation 1026 

composition and structural dynamics based on the fundamental principles of ecology, and the 1027 

transient changes in terrestrial ecosystems in response to climate change. This model therefore 1028 

has the potential to predict competitively dominant strategies represented by plastic plant traits 1029 

(e.g., competitively dominant LMA in the simulations of Figure 13), and the vegetation structure 1030 

and composition that will be eco-evolutionarily optimized. 1031 

 1032 

5.3 Major uncertainties in BiomeE       1033 

               Global vegetation models typically require simplifying assumptions to organize 1034 

ecosystem processes at different scales into a cohesive model structure that balances the 1035 

complexity of ecosystem processes and the limitations of our knowledge (Prentice et al., 1992, 1036 

2007; Harrison et al., 2021). In our model, many processes, including phenology and drought 1037 

effects, are based on phenomenological equations representing the poorly understood links 1038 

between processes needed by the model to simulate the entire system. In the following sections, 1039 
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we highlight these assumptions and evaluate their relative benefits and costs. Transparency in the 1046 

description of a community model such as this one will help future developers understand model 1047 

compromises and the processes that should be improved. The following phenomenological 1048 

relationships represent the major sources of uncertainty in this model. 1049 

Water limitation of photosynthesis is calculated as a function of relative soil moisture 1050 

following the water stress function from Rodriguez-Iturbe et al. (1999): 1051 

𝛽1 = 𝑀𝑖𝑛 =1.0,𝑚𝑎𝑥 f
L"#L9$:
L∗#L9$:

, 0.0gB, (16) 

The parameters s* and smin are PFT-specific, representing different responses of PFTs to soil 1052 

water conditions, and SD is the relative soil moisture ranging from 0 (soil water content at wilting 1053 

point) to 1 (at field capacity). This formulation that scales soil moisture to a scalar between zero 1054 

to 1 is repeatedly used in both physiological responses of photosynthesis and phenology in 1055 

ecosystem models as a simplistic treatment of the central role of water limitation on plant 1056 

physiology (Powell et al., 2013; De Kauwe et al., 2015; Harper et al., 2021). This equation does 1057 

not include the detailed processes of plant hydraulics and its adaptation to arid environments.  1058 

Plants have multiple tradeoffs and strategies to improve their competitiveness under water 1059 

stress, such as regulating stomata conductance, shedding leaves, producing more roots, etc. 1060 

(Oliveira et al., 2021; Volaire, 2018). At the ecosystem level, competition and evolutionary 1061 

processes filter community emergent properties (Franklin et al., 2020; van der Molen et al., 1062 

2011). For example, trees in different climate regions have similar hydraulic safety margins 1063 

(Choat et al., 2012), partly due to the intense competition for light (height growth) and water 1064 

(root allocation) that require optimal use of available resources at any climate conditions 1065 

(Gleason et al., 2017; Liu et al., 2019). However, in this model, the drought responses are only 1066 
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delineated by Eq. 16. The parameter choices for s* and smin likely explain the amplified water 1070 

stresses and low productivity in arid regions within our model.   1071 

Phenology represents the seasonal rhythms of plant physiological activities as adapted to 1072 

periodic changes in temperature, precipitation, and light availability (Abramoff and Finzi, 2015; 1073 

Caldararu et al., 2014; Chuine, 2010). DGVMs normally simulate leaf onset and senescence 1074 

based on temperature conditions for cold deciduous plants and soil water conditions for drought 1075 

deciduous plants (Arora and Boer, 2005; Caldararu et al., 2014). Phenology modeling is still 1076 

highly empirical, although new models and approaches for cold deciduous and drought 1077 

deciduous strategies have been proposed recently (e.g., Caldararu et al., 2014; Dahlin et al., 1078 

2015; Manzoni et al., 2015; Chen et al., 2016). We used a simple formulation of temperature and 1079 

drought responses (Eqs. 1 and 3). For the cold-deciduous strategies, the phenology model 1080 

balances growing season length and frost risks by adjusting critical GDD0 and T0 according to 1081 

chilling days and growing days to reduce frost risk in warm regions and increase growing season 1082 

length in cold regions. In this way, leaf senescence also considers growing season length and leaf 1083 

aging. For example, in areas with longer growing seasons, plants will have a higher T0 and 1084 

initiate senescence at higher temperatures. For the drought phenology, we set different critical 1085 

soil moisture indexes to initiate and terminate a growing season (Table 1). However, these 1086 

relationships are phenomenological, and ecological rules will benefit future model development. 1087 

Mortality is an integrative process of accumulative physiological stresses, structural 1088 

damages, and disturbances in a tree’s lifetime. The direct causes can be starvation, structural 1089 

failure, hydraulic failure, etc. (McDowell, 2011; Aakala et al., 2012; Aleixo et al., 2019). We 1090 

only consider the background mortality and define its rate as a function of tree diameter and light 1091 
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environment (Eq. 10). Hydraulic failure-induced mortality is required for realistically modeling 1098 

plant responses to climate changes. 1099 

We employed these general phenomenological equations primarily because more 1100 

mechanistic equations are not currently known. We are using the key variables that characterize 1101 

ecosystem properties to define the basic model structure but have to use less-than-solid 1102 

information to link them together by phenomenological relationships, as all the models do. In 1103 

addition, our interest is to keep this model as simple as possible to improve interpretability and 1104 

transparency and to reduce the computational burden when it is integrated into the ModelE.  In 1105 

these places where the tradeoff between model complexity and process accuracy is necessary, we 1106 

highlight the underlying assumptions clearly, rather than implementing temporary fixes that lack 1107 

solid ecological principles.  1108 

 1109 

5.4 Insights from comparison with MsTMIP model 1110 

Most of the MsTMIP participant models have been analyzed by a model traceability method 1111 

developed by Xia et al. (2013), which hierarchically decomposes model behavior into some 1112 

fundamental processes of ecosystem carbon dynamics, such as GPP, carbon use efficiency 1113 

(CUE), allocation coefficients, carbon residence time, carbon storage capacity, and 1114 

environmental response functions (Xia et al., 2013; Cui et al., 2019; Zhou et al., 2021). This 1115 

method is based on the assumptions of the linear system and the ecosystem emergent behavior 1116 

per se (Eriksson, 1971; Emanuel and Killough, 1984; Luo et al., 2012; Sierra et al., 2018), 1117 

making it is consistent with the concepts that are used as the basis of ecosystem carbon cycle 1118 

models. The analyses of model traceability found, for the carbon cycle dynamics, the major 1119 

uncertainty is from the modeling of the turnover rates (reciprocals of residence time) of 1120 
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vegetation and soil carbon pools (Chen et al., 2015; Jiang et al., 2017). From CMIP5 to CMIP6, 1122 

the modeling of NPP has been greatly improved, while the ecosystem carbon residence time 1123 

remains highly biased (Wei et al., 2022).  1124 

According to the concepts of this traceability analysis approach (Xia et al., 2013), BiomeE 1125 

also has a high uncertainty in the modeling of residence times of vegetation and soil carbon 1126 

pools, because the mortality is picked up from the global forest data and the SOC decomposition 1127 

processes are highly simplified. These issues have been discussed in the section of “5.3 Major 1128 

uncertainties in BiomeE”. These concepts (e.g., residence time, allocation coefficients) describe 1129 

model emergent properties resulting from the underlying biological and ecological processes 1130 

(i.e., micro-dynamics vs. macro-states).  Fitting the emergent properties directly to improve 1131 

model behavior is natural and convenient because many vegetation models are using these 1132 

emergent properties (e.g., CUE, residence time, and allocation coefficients) to describe 1133 

ecosystem processes in their formulations as a tradition of ecosystem modeling.  1134 

There are a couple of common and long-lasting issues in terrestrial ecosystem modeling, 1135 

such as responses to warming, responses to atmospheric CO2, drought stress effects, and 1136 

vegetation compositional changes (Luo, 2007; Franklin et al., 2020; Harrison et al., 2021). These 1137 

issues represent our knowledge gaps in ecosystem ecology. For modeling vegetation dynamics 1138 

eco-evolutionarily, we need to use the fundamental ecological processes and unbreakable 1139 

physical rules to simulate the emergent processes (e.g., Scheiter et al., 2013; Weng et al., 2019), 1140 

With the design of vegetation modeling in the BiomeE, such as the explicit demographic 1141 

processes, individual-based competition for different resources, and flexible trait combinations of 1142 

PFTs, this model is able to predict some key emergent dynamics of ecosystems based on the 1143 

underlying biological and evolutionary mechanisms (as shown in Figure 13). Data from field 1144 
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experiments (Ainsworth and Long, 2004; Crowther et al., 2016), observatory networks (e.g., 1145 

Fluxnet, Baldocchi et al., 2001; Friend et al., 2007), and remote sensing (Duncanson et al., 1146 

2020), can provide direct information for modeling the underlying ecological processes and 1147 

validating predicted emergent properties. 1148 

      1149 

5.5 Model stability and complexity 1150 

Ecosystem demographic processes (e.g., reproduction and mortality) are a source of high 1151 

sensitivity and uncertainty in BiomeE. In some environmental conditions, especially in dry or 1152 

cold regions, the predefined parameters can lead to high mortality or failure of reproduction, 1153 

making ecosystems highly instable. To understand these issues, we developed a “single-cohort” 1154 

version of the model to aid in the diagnosis of issues in the full demographic version of the 1155 

model. The major issue we identified is the fact that the model formulation is based on functional 1156 

processes in highly-productive regions, whereas the model is applied globally and across much 1157 

more diverse environmental conditions (e.g., arid environments). The variables and parameters 1158 

that work well in highly-productive regions (e.g., initial seedling sizes, default leaf growth, 1159 

minimum allocation ratios, etc.) are often unsuitable in regions with higher environmental stress. 1160 

And although plants have evolved special features to deal with more extreme conditions (Lloret 1161 

et al., 2012; Reyer et al., 2013; Singh et al., 2020), these features have not yet been integrated 1162 

into the model.  1163 

 There is a tendency in current DGVMs to use individual plant physiological trait changes 1164 

to represent community shifts. This approach is usually characterized as “parameter dynamics” 1165 

or “response functions” (Fisher and Koven, 2020; Luo and Schuur, 2020) for reducing model 1166 

processes and complexity. Adding new processes to work around existing problems, instead of 1167 
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redesigning the fundamental model processes, is common in model development. The approach 1168 

is helpful for tracking model development, undoing wrong additions, and improving model 1169 

performance. However, work-arounds often increase model complexity without concomitant 1170 

improvements in model predictions.  1171 

Generally, a model’s usefulness is improved by transparent assumptions, a well-defined 1172 

model structure, and output that is testable against data (Famiglietti et al., 2021; Forster, 2017; 1173 

Hourdin et al., 2017). Data assimilation approaches improve model parameterization more 1174 

efficiently and effectively than manually tuning individual parameters (Wang et al., 2009; 1175 

Williams et al., 2009; MacBean et al., 2016) and allow for more detailed uncertainty analysis 1176 

(Luo et al., 2009; Weng et al., 2011; Weng and Luo, 2011; Xu et al., 2006; Dietze, 2014). It is 1177 

important to only include necessary assumptions in a model and to include them in ways that do 1178 

not compromise other processes or parameters. Modelers should try their best not to add poor-1179 

understood processes if not necessary. Additionally, many specifications of model formulation 1180 

are based on the questions that a user is trying to answer in their research. We should not expect 1181 

to develop an all-encompassing model that fits all application scenarios. On the contrary, 1182 

maintaining model flexibility and transparency is critical for using this model as a tool to explore 1183 

specific science questions. In BiomeE, we have opted for what we consider the most 1184 

parsimonious and, at the same time, theoretically sound formulations of allometry, phenology, 1185 

and allocation dynamics to allow for computational efficiency in capturing vegetation grown and 1186 

ecological dynamics in the context of an ESM. 1187 

 1188 

5.6 Legacy limitations of ModelE coding and development conventions 1189 
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The legacy of model coding structure and the history of model development can greatly affect 1190 

the functions and the selection of model formulations (Alexander and Easterbrook, 2015). 1191 

ModelE was developed as a general circulation model, and vegetation in the model to date has 1192 

been represented with a simple set of static biophysics parameterizations to regulate exchanges 1193 

of energy and moisture between the land surface and the atmosphere (Hansen et al., 2007; 1194 

Schmidt et al., 2014; Kelley et al., 2020). To advance the functionality of the vegetation and the 1195 

land surface model within ModelE, increases in complexity must therefore be balanced with the 1196 

computational demands of a fully coupled model.  1197 

In ModelE, the land model, TerraE, is used to calculate land surface (including vegetation) 1198 

water and energy fluxes and soil water dynamics based on the characteristics of vegetation 1199 

derived from the vegetation model (e.g., canopy conductance, wetness, etc.) at the grid scale. It 1200 

does not calculate each cohort’s transpiration and water uptake. In BiomeE, the water limitation 1201 

of stomatal conductance is calculated as a function of soil water stress index and root vertical 1202 

distribution, instead of the direct plant root water supply (plant hydraulics). This setting works 1203 

well for the big leaf model (one canopy at one grid). However, when multiple cohorts of plants 1204 

are represented, as we do in BiomeE, it is unable to represent water competition and differentiate 1205 

the contribution of each single cohort’s contribution to the total transpiration. A structural change 1206 

will be required to solve this problem by calculating transpiration from the bottom-up (i.e., from 1207 

cohort up to grid cell). 1208 

      1209 

6 Conclusions 1210 

We developed a new demographic vegetation model to improve the representation of terrestrial 1211 

vegetation dynamics and ecosystem biogeochemical cycles in the NASA Goddard Institute of 1212 

Deleted: the 1213 
Deleted: fully-coupled1214 

Deleted: our vegetation model1215 
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Space Studies’ coupled Earth system model, ModelE. This model includes the processes of plant 1216 

growth, mortality, reproduction, vegetation structural dynamics, and soil carbon and nitrogen 1217 

cycling. To scale this model globally, we added a new set of plant functional types to represent 1218 

global vegetation functional diversity and introduced new phenology algorithms to deal with the 1219 

seasonality of temperature and soil water availability. Competition for light and soil resources is 1220 

individual-based, which makes the modeling of eco-evolutionary optimality possible. This model 1221 

predicts the dynamics of vegetation and soil biogeochemistry including leaf area index, 1222 

vegetation structure (e.g., height, tree density, size distribution, crown organization), and 1223 

ecosystem carbon and nitrogen storage and fluxes. This model will enable ModelE to simulate 1224 

long-term biogeophysical and biogeochemical feedbacks between the climate system and land 1225 

ecosystems at decadal to century temporal scales. It will also allow for the prediction of transient 1226 

vegetation dynamics and eco-evolutionary community assemblage in response to future climate 1227 

changes based on the fundamental ecological principles.  1228 

 1229 

Code and data availability 1230 

The model codes have been coupled with NASA GISS ModelE and will be released with 1231 

ModelE codes (https://www.giss.nasa.gov/tools/modelE/). The codes of BiomeE module are 1232 

available at https://doi.org/10.5281/zenodo.6476152. The simulated data have been archived at 1233 

Zenodo (https://doi.org/10.5281/zenodo.6480411). 1234 
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