1	Modeling demographic-driven vegetation dynamics and ecosystem biogeochemical cycling
2	in NASA GISS's Earth system model (ModelE-BiomeE v.1.0)
3	
4	Ensheng Weng ^{1,2} , Igor Aleinov ^{1,2} , Ram Singh ^{1,2} , Michael J. Puma ^{1,2} , Sonali S. McDermid ³ ,
5	Nancy Y. Kiang ² , Maxwell Kelley ² , Kevin Wilcox ⁴ , Ray Dybzinski ⁵ , Caroline E. Farrior ⁶ ,
6	Stephen W. Pacala ⁷ , Benjamin I. Cook ²
7	
8	¹ Center for Climate Systems Research, Columbia University, New York, NY 10025, USA
9	² NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
10	³ Department of Environmental Studies, New York University, New York, NY 10003, USA
11	⁴ Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY
12	82071, USA
13	⁵ Institute of Environmental Sustainability, Loyola University Chicago, Chicago, IL 60660, USA
14	⁶ Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
15	⁷ Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544,
16	USA
17	
18	Corresponding author: Ensheng Weng (wengensheng@gmail.com; phone: 212-678-5585)
19	
20	Submitted to Geoscientific Model Development
21	

23	Abstract: We developed a new demographic vegetation model, BiomeE, to improve the
24	representation of vegetation demographic dynamics and ecosystem biogeochemical cycles in the
25	NASA Goddard Institute of Space Studies' ModelE Earth system model. This model includes the
26	processes of plant growth, mortality, reproduction, vegetation structural dynamics, and soil
27	carbon and nitrogen storage and transformations. The model combines the plant physiological
28	processes of ModelE's original vegetation model, Ent, with minor adaptations to fit the new
29	allometry and vegetation structure with the plant demographic and ecosystem nitrogen processes
30	represented from Geophysical Fluid Dynamics Laboratory's LM3-PPA. For global applications,
31	we added a new set of plant functional types to represent global vegetation functional diversity,
32	including trees, shrubs, and grasses, and a new phenology model to deal with seasonal changes in
33	temperature and soil water availability. Competition for light and soil resources is individual
34	based, which makes the modeling of transient compositional changes and vegetation succession
35	possible. BiomeE will allow ModelE to simulate long-term biogeophysical and biogeochemical
36	feedbacks between the climate system and land ecosystems. BiomeE simulates, with fidelity
37	comparable to other models, the dynamics of vegetation and soil biogeochemistry, including leaf
38	area index, vegetation structure (e.g., height, tree density, size distribution, crown organization),
39	and ecosystem carbon and nitrogen storage and fluxes. Further, BiomeE also allows for the
40	simulations of transient vegetation dynamics and eco-evolutionary optimal community
41	assemblage in response to past and future climate changes by incorporating core ecological
42	processes, including demography, competition, and community assembly.
43	

Key words: Biogeochemical cycles, Eco-evolutionary optimality, Ecosystem modeling, Plant
 traits, Vegetation dynamics

48 1 Introduction

49 Terrestrial ecosystems play a critical role in the climate system by regulating exchanges of 50 energy, moisture, and carbon dioxide between the land surface and the atmosphere (Sellers, 1997; Pielke et al., 1998; Meir et al., 2006). In turn, climate change has significantly affected 51 52 vegetation photosynthesis, water use efficiency, mortality, regeneration, and structure through 53 gradual changes in temperature and atmospheric [CO₂] together with shifts in climate extremes 54 (Brando et al., 2019; McDowell et al., 2020; Keenan et al., 2013; Huang et al., 2015). These 55 responses have triggered vegetation structural and compositional shifts. For example, global forest mortality has increased in recent years (Allen et al., 2010; Anderegg et al., 2012), tree 56 57 sizes have decreased (Zhou et al., 2014; McDowell et al., 2020), and species composition has 58 shifted to more opportunistic species (Clark et al., 2016; Brodribb et al., 2020). The shifts in 59 vegetation function, composition, and structure can change the boundary conditions of the land 60 surface and affect the climate system (Nobre et al., 1991; Avissar and Werth, 2005; Garcia et al., 2016; Green et al., 2017; Zeng et al., 2017). Realistic simulation of these processes is therefore 61 62 critical for Earth system models (ESMs). The vegetation dynamics in ESMs are usually simulated using dynamic global vegetation 63 models (DGVMs) (Prentice et al., 2007), most of which are simplified in their representation of 64 65 ecological processes. The core assumptions of many vegetation models are a big-leaf canopy, vegetation represented by only a few plant functional types (PFTs), single cohort-based 66 67 vegetation dynamics ("single-cohort" assumption, where the vegetation community at a land unit

are simulated as a collection of identical trees), lumped-pool-based biogeochemical cycles and
first order decay of soil organic matter. The competition of plant individuals and vegetation types
is approximately simulated as a function of productivity or Lotka-Volterra equations to predict

71	fractional PFT coverage (e.g., SDVGM, HYBRID, TRIFFID) (Friend et al., 1997; Woodward et
72	al., 1998; Sitch et al., 2003). These simplifying assumptions make it possible to simulate the
73	complex interactions of biological and ecological processes at the global scale.
74	These models are generally successful in reproducing land surface carbon, energy, and
75	water fluxes after extensive tuning against data from sites, observational networks, and satellite
76	remote sensing. However, the uncertainty of model predictions is high, and predictions can
77	diverge substantially across different models (Friedlingstein et al., 2014; Arora et al., 2020).
78	Lack of functional diversity and community assembly processes is one of the key issues in the
79	vegetation modeling of ESMs, which makes the models unable to predict transient dynamics of
80	vegetation composition and structure. A more mechanistic design that uses the fundamental
81	principles of ecology to simulate the emergent properties of ecosystems for predicting ecosystem
82	dynamics may therefore be necessary (Weng et al., 2017; Scheiter et al., 2013).
83	To this end, extensive efforts have been made to improve the representation of transient
84	vegetation dynamics based on ecological theories and conceptual models. Two pivotal advances
85	have been made in ecological vegetation modeling: 1) Demographic processes and trait-based
86	representation of processes have been developed to improve the representation of functional
86 87	representation of processes have been developed to improve the representation of functional diversity and size structure (Fisher et al., 2015; Weng et al., 2015; Pavlick et al., 2013) and 2)
87	diversity and size structure (Fisher et al., 2015; Weng et al., 2015; Pavlick et al., 2013) and 2)
87 88	diversity and size structure (Fisher et al., 2015; Weng et al., 2015; Pavlick et al., 2013) and 2) eco-evolutionary optimal and game theoretical approaches have been proposed to predict the
87 88 89	diversity and size structure (Fisher et al., 2015; Weng et al., 2015; Pavlick et al., 2013) and 2) eco-evolutionary optimal and game theoretical approaches have been proposed to predict the flexibility of parameters and processes (McNickle et al., 2016; Weng et al., 2017). These

93	ecological and evolutionary principles into ESMs have been summarized in several recent review
94	papers (Harrison et al., 2021; Franklin et al., 2020; Kyker-Snowman et al., 2022).
95	There are still major challenges to integrating these more sophisticated ecological modeling
96	approaches into the complex land models of ESMs, where the explicit simulations of energy,
97	water, and carbon fluxes at high frequencies are required for interacting with the atmosphere and
98	climate system. The details of vegetation dynamics, including the key functions from leaf
99	photosynthesis, respiration, biogeochemical fluxes between pools, demographic processes,
100	community assembly, vegetation structure, and competition output, must be well-organized
101	hierarchically and computed efficiently (Fisher and Koven, 2020; Franklin et al., 2020).
102	Representing these processes in ESMs, however, can complicate model structure and behavior,
103	especially for the interaction between physiology and vegetation composition, and cause large
104	increases in the computational burden. Thus, the implementation of detailed vegetation
105	demographic processes and size categories into ESMs would benefit from more parsimonious
106	approaches, such as is the case for the Robust Ecosystem Demography model (Argles et al.,
107	2020).
108	Including highly complex processes does not necessarily increase model predictive skills
109	(Famiglietti et al., 2021; Forster, 2017; Hourdin et al., 2017). On the contrary, it may greatly
110	obscure model transparency and increase uncertainty, and positive feedbacks in these processes
111	may result in large and unanticipated shifts of vegetation states. Any small differences in model
112	setting or even parameter differences can result in distinct predictions, especially in vegetation
113	structure, which is supposed to be predicted by these types of models. These processes make
114	demographic vegetation models often unreliable when compared to the well-tuned "single-
115	cohort" vegetation models that simplify the reproduction and mortality as growth and turnover of

continuous biomass pools. Additionally, the <u>long history of land models and the requirements of</u>
<u>backward compatibility (i.e., reversing the model to its previous functions)</u> mean developers
must often build their new functions on top of previous <u>modeling</u> assumptions and <u>coding</u>
structure (Fisher and Koven, 2020), adding up to multiple adjustments <u>of previous processes and</u>
making the model untraceable.

121 To explicitly model the transient dynamics of ecosystems in ESMs while preserving model 122 traceability, we need clear assumptions, detailed physical processes, and traceable model 123 structure. For the best chance of accurate predictions outside of the model's testing data, model 124 processes should be based on the fundamental biological and ecological principles to predict 125 ecosystem emergent properties, instead of fitting the emergent patterns directly as many models 126 do currently. To achieve this, we need to properly represent the tradeoffs of plant traits, balance 127 the complexity of the model structure and priority for the processes that are required by the 128 general circulation model (GCM), and also make model assumptions transparent and processes 129 robust. These requirements make it difficult to fully implement the modeling approaches that are 130 well-developed in the ecological modeling community. 131 This paper describes a vegetation demographic and soil organic decomposition model that 132 is incorporated into the NASA Goddard Institute for Space Studies (GISS) Earth system model, 133 ModelE. Our goal is to develop a parsimonious, transparent model that 1) allows ModelE to 134 simulate the ecological dynamics of terrestrial ecosystems and vegetation at the global scale and 135 2) sets up a modeling framework for solving some of the major challenges for incorporating 136 important ecological mechanisms into ESMs. For (1), we have incorporated core ecosystem 137 processes, including plant growth, demography, community assembly, and ecosystem carbon and

138 nitrogen cycles. For (2), we have developed PFTs that are plant trait-based and a competition

-(Deleted: legacy
-(Deleted: technical
-(Deleted: reversibility in model development
-(Deleted: their
-(Deleted: model
-(Deleted: on top of
-(Deleted: assumptions

Deleted: The NASA Goddard Institute for Space Studies' Earth system model, ModelE, has a land model for representing land surface hydrology (TerraE) (Rosenzweig and Abramopoulos, 1997; Schmidt et al., 2014) and a vegetation biophysics scheme (from the Ent Terrestrial Biosphere Model)(Ito et al. 2020; Kelley et al. 2020; Schmidt et al. 2014), with fixed vegetation traits (e.g., leaf mass per area, C:N ratio), fixed biomass, canopy height, and plant density, and seasonal leaf area index prescribed from a satellite-derived data set (Ito et al., 2020). The Ent TBM calculates canopy radiative transfer (Friend & Kiang 2005), canopy albedo, canopy conductance, photosynthesis, autotrophic respiration, and some phenological behaviors of leaf biophysics (Kim et al., 2015). The carbon allocation scheme of Kim et al. (2015) is used in ModelE with prescribed canopy structure and LAI, routing the carbon that would otherwise be allocated to plant tissues via growth instead directly as litter into soil carbon pools, thus conserving carbon for fully coupled carbon cycle simulations, but resulting possibly in imbalanced plant carbon reserve pools where the prescribed canopy structure is not in equilibrium with the simulated climate (Ito et al., 2020)....

Deleted:

1	
(Deleted: parsimonious
(Deleted: can be
1	Deleted: GISS ModelE ESM.

187 scheme that is individual-based. In this paper, we describe this model in detail, and evaluate its

188 performance compared to both observations and other state-of-the-art DGVMs.

189

190 2 Model Description

191	2.1 <u>GISS ModelE and BiomeE Overview</u>	 Deleted:
		Deleted: Structure and
192	ModelE has a land model for representing land surface hydrology (TerraE) (Rosenzweig and	Formatted: Font: Bold
193	Abramopoulos, 1997; Schmidt et al., 2014) and a vegetation biophysics scheme (from the Ent	 Deleted: ; TBM
194	Terrestrial Biosphere Model; TBM) (Ito et al. 2020; Kelley et al. 2020; Schmidt et al. 2014),	
195	with fixed vegetation traits (e.g., leaf mass per area, C:N ratio), fixed biomass, canopy height,	
196	and plant density, and seasonal leaf area index prescribed from a satellite-derived data set (Ito et	
197	al., 2020). The Ent TBM calculates canopy radiative transfer (Friend & Kiang 2005), canopy	
198	albedo, canopy conductance, photosynthesis, autotrophic respiration, and some phenological	
199	behaviors of leaf biophysics (Kim et al., 2015). The carbon allocation scheme of Kim et al.	
200	(2015) is used in ModelE with prescribed canopy structure and LAI, routing the carbon that	
201	would otherwise be allocated to plant tissues via growth instead directly as litter into soil carbon	
202	pools, thus conserving carbon for fully coupled carbon cycle simulations, but resulting possibly	
203	in imbalanced plant carbon reserve pools where the prescribed canopy structure is not in	
204	equilibrium with the simulated climate (Ito et al., 2020).	
205	BiomeE is a standalone simulator derived from the LM3-PPA (Weng et al., 2015). It is a	
206	demographic vegetation model that simulates plant physiology, vegetation demography, adaptive	
207	dynamics (eco-evolutionary adaptation), and ecosystem carbon, nitrogen, and water cycles (Fig.	
208	1) (Weng et al., 2017, 2019). In this model, the PFTs are defined by a set of combined plant	 Deleted: a PFT is
209	traits with their values sampled from the observed ranges to represent a specific plant type.	

only. The brown boxes are N pools. The black boxes are for both carbon and nitrogen pools. The

C:N ratios of leaves, wood, fine roots, and microbes are fixed and those of liters and SOM pools

are dynamic with input and output. Panel b shows the demographic processes of BiomeE and the

226

227

228

229

230

key processes of population dynamics.

244	The demographic processes generate and remove cohorts and change the size and density of
245	plant individuals in the cohorts. With explicit description of cohort size, organization, and
246	composition during a model run, the model simulates competition for light and soil resources,
247	community assembly and vegetation structural dynamics. These processes are hierarchically
248	organized in this model and run at various time steps: half-hourly or hourly for plant physiology
249	and soil organic matter decomposition, daily for growth and phenology, and yearly for
250	demography.

251 We coupled the standalone BiomeE into ModelE's land model for simulating global 252 dynamics of vegetation and biogeochemical cycles and their feedback to the climate system, For 253 extending this model to the global scale, we designed a new set of PFTs to represent the 254 functional diversity of global vegetation and a new phenological scheme to deal with, 255 temperature and water seasonality. Leaf photosynthesis processes are taken from ModelE's 256 existing vegetation model, Ent (Kim et al. 2015), and used to calculate the carbon budget that 257 drives vegetation dynamics. Plant growth and demographic processes and the soil organic matter 258 decomposition and nitrogen cycle processes are from BiomeE (Fig. 1). The land surface energy 259 and water fluxes are calculated by TerraE with land surface characteristics jointly defined by the 260 vegetation model.

261 Plant functional types

- In this model, we use a set of continuous plant traits to define plant functional types, so that we
 <u>can simulate plant emergent properties (such as dominant plant types, vegetation compositional</u>
 <u>changes, etc.</u>) in response to climate changes based on the underlying plant physiological
- 265 properties and ecological principles through eco-evolutionary modeling in the future. For
- 266 <u>example, life forms are defined by</u> the continuums characterized by wood density (woody vs.

Deleted: s	
Deleted: extendingextrapolating	
Deleted:	
Deleted:	
Deleted: environmental	
Deleted: temperature and water	
Deleted: .	
Deleted: taken	
Deleted:)	
Deleted: , and used to calculate the	
Deleted: , for calculating	

278	herbaceous), height growth coefficient (tree vs. shrub), and leaf mass per unit area (LMA, for	
279	evergreen vs. deciduous). Deciduousness is defined by cold resistance (evergreen vs. cold	
280	deciduous), and drought resistance (evergreen vs. drought deciduous). Grasses are simulated as	
281	tree seedlings with all stems senescent along with leaves at the end of a growing season. The	
282	individuals are reset back to initial size each year and the population density is also reset using	
283	the total biomass of current cohort and predefined initial size of grasses. The photosynthesis	
284	pathway is predefined as C3 or C4.	Formatted: Font: Not Bold
285	We defined 9 PFTs for our test runs in this paper to roughly represent global vegetation	
286	functional diversity (Table 1) according to their life form (tree, shrub, and grass), photosynthesis	
287	(C3 and C4), and leaf phenology (evergreen and deciduous)	Deleted:
288	Table 1 Plant functional types used in BiomeE	

	LMA	$ ho_{ m W}$	$\alpha_{\mathbb{Z}}$	$T_{0,c}$	$\beta_{0,\mathrm{D}}$	PS		Deleted: ¶
	(kg C m ⁻²)	(kg C m ⁻³)				pathway		Plant functional types
18	0.07	360	30	15	0	C ₃	C	Deleted: H
18	0.14	300	30	-80	0	C_3		
22	0.025	350	30	15	0	C3		
20	0.03	250	30	15	0.2	C3		
20	0.03	300	30	15	0.0	C3		
18	0.025	360	20	15	0.1	C3		
18	0.03	360	20	15	0.1	C3		
20	0.025	90*	10	5	0.2	C_3		
15	0.025	90*	10	5	0.2	C_4		
	18 22 20 20 18 18 20 15	18 0.07 18 0.14 22 0.025 20 0.03 20 0.03 18 0.025 18 0.025 18 0.025 18 0.025 18 0.03 20 0.025 15 0.025	18 0.07 360 18 0.14 300 22 0.025 350 20 0.03 250 20 0.03 300 18 0.025 360 18 0.025 360 18 0.025 90* 15 0.025 90*	18 0.07 360 30 18 0.14 300 30 22 0.025 350 30 20 0.03 250 30 20 0.03 300 30 18 0.025 360 20 18 0.025 360 20 18 0.025 360 20 18 0.03 360 20 20 0.025 90* 10 15 0.025 90* 10	18 0.07 360 30 15 18 0.14 300 30 -80 22 0.025 350 30 15 20 0.03 250 30 15 20 0.03 250 30 15 20 0.03 300 30 15 18 0.025 360 20 15 18 0.03 360 20 15 20 0.025 $90*$ 10 5 15 0.025 $90*$ 10 5	18 0.07 360 30 15 0 18 0.14 300 30 -80 0 22 0.025 350 30 15 0 20 0.03 250 30 15 0.2 20 0.03 300 30 15 0.2 20 0.03 300 30 15 0.0 18 0.025 360 20 15 0.1 18 0.03 360 20 15 0.1 20 0.025 $90*$ 10 5 0.2 15 0.025 $90*$ 10 5 0.2	18 0.07 360 30 15 0 C_3 18 0.14 300 30 -80 0 C_3 22 0.025 350 30 15 0 C_3 20 0.03 250 30 15 0.2 C_3 20 0.03 250 30 15 0.2 C_3 20 0.03 300 30 15 0.0 C_3 18 0.025 360 20 15 0.1 C_3 18 0.03 360 20 15 0.1 C_3 20 0.025 90^* 10 5 0.2 C_3	18 0.07 360 30 15 0 C_3 18 0.14 300 30 -80 0 C_3 22 0.025 350 30 15 0 C_3 22 0.025 350 30 15 0 C_3 20 0.03 250 30 15 0.2 C_3 20 0.03 300 30 15 0.0 C_3 20 0.03 300 30 15 0.0 C_3 18 0.025 360 20 15 0.1 C_3 20 0.025 90^* 10 5 0.2 C_3 18 0.025 90^* 10 5 0.2 C_3 15 0.025 90^* 10 5 0.2 C_4

290 LMA: leaf mass per unit area, ρ_W : wood density, ρ_Z : Height coefficient, $T_{0,c}$: Critical

291 temperature for phenology offset, $\beta_{0,D}$: critical soil moisture index for the offset of phenology,

292 PS: photosynthesis pathway, E: evergreen, C: cold-deciduous, D: drought-deciduous. *Grass 293 stem density is calculated as tissue biomass divided by stem volume. The tissue density of

294 grass's stems is as high as wood. **Deleted:** *a*_H

301		
302	All PFTs go through the same set of plant physiological and demographical processes in	
303	the model and derive different emergent properties due to the differences in parameters, rather	
304	than differences in processes (except C_3 and C_4). With these different strategies, they have their	
305	advantages and risks in different environments. An advantage of this continuous parameter	
306	design is that one PFT can switch to another by changing its parameters (except C_3 and C_4	
307	photosynthesis pathways). This opens the way for eco-evolutionary and ecological community	
308	assembly simulation to explore the competitively optimal plant traits as environments change.	
309	Phenology	
310	Phenology types are defined by two parameters, a critical low temperature and a critical soil	
311	moisture index, that are used to trigger leaf fall. These two parameters define 4 phenological	Deleted:
312	types with their possible factorial combinations: evergreen, drought-deciduous, cold-deciduous,	
313	and drought-cold-deciduous. Evergreen PFTs have high resistances to cold (i.e., very low critical	
314	temperature) and drought (very low soil drought). Cold and drought deciduous PFTs have low	
315	critical temperature and soil drought index, respectively. These phenological types represent	Deleted:
316	different strategies of dealing with environmental stresses and pressure of competition. It is	
317	possible that the evergreen would be more competitive in high seasonality regions (e.g.,	
318	evergreen in boreal regions), though the first response of plants to harsh environments (e.g., cold	
319	or dry) is to shed their leaves. Our definition of phenology is designed to make it possible to	
320	evaluate the competitively optimal strategy in future studies.	
321	For the cold-deciduous PFTs (3 and 5), we used the growing degree days above 5 $^{\circ}$ C	
322	(GDD_5) to control the timing of phenological onset and a critical low temperature (T_m) to control	
323	the offset. GDD5 is calculated from the days that temperature starts to increase from the coldest	

326 days in the non-growing season. The critical value of GDD that the plants require for growth

327 (GDD_c) is defined as a function of chilling days in the non-growing season (Prentice et al.,

328 1992):

$$GDD_c = a_0 + d \cdot e^{-b \cdot N_{CD}},\tag{1}$$

329 where, N_{CD} is the days of the cold period in nongrowing season before bud burst, a_0 is the

330 minimum GDD_c (50) when the cold period is sufficiently long, d is the maximum addition of

331 GDD_{c} (800) when there is no cold period (i.e., $N_{CD}=0$), b is a shape coefficient (0.025). These

332 parameters are tunable and should change with acclimate to new climates.

333 The running mean temperature that represents the mean temperatures over a short period of time

334 is calculated as:

$$\begin{cases} T_m(i) = T_d(i), & \text{when } i = 1\\ T_m(i) = 0.8T_m(i-1) + 0.2T_d(i), & \text{when } i \ge 2 \end{cases}$$
(2)

We used an index of cold condition (accumulative low temperature, ALT) to make sure the low temperature signal is persistent and differentiates the signal of the seasonal temperature changes and the stochastic low temperature stresses in growing seasons. The critical temperature for triggering leaf senescence (T_c) is calculated as a function of the number of growing days (N_{GD}).

$$T_c = T_{0,c} - s \cdot e^{-c \cdot (\max(0, N_{GD} - L0))},$$
(3)

where, $T_{0,c}$ is the highest critical temperature when N_{GD} is sufficiently long, *s* is the range that a critical temperature can change, c is a shape parameter, *L0* defines the lowest critical temperature $(T_{0,c} - s)$ when N_{GD} is smaller than L0. The rationale in this equation is that when a growing period is not long enough, plants need a lower T_c to trigger leaf fall so that they can have a

343	growing season that is not too short. This setting is based on the thermal adaptation analysis of	
344	Yuan et al. (2011).	
345	For the drought deciduous PFTs (tropical drought deciduous broadleaf, arid shrub, C4	
346		
340	grass), we used a soil moisture index (s_D) to <u>start</u> and <u>end</u> a growing season.	Deleted: initiate Deleted: terminate
	$s_D = \sum_{i=1}^{n} Min\left(1.0, max\left(\frac{\theta_i - \theta_{WP,i}}{\theta_{HC,i} - \theta_{WP,i}}, 0.0\right)\right),\tag{4}$	
347	where <i>i</i> is the soil layer in root zone, θ is soil water content (vol/vol), θ_{WP} is wilting point, and	
348	$ heta_{ m HC}$ is soil water holding capacity. The critical soil moisture values that trigger new leaf growth	Deleted: The critical soil moisture values that trigger new leaf growth and leaf fall are defined as PFT-specific
349	and leaf fall are defined as PFT-specific parameters. We slightly tuned these two parameters	parameters. evergreen PFTs having low θ^* .
350	according to the soil moistures where the deciduous PFTs' leaves start to grow or fall. Usually,	
351	the critical soil moisture for starting new leaf growth is higher than the soil moisture levels that	
352	trigger leaf fall so that the plants can have a stable growing season.	
353	Plant demography and biogeochemical cycles	
354	Allometry and Plant architecture	
355	The plant allometry and architecture are critical for plant resources allocation, light capture, and	Deleted: The allometry of woody PFTs follows the equations used in LM3-PPA
356	soil water and nutrients uptake. The allometry equations are the same as those used in LM3-PPA	
357	(Weng et al., 2015; Farrior et al., 2013);	Deleted: . Plant allometry is described by the following equations
	$ \begin{array}{l} $	
	$\begin{cases} S = 0.25\pi\rho\Lambda\alpha_H D^{2+\theta_H}, \\ A_L^* = l_{max}A_C \end{cases} $ (5)	
	$\begin{bmatrix} A_L - l_{max}A_C \\ A_{FR}^* = \varphi_{RL}l_{max}A_C \end{bmatrix}$	Deleted: ¶
		Deleted: structural
358	where D is tree diameter; A_C is crown area; Z is tree height; S is woody biomass (sapwood plus	Deleted:
359	heartwood); α_{C_r} and α_{Z_r} are the scaling factors for crown area and plant height, respectively; θ_{C_r}	Deleted: ,
	13	

377	and θ_{Z} are the exponents for crown area and tree height, respectively; π is ratio of a circle's	Deleted:
577	and of are the <u>exponents</u> for crown area and use neight, respectively, n is fallo of a chere's	Deleted: ,
378	circumference to its diameter; ρ is wood density (kg C m ⁻³); Λ is the taper factor from a cylinder	Deleted: allometry parameters
379	to a tree with the same D; A_L^* and A_{FR}^* are the <u>target</u> surface area of leaves and fine roots,	Deleted:
517		Deleted:
380	respectively; φ_{RL} is the area ratio of leaves to roots. l_{max} is the maximum leaf area per unit	Deleted: potential
381	crown area, defined as a function of plant height (Z):	Deleted: Deleted: (i.e., potential crown LAI)
	V	Deered: (i.e., potential crown LAI)
	$l_{max}(Z) = L_{max,0}(Z+h_0)/(Z+H_0),$ (6)	
382	where $L_{\max,0}$ is the maximum crown LAI when a tree is sufficiently tall, \underline{Z} is tree height, h_0 is a	Deleted: H
383	small number that makes a minimum l_{max} ($L_{max,0}$ (h_0/H_0)) when tree height is close to zero, and	Formatted: Font: Italic
384	H_0 is a curvature parameter.	
385	Plant growth and allocation of carbon and nitrogen to plant tissues	
386	The allocation of NPP wood, leaves, and roots is affected by climate and forest age (Xia et al.,	
387	2019; Litton et al., 2007). However, vegetation models cannot capture these patterns well at large	
388	spatial scales, even if the adaptive responses to climate and forest ages are considered (Xia et al.,	
389	2019, 2017), partly because of the absence of explicit representation of shifts in species	
390	composition and competition between individuals (Dybzinski et al., 2015; Franklin et al., 2012).	
391	BiomeE has an optimal growth scheme that drives the allocation of carbon and nitrogen to	
392	leaves, fine roots, and stems based on the optimal use of resources and light competition (Weng	
393	et al., 2019). In this scheme, the growth of new leaves and fine roots follows the growth of	
394	woody biomass (i.e., stems), and the area ratio of fine roots to leaves is kept constant during the	
395	growing season. The allocation of available carbon between structural (e.g., stems) and	
396	functional (e.g., leaves and fine roots) tissues is optimal for light competition at given nitrogen	
397	availability.	

421	Reproduction and Mortality	Delete
	T and the second s	
419	2019; Farrior et al., 2013; Dybzinski et al., 2011; Farrior, 2019).	
418	simulate the underlying processes that determine emergent allocation patterns (Weng et al.,	
417	combined with explicit competition for light and soil resources in our model makes it possible to	
416	(l_{max}) and fine root area per unit leaf area (φ_{RL}) (Eq. 5). The optimal-growth allocation scheme	
415	different tissues are governed by two parameters: the maximum leaf area per unit crown area	
414	biomass (Eq. 5). Generally, the growing-season average allocations of carbon and nitrogen to	
413	new tree height and crown area using allometry equations, and the targets of leaf and fine root	
412	from wood allocation and allometry (Eq 5). With an updated tree diameter, we can calculate the	
411	This equation transforms the carbon gain from photosynthesis to the diameter growth that results	
	$\frac{dD}{dt} = \frac{G_W}{0.25\pi\Lambda\rho_W\alpha_Z(2+\theta_Z)D^{1+\theta_Z}} $ (7)	
410	growth equation:	
409	using the fact that dS/dt equals the carbon allocated for wood growth (G_W) , gives the diameter	
408	Mathematically differentiating the stem biomass allometry in Eq. 5 with respect to time,	

- 422 At a yearly time-step, the cumulative carbon and nitrogen allocated for reproduction by a canopy
- 423 cohort over the growing season length, T, is converted to seedlings according to the initial plant
- 424 biomass (S_0) and germination and establishment probabilities (p_g and p_e , respectively).

425 Generally, the population dynamics can be described by a variant of the von Foerster equation

426 (von Foerster, 1959):

$$N(S_{0},t) = \frac{p_{g}p_{e}}{S_{0}} \int_{0}^{T} N(\tau)G_{F}(\tau)d\tau$$

$$\frac{dN(s,t)}{dt} = -\mu(s,t)N(s,t).$$
(8)

Deleted: Wood tissue growth (G_W) drives the growth of tree structure, such as diameter, height, and crown area, and thus increases the targets of leaves and fine roots. By differentiating the stem biomass allometry in Eq. 5 with respect to time, using the fact that dS/dt equals the carbon allocated for wood growth (G_W) , we have the diameter growth equation: $\begin{aligned} \frac{dD}{dt} &= \frac{G_W}{0.25\pi \Lambda \rho_W \alpha_z (2+\theta_z) D^{1+\theta_z}} \qquad (..., [2]) \end{aligned}$

435exhere $N(S_0, t)$ is the spatial density of newly generated seedlings, $N(t)$ is the spatial density ofDetect:436this cohort of trees at time r, G_r is the carbon allocation to seeds, and μ is PFT-specific mortalityparameter438Each PFT has a canopy-layer-specific background mortality rate that is assigned from theformatted: Indent: First line: 0.38°439literature. These background rates are assumed to be size-independent for the canopy layer trees,formatted: Indent: First line: 0.38°440but size-dependent for understory trees. Many factors affect tree mortality, such as light, size,competition crown damage, hydraulic failure, trunk damage etc. (Zuleta et al., 2022; Lu et al.,4212021). These factors result in high mortality rates of seedlings and old trees (i.e., a "U-shaped"mortality curve). We use the following equation to delineate a mortality rate that varies with434social status (crown layers), shade effects, and tree sizes;peteres f_i is the shade effects on mortality ($f_1 = \sqrt{L-1}$), f_2 is seedling mortality when a tree is445sechere f_i is the shade effects on mortality ($f_2 = \sqrt{L-1}$), f_3 is seedling mortality when a tree ispetered:446small ($f_r = A_{SD}e^{-B_{SD}a_{r}}$), and f_D gepresents the size effects on the mortality of adult trees (f_D formatted: Index:447 $m_1 \frac{e^{A_D(D-B_D)}{\frac{1}{1} + e^{A_D(D-B_D)}}$. L is the layer this plant is in ($L=1$ for the secoling in the understorylayers, B_{SD} is the maximum multiplier of mortality rate for the seedlings in the understory448and so on), A_{SD} is the maximum multiplier of mortality rate for the secoling in the understorylayeted:	436 437 438	this cohort of trees at time τ , G_F is the carbon allocation to seeds, and μ is PFT-specific mortality		Deleted:
436this cohort of trees at time r, G_T is the carbon allocation to seeds, and μ is PFT-specific mortality parameter437Each PFT has a canopy-layer-specific background mortality rate that is assigned from the literature. These background rates are assumed to be size-independent for the canopy layer trees, but size-dependent for understory trees. Many factors affect tree mortality, such as light, size, competition crown damage, hydraulic failure, trunk damage etc. (Zuleta et al., 2022; Lu et al., 2021). These factors result in high mortality rates of seedlings and old trees (i.e., a "U-shaped" mortality curve). We use the following equation to delineate a mortality rate that varies with 	436 437 438	this cohort of trees at time τ , G_F is the carbon allocation to seeds, and μ is PFT-specific mortality		Deleted:
437parameter438Each PFT has a canopy-layer-specific background mortality rate that is assigned from theFormatted: Indext: First line: 0.38"439literature. These background rates are assumed to be size-independent for the canopy layer trees, but size-dependent for understory trees. Many factors affect tree mortality, such as light, size, competition crown damage, hydraulic failure, trunk damage etc. (Zuleta et al., 2022; Lu et al., 2021). These factors result in high mortality rates of seedlings and old trees (i.e., a "U-shaped" mortality curve). We use the following equation to delineate a mortality rate that varies with social status (crown layers), shade effects, and tree sizes; $\mu(s,t) = \mu_0(1 + f_1 f_3) f_D$ (9)Detect: ¶445sphere f_1 is the shade effects on mortality ($f_L = \sqrt{L-1}$), f_2 is seedling mortality when a tree is 	437 438			
Each PFT has a canopy-layer-specific background mortality rate that is assigned from the literature. These background rates are assumed to be size-independent for the canopy layer trees, but size-dependent for understory trees. Many factors affect tree mortality, such as light, size, competition crown damage, hydraulic failure, trunk damage etc. (Zuleta et al., 2022; Lu et al., 2021). These factors result in high mortality rates of seedlings and old trees (i.e., a "U-shaped" mortality curve). We use the following equation to delineate a mortality rate that varies with social status (crown layers), shade effects, and tree sizes; $\mu(5,t) = \mu_0(1 + f_L f_S) f_D$ (9) 445 where f_L is the shade effects on mortality ($f_L = \sqrt{L-1}$). f_S is seedling mortality when a tree is small ($f_S = A_{SD}e^{-R_{SD}\cdot D}_{*}$), and f_D represents the size effects on the mortality of adult trees (f_D = $m_s \frac{e^{A_D(D-D_0)}}{1 + e^{A_D(D-D_0)}}$. L is the layer this plant is in ($L=1$ for the canopy layer and 2 for the second, and so on), A_{SD} is the rate of mortality decreasing as tree diameter (D) increases, m_s is the maximum multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).	438	parameter		
439literature. These background rates are assumed to be size-independent for the canopy layer trees,440but size-dependent for understory trees. Many factors affect tree mortality, such as light, size,441competition crown damage, hydraulic failure, trunk damage etc. (Zuleta et al., 2022; Lu et al.,4422021). These factors result in high mortality rates of seedlings and old trees (i.e., a "U-shaped"443mortality curve). We use the following equation to delineate a mortality rate that varies with444social status (erown layers), shade effects, and tree sizes; $\mu(s,t) = \mu_0(1 + f_L f_S) f_D$ 445where f_L is the shade effects on mortality ($f_L = \sqrt{L-1}$), f_S is seedling mortality when a tree is446small ($f_S = A_{SD}e^{-B_{SD}\cdot D}$), and f_D represents the size effects on the mortality of adult trees (f_D =447 $m_s \frac{e^{A_D(D-D_D)}}{1 + e^{A_D(D-D_D)}}$). L is the layer this plant is in ($L=1$ for the canopy layer and 2 for the second,448and so on), A_{SD} is the maximum multiplier of mortality rate for the seedlings in the understory449layers, B_{SD} is the rate of mortality decreasing as tree diameter (D) increases, m_s is the maximum450multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate451increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).				
but size-dependent for understory trees. Many factors affect tree mortality, such as light, size, competition crown damage, hydraulic failure, trunk damage etc. (Zuleta et al., 2022; Lu et al., 2021). These factors result in high mortality rates of seedlings and old trees (i.e., a "U-shaped" mortality curve). We use the following equation to delineate a mortality rate that varies with social status (crown layers), shade effects, and tree sizes; $\mu(s,t) = \mu_0(1 + f_L f_s)f_D$ (9) We here f_L is the shade effects on mortality ($f_L = \sqrt{L-1}$), f_S is seedling mortality when a tree is mail ($f_s = A_{SD}e^{-B_{SD}D}$, and f_D represents the size effects on the mortality of adult trees (f_D = $m_s \frac{e^{A_D(D-D_D)}}{1+e^{A_D(D-D_D)}}$. L is the layer this plant is in (L =1 for the canopy layer and 2 for the second, and so on), A_{SD} is the maximum multiplier of mortality rate for the seedlings in the understory layers, B_{SD} is the rate of mortality decreasing as tree diameter (D) increases, m_s is the maximum multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).	439	Each PFT has a canopy-layer-specific background mortality rate that is assigned from the \checkmark		Formatted: Indent: First line: 0.38"
441competition crown damage, hydraulic failure, trunk damage etc. (Zuleta et al., 2022; Lu et al.,4422021). These factors result in high mortality rates of seedlings and old trees (i.e., a "U-shaped"443mortality curve). We use the following equation to delineate a mortality rate that varies with444social status (crown layers), shade effects, and tree sizes; $\mu(s,t) = \mu_0(1 + f_L f_s)f_D$ 445where f_L is the shade effects on mortality ($f_L = \sqrt{L-1}$), f_s is seedling mortality when a tree is446small ($f_s = A_{SD}e^{-B_{SD}\cdot D_s}$), and f_D perpresents the size effects on the mortality of adult trees (f_D =447 $m_s \frac{e^{A_D(D-D_0)}}{1+e^{A_D(D-D_0)}}$. L is the layer this plant is in (L=1 for the canopy layer and 2 for the second,448and so on), A_{SD} is the maximum multiplier of mortality rate for the seedlings in the understory449layers, B_{SD} is the rate of mortality decreasing as tree diameter (D) increases, m_s is the maximum450multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate451increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).		literature. These background rates are assumed to be size-independent for the canopy layer trees,		
4422021). These factors result in high mortality rates of seedlings and old trees (i.e., a "U-shaped"443mortality curve). We use the following equation to delineate a mortality rate that varies with444social status (crown layers), shade effects, and tree sizes; $\mu(s,t) = \mu_0(1 + f_L f_S) f_D$ (9)445where f_i is the shade effects on mortality ($f_L = \sqrt{L-1}$), f_S is seedling mortality when a tree is446small ($f_s = A_{5D}e^{-B_{5D}b}$,), and f_D represents the size effects on the mortality of adult trees (f_D =447 $m_s \frac{e^{A_D(D-D_D)}}{1+e^{A_D(D-D_D)}}$. L is the layer this plant is in (L =1 for the canopy layer and 2 for the second,448and so on), A_{5D} is the maximum multiplier of mortality rate for the seedlings in the understory449layers, B_{5D} is the rate of mortality decreasing as tree diameter (D) increases, m_s is the maximum450multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate451increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).	440	but size-dependent for understory trees. Many factors affect tree mortality, such as light, size,		
443mortality curve). We use the following equation to delineate a mortality rate that varies with444social status (crown layers), shade effects, and tree sizes;Deleted: ¶ $\mu(s,t) = \mu_0(1 + f_L f_S) f_D$ (9)445where f_i is the shade effects on mortality ($f_L = \sqrt{L-1}$), f_S is seedling mortality when a tree isDeleted: Where446small ($f_S = A_{SD} e^{-B_{SD} \cdot D}$), and f_D represents the size effects on the mortality of adult trees (f_D =Deleted: Where447 $m_s \frac{e^{A_D(D-D_0)}}{1+e^{A_D(D-D_0)}}$. L is the layer this plant is in (L=1 for the canopy layer and 2 for the second,Deleted:448and so on), A_{SD} is the maximum multiplier of mortality rate for the seedlings in the understoryDeleted:449layers, B_{SD} is the rate of mortality decreasing as tree diameter (D) increases, m_s is the maximumDeleted:450multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rateDeleted:451increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).Deleted:	441	competition crown damage, hydraulic failure, trunk damage etc. (Zuleta et al., 2022; Lu et al.,		
444 social status (crown layers), shade effects, and tree sizes; $\mu(s,t) = \mu_0(1 + f_L f_s) f_D$ (9) 445 where f_L is the shade effects on mortality ($f_L = \sqrt{L-1}$), f_s is seedling mortality when a tree is 446 small ($f_s = A_{SD}e^{-B_{SD}\cdot D_s}$), and f_D represents the size effects on the mortality of adult trees (f_D = 447 $m_s \frac{e^{A_D(D-D_0)}}{1+e^{A_D(D-D_0)}}$). L is the layer this plant is in (L =1 for the canopy layer and 2 for the second, 448 and so on), A_{SD} is the maximum multiplier of mortality rate for the seedlings in the understory 449 layers, B_{SD} is the rate of mortality decreasing as tree diameter (D) increases, m_s is the maximum 450 multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate 451 increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).	442	2021). These factors result in high mortality rates of seedlings and old trees (i.e., a "U-shaped"		
$\mu(s,t) = \mu_0(1 + f_L f_s) f_D \qquad (9)$ 445 where f_i is the shade effects on mortality $(f_L = \sqrt{L-1})$, f_s is seedling mortality when a tree is 446 small $(f_s = A_{SD}e^{-B_{SD}D})$, and f_D represents the size effects on the mortality of adult trees $(f_D = \frac{e^{A_D(D-D_0)}}{1 + e^{A_D(D-D_0)}})$. L is the layer this plant is in $(L=1$ for the canopy layer and 2 for the second, 448 and so on), A_{SD} is the maximum multiplier of mortality rate for the seedlings in the understory 449 layers, B_{SD} is the rate of mortality decreasing as tree diameter (D) increases, m_s is the maximum 450 multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate 451 increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).	443	mortality curve). We use the following equation to delineate a mortality rate that varies with		
445 where f_i is the shade effects on mortality ($f_L = \sqrt{L-1}$), f_S is seedling mortality when a tree is 446 small ($f_s = A_{SD}e^{-B_{SD}\cdot D}$), and f_D represents the size effects on the mortality of adult trees ($f_D = m_s \frac{e^{A_D(D-D_0)}}{1+e^{A_D(D-D_0)}}$). L is the layer this plant is in (L =1 for the canopy layer and 2 for the second, 448 and so on), A_{SD} is the maximum multiplier of mortality rate for the seedlings in the understory 449 layers, B_{SD} is the rate of mortality decreasing as tree diameter (D) increases, m_s is the maximum 450 multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate 451 increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).	444	social status (crown layers), shade effects, and tree sizes;		Deleted: ¶
445 where f_i is the shade effects on mortality ($f_L = \sqrt{L-1}$), f_S is seedling mortality when a tree is 446 small ($f_s = A_{SD}e^{-B_{SD}\cdot D}$), and f_D represents the size effects on the mortality of adult trees ($f_D = m_s \frac{e^{A_D(D-D_0)}}{1+e^{A_D(D-D_0)}}$). L is the layer this plant is in (L =1 for the canopy layer and 2 for the second, 448 and so on), A_{SD} is the maximum multiplier of mortality rate for the seedlings in the understory 449 layers, B_{SD} is the rate of mortality decreasing as tree diameter (D) increases, m_s is the maximum 450 multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate 451 increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).				
446 small $(f_s = A_{SD}e^{-B_{SD}\cdot D})$, and f_D represents the size effects on the mortality of adult trees $(f_D = m_s \frac{e^{A_D(D-D_0)}}{1+e^{A_D(D-D_0)}})$. <i>L</i> is the layer this plant is in (<i>L</i> =1 for the canopy layer and 2 for the second, 448 and so on), A_{SD} is the maximum multiplier of mortality rate for the seedlings in the understory 449 layers, B_{SD} is the rate of mortality decreasing as tree diameter (<i>D</i>) increases, m_s is the maximum 450 multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate 451 increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).		$\mu(s,t) = \mu_0 (1 + J_L J_S) J_D \tag{9}$		
446 small $(f_s = A_{SD}e^{-B_{SD}\cdot D_s})$, and f_D represents the size effects on the mortality of adult trees $(f_D = m_s \frac{e^{A_D(D-D_0)}}{1+e^{A_D(D-D_0)}})$. <i>L</i> is the layer this plant is in (<i>L</i> =1 for the canopy layer and 2 for the second, 448 and so on), A_{SD} is the maximum multiplier of mortality rate for the seedlings in the understory 449 layers, B_{SD} is the rate of mortality decreasing as tree diameter (<i>D</i>) increases, m_s is the maximum 450 multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate 451 increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).	445	where f_L is the shade effects on mortality $(f_L = \sqrt{L-1})$, f_S is seedling mortality when a tree is	(1	Deleted: Where
447 $m_s \frac{e^{A_D(D-D_0)}}{1+e^{A_D(D-D_0)}}$. <i>L</i> is the layer this plant is in (<i>L</i> =1 for the canopy layer and 2 for the second, 448 and so on), A_{SD} is the maximum multiplier of mortality rate for the seedlings in the understory 449 layers, B_{SD} is the rate of mortality decreasing as tree diameter (<i>D</i>) increases, m_s is the maximum 450 multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate 451 increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).			$ \land \land \succ $	
447 $m_s \frac{e^{A_D(D-D_0)}}{1+e^{A_D(D-D_0)}}$. <i>L</i> is the layer this plant is in (<i>L</i> =1 for the canopy layer and 2 for the second, 448 and so on), A_{SD} is the maximum multiplier of mortality rate for the seedlings in the understory 449 layers, B_{SD} is the rate of mortality decreasing as tree diameter (<i>D</i>) increases, m_s is the maximum 450 multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate 451 increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).	440	small $(J_s - A_{SD}e^{-SD} - J)$, and JD peresents the size effects on the mortality of adult trees $(J_D - J)$	$\langle \rangle \rangle >$	
448and so on), A_{SD} is the maximum multiplier of mortality rate for the seedlings in the understoryDeleted:449layers, B_{SD} is the rate of mortality decreasing as tree diameter (D) increases, m_s is the maximumDeleted:450multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rateEvent of the sensitivity to tree diameter).451increases by $m_s / 2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).	447	$m_s \frac{e^{A_D(D-D_0)}}{1 + A_D(D-D_0)}$. L is the layer this plant is in (L=1 for the canopy layer and 2 for the second,	$ \land \land \succ $	
449layers, B_{SD} is the rate of mortality decreasing as tree diameter (D) increases, m_s is the maximum450multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate451increases by $m_s /2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).			Ì	Deleted:
450 multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate 451 increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).	448	and so on), A_{SD} is the maximum multiplier of mortality rate for the seedlings in the understory	(1	Deleted:
451 increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).	449	layers, B_{SD} is the rate of mortality decreasing as tree diameter (D) increases, m_s is the maximum		
	450	multiplier of mortality rate for large-sized trees, D_0 is the diameter at which the mortality rate		
452 Crown self-organization and layering	451	increases by $m_s/2$, and A_D is a shape parameter (i.e., the sensitivity to tree diameter).		
	452	Crown self-organization and layering		
453 Tree crowns are arranged into different vertical canopy layers according to tree height and	453	Tree crowns are arranged into different vertical canopy layers according to tree height and		
454 crown area if their total crown area is greater than the land area following the rules of the PPA	454	crown area if their total crown area is greater than the land area following the rules of the PPA		
455 model (Strigul et al., 2008). In PPA, individual tree height is defined as the height at the top of	455	model (Strigul et al., 2008). In PPA, individual tree height is defined as the height at the top of		
		16		

467	the crown, and all leaves of a given cohort are assumed to belong to a single canopy layer. The		Deleted: With the PPA model, a key parameter for light competition, the height of canopy closure (i.e., critical
468	height of canopy closure for the top layer is referred to as critical height (Z^* , the height of the		height, <i>H</i> [*]), is defined; all the plants above this context- dependent height get full sunlight and all trees below this
469	shortest tree in the layer) and is defined implicitly by the following equation:	l	height are shaded by the upper layer trees.
	$k(1-\eta) = \sum_{i} \int_{Z^*}^{\infty} N_i(Z, t) A_{CR,i}(Z^*, Z) dZ $ (10)		
470	where $N_i(Z, t)$ is the density of PFT <i>i</i> trees of height Z per unit ground area; $A_{CR,i}(Z^*, Z)$ is the	(Deleted: ¶
471	crown area of an individual PFT <i>i</i> tree of height Z; η is the proportion of each canopy layer that		
472	remains open on average due to wind and imperfect spacing between individual tree crowns, and		
473	k is the ground area. The top layer includes the tallest cohorts of trees whose collective crown	(Deleted:
474	area sums to $1-\eta$ times the ground area; lower layers are similarly defined.		
475	All the trees taller than the critical height can get full sunlight and all trees below this		Deleted:
476	height are shaded by the upper layer trees. Trees within the same layer do not shade each other,		
477	but there is self-shading among the leaves within individual crowns. Cohorts in a sub-canopy		
478	layer are shaded by the leaves of all taller canopy layers. In each canopy layer, all cohorts are		
479	assumed to have the same incident radiation on the top of their crowns. Note, the gap fraction η		
480	is necessary to allow additional light penetration through each canopy layer for the persistence of		
481	understory trees in monoculture forests in which the upper layer crowns build a physiologically-		
482	optimal number of leaf layers (Farrior et al., 2013). The grasses only form one layer. Those		
483	individuals who cannot stay in that layer because of limited space will be killed (i.e., when the		
484	total grass crown area is larger than the land area).		
485	Ecosystem carbon and nitrogen biogeochemical cycles		
486	Ecosystem biogeochemical cycles (carbon and nitrogen in this model) are driven by plant and		
487	microbial demographic processes. There are seven pools in each plant: leaves, fine roots,		
	17		

496	sapwood, heartwood, fecundity (seeds), and non-structural carbohydrates and nitrogen (NSC and
497	NSN, respectively). The carbon and nitrogen in plant pools enter soil pools with the mortality of
498	individual trees and the turnover of leaves and fine roots. Soil has a mineral nitrogen pool for
499	mineralized nitrogen and five soil organic matter (SOM) pools for carbon and nitrogen:
500	metabolic litter (x_1), structural litter (x_2), microbial (x_3), and fast (x_4) and slow-turnover (x_5) SOM
501	pools.
502	The microbial pool plays a central role in the transfer and decomposition of SOM. The
503	decomposition processes are simulated by a model modified from Manzoni et al. (2010). The
504	technical details have been described in detail in Weng et al. (2019, 2017). The decomposition
505	rate of a SOM pool is determined by the basal turnover rate together with soil temperature and
506	moisture following the formulation of the CENTURY model. The microbial carbon use
507	efficiency (transfer from litter to microbial matter) is a function of litter nitrogen content,
508	following the model of Mazoni et al. (2010).
509	The N mineralization in decomposition is determined by microbial nitrogen demand,
510	SOM's C:N ratio, and decomposition rate. In the high C:N ratio SOM, microbes must consume
511	excess carbon to get enough nitrogen for growth. By contrast, in the low C:N ratio SOM,
512	microbes must release excess nitrogen to get enough carbon for energy. Depending on the C:N
513	ratios of SOM, soil microbes may be limited by either C or N.
514	The out-fluxes of C and N from the i^{th} pool (dC; and dN; respectively) are calculated by:

$dC_i = \xi(T, M) \rho_i QC_i,$	(11)
$dN_i = \xi(T, M) \rho_i Q N_i \; ,$	(11)

515 where ζ is the response function of decomposition to soil temperature (T) and moisture (M), ρ_i is 516 the basal turnover rate of the i^{th} litter pool at reference temperature and moisture, QC_i is the C 517 content in i^{th} pool, and QN_i is the N content in the i^{th} pool. 518 The new microbial growth (dM) is calculated as the co-limit of available carbon and 519 nitrogen mobilized at this step: $dM_i = Min(\varepsilon_0 \cdot dC_i, \Lambda_{microbe} \cdot dN_i),$ (12)520 where ε_0 is default carbon-use efficiency of litter decomposition (0.4) and Λ_{microbe} is a microbe's 521 C:N ratio, which is a fixed value (10 in this model). The soil heterotrophic respiration (R_h) is the 522 microbial respiration (i.e., the difference between carbon consumption and new microbial 523 growth), and the total N mineralization rate (Nmineralized) is calculated as the sum of mineralized N 524 in the SOM pools and microbial turnover: $R_h = \sum_{i=3}^5 dC_i - \sum_{i=4}^5 M_i,$ (13) $N_{mineralized} = \sum_{i=3}^{5} dN_i - \sum_{i=3}^{5} m_i / \Lambda_{microbe}$ 525 The *R*_h releases to atmosphere as CO₂. Mineralized N enters the mineral N pool for plants to use. - Formatted: Subscript

526 The dynamics of the mineral N pool is represented by the following equation:

$$\frac{dN_{mineral}}{dt} = N_{deposition} + N_{mineralized} - U - N_{loss},$$
(14)

527 where $N_{\text{deposition}}$ is N deposition rate, assumed to be constant over the period of simulation; N_{m} is

528 the N mineralization rate of the litter pools (fast and slow SOM and microbes); U is the N uptake

529 rate (Kg N m⁻² hour⁻¹) of plant roots; and N_{loss} includes the loss of mineralized N by

530 denitrification and runoff. The N deposition ($N_{deposition}$) is the only N input to ecosystems, and we

531 set nitrogen fixation as zero in this version of the model.

533 3 Model Test runs

534	For our comparison of model performance against observations and other models, we used
535	the full demographic version of BiomeE (described above) and also designed a "single-cohort"
536	version of the model to benchmark our demographic implementations. In the single-cohort
537	model, the mortality of trees is simulated as the turnover of woody biomass, and the fecundity
538	resources (carbon and nitrogen) are used to build the same-sized parent trees, instead of
539	seedlings growing from understory layers. If the total crown area of the trees in this cohort is
540	greater than the land area, the extra trees will be removed to make the total crown area less than
541	or equal to the land area. At equilibrium, the turnover of woody biomass is equal to the new
542	growth each year and the new trees generated from fecundity resources are killed by self-
543	thinning. The single-cohort model uses the mean state of the canopy layer trees to represent the
544	characteristics of the whole community. This single-cohort model performs like the traditional
545	biogeochemical models and simplifies vegetation computation.
546	In the test runs, the distribution of PFTs was from the Ent vegetation map (Ito et al., 2020),
547	which is derived from 2004 MODIS land cover and PFT data products (Friedl et al., 2010) and
548	climate data (Fig. 2). For these simulations, croplands and pastures were replaced by the
549	potential natural vegetation types.

567 Data sources for model evaluation

568	Gross primary productivity (GPP) data are from a global retrieval of surface turbulent fluxes
569	including latent heat, sensible heat, and GPP using remote sensing observations. These data are
570	on a 1°×1° geographic grid at a monthly time step based on an Artificial Neural Network
571	retrieval algorithm (Alemohammad et al., 2017). This algorithm uses six remotely sensed
572	observations as input: Solar Induced Fluorescence (SIF), Air Temperature, Precipitation, Net
573	Radiation, Soil Moisture, and Snow Water Equivalent. The data are available from 2007 to 2015.
574	The tree height data are from spaceborne light detection and ranging (lidar) global map of
575	canopy height at 1-km spatial resolution developed by Simard et al. (2011). These authors used
576	the 2005 data from the Geoscience Laser Altimeter System (GLAS) aboard ICESat (Ice, Cloud,
577	and land Elevation Satellite) to derive global forest canopy heights. Biomass data are from a
578	Global 1-degree Maps of Forest Area, Carbon Stocks, and Biomass, 1950-2010 developed by
579	Hengeveld et al. (2015). Soil carbon data are from Food and Agriculture Organization (FAO)
580	Harmonized World Soil Database (version 1.2), updated by Wieder et al. (2014).
581	MsTMIP model simulation data
582	We chose six model simulations (BiomeBGC, CTEM, CLM4, LPJ, Orchidee, VEGAS) from the
583	Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) (Huntzinger et
584	al., 2012) to compare against our model simulations. These models are well-developed and
585	widely used in Earth system models, representing the state-of-art of current land vegetation
586	model development. MsTMIP provided prescribed land use types for all the participant models.
587	However, it is up to the participant models for disturbance impacts on ecosystems (Huntzinger et
588	al., 2013). MsTMIP conducted five sets of experimental runs with different climate forcing,
589	land-use history, atmospheric CO ₂ concentration, and nitrogen deposition. In this study, we used

Formatted: Subscript

590	the SG1 simulation experiment because it is driven by the 1901~2010 climate forcing data with		
591	constant CO ₂ concentration and constant land cover (Huntzinger et al., 2013), which are the		Formatted: Subscript
592	closest to our model runs.		Deleted: (Huntzinger et al., 2013)the because it is driven by the 1901~2010 climate forcing data with constant CO2
593	Selected Grid Cells for Comparison		concentration and constant land cover (Huntzinger et al., 2013),which closest
594	To illustrate model behavior, we selected 8 grid cells that cover boreal forests, temperate	•	(Formatted: Indent: First line: 0.38", Line spacing: Double
595	forests, tropical forests, C4 grasslands, and arid shrublands to show the simulated ecosystem		
596	development patterns across the climate zones with different dominant PFTs (Table 2). Brazil		
597	Tapajos (TPJ), Oak Ridge (OKR), Harvard Forest (HF), Manitoba old black spruce site (MNT),		
598	and Bonanza Creek (BNC) are covered by tree PFTs. Konza long-term ecological research		
599	station (LTER) (KZ) is C4 grass. Walnut Gulch Kendall (WKG) and Sevilleta LTER (SV) are		
600	covered by arid shrubs. These sites were chosen because they have extensive data on vegetation		
601	and climate conditions for future comparisons.		Deleted: ¶
602	Table 2 Sites for simulated ecosystem development illustration		

Site	Dominant	Coordination	Mean	Annual
	PFT		Temperature	Precipitation
			(°C)	(mm)
Bonanza Creek (BNC)	Broadleaf deciduous	63.92°, -145.38°	-3.1	269
Manitoba old black	Evergreen needleleaf	55.88°, -98.48°	-3.2	520
spruce site (MNT)				
Harvard Forest (HF)	Broadleaf deciduous	42.54°, -72.17°	8.5	1050
Oak Ridge (OKR)	Broadleaf deciduous	35.96°, -84.29°	13.7	1372
Konza LTER (KZ)	C ₄ grass	39.08°, -96.56°	12.4	835
Sevilleta LTER (SV)	Arid shrub	34.36°, -106.88°	12.7	365
Walnut Gulch Kendall	Arid shrub	31.74°, -109.94°	17.7	350
(WGK)				
Brazil Tapajos (TPJ)	Broadleaf evergreen	-2.86°, -54.96°	26	1820

Deleted:

610 4 Results

611	<u>4.1 Simulated vegetation structural and ecosystem carbon dynamics</u>			Deleted: 4.1 Simulated ecosystem dynamics in different limate zones
(12	To de l'Anne d'an de l'institut d'anne de d'an eachdracha de Call de sea anne b'anne de barranne aide	1	$\langle 1 \rangle$	ormatted: Font: Bold
612	In the forest sites, the simulated vegetation structure by the full demographic model changes with		- Vi	ormatted: Font: Bold
613	the growth, regeneration, and mortality processes (Fig. 3). It can be separated into three stages			
614	according to the canopy crown dynamics: 1) open forest stage, 2) self-thinning stage, and 3)			
615	stabilizing stage. In the open forest stage, the crown area index (CAI) is less than 1.0 and all the			
616	individuals are in full sunlight. The tree crowns grow rapidly to occupy the open space (Fig. 3:			
617	a). In the self-thinning stage, the open space is filled by the crowns of similar sized trees (i.e., the			
618	forest is closed) and canopy trees are continuously pushed to the lower layer(s) (i.e., self-			
619	thinning) and the CAI continues to increase due to the limited space with growing tree crowns			
620	(i.e., the new spaces vacated from the canopy trees' mortality cannot meet the space demand			
621	from crown growth). The sizes of trees in the canopy layer are still similar in this period (Fig. 3:			
622	b and c) and the critical height (the height of the shortest tree in the canopy layer) keeps			
623	increasing in this period. In the stabilizing stage, when the space generated by the mortality of			
624	canopy trees is larger than the growth of canopy tree crown area, no trees are pushed to the lower			
625	layer and the lower layer trees start to enter the canopy layer and fill the space, leading to a sharp			
626	decrease in critical height (Fig. 3: b) and the mixing of different sized trees in the canopy layer.			
627	The CAI is decreasing as well because of the high mortality rates of the understory layer trees.			
628	As time goes on, the growth, regeneration, mortality, and space filling processes are equilibrated,			
629	and the forest structure is then stabilized.			
630	The tallest plant height (Fig. 3: c) shows the height of the trees in the tallest cohort. It keeps		(1	formatted: Indent: First line: 0.38"
631	growing as this cohort exists. The sharp decreases indicate the replacements by or merging with			
632	another shorter cohort because the density of trees in this cohort is very low (0.0001/ha in this			

636 3: d) is an index of the sum of all trees at a site. It keeps increasing during forest development

637 and is equilibrated earlier than height and crown structure.

642

Among these sites, at equilibrium, the tropical forest site (TPJ) has the highest crown area index
(around 2.2), followed by warm temperate forest at OKR, mixed forest at HF, and boreal forests
at BNC and MNT (Fig. 3). The shrubs and grasslands in arid regions have the lowest crown area
index (CAI), with basal area following similar patterns. For forested sites, tree height is tallest at

Deleted: ¶

structurebymodel changes with the growth, regeneration, and mortality processes (Fig. 3).It according to the canopy crown dynamicsbc the Compared to the CAI (Fig. 3: a) and critical height (Fig. 3: b), ¶ The tallest plant height (Fig. 3: c) shows the height of the

The tailest plant height (Fig. 3. c) shows the height of the trees in the tallest cohort. It keeps growing as this cohort exists. The sharp decreases indicate the replacements by or merging with another shorter cohort because the density of trees in this cohort is very low (0.0001/ha in this case) or the similarity between the tallest and the second tallest is high. The total basal area (Fig. 3: d) is an index of the sum of all trees at a site. It keeps increasing during forest development and is equilibrated earlier than height and crown structure.¶

662 TPJ, followed by OKR, HF, MNT, and BNC. The shrubs are short according to their allometry

663 parameters and the height of grasses during non-growing season is zero. The critical height,

664 which separates canopy layer trees from the understory layers, follows the same order as that of

tree height with high fluctuations with cohort changes.

Figure 4: Site ecosystem development simulated by BiomeE with full demography, Figure 4: Site ecosystem development simulated by BiomeE with full demography, For the temporal dynamics in the full demographic simulations (Fig. 4), the simulated GPP aligns closely with LAI and they reach their equilibrium states at similar times across sites (Fig. 4: a,b). According to the definition of maximum crown LAI (<u>Jmax</u>) in Eq. 6, the grass LAI (i.e., **Konza**) reaches the maximum each year, except the first year due to the low initial density (Fig. **4:** a). The biomass accumulation is much slower in forests because of the longer time needed for **forest structure (size distribution) to reach equilibrium. Soil carbon equilibration is faster in the**

Deleted: ¶

Formatted: Centered

Among these sites, at equilibrium, tThe tropical forest site (TPJ) has the highest crown area index (around 2.2), followed by warm temperate forest at OKR, mixed forest at HF, and boreal forests at BNC and MNT (Fig. 4). The shrubs and grasslands in arid regions have the lowest crown area index (CAI), with basal area following similar patterns. For forested sites, tree height is tallest at TPJ, followed by OKR, HF, MNT, and BNC. The shrubs are short according to their allometry parameters and the height of grasses during nongrowing season is zero. The critical height, which separates canopy layer trees from the understory layers, followsfollow the same order as that of tree height with high fluctuations with cohort changes.

Formatted: Font: Bold

Deleted:

Formatted: Centered, Indent: First line: 0", Line spacing: Multiple 1.15 li

Deleted: Equilibrium time scales for

Deleted: reach their equilibrium states at similar times across sites, but biomass accumulation is much slower in forests because of the longer time needed for forest structure (size distribution) to reach to approach equilibrium. Soil carbon equilibration is faster in the warm regions than in cold regions because of the higher turnover rate of SOM pools in warm regions.

Formatted: Font: Italic

Formatted: Subscript

703 704

Figure 5. Seasonal patterns of LAI and gross primary production in the sample grids. Two
 years of data are shown in this figure. The key of location abbreviations is in Table 2.

The PFTs at TPJ and MNT are evergreen trees. Their LAI does not change over the whole
year (Fig. 5: a). The forest in OKR has the longest growing season in the three deciduous forest
grids, followed by HF and BNC. BNC's growing season is only around 120 days, about half of

Deleted: trees forest.

710 OKR's growing season. The growing season of grasses in KZ starts in late May and ends in

712 September. The two arid-adapted shrub sites (SV and WKG) are controlled by water availability. 713 In TPJ (tropical evergreen forest), the trees have photosynthesis throughout the entire year (Fig. 714 5: b). In MNT, photosynthesis only happens in warm seasons with the leaves kept in the crowns 715 (evergreen needleleaf). The deciduous trees in OKR and HF have high photosynthesis rates 716 during the growing season. The photosynthesis rates in SV and WKG are generally low because 717 of the relatively dry environment. However, the precipitation events can drive photosynthesis 718 rates high in these arid regions. At the global spatial scale, only evergreen needle-leaved forests 719 keep their leaves in northern high latitude regions during January (Fig. 6), though photosynthesis 720 in this region ceases because of the low temperature. In July, northern high latitude regions green 721 up and their photosynthesis rates are high in wet regions.

722

Figure 6. Spatial patterns of LAI and GPP in Jan and July simulated with full
 demographic BiomeE. Panels a and b are the LAI and photosynthesis of January in the year of

725 600 (the last year of model run). Panels c and d are July's in the same year.

726

Deleted:

728 4.2 Global Comparisons with Observations

729 We tuned the parameter of maximum carboxylation rate (V_{cmax}) to fit the general pattern of \blacktriangleleft Formatted: Indent: First line: 0.38", Line spacing: Double 730 global GPP. Compared with SIF GPP (Alemohammad et al., 2017), simulated GPP is higher than 731 the SIF GPP generally (Figs. 7 and 8), though lower in arid regions (Fig. 7). The simulated tree 732 height is mostly taller compared to observations (Simard et al., 2011) because most forests have 733 been altered by human activities (Pan et al., 2013). However, the model and observations cover 734 approximately the same range of tree heights (up to 40 m). Simulated biomass is much higher 735 than the observations because, in the observations, many forest regions have been transformed Deleted: most 736 to low biomass land use types, (such as croplands) or represent earlier successional stages with Deleted: less accumulated carbon (i.e., not equilibrium states). 737

738

775	within the range of MsTMIP predictions (Fig. 9: b). LAI differences are a consequence of the
776	formulations within BiomeE. Specifically, BiomeE simulates leaf growth by using a maximum
777	crown LAI, which is lower than the real forest LAI. However, the low LAI does not affect crown
778	total photosynthesis because leaves in lower canopy layers contribute little to the total carbon
779	assimilation. BiomeE predicted biomass (Fig. 9: c) and soil carbon (Fig. 9: d) generally fall
780	towards the higher end of the MsTMIP simulations, except for the more arid grass- and shrub-
781	dominated sites. We note, however, that there are wide differences in estimates for vegetation
782	and soil carbon across the models, likely because of different treatments of mortality and
783	decomposition functions in these models.
784	

Figure 9 Site-level comparison with MsTMIP models.

787 The BiomeE predictions are from the full demography. The abbreviations of the 8 sites

788 (corresponding to model grid cells) and their coordination, dominant PFTs, and climatic

789 conditions are in Table 2.

790

791

Figure 10 Latitudinal patterns of GPP, NPP, Biomass, and soil carbon as simulated by
 BiomeE (with full demography) and MsTMIP models

794

More broadly, the latitudinal mean of BiomeE simulated GPP is at the lower end of MsTMIP model predictions (Fig. 10: a). Since BiomeE's GPP was tuned to fit remote sensing data derived GPP, the MsTMIP models may over-estimate global GPP. BiomeE simulated NPP (Fig. 10: b), plant carbon (Fig. 10: c), and soil carbon (Fig. 10: d) are within the range simulated by the MsTMIP models. This indicates that BiomeE has slightly lower respiration than the MsTMIP models. In the arid regions (e.g., around latitude 40-50° S), our model's GPP is lower than MsTMIP's because of sensitive drought responses in our model.

803

804 805

Figure 11 Comparison between the simulations of the full demography and the single cohort settings of BiomeE.

The demographic processes have significant impacts on the simulations of GPP, biomass, soil 807

808 carbon, and vegetation structure compared to the single-cohort version of BiomeE (Fig. 11). The

809 demographic version of the model includes an understory layer of plants, resulting in higher LAI

in high LAI regions and also slightly higher GPP. Higher GPP in the model with full 810

demography leads to a high allocation to leaves and fine roots. However, the total biomass
predicted by the two model versions are similar because of the tradeoffs in allocation between
leaves and stem growth and tree size distribution and because most biomass is concentrated in
stems. In the full demography model, tree mortality removes all the biomass, including leaves,
fine roots, and stems, while in the single-cohort model, the mortality is represented as the
turnover of woody biomass. Consequently, the full demography model has higher emergent
turnover rate for the whole vegetation.
Compared to the single-cohort model, the full demography model predicts higher LAI and
GPP in warm and wet regions and lower values in cold and dry regions (Fig. 12: a, b). The full
demography model also predicts much lower biomass and soil carbon than the single-cohort
model in cold and dry regions (Fig. 12: c). Because the single cohort model has the same SOM
pools and turnover/decomposition processes, the reduced biomass input from full demography
alone is causing the difference in SOM dynamics. This is consistent with the functions of
demographic processes in these regions, which greatly reduce model stability because
reproduction and survival are lower in dry and cold regions. By contrast, the single-cohort model
does not model these processes explicitly and instead uses a simplified routine turnover of
materials that allows plants to stay in extremely dry or cold conditions.

Figure 13. Simulated competitively dominant PFTs at different total ecosystem nitrogen.

The simulations are set as nitrogen-closed (i.e., no input and output of nitrogen). The number in

855 the title of each panel is the initial soil nitrogen. We used five PFTs that only differed in their

LMA (σ) and target root/leaf area ratio (ϕ_{RL}) corresponding to each LMA in each simulation.

Deleted: ¶

862 5 Discussion

- 863 We developed a parsimonious terrestrial ecosystem model for ModelE to simulate vegetation
- 864 dynamics and biogeochemical cycles. This model includes a cohort-based representation of
- 865 vegetation structure, a height structured light competition scheme, demographic processes, and
- 866 coupled carbon-nitrogen biogeochemical cycles. This model has four major modules that
- 867 organize the hierarchical processes of ecosystems together into a cohesive modeling structure: 1)
- 868 plant physiology (photosynthesis, respiration), 2) plant phenology and growth, 3) vegetation
- 869 structural dynamics, and 4) soil biogeochemical cycles (Fig. 1). Each module is cohesive and has
- 870 a minimum set of variables as the input from other modules.

871

872 5.1 Model formulation

873 In designing this model, we considered the simulation of competitively optimal strategy of plants 874 in different climates based on fundamental ecological rules (Purves and Pacala, 2008; Falster and 875 Westoby, 2003; Franklin et al., 2020). These strategies are mainly related to light competition, water conditions, nutrient use efficiency, and disturbances (e.g., fire), and represented by the 876 877 traits of wood density, height growth, leaf longevity, and photosynthesis pathways. PFTs are 878 used in this model as an integrative unit representing combinations of plant traits for simulating 879 (1) the spontaneous dynamics of carbon, water, and energy fluxes as the core functions of an 880 ESM-based land model and (2) the transient vegetation structural and compositional dynamics 881 and ecosystem biogeochemical cycles in response to climate variations.

Moved down [1]: In designing this model, we considered the simulation of competitively optimal strategy of plants in different climates based on fundamental ecological rules (Purves and Pacala, 2008; Falster and Westoby, 2003; Franklin et al., 2020). These strategies are mainly related to light competition, water conditions, nutrient use efficiency, and disturbances (e.g., fire), and represented by the traits of wood density, height growth, leaf longevity, and photosynthesis pathways. PFTs are used in this model as an integrative unit representing combinations of plant traits for simulating (1) the spontaneous dynamics of carbon, water, and energy fluxes as the core functions of an ESM-based land model and (2) the transient vegetation structural and compositional dynamics and ecosystem biogeochemical cycles in response to climate variations.

Moved (insertion) [1] Deleted:

Formatted: Indent: First line: 0"

Deleted: BiomeE,

Deleted:

Formatted: Line spacing: 1.5 lines

900	We adopted a generic design for the PFTs in the standalone BiomeE (Weng et al., 2019):
901	since the PFTs are samples of plant traits in their natural ranges, the numbers of PFTs are
902	flexible, depending on what strategies users wish to test (as the test simulations in Figure 13).
903	This approach substantially simplifies the parameterization of PFTs because it changes the
904	parametrizations to the selections of strategies through choosing different trait values (i.e.,
905	parameters). Thus, the PFTs are adaptive and can change to each other in different climate zones,
906	making it possible to reduce the number of PFTs while representing functional diversity and the
907	optimal adaptation to climate conditions.
908	To represent the major variations in plant functional diversity, we chose four plant traits as
909	the primary axes to define PFTs: wood density, leaf mass per unit area (LMA), height growth
910	parameter, and leaf maximum carboxylation rate (V_{cmax}). Wood density is relatively conservative
911	(Swenson and Enquist, 2007; Chave et al., 2009), mostly ranging from 200 to 500 kg C m ⁻³ ,
912	while herbaceous stem density ranges from 400~600 kg C m ⁻³ (Niklas, 1995). However,
913	herbaceous stems are usually hollow, making the ratio of total biomass to its volume low, and
914	grasses shed their stems each growing season, resulting in faster stem turnover. It is a strategic
915	difference from woody plants, which keep the woody tissues to build up their trunks and thus
916	display their leaves on top of trunks for light competition (Dieckmann et al., 2007; Falster and
917	Westoby, 2003). LMA is the key leaf trait that determines leaf life longevity and leaf types (i.e.,
918	evergreen vs. deciduous) (Osnas et al., 2013), and represents the strategy for the competition in
919	different soil nutrient levels (Tilman, 1988; Reich, 2014; Weng et al., 2017) and resistance to
920	stresses of water and temperature (Oliveira et al., 2021).
921	In this model, the phenological type is simulated as an emergent property of plant

922 physiological processes and its strategy to deal with seasonal variations of temperature and water

923	availability. We used three parameters – growing degree days (GDD), running mean daily	
924	temperature, and critical soil moisture - to define all possible phenological types. These three	
925	parameters are widely used in a variety of phenology models (Sitch et al., 2003; Prentice et al.,	
926	1992; Arora and Boer, 2005). As for soil organic matter decomposition, the CASA model is	
927	currently used in ModelE; it has 13 pools with different transfer coefficients and turnover rates	
928	(Randerson et al., 1997; Potter et al., 1993, 2003). The models developed thereafter have more	
929	sophisticated processes, especially those of microbial activities and carbon use efficiency	
930	(Manzoni et al., 2010; Wieder et al., 2014; Wang and Goll, 2021). We chose an intermediate	
931	complexity scheme that has only two SOM pools but a functional microbial pool for	
932	decomposing SOM so that the dynamics of SOM's C/N ratio, carbon use efficiency, and nitrogen	
933	mineralization can be reasonably simulated while keeping the model structure parsimonious.	
934		

935 **5.2 Model predictions and performance**

936 This model has four relatively distinctive sets of simulated variables that are critical for model 937 performance and calibration: 1) Stomatal conductance, photosynthesis, and respiration; 2) 938 demographic rates (i.e., allocation, structural growth, mortality, and reproduction); 3) LAI, tree 939 size, crown self-organization, and vegetation structure; 4) Soil carbon and nitrogen storage. In 940 this paper, we only evaluated the carbon cycle in the model simulations, though the nitrogen 941 cycle is also simulated in tandem with the carbon cycle in the model. We did not extensively 942 tune model parameters to fit observations because the purpose of this paper is to describe the 943 formulation of the model. The core processes of this model, e.g., photosynthesis, respiration, phenology, growth, allocation, demography, soil biogeochemical cycles, are from well-944

Deleted:

946	developed models and have been shown able to capture observational patterns. Data assimilation			
947	approaches can be implemented when parameter tuning becomes essential.			
948	The simulations demonstrate that this model can capture global patterns of GPP, LAI, tree			
949	height, biomass, and soil carbon, even though the parameters are not extensively tuned. For			
950	example, global GPP patterns are consistent with those derived from SIF data (Fig.7: a, b and			
951	Fig. 8: a), and simulated tree heights span the same ranges of those derived from data. The			
952	simulated biomass and soil carbon is generally higher than in observations, though simulated soil			
953	carbon is lower in some cold regions. Several factors likely explain the apparent overestimates of			
954	GPP, biomass, and soil carbon in the model. First, the model uses a potential PFT distribution			
955	and does not account for land cover change and land use history. For example, carbon dense			
956	ecosystems (e.g., forests) have been extensively replaced by croplands and pastures. Second,			
957	while vegetation in the real world reflects a variety of successional stages and the effect of			
958	various disturbance events, our model analyses are based on equilibrium simulations without			
959	explicit disturbances, such as fire, deforestation and regrowth. Third, the model assumes mineral			
960	nitrogen is saturated and can consistently meet demands for plant growth. We did not fix the land			
961	cover mismatches by compromising ecosystem physiological processes because we cannot put			
962	all these effects into current model structure (i.e., mortality) when many processes are missing.			
963	LAI is an illustrative variable for understanding why compromises are necessary when	De	leted:	
964	integrating ecologically based vegetation models into ESMs. LAI, as a critical prognostic			
965	variable in vegetation models, links both plant physiology and biogeophysical interactions with			
966	climate systems. While LAI is usually simulated by a fixed allocation scheme, even if the			
967	allocation ratios are dynamic with vegetation productivity (Montané et al., 2017), the prediction			
968	of LAI in models is often simplified as the balance between growth and turnover. Modelers tend			

970	to tune LAI to fit observations and get the required albedo and water fluxes whatever their
971	parameters of photosynthesis and respirations are. This LAI usually makes the lower layer
972	leaves carbon negative. However, a first principle is that a tree should have an optimal LAI to
973	maximize its carbon gain as a result of crown structure, light interception, and community-level
974	competition (Anten, 2002; Hikosaka and Anten, 2012; Niinemets and Anten, 2009). Thus, in our
975	model, because of the assumption of the uniform leaves within a crown, we defined a much
976	small target LAI to avoid carbon negative leaves.
977	The "uniform leaf" assumption makes the lower layer leaves carbon negative when LAI is
978	tuned close to that observed in tropical and boreal evergreen forests (where LAI is around 5 \sim 7).
979	Therefore, the photosynthesis rate must be tuned to fit the canopy photosynthesis by keeping the
980	carbon negative leaves. However, the carbon negative leaves do not affect ecosystem dynamics
981	in the "single-cohort" models because the whole canopy net carbon gain is still reasonable and
982	can be fitted to the observed dynamics. This contrasts with the demographic version of the
983	model, which represents trees with different sizes and in different layers and creates conditions
984	where seedlings in the understory cannot survive because of light limitation and negative carbon
985	balances in some dry and cold regions. The leaf traits in the crown profile should, in reality, be a
986	function of light, water and nitrogen (Niinemets et al., 2015). A more complex crown
987	development module will then be required to simulate branching and leaf development and
988	deployment processes. Modelers should balance the model complexity and computing efficiency
989	then.
990	The leaf maximum carboxylation rate (V_{cmax}) used in this model is also much lower than
991	measured in young leaves (Bonan et al., 2011) because the aging of leaves is considered in the
992	mean value of $V_{\rm cmax}$ of all leaves with different ages. The mean $V_{\rm cmax}$ of the whole canopy leaves

Deleted:

Deleted: lower

Deleted:

Deleted: due to the assumption of the uniform the leaves within a crown

Deleted: The leaf traits in the crown profile should, in reality, be a function of light, water and nitrogen (Niinemets et al., 2015).

Deleted: is

Deleted: Thus Deleted:

Deleted: more complex

1006	is much lower than the new leaves that are usually used to measure $V_{\rm cmax}$. If the leaves were not
1007	specifically chosen, the mean of measured $V_{\rm cmax}$ is much lower than those used in models as
1008	shown in Verryckt et al. (2022). This also indicates that $V_{\rm cmax}$ in current vegetation models is
1009	over-estimated.

1010	The allometry of plant architecture, rules for plant growth, and reproduction and mortality
1011	processes form the basis of vegetation structural dynamics. The formulation of allometry makes
1012	the whole-tree's photosynthesis and respiration proportional to crown area, and thus the growth
1013	rate of tree diameter independent of crown area. The allocation scheme between the growth of
1014	stems and functional tissues (i.e., leaves and fine roots) is the strategy of resources foraging for
1015	light and soil resources, including height-structured competition for light.
1016	The vital rates drive vegetation structural changes and biogeochemical cycles (Purves et al.,
1017	2008). Our model makes it possible to simulate vegetation composition and structural dynamics
1018	based on the fundamental principles of ecology, and the transient changes in terrestrial
1019	ecosystems in response to climate change. This model therefore has the potential to predict
1020	competitively dominant strategies represented by plastic plant traits (e.g., competitively
1021	dominant LMA in the simulations of Fig. 13), and the vegetation structure and composition that
1022	will be eco-evolutionarily optimized.
1023	
1024	5.3 Major uncertainties in <u>BiomeE</u>
1025	Global vegetation models typically require simplifying assumptions to organize ecosystem
1026	processes at different scales into a cohesive model structure that balances the complexity of
1027	ecosystem processes and the limitations of our knowledge. In our model, many processes,

Deleted:

The allometry of plant architecture, rules for plant growth, and reproduction and mortality processes form the basis of vegetation structural dynamics. The formulation of allometry makes the whole-tree's photosynthesis and respiration proportional to crown area, and thus the growth rate of tree diameter independent of crown area. These vital rates drive vegetation structural changes and biogeochemical cycles (Purves et al., 2008). Our model makes it possible to simulate vegetation composition and structural dynamics based on the fundamental principles of ecology, and the transient changes in terrestrial ecosystems in response to climate change. This model therefore has the potential to predict competitively dominant strategies represented by plastic plant traits (e.g., leaf traits, allocation etc.), resulting in simulated vegetation structure and composition that will be eco-evolutionarily optimized. PPA defines the heightstructured competition for light. The allocation scheme between the growth of stems and functional tissues (i.e., leaves and fine roots) is the strategy of resources foraging for light and soil resources. ¶

Deleted: this model	
Deleted:	
Deleted: We used many	
Deleted: Normally, a	
Deleted: g	

1056	including phenology and drought effects, are based on phenomenological equations representing
1057	the poorly understood links between processes needed by the model to simulate the entire
1058	system. In the following sections, we highlight these assumptions and evaluate their relative
1059	benefits and costs. Transparency in the description of a community model such as this one will
1060	help future developers understand compromises and areas that can be improved with new
1061	information or approaches. The following phenomenological relationships represent the major
1062	sources of uncertainty in this model.

1063 Water limitation of photosynthesis is calculated as a function of relative soil moisture1064 following the water stress function from Rodriguez-Iturbe et al. (1999):

$$\beta_D = Min\left(1.0, max\left(\frac{s_D - s_{min}}{s^* - s_{min}}, 0.0\right)\right),\tag{16}$$

1065 The parameters s* and smin are PFT-specific, representing different responses of PFTs to soil 1066 water conditions, and S_D is the relative soil moisture ranging from 0 (soil water content at wilting 1067 point) to 1 (at field capacity). This formulation that scales soil moisture to a scalar between zero 1068 to 1 is repeatedly used in both physiological responses of photosynthesis and phenology in 1069 ecosystem models as a simplistic treatment of the central role of water limitation on plant 1070 physiology (Harper et al., 2021; De Kauwe et al., 2015; Powell et al., 2013). This equation does 1071 not include the detailed processes of plant hydraulics and its adaptation to arid environments. 1072 Plants have multiple tradeoffs and strategies to improve their competitiveness under water 1073 stress, such as regulating stomata conductance, shedding leaves, producing more roots, etc. 1074 (Oliveira et al., 2021; Volaire, 2018). At the ecosystem level, competition and evolutionary 1075 processes filter community emergent properties (Franklin et al., 2020; van der Molen et al., 1076 2011). For example, trees in different climate regions have similar hydraulic safety margins

Deleted: Gs typically simplifying assumptions to organize ecosystem processes at different scales into a cohesive model structure that balances the complexity of different processes and the sour knowledge. In our model, processes, including phenology, drought effects, are

1082	(Choat et al., 2012), partly due to the intense competition for light (height growth) and water
1083	(root allocation) that require optimal use of available resources at any climate conditions
1084	(Gleason et al., 2017; Liu et al., 2019). However, in this model, the drought responses are only
1085	delineated by Eq. 16. The parameter choices for s^* and s_{\min} likely explain the amplified water
1086	stresses and low productivity in arid regions within our model.
1087	Phenology represents the seasonal rhythms of plant physiological activities as adapted to
1088	periodic changes in temperature, precipitation, and light availability (Abramoff and Finzi, 2015;
1089	Caldararu et al., 2014; Chuine, 2010). DGVMs normally simulate leaf onset and senescence
1090	based on temperature conditions for cold deciduous plants and soil water conditions for drought
1091	deciduous plants (Arora and Boer, 2005; Caldararu et al., 2014). Phenology modeling is still
1092	highly empirical, although new models and approaches for cold deciduous and drought
1093	deciduous strategies have been proposed recently (e.g., Caldararu et al., 2014; Chen et al., 2016;
1094	Dahlin et al., 2015; Manzoni et al., 2015). We used a simple formulation of temperature (Eqs 1
1095	and 3) and drought responses. For the cold-deciduous strategies, the phenology model balances
1096	growing season length and frost risks by adjusting critical GDD0 and T0 according to chilling
1097	days and growing days to reduce frost risk in warm regions and increase growing season length
1098	in cold regions. In this way, leaf senescence also considers growing season length and leaf aging.
1099	For example, in areas with longer growing seasons, plants will have a higher T0 and initiate
1100	senescence at higher temperatures. For the drought phenology, we set different critical soil
1101	moisture indexes to initiate and terminate a growing season (Table 1). However, these
1102	relationships are phenomenological, and ecological rules will benefit future model development.
1103	Mortality is an integrative result of accumulative physiological stresses, structural
1104	damages, and disturbances during a tree's lifetime. The direct reasons can be starvation,

1105	structural failure, hydraulic failure, etc. (McDowell, 2011; Aakala et al., 2012; Aleixo et al.,	
1106	2019). In this model, we only consider the background mortality and define its rate as a function	
1107	of tree diameter and light environment (Eq. 10). Hydraulic failure-induced mortality is required	
1108	for studying plant responses to climate changes.	
1109	We employed these general phenomenological equations primarily because more	Deleted: ¶
1110	mechanistic equations are not currently known, We are using the key variables that characterize	Deleted:
1111	ecosystem properties to define the basic model structure but have to use less-than-solid	
1112	information to link them together by phenomenological relationships, as all the models do. In	
1113	addition, our interest is to keep this model as simple as possible to improve interpretability and	
1114	transparency and to reduce the computational burden when it is integrated into the ModelE. In	
1115	these places where the tradeoff between model complexity and process accuracy is necessary, we	
1116	highlight the underlying assumptions clearly, rather, than implementing temporary fixes that lack	Deleted: than applying temporary fixes not based on solid ecological modeling approaches
1117	solid ecological principles.	Deleted: ¶
1118	۲	Deleted:
1119	5.4 Insights from comparison with MsTMIP model	
1120	Most of the MsTMIP participant models have been analyzed by a model traceability method	
1121	developed by Xia et al. (2013), which hierarchically decomposes model behavior into some	
1122	fundamental processes of ecosystem carbon dynamics, such as GPP, carbon use efficiency	
1123	(CUE), allocation coefficients, carbon residence time, carbon storage capacity, and	
1124	environmental response functions (Zhou et al., 2021; Xia et al., 2013; Luo and Weng, 2011).	
1125	This method is based on the assumptions of the linear system and the ecosystem emergent	
1126	behavior per se (Emanuel and Killough, 1984; Eriksson, 1971; Sierra et al., 2018; Luo et al.,	
1127	2012), making it is consistent with the concepts that are used as the basis of ecosystem carbon	

1134	cycle models. The analyses of model traceability found, for the carbon cycle dynamics, the major
1135	uncertainty is from the modeling of the turnover rates (reciprocals of residence time) of
1136	vegetation and soil carbon pools (Jiang et al., 2017; Chen et al., 2015). From CMIP5 to CMIP6,
1137	the modeling of NPP has been greatly improved, while the ecosystem carbon residence time
1138	remains highly biased (Wei et al., 2022).
1139	According to the concepts of this traceability analysis approach (Xia et al., 2013), BiomeE
1140	also has a high uncertainty in the modeling of residence times of vegetation and soil carbon
1141	pools, because the mortality is picked up from the global forest data and the SOC decomposition
1142	processes are highly simplified. These issues have been discussed in the section of "5.3 Major
1143	uncertainties in BiomeE". These concepts (e.g., residence time, allocation coefficients) describe
1144	model emergent properties resulting from the underlying biological and ecological processes
1145	(i.e., micro-dynamics vs. macro-states). Fitting the emergent properties directly to improve
1146	model behavior is natural and convenient because many vegetation models are using these
1147	emergent properties (e.g., CUE, residence time, and allocation coefficients) to describe
1148	ecosystem processes in their formulations as a tradition of ecosystem modeling.
1149	There are a couple of common and long-lasting issues in terrestrial ecosystem modeling,
1150	such as responses to warming, responses to atmospheric CO2, drought stress effects, and
1151	vegetation compositional changes (Harrison et al., 2021; Franklin et al., 2020; Luo, 2007). These
1152	issues represent our knowledge gaps in ecosystem ecology. For modeling vegetation dynamics
1153	eco-evolutionarily, we need to use the fundamental ecological processes and unbreakable
1154	physical rules to simulate the emergent processes (e.g., Weng et al., 2019; Scheiter et al., 2013),
1155	With the design of vegetation modeling in the BiomeE, such as the explicit demographic
1156	processes, individual-based competition for different resources, and flexible trait combinations of

1157	PFTs, this model is able to predict some key emergent dynamics of ecosystems based on the	
1158	underlying biological and evolutionary mechanisms (as shown in Figure 13). Data from field	
1159	experiments (Ainsworth and Long, 2004; Crowther et al., 2016), observatory networks (e.g.,	
1160	Fluxnet, Baldocchi et al., 2001; Friend et al., 2007), and remote sensing (Duncanson et al.,	
1161	2020), can provide direct information for modeling the underlying ecological processes and	
1162	validating predicted emergent properties.	
1163	•	Del
1164	5.5 Model stability and complexity	200 (Ba al.,
1165	Ecosystem demographic processes (e.g., reproduction and mortality) are a source of high	und For 1.1
1166	sensitivity and uncertainty in BiomeE. In some environmental conditions, especially in dry or	Del 201
1167	cold regions, the predefined parameters can lead to high mortality or failure of reproduction,	Del
1168	making ecosystems highly instable, To understand these issues, we developed a "single-cohort"	Del ¶ 5.4
1169	version of the model to aid in the diagnosis of issues in the full demographic version of the	For
1170	model. The major issue we identified is the fact that the model formulation is based on functional	Del
1171	processes in highly-productive regions, whereas the model is applied globally and across much	Del
1172	more diverse environmental conditions (e.g., arid environments). The variables and parameters	
1173	that work well in highly-productive regions (e.g., initial seedling sizes, default leaf growth,	
1174	minimum allocation ratios, etc.) are often unsuitable in regions with higher environmental stress.	
1175	And although plants have evolved special features to deal with more extreme conditions (Lloret	
1176	et al., 2012; Reyer et al., 2013; Singh et al., 2020), these features have not yet been integrated	
1177	into the model.	

1178 There is a tendency in current DGVMs to use individual plant physiological trait changes1179 to represent community shifts. This approach is usually characterized as "parameter dynamics"

Deleted: Data from field experiments (Ainsworth and Long, 2004; Crowther et al., 2016), observatory networks Baldocchi et al., 2001), and remote sensing (Duncanson et al., 2020), provide direct information for the modeling of the underlying ecological processes

Formatted: Indent: First line: 0", Line spacing: Multiple 1.15 li

Deleted: (Zhou et al., 2021)(Jiang et al., 2017; Yizhao et al., 2015)(Wei et al., 2022)(Xia et al., 2013)

Deleted: . Deleted: ¶

5.4 Model stability and complexity

Formatted: Font: Bold

Formatted: Indent: First line: 0"

Deleted: uniform

Deleted: leading to high instability of vegetation

1193	or "response functions" (Fisher and Koven, 2020) for reducing model processes and complexity.	
1194	Adding new processes to work around existing problems, instead of redesigning the fundamental	
1195	model processes, is common in model development. The approach is helpful for tracking model	
1196	development, undoing wrong additions, and improving model performance. However, work-	
1197	arounds often increase model complexity without concomitant improvements in model	
1198	predictions.	
1199	Generally, a model's usefulness is improved by transparent assumptions, a well-defined	
1200	model structure, and output that is testable against data (Famiglietti et al., 2021; Forster, 2017;	
1201	Hourdin et al., 2017). Data assimilation approaches improve model parameterization more	
1202	efficiently and effectively than manually tuning individual parameters (Williams et al., 2009;	
1203	MacBean et al., 2016; Wang et al., 2009) and allow for more detailed uncertainty analysis (Luo	
1204	et al., 2009; Weng et al., 2011; Weng and Luo, 2011; Xu et al., 2006; Dietze, 2014). It is	
1205	important to only include necessary assumptions in a model and to include them in ways that do	
1206	not compromise other processes or parameters. Modelers should try their best not to add poor-	
1207	understood processes if not necessary. Additionally, many specifications of model formulation	
1208	are based on the questions that a user is trying to answer in their research. We should not expect	
1209	to develop an all-encompassing model that fits all application scenarios. On the contrary,	
1210	maintaining model flexibility and transparency is critical for using this model as a tool to explore	
1211	specific science questions. In BiomeE, we have opted for what we consider the most	
1212	parsimonious and, at the same time, theoretically sound formulations of allometry, phenology,	
1213	and allocation dynamics to allow for computational efficiency in capturing vegetation grown and	
1214	ecological dynamics in the context of an ESM.	

1216	5.6 Legacy limitations of ModelE coding and development conventions	
1217	The legacy of model coding structure and the history of model development can greatly affect	
1218	the functions and the selection of model formulations (Alexander and Easterbrook, 2015).	
1219	ModelE was developed as a general circulation model, and vegetation in the model to date has	Deleted: is
1220	been represented with a simple set of static biophysics parameterizations to regulate exchanges	
1221	of energy and moisture between the land surface and the atmosphere (i.e., a big leaf model)	
1222	(Hansen et al., 2007; Schmidt et al., 2014; Kelley et al., 2020). To advance the functionality of	
1223	the vegetation and the land surface model within ModelE, increases in complexity must therefore	
1224	be balanced with the computational demands of the fully-coupled model.	
1225	In ModelE, the land model, TerraE, is used to calculate land surface (including vegetation) +	Formatted: Indent: First line: 0.38"
1226	water and energy fluxes and soil water dynamics based on the characteristics of vegetation	
1227	derived from the vegetation model (e.g., canopy conductance, wetness, etc.) at the grid scale. It	
1228	does not calculate each cohort's transpiration and water uptake. In our vegetation model, the	Deleted: ¶
1229	water limitation of stomatal conductance is calculated as a function of soil water stress index and	
1230	root vertical distribution, instead of the direct plant root water supply (plant hydraulics). This	
1231	setting works well for the big leaf model (one canopy at one grid). However, when multiple	
1232	cohorts of plants are represented in the model, as we do in BiomeE, it is unable to represent	
1233	water competition and differentiate the contribution of each single cohort's contribution to the	
1234	total transpiration. A structural change will be required to solve this problem by calculating	
1235	transpiration from the bottom-up (i.e., from cohort up to grid cell).	Deleted: The legacy of model coding structure and the history of model development can greatly affect the functions and the selection of model formulations
1236	·	(Alexander and Easterbrook, 2015). When incorporating new processes, especially a new vegetation dynamic model, we must balance the stability requirement of the parent model
1237	6 Conclusions	and the risks of the model crashing. As shown in the comparison with the single cohort model (Fig. 11), the full demography setting has many potential failing points in regeneration in more extreme environmental conditions

Deleted:

1251	We developed a new demographic vegetation model to improve the representation of terrestrial
1252	vegetation dynamics and ecosystem biogeochemical cycles in the NASA Goddard Institute of
1253	Space Studies' coupled Earth system model, ModelE. This model includes the processes of plant
1254	growth, mortality, reproduction, vegetation structural dynamics, and soil carbon and nitrogen
1255	cycling. To scale this model globally, we added a new set of plant functional types to represent
1256	global vegetation functional diversity and introduced new phenology algorithms to deal with the
1257	seasonality of temperature and soil water availability. Competition for light and soil resources is
1258	individual-based, which makes the modeling of eco-evolutionary optimality possible. This model
1259	predicts the dynamics of vegetation and soil biogeochemistry including leaf area index,
1260	vegetation structure (e.g., height, tree density, size distribution, crown organization), and
1261	ecosystem carbon and nitrogen storage and fluxes. This model will enable ModelE to simulate
1262	long-term biogeophysical and biogeochemical feedbacks between the climate system and land
1263	ecosystems at decadal to century temporal scales. It will also allow for the prediction of transient
1264	vegetation dynamics and eco-evolutionary community assemblage in response to future climate
1265	changes based on the fundamental ecological principles.
1266	
1267	
1268	Code and data availability
1269	The model codes have been coupled with NASA GISS ModelE and will be released with
1270	ModelE codes (<u>https://www.giss.nasa.gov/tools/modelE/</u>). The codes of BiomeE module are
1271	available at https://doi.org/10.5281/zenodo.6476152. The simulated data have been archived at
1272	Zenodo (https://doi.org/10.5281/zenodo.6480411).

1	2	7	2
1	4	1	Э

1274	Author contributions
1275	EW coded the model and performed test runs and data analysis. EW and BIC wrote the first draft
1276	of the manuscript. BIC, MJP, SSM, NYK, and EW designed the functional coupling with
1277	ModelE and the land module. NYK, IA, RS, and MK contributed to input data, the IO structure
1278	and the coupling between BiomeE and ModelE. KW, RD, CE, and SWP contributed to
1279	conceptual model development and PFT design. All co-authors contributed to writing or
1280	improving the manuscript.
1281	
1282	Competing interests
1283	The authors declare that they have no conflict of interest.
1284	
1285	Acknowledgements
1286	This work was supported by NASA Modeling, Analysis, and Prediction (MAP) Program (award
1287	numbers: 80NSSC21K1496, NNH10ZDA001N, and 16-MAP16-0149). Computing resources for
1288	the model runs were provided by the NASA High-End Computing (HEC) Program through the
1289	NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. We thank Dr.
1290	Pierre Gentine of Department of Earth and Environmental Engineering, Columbia University, for
1291	his help in GPP data and model validation.

1293	Reference	Formatted: Font:
1294 1295 1296	Aakala, T., Fraver, S., Palik, B. J., and D'Amato, A. W.: Spatially random mortality in old- growth red pine forests of northern Minnesota, 42, 899–907, https://doi.org/10.1139/x2012- 044, 2012.	Formatted: Inden 6 pt
1297 1298	Abramoff, R. Z. and Finzi, A. C.: Are above- and below-ground phenology in sync?, 205, 1054–1061, https://doi.org/10.1111/nph.13111, 2015.	
1299 1300 1301 1302	Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2: Tansley review, 165, 351–372, https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2004.	
1β03 1304 1305	Aleixo, I., Norris, D., Hemerik, L., Barbosa, A., Prata, E., Costa, F., and Poorter, L.: Amazonian rainforest tree mortality driven by climate and functional traits, 9, 384–388, https://doi.org/10.1038/s41558-019-0458-0, 2019.	
1306 1307 1308 1309 1310	Alemohammad, S. H., Fang, B., Konings, A. G., Aires, F., Green, J. K., Kolassa, J., Miralles, D., Prigent, C., and Gentine, P.: Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, 2017.	
1β11 1312 1313	Alexander, K. and Easterbrook, S. M.: The software architecture of climate models: a graphical comparison of CMIP5 and EMICAR5 configurations, 8, 1221–1232, https://doi.org/10.5194/gmd-8-1221-2015, 2015.	
1β14 1315 1316 1317 1318 1319	Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H. (Ted), Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, JH., Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, 259, 660–684, https://doi.org/10.1016/j.foreco.2009.09.001, 2010.	
1320 1321 1322	Anderegg, W. R. L., Kane, J. M., and Anderegg, L. D. L.: Consequences of widespread tree mortality triggered by drought and temperature stress, 3, 30–36, https://doi.org/10.1038/nclimate1635, 2012.	
1323	Anten, N. P.: Evolutionarily stable leaf area production in plant populations, 217, 15-32, 2002.	
1324 1325 1326 1327	Argles, A. P. K., Moore, J. R., Huntingford, C., Wiltshire, A. J., Harper, A. B., Jones, C. D., and Cox, P. M.: Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models, 13, 4067–4089, https://doi.org/10.5194/gmd-13-4067-2020, 2020.	
1328 1329 1330	Arora, V. K. and Boer, G. J.: A parameterization of leaf phenology for the terrestrial ecosystem component of climate models, 11, 39–59, https://doi.org/10.1111/j.1365- 2486.2004.00890.x, 2005.	
1331 1332 1333	Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D.,	
	53	

Formatted: Font: Not Bold

nt: Left: 0", Hanging: 0.38", Space After:

- 1334 Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J.,
- 1335 Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.:
- 1336 Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their
- 1337 comparison to CMIP5 models, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020,
- 1338 2020.
- Avissar, R. and Werth, D.: Global Hydroclimatological Teleconnections Resulting from Tropical Deforestation, J. Hydrometeor., 6, 134–145, https://doi.org/10.1175/JHM406.1, 2005.
- 1β41 Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer,
- C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y.,
 Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P.,
- Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool
- to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water
- 1346 Vapor, and Energy Flux Densities, Bull. Amer. Meteor. Soc., 82, 2415–2434,
- 1347 https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
- Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein, M., Lawrence, D.
 M., and Swenson, S. C.: Improving canopy processes in the Community Land Model
 version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data, 116, https://doi.org/10.1029/2010JG001593, 2011.
- Brando, P. M., Paolucci, L., Ummenhofer, C. C., Ordway, E. M., Hartmann, H., Cattau, M. E.,
 Rattis, L., Medjibe, V., Coe, M. T., and Balch, J.: Droughts, Wildfires, and Forest Carbon
 Cycling: A Pantropical Synthesis, Annu. Rev. Earth Planet. Sci., 47, 555–581,
 https://doi.org/10.1146/annurev-earth-082517-010235, 2019.
- Briones, M. J. I., McNamara, N. P., Poskitt, J., Crow, S. E., and Ostle, N. J.: Interactive biotic
 and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments
 on peatland and boreal soils, 20, 2971–2982, https://doi.org/10.1111/gcb.12585, 2014.
- 1359Brodribb, T. J., Powers, J., Cochard, H., and Choat, B.: Hanging by a thread? Forests and
drought, 368, 261–266, https://doi.org/10.1126/science.aat7631, 2020.
- Caldararu, S., Purves, D. W., and Palmer, P. I.: Phenology as a strategy for carbon optimality: a
 global model, 11, 763–778, https://doi.org/10.5194/bg-11-763-2014, 2014.
- 1β63
 Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne, A. E.: Towards a

 1364
 worldwide wood economics spectrum, 12, 351–366, https://doi.org/10.1111/j.1461

 1365
 0248.2009.01285.x, 2009.
- Chen, M., Melaas, E. K., Gray, J. M., Friedl, M. A., and Richardson, A. D.: A new seasonaldeciduous spring phenology submodel in the Community Land Model 4.5: impacts on
 carbon and water cycling under future climate scenarios, 22, 3675–3688,
 https://doi.org/10.1111/gcb.13326, 2016.
- Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S. J., Feild, T.
 S., Gleason, S. M., Hacke, U. G., Jacobsen, A. L., Lens, F., Maherali, H., Martínez-Vilalta,
- 1372 J., Mayr, S., Mencuccini, M., Mitchell, P. J., Nardini, A., Pittermann, J., Pratt, R. B.,
- 1373 Sperry, J. S., Westoby, M., Wright, I. J., and Zanne, A. E.: Global convergence in the
- 1374 vulnerability of forests to drought, https://doi.org/10.1038/nature11688, 2012.

- 1β75 Chuine, I.: Why does phenology drive species distribution?, 365, 3149–3160,
 1376 https://doi.org/10.1098/rstb.2010.0142, 2010.
- 1β77 Clark, J. S., Iverson, L., Woodall, C. W., Allen, C. D., Bell, D. M., Bragg, D. C., D'Amato, A.
 1378 W., Davis, F. W., Hersh, M. H., Ibanez, I., Jackson, S. T., Matthews, S., Pederson, N.,
 1379 Peters, M., Schwartz, M. W., Waring, K. M., and Zimmermann, N. E.: The impacts of
- 1380 increasing drought on forest dynamics, structure, and biodiversity in the United States, 22,
 1381 2329–2352, https://doi.org/10.1111/gcb.13160, 2016.
- Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller,
 M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D.,
- 1384 Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A.,
- 1385 Elberling, B., Emmett, B. A., Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson,
- 1386 B. R., Kröel-Dulay, G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y., Lupascu, M.,
- 1387 Ma, L. N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-
- Meister, L., Poll, C., Reinsch, S., Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W.,
 Templer, P. H., Treseder, K. K., Welker, J. M., and Bradford, M. A.: Quantifying global
- soil carbon losses in response to warming, 540, 104–108,
- 1391 https://doi.org/10.1038/nature20150, 2016.
- 1392 Dahlin, K. M., Fisher, R. A., and Lawrence, P. J.: Environmental drivers of drought deciduous
 1393 phenology in the Community Land Model, 12, 5061–5074, https://doi.org/10.5194/bg-12 1394 5061-2015, 2015.
- 1395 Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440, 165–173, https://doi.org/10.1038/nature04514, 2006.
- 1398 De Kauwe, M. G., Zhou, S.-X., Medlyn, B. E., Pitman, A. J., Wang, Y.-P., Duursma, R. A., and
 1399 Prentice, I. C.: Do land surface models need to include differential plant species responses
 1400 to drought? Examining model predictions across a mesic-xeric gradient in Europe, 12,
 1401 7503–7518, https://doi.org/10.5194/bg-12-7503-2015, 2015.
- 1402 Dieckmann, U., Brannstrom, A., HilleRisLambes, R., and Ito, H. C.: The Adaptive Dynamics of 1403 Community Structure, in: Mathematics for Ecology and Environmental Sciences, edited 1404 by: Takeuchi, Yasuhiro, Iwasa, Yoh, and Sato, Kazunori, Springer, 145–177, 2007.
- 1405Dietze, M. C.: Gaps in knowledge and data driving uncertainty in models of photosynthesis, 119,14063–14, https://doi.org/10.1007/s11120-013-9836-z, 2014.
- Duncanson, L., Neuenschwander, A., Hancock, S., Thomas, N., Fatoyinbo, T., Simard, M.,
 Silva, C. A., Armston, J., Luthcke, S. B., Hofton, M., Kellner, J. R., and Dubayah, R.:
 Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental
 gradients in Sonoma County, California, Remote Sensing of Environment, 242, 111779,
 https://doi.org/10.1016/j.rse.2020.111779, 2020.
- 1412 Dybzinski, R., Farrior, C., Wolf, A., Reich, P. B., and Pacala, S. W.: Evolutionarily Stable
- 1413 Strategy Carbon Allocation to Foliage, Wood, and Fine Roots in Trees Competing for
- 1414 Light and Nitrogen: An Analytically Tractable, Individual-Based Model and Quantitative
- 1415 Comparisons to Data, 177, 153–166, https://doi.org/10.1086/657992, 2011.

- 1µ16
 1µ16
 1µ17
 1µ17
 1µ18
 1µ18
 1µ19
 1µ19</l
- Euskirchen, E. S., Edgar, C. W., Turetsky, M. R., Waldrop, M. P., and Harden, J. W.:
 Differential response of carbon fluxes to climate in three peatland ecosystems that vary in
 the presence and stability of permafrost, 119, 1576–1595,
 https://doi.org/10.1002/2014JG002683, 2014.
- 1424
 Falster, D. and Westoby, M.: Plant height and evolutionary games, 18, 337–343, 1425

 https://doi.org/10.1016/S0169-5347(03)00061-2, 2003.
- Falster, D. S., Braennstroem, A., Westoby, M., and Dieckmann, U.: Multitrait successional forest dynamics enable diverse competitive coexistence, 114, E2719–E2728, https://doi.org/10.1073/pnas.1610206114, 2017.
- Famiglietti, C. A., Smallman, T. L., Levine, P. A., Flack-Prain, S., Quetin, G. R., Meyer, V.,
 Parazoo, N. C., Stettz, S. G., Yang, Y., Bonal, D., Bloom, A. A., Williams, M., and
 Konings, A. G.: Optimal model complexity for terrestrial carbon cycle prediction, 18,
 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, 2021.
- Farrior, C. E.: Theory predicts plants grow roots to compete with only their closest neighbours,
 Proceedings of the Royal Society B: Biological Sciences, 286, 20191129,
 https://doi.org/10.1098/rspb.2019.1129, 2019.
- Farrior, C. E., Dybzinski, R., Levin, S. A., and Pacala, S. W.: Competition for Water and Light in Closed-Canopy Forests: A Tractable Model of Carbon Allocation with Implications for Carbon Sinks, 181, 314–330, https://doi.org/10.1086/669153, 2013.
- Fisher, R. A. and Koven, C. D.: Perspectives on the Future of Land Surface Models and the
 Challenges of Representing Complex Terrestrial Systems, 12, e2018MS001453,
 https://doi.org/10.1029/2018MS001453, 2020.
- Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R.
 G., Koven, C., Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., and Bonan, G.: Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED), 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, 2015.
- 1446 von Foerster, H.: Some remarks on changing populations, in: The kinetics of cellular proliferatio,
 1447 edited by: Stohlman, F., Grune and Stratton, New York, 382–407, 1959.
- 1448
 Forster, P.: Half a century of robust climate models, 545, 296–297, 1449

 https://doi.org/10.1038/545296a, 2017.
- Franklin, O., Johansson, J., Dewar, R. C., Dieckmann, U., McMurtrie, R. E., Brannstrom, A., and
 Dybzinski, R.: Modeling carbon allocation in trees: a search for principles, 32, 648–666,
 https://doi.org/10.1093/treephys/tpr138, 2012.
- Franklin, O., Harrison, S. P., Dewar, R., Farrior, C. E., Brännström, Å., Dieckmann, U., Pietsch,
 S., Falster, D., Cramer, W., Loreau, M., Wang, H., Mäkelä, A., Rebel, K. T., Meron, E.,
- Schymanski, S. J., Rovenskaya, E., Stocker, B. D., Zaehle, S., Manzoni, S., van Oijen, M.,
 Wright, I. J., Ciais, P., van Bodegom, P. M., Peñuelas, J., Hofhansl, F., Terrer, C.,

- Soudzilovskaia, N. A., Midgley, G., and Prentice, I. C.: Organizing principles for
 vegetation dynamics, 1–10, https://doi.org/10.1038/s41477-020-0655-x, 2020.
- Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, 114, 168–182, https://doi.org/10.1016/j.rse.2009.08.0
- 1461
 characterization of new datasets, 114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016,

 1462
 2010.
- Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks, 27, 511–526, https://doi.org/10.1175/JCLI-D-12-00579.1, 2014.
- Friend, A. D., Stevens, A. K., Knox, R. G., and Cannell, M. G. R.: A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0), Ecological Modelling, 95, 249–287, https://doi.org/10.1016/S0304-3800(96)00034-8, 1997.
- Fu, Z., Li, D., Hararuk, O., Schwalm, C., Luo, Y., Yan, L., and Niu, S.: Recovery time and state change of terrestrial carbon cycle after disturbance, Environ. Res. Lett., 12, 104004, https://doi.org/10.1088/1748-9326/aa8a5c, 2017.
- Garcia, E. S., Swann, A. L. S., Villegas, J. C., Breshears, D. D., Law, D. J., Saleska, S. R., and
 Stark, S. C.: Synergistic Ecoclimate Teleconnections from Forest Loss in Different Regions
 Structure Global Ecological Responses, PLoS One, 11,
 https://doi.org/10.1371/journal.pone.0165042, 2016.
- Gleason, K. E., Bradford, J. B., Bottero, A., D'Amato, A. W., Fraver, S., Palik, B. J., Battaglia,
 M. A., Iverson, L., Kenefic, L., and Kern, C. C.: Competition amplifies drought stress in
 forests across broad climatic and compositional gradients, 8, e01849,
 https://doi.org/10.1002/ecs2.1849, 2017.
- Green, J. K., Konings, A. G., Alemohammad, S. H., Berry, J., Entekhabi, D., Kolassa, J., Lee, J. E., and Gentine, P.: Regionally strong feedbacks between the atmosphere and terrestrial
 biosphere, Nature Geosci, 10, 410–414, https://doi.org/10.1038/ngeo2957, 2017.
- Hansen, J., Sato, M., Ruedy, R., Kharecha, P., Lacis, A., Miller, R., Nazarenko, L., Lo, K.,
 Schmidt, G. A., Russell, G., Aleinov, I., Bauer, S., Baum, E., Cairns, B., Canuto, V.,
- 1485 Chandler, M., Cheng, Y., Cohen, A., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A.,
- 1486 Hall, T., Jackman, C., Jonas, J., Kelley, M., Kiang, N. Y., Koch, D., Labow, G., Lerner, J.,
- 1487 Menon, S., Novakov, T., Oinas, V., Perlwitz, Ja., Perlwitz, Ju., Rind, D., Romanou, A.,
- 1488 Schmunk, R., Shindell, D., Stone, P., Sun, S., Streets, D., Tausnev, N., Thresher, D.,
- 1489 Unger, N., Yao, M., and Zhang, S.: Climate simulations for 1880-2003 with GISS modelE,
 1490 29, 661–696, https://doi.org/10.1007/s00382-007-0255-8, 2007.
- Harper, A. B., Williams, K. E., McGuire, P. C., Duran Rojas, M. C., Hemming, D., Verhoef, A.,
 Huntingford, C., Rowland, L., Marthews, T., Breder Eller, C., Mathison, C., Nobrega, R. L.
 B., Gedney, N., Vidale, P. L., Otu-Larbi, F., Pandey, D., Garrigues, S., Wright, A., Slevin,
 D., De Kauwe, M. G., Blyth, E., Ardö, J., Black, A., Bonal, D., Buchmann, N., Burban, B.,
 Fuchs, K., de Grandcourt, A., Mammarella, I., Merbold, L., Montagnani, L., Nouvellon, Y.,
- 1496 Restrepo-Coupe, N., and Wohlfahrt, G.: Improvement of modeling plant responses to low
- soil moisture in JULESvn4.9 and evaluation against flux tower measurements, 14, 3269-
- 1498 3294, https://doi.org/10.5194/gmd-14-3269-2021, 2021.

- 1499 Harrison, S. P., Cramer, W., Franklin, O., Prentice, I. C., Wang, H., Brännström, Å., de Boer, H., 1500
- Dieckmann, U., Joshi, J., Keenan, T. F., Lavergne, A., Manzoni, S., Mengoli, G., 1501
- Morfopoulos, C., Peñuelas, J., Pietsch, S., Rebel, K. T., Ryu, Y., Smith, N. G., Stocker, B. 1502 D., and Wright, I. J.: Eco-evolutionary optimality as a means to improve vegetation and
- 1503 land-surface models, 231, 2125-2141, https://doi.org/10.1111/nph.17558, 2021.
- 1504 Hengeveld, G. M., Gunia, K., Didion, M., Zudin, S., Clerkx, A. P. P. M., and Schelhaas, M. J.: 1505 Global 1-degree Maps of Forest Area, Carbon Stocks, and Biomass, 1950-2010, , 1506 https://doi.org/10.3334/ORNLDAAC/1296, 2015.
- 1507 Hikosaka, K. and Anten, N. P. R.: An evolutionary game of leaf dynamics and its consequences 1508 for canopy structure, 26, 1024-1032, https://doi.org/10.1111/j.1365-2435.2012.02042.x, 1509 2012.
- 1510 Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., Folini, D., Ji, D., 1511 Klocke, D., Qian, Y., Rauser, F., Rio, C., Tomassini, L., Watanabe, M., and Williamson, D.: The Art and Science of Climate Model Tuning, 98, 589-602, 1512 1513
- https://doi.org/10.1175/BAMS-D-15-00135.1, 2017.
- 1514 Huang, M., Piao, S., Sun, Y., Ciais, P., Cheng, L., Mao, J., Poulter, B., Shi, X., Zeng, Z., and 1515 Wang, Y .: Change in terrestrial ecosystem water-use efficiency over the last three decades, 1516 21, 2366-2378, https://doi.org/10.1111/gcb.12873, 2015.
- 1517 Huntzinger, D. N., Post, W. M., Wei, Y., Michalak, A. M., West, T. O., Jacobson, A. R., Baker, I. T., Chen, J. M., Davis, K. J., Hayes, D. J., Hoffman, F. M., Jain, A. K., Liu, S., McGuire, 1518 1519 A. D., Neilson, R. P., Potter, C., Poulter, B., Price, D., Raczka, B. M., Tian, H. Q.,
- Thornton, P., Tomelleri, E., Viovy, N., Xiao, J., Yuan, W., Zeng, N., Zhao, M., and Cook, 1520
- 1521 R.: North American Carbon Program (NACP) regional interim synthesis: Terrestrial
- biospheric model intercomparison, 232, 144-157, 1522
- 1523 https://doi.org/10.1016/j.ecolmodel.2012.02.004, 2012.
- 1524 Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., Jacobson,
- 1525 A., Liu, S., Cook, R. B., Post, W. M., Berthier, G., Hayes, D., Huang, M., Ito, A., Lei, H.,
- 1526 Lu, C., Mao, J., Peng, C. H., Peng, S., Poulter, B., Riccuito, D., Shi, X., Tian, H., Wang, 1527 W., Zeng, N., Zhao, F., and Zhu, Q.: The North American Carbon Program Multi-Scale
- 1528 Synthesis and Terrestrial Model Intercomparison Project - Part 1: Overview and
- 1529 experimental design, 6, 2121–2133, https://doi.org/10.5194/gmd-6-2121-2013, 2013.
- 1530 Ito, G., Romanou, A., Kiang, N. Y., Faluvegi, G., Aleinov, I., Ruedy, R., Russell, G., Lerner, P., 1531 Kelley, M., and Lo, K.: Global Carbon Cycle and Climate Feedbacks in the NASA GISS 1532 ModelE2.1, 12, e2019MS002030, https://doi.org/10.1029/2019MS002030, 2020.
- 1533 Jiang, L., Shi, Z., Xia, J., Liang, J., Lu, X., Wang, Y., and Luo, Y.: Transient Traceability 1534 Analysis of Land Carbon Storage Dynamics: Procedures and Its Application to Two Forest Ecosystems, 9, 2822-2835, https://doi.org/10.1002/2017MS001004, 2017. 1535
- Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and 1536 1537 Richardson, A. D.: Increase in forest water-use efficiency as atmospheric carbon dioxide 1538 concentrations rise, 499, 324-327, https://doi.org/10.1038/nature12291, 2013.
- 1539 Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R., Russell, G. L., Ackerman, 1540 A. S., Aleinov, I., Bauer, M., Bleck, R., Canuto, V., Cesana, G., Cheng, Y., Clune, T. L.,

- 1541 Cook, B. I., Cruz, C. A., Del Genio, A. D., Elsaesser, G. S., Faluvegi, G., Kiang, N. Y.,
- 1542 Kim, D., Lacis, A. A., Leboissetier, A., LeGrande, A. N., Lo, K. K., Marshall, J.,
- 1543 Matthews, E. E., McDermid, S., Mezuman, K., Miller, R. L., Murray, L. T., Oinas, V.,
- 1544 Orbe, C., García-Pando, C. P., Perlwitz, J. P., Puma, M. J., Rind, D., Romanou, A.,
- 1545 Shindell, D. T., Sun, S., Tausnev, N., Tsigaridis, K., Tselioudis, G., Weng, E., Wu, J., and
- Yao, M.-S.: GISS-E2.1: Configurations and Climatology, Journal of Advances in Modeling
 Earth Systems, 12, e2019MS002025, https://doi.org/10.1029/2019MS002025, 2020.
- Kim, Y., Moorcroft, P. R., Aleinov, I., Puma, M. J., and Kiang, N. Y.: Variability of phenology and fluxes of water and carbon with observed and simulated soil moisture in the Ent Terrestrial Biosphere Model (Ent TBM version 1.0.1.0.0), 8, 3837–3865, https://doi.org/10.5194/gmd-8-3837-2015, 2015.
- Kyker-Snowman, E., Lombardozzi, D. L., Bonan, G. B., Cheng, S. J., Dukes, J. S., Frey, S. D.,
 Jacobs, E. M., McNellis, R., Rady, J. M., Smith, N. G., Thomas, R. Q., Wieder, W. R., and
 Grandy, A. S.: Increasing the spatial and temporal impact of ecological research: A
 roadmap for integrating a novel terrestrial process into an Earth system model, 28, 665–
 684, https://doi.org/10.1111/gcb.15894, 2022.
- Litton, C. M., Raich, J. W., and Ryan, M. G.: Carbon allocation in forest ecosystems, Global
 Change Biol, 13, 2089–2109, https://doi.org/10.1111/j.1365-2486.2007.01420.x, 2007.
- Liu, H., Gleason, S. M., Hao, G., Hua, L., He, P., Goldstein, G., and Ye, Q.: Hydraulic traits are coordinated with maximum plant height at the global scale, 5, eaav1332, https://doi.org/10.1126/sciadv.aav1332, 2019.
- Lloret, F., Escudero, A., Iriondo, J. M., Martínez-Vilalta, J., and Valladares, F.: Extreme climatic
 events and vegetation: the role of stabilizing processes, 18, 797–805,
 https://doi.org/10.1111/j.1365-2486.2011.02624.x, 2012.
- Lu, R., Qiao, Y., Wang, J., Zhu, C., Cui, E., Xu, X., He, Y., Zhao, Z., Du, Y., Yan, L., Shen, G.,
 Yang, Q., Wang, X., and Xia, J.: The U-shaped pattern of size-dependent mortality and its
 correlated factors in a subtropical monsoon evergreen forest, 109, 2421–2433,
 https://doi.org/10.1111/1365-2745.13652, 2021.
- Luo, Y., Weng, E., Wu, X., Gao, C., Zhou, X., and Zhang, L.: Parameter identifiability, constraint, and equifinality in data assimilation with ecosystem models, 19, 571–574, https://doi.org/10.1890/08-0561.1, 2009.
- MacBean, N., Peylin, P., Chevallier, F., Scholze, M., and Schuermann, G.: Consistent
 assimilation of multiple data streams in a carbon cycle data assimilation system, 9, 3569–
 3588, https://doi.org/10.5194/gmd-9-3569-2016, 2016.
- 1575 Manzoni, S., Trofymow, J. A., Jackson, R. B., and Porporato, A.: Stoichiometric controls on 1576 carbon, nitrogen, and phosphorus dynamics in decomposing litter, 80, 89–106, 2010.
- 1577 Manzoni, S., Vico, G., Thompson, S., Beyer, F., and Weih, M.: Contrasting leaf phenological strategies optimize carbon gain under droughts of different duration, Advances in Water Resources, 84, 37–51, https://doi.org/10.1016/j.advwatres.2015.08.001, 2015.
- McDowell, N. G.: Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and
 Vegetation Mortality, 155, 1051–1059, https://doi.org/10.1104/pp.110.170704, 2011.

- 1582 McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B.,
- 1583 Chini, L., Clark, J. S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G. C.,
- 1584 Jackson, R. B., Johnson, D. J., Kueppers, L., Lichstein, J. W., Ogle, K., Poulter, B., Pugh,
- 1585 T. A. M., Seidl, R., Turner, M. G., Uriarte, M., Walker, A. P., and Xu, C.: Pervasive shifts 1586 in forest dynamics in a changing world, 368, https://doi.org/10.1126/science.aaz9463,
- 1580 in forest dynamics in a chang 1587 2020.
- McNickle, G. G., Gonzalez-Meler, M. A., Lynch, D. J., Baltzer, J. L., and Brown, J. S.: The
 world's biomes and primary production as a triple tragedy of the commons foraging game
 played among plants, 283, 20161993, https://doi.org/10.1098/rspb.2016.1993, 2016.
- Meir, P., Cox, P., and Grace, J.: The influence of terrestrial ecosystems on climate, Trends in
 Ecology & Evolution, 21, 254–260, https://doi.org/10.1016/j.tree.2006.03.005, 2006.
- 1593 van der Molen, M. K., Dolman, A. J., Ciais, P., Eglin, T., Gobron, N., Law, B. E., Meir, P.,
- 1594 Peters, W., Phillips, O. L., Reichstein, M., Chen, T., Dekker, S. C., Doubková, M., Friedl,
- M. A., Jung, M., van den Hurk, B. J. J. M., de Jeu, R. A. M., Kruijt, B., Ohta, T., Rebel, K.
 T., Plummer, S., Seneviratne, S. I., Sitch, S., Teuling, A. J., van der Werf, G. R., and
- 1597 Wang, G.: Drought and ecosystem carbon cycling, Agricultural and Forest Meteorology,
- 1598 151, 765–773, https://doi.org/10.1016/j.agrformet.2011.01.018, 2011.
- Montané, F., Fox, A. M., Arellano, A. F., MacBean, N., Alexander, M. R., Dye, A., Bishop, D.
 A., Trouet, V., Babst, F., Hessl, A. E., Pederson, N., Blanken, P. D., Bohrer, G., Gough, C.
 M., Litvak, M. E., Novick, K. A., Phillips, R. P., Wood, J. D., and Moore, D. J. P.:
 Evaluating the effect of alternative carbon allocation schemes in a land surface model
 (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests, 10, 3499–3517,
 https://doi.org/10.5194/gmd-10-3499-2017, 2017.
- Niinemets, Ü. and Anten, N. P. R.: Packing the Photosynthetic Machinery: From Leaf to
 Canopy, in: Photosynthesis in silico: Understanding Complexity from Molecules to
 Ecosystems, edited by: Laisk, A., Nedbal, L., and Govindjee, Springer Netherlands,
 Dordrecht, 363–399, https://doi.org/10.1007/978-1-4020-9237-4
- Niinemets, Ü., Keenan, T. F., and Hallik, L.: A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types, 205, 973– 993, https://doi.org/10.1111/nph.13096, 2015.
- Niklas, K.: Plant Height and the Properties of Some Herbaceous Stems, 75, 133–142, https://doi.org/10.1006/anbo.1995.1004, 1995.
- 1614
 Nobre, C. A., Sellers, P. J., and Shukla, J.: Amazonian Deforestation and Regional Climate

 1615
 Change, J. Climate, 4, 957–988, https://doi.org/10.1175/1520

 1616
 0442(1991)004<0957:ADARCC>2.0.CO;2, 1991.
- Oliveira, R. S., Eller, C. B., Barros, F. de V., Hirota, M., Brum, M., and Bittencourt, P.: Linking
 plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical
 ecosystems, 230, 904–923, https://doi.org/10.1111/nph.17266, 2021.
- Osnas, J. L. D., Lichstein, J. W., Reich, P. B., and Pacala, S. W.: Global Leaf Trait
 Relationships: Mass, Area, and the Leaf Economics Spectrum, 340, 741–744,
 https://doi.org/10.1126/science.1231574, 2013.

- Pan, Y., Birdsey, R. A., Phillips, O. L., and Jackson, R. B.: The Structure, Distribution, and
 Biomass of the World's Forests, 44, 593–622, https://doi.org/10.1146/annurev-ecolsys 110512-135914, 2013.
- Pavlick, R., Drewry, D. T., Bohn, K., Reu, B., and Kleidon, A.: The Jena Diversity-Dynamic
 Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial
 biogeography and biogeochemistry based on plant functional trade-offs, 10, 4137–4177,
 https://doi.org/10.5194/bg-10-4137-2013, 2013.
- Pielke, R. A., Sr, ., Avissar, RonI., Raupach, M., Dolman, A. J., Zeng, X., and Denning, A. S.:
 Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate, 4, 461–475, https://doi.org/10.1046/j.1365-2486.1998.t01-1-00176.x, 1998.
- Potter, C., Klooster, S., Myneni, R., Genovese, V., Tan, P., and Kumar, V.: Continental-scale
 comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem
 modeling 1982-1998, 39, 201–213, https://doi.org/10.1016/j.gloplacha.2003.07.001, 2003.
- Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., and Klooster, S. A.: Terrestrial ecosystem production: A process model based on global satellite and surface data, 7, 811–841, https://doi.org/10.1029/93GB02725, 1993.
- Powell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A., Imbuzeiro, H. M. A., Rowland,
 L., Almeida, S., Brando, P. M., da Costa, A. C. L., Costa, M. H., Levine, N. M., Malhi, Y.,
 Saleska, S. R., Sotta, E., Williams, M., Meir, P., and Moorcroft, P. R.: Confronting model
 predictions of carbon fluxes with measurements of Amazon forests subjected to
 experimental drought, 200, 350–365, https://doi.org/10.1111/nph.12390, 2013.
- Prentice, I. C., Cramer, W., Harrison, S. P., LEEMANS, R., Monserud, R. A., and Solomon, A.
 M.: A global biome model based on plant physiology and dominance, soil properties and climate, 19, 117–134, https://doi.org/10.2307/2845499, 1992.
- Prentice, I. C., Bondeau, A., Cramer, W., Harrison, S. P., Hickler, T., Lucht, W., Sitch, S., Smith,
 B., and Sykes, M. T.: Dynamic Global Vegetation Modeling: Quantifying Terrestrial
 Ecosystem Responses to Large-Scale Environmental Change, in: Terrestrial Ecosystems in
 a Changing World, edited by: Canadell, J. G., Pataki, D. E., and Pitelka, L. F., Springer
 Berlin Heidelberg, Berlin, Heidelberg, 175–192, https://doi.org/10.1007/978-3-540-327301_15, 2007.
- Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., and Wright, I. J.: Balancing the costs of
 carbon gain and water transport: testing a new theoretical framework for plant functional
 ecology, 17, 82–91, https://doi.org/10.1111/ele.12211, 2014.
- Purves, D. and Pacala, S.: Predictive models of forest dynamics, 320, 1452–1453,
 https://doi.org/10.1126/science.1155359, 2008.
- Purves, D. W., Lichstein, J. W., Strigul, N., and Pacala, S. W.: Predicting and understanding forest dynamics using a simple tractable model, 105, 17018–17022, https://doi.org/10.1073/pnas.0807754105, 2008.
- Randerson, J., Thompson, M., Conway, T., Fung, I., and Field, C.: The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide, 11, 535–560, https://doi.org/10.1029/97GB02268, 1997.

- 1664 Reich, P. B.: The world-wide 'fast-slow' plant economics spectrum: a traits manifesto, 102, 1665 275-301, https://doi.org/10.1111/1365-2745.12211, 2014.
- 1666 Reyer, C. P. O., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R. P., Bonfante, A., de 1667 Lorenzi, F., Dury, M., Gloning, P., Abou Jaoudé, R., Klein, T., Kuster, T. M., Martins, M., 1668 Niedrist, G., Riccardi, M., Wohlfahrt, G., de Angelis, P., de Dato, G., François, L., Menzel, 1669 A., and Pereira, M.: A plant's perspective of extremes: terrestrial plant responses to
- 1670 changing climatic variability, 19, 75-89, https://doi.org/10.1111/gcb.12023, 2013.
- 1671 Rodriguez-Iturbe, I., Porporato, A., Ridolfi, L., Isham, V., and Coxi, D. R.: Probabilistic 1672 modelling of water balance at a point: the role of climate, soil and vegetation, 455, 3789-1673 3805, https://doi.org/10.1098/rspa.1999.0477, 1999.
- 1674 Rosenzweig, C. and Abramopoulos, F.: Land-Surface Model Development for the GISS GCM, 1675 10, 2040-2054, https://doi.org/10.1175/1520-0442(1997)010<2040:LSMDFT>2.0.CO;2, 1676 1997.
- 1677 Scheiter, S., Langan, L., and Higgins, S. I.: Next-generation dynamic global vegetation models: 1678 learning from community ecology, 198, 957–969, https://doi.org/10.1111/nph.12210, 2013.
- 1679 Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M., 1680 Bauer, S. E., Bhat, M. K., Bleck, R., Canuto, V., Chen, Y.-H., Cheng, Y., Clune, T. L., Del 1681 Genio, A., de Fainchtein, R., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, 1682 D., Lacis, A. A., LeGrande, A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S.,
- 1683
- Miller, R. L., Oinas, V., Oloso, A. O., Perlwitz, J. P., Puma, M. J., Putman, W. M., Rind,
- 1684 D., Romanou, A., Sato, M., Shindell, D. T., Sun, S., Syed, R. A., Tausnev, N., Tsigaridis, 1685 K., Unger, N., Voulgarakis, A., Yao, M.-S., and Zhang, J.: Configuration and assessment of
- the GISS ModelE2 contributions to the CMIP5 archive, 6, 141-184, 1686
- 1687 https://doi.org/10.1002/2013MS000265, 2014.
- 1688 Sellers, P. J.: Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere, 275, 502-509, https://doi.org/10.1126/science.275.5299.502, 1997. 1689
- 1690 Simard, M., Pinto, N., Fisher, J. B., and Baccini, A.: Mapping forest canopy height globally with 1691 spaceborne lidar, 116, https://doi.org/10.1029/2011JG001708, 2011.
- 1692 Singh, A. K., Dhanapal, S., and Yadav, B. S.: The dynamic responses of plant physiology and 1693 metabolism during environmental stress progression, Mol Biol Rep, 47, 1459-1470, 1694 https://doi.org/10.1007/s11033-019-05198-4, 2020.
- 1695 Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, 1696 S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global 1697 vegetation model, 9, 161-185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003. 1698
- 1699 Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., 1700 Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., 1701 Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J.
- 1702 G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C.,
- 1703 Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653-679, https://doi.org/10.5194/bg-12-653-2015, 1704
- 1705 2015.

- 1706Strigul, N., Pristinski, D., Purves, D., Dushoff, J., and Pacala, S.: Scaling from trees to forests:1707tractable macroscopic equations for forest dynamics, 78, 523–545,
- 1708 https://doi.org/10.1890/08-0082.1, 2008.
- Swenson, N. G. and Enquist, B. J.: Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation, 94, 451–459, https://doi.org/10.3732/ajb.94.3.451, 2007.
- Tifafi, M., Guenet, B., and Hatté, C.: Large Differences in Global and Regional Total Soil
 Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD: Intercomparison and
 Evaluation Based on Field Data From USA, England, Wales, and France, 32, 42–56,
 https://doi.org/10.1002/2017GB005678, 2018.
- Tilman, D.: Plant strategies and the dynamics and structure of plant communities, Princeton
 University Press, Princeton, N.J, 360 pp., 1988.
- Verryckt, L. T., Vicca, S., Van Langenhove, L., Stahl, C., Asensio, D., Urbina, I., Ogaya, R.,
 Llusià, J., Grau, O., Peguero, G., Gargallo-Garriga, A., Courtois, E. A., Margalef, O.,
- 1720 Portillo-Estrada, M., Ciais, P., Obersteiner, M., Fuchslueger, L., Lugli, L. F., Fernandez-
- 1721 Garberí, P.-R., Vallicrosa, H., Verlinden, M., Ranits, C., Vermeir, P., Coste, S.,
- 1722 Verbruggen, E., Bréchet, L., Sardans, J., Chave, J., Peñuelas, J., and Janssens, I. A.:
 1723 Vertical profiles of leaf photosynthesis and leaf traits and soil nutrients in two tropical
 1724 rainforests in French Guiana before and after a 3-year nitrogen and phosphorus addition
 1725 experiment, 14, 5–18, https://doi.org/10.5194/essd-14-5-2022, 2022.
- Volaire, F.: A unified framework of plant adaptive strategies to drought: Crossing scales and disciplines, 24, 2929–2938, https://doi.org/10.1111/gcb.14062, 2018.
- Wang, H., Prentice, I. C., Keenan, T. F., Davis, T. W., Wright, I. J., Cornwell, W. K., Evans, B.
 J., and Peng, C.: Towards a universal model for carbon dioxide uptake by plants, 3, 734– 741, https://doi.org/10.1038/s41477-017-0006-8, 2017.
- 1/31Wang, Y.-P. and Goll, D. S.: Modelling of land nutrient cycles: recent progress and future1732development, Fac Rev, 10, 53, https://doi.org/10.12703/r/10-53, 2021.
- Wang, Y.-P., Trudinger, C. M., and Enting, I. G.: A review of applications of model-data fusion to studies of terrestrial carbon fluxes at different scales, 149, 1829–1842, https://doi.org/10.1016/j.agrformet.2009.07.009, 2009.
- Wei, N., Xia, J., Zhou, J., Jiang, L., Cui, E., Ping, J., and Luo, Y.: Evolution of Uncertainty in Terrestrial Carbon Storage in Earth System Models from CMIP5 to CMIP6, 1, 1–33, https://doi.org/10.1175/JCLI-D-21-0763.1, 2022.
- Weng, E. and Luo, Y.: Relative information contributions of model vs. data to short- and long term forecasts of forest carbon dynamics, 21, 1490–1505, 2011.
- Weng, E., Luo, Y., Gao, C., and Oren, R.: Uncertainty analysis of forest carbon sink forecast
 with varying measurement errors: a data assimilation approach, 4, 178–191,
 https://doi.org/10.1093/jpe/rtr018, 2011.
- Weng, E., Farrior, C. E., Dybzinski, R., and Pacala, S. W.: Predicting vegetation type through
 physiological and environmental interactions with leaf traits: evergreen and deciduous

- 1746 forests in an earth system modeling framework, 23, 2482-2498,
- 1747 https://doi.org/10.1111/gcb.13542, 2017.
- 1748 Weng, E., Dybzinski, R., Farrior, C. E., and Pacala, S. W.: Competition alters predicted forest 1749 carbon cycle responses to nitrogen availability and elevated CO2: simulations using an 1750 explicitly competitive, game-theoretic vegetation demographic model, 16, 4577-4599, https://doi.org/10.5194/bg-16-4577-2019, 2019. 1751
- Weng, E. S., Malyshev, S., Lichstein, J. W., Farrior, C. E., Dybzinski, R., Zhang, T., 1752 Shevliakova, E., and Pacala, S. W .: Scaling from individual trees to forests in an Earth 1753 1754 system modeling framework using a mathematically tractable model of height-structured 1755 competition, 12, 2655-2694, https://doi.org/10.5194/bg-12-2655-2015, 2015.
- 1756 Wieder, W. R., Grandy, A. S., Kallenbach, C. M., and Bonan, G. B.: Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon 1757 Stabilization (MIMICS) model, 11, 3899-3917, https://doi.org/10.5194/bg-11-3899-2014, 1758 1759 2014.
- 1760 Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck, H., Carvalhais, N., Jung, M., Hollinger, D. Y., Kattge, J., Leuning, R., Luo, Y., Tomelleri, E., 1761 Trudinger, C. M., and Wang, Y.-P.: Improving land surface models with FLUXNET data, 1762 1763 Biogeosciences, 6, 1341-1359, https://doi.org/10.5194/bg-6-1341-2009, 2009.
- 1764 Woodward, F. I., Lomas, M. R., and Betts, R. A.: Vegetation-climate feedbacks in a greenhouse world, Phil. Trans. R. Soc. Lond. B, 353, 29-39, https://doi.org/10.1098/rstb.1998.0188, 1765 1998. 1766
- 1767 Xia, J., Luo, Y., Wang, Y.-P., and Hararuk, O.: Traceable components of terrestrial carbon 1768 storage capacity in biogeochemical models, 19, 2104-2116, 1769 https://doi.org/10.1111/gcb.12172, 2013.
- 1770 Xia, J., Yuan, W., Wang, Y.-P., and Zhang, Q.: Adaptive Carbon Allocation by Plants Enhances 1771 the Terrestrial Carbon Sink, Sci Rep, 7, 3341, https://doi.org/10.1038/s41598-017-03574-3, 1772 2017.
- 1773 Xia, J., Yuan, W., Lienert, S., Joos, F., Ciais, P., Viovy, N., Wang, Y., Wang, X., Zhang, H., 1774 Chen, Y., and Tian, X.: Global Patterns in Net Primary Production Allocation Regulated by Environmental Conditions and Forest Stand Age: A Model-Data Comparison, 124, 2039-1775 2059, https://doi.org/10.1029/2018JG004777, 2019. 1776
- 1777 Xu, T., White, L., Hui, D., and Luo, Y.: Probabilistic inversion of a terrestrial ecosystem model: 1778 Analysis of uncertainty in parameter estimation and model prediction, 20, GB2007, https://doi.org/10.1029/2005GB002468, 2006. 1779
- 1780 Yizhao, C., Jianyang, X., Zhengguo, S., Jianlong, L., Yiqi, L., Chengcheng, G., and Zhaoqi, W.: 1781 The role of residence time in diagnostic models of global carbon storage capacity: model 1782 decomposition based on a traceable scheme, Sci Rep, 5, 16155, https://doi.org/10.1038/srep16155, 2015. 1783
- 1784 Yuan, W., Luo, Y., Liang, S., Yu, G., Niu, S., Stoy, P., Chen, J., Desai, A. R., Lindroth, A.,
- 1785 Gough, C. M., Ceulemans, R., Arain, A., Bernhofer, C., Cook, B., Cook, D. R., Dragoni, 1786
 - D., Gielen, B., Janssens, I. A., Longdoz, B., Liu, H., Lund, M., Matteucci, G., Moors, E.,

- Scott, R. L., Seufert, G., and Varner, R.: Thermal adaptation of net ecosystem exchange, 8,
 1453–1463, https://doi.org/10.5194/bg-8-1453-2011, 2011.
- 1789 Zeng, Z., Piao, S., Li, L. Z. X., Zhou, L., Ciais, P., Wang, T., Li, Y., Lian, X., Wood, E. F.,
- Friedlingstein, P., Mao, J., Estes, L. D., Myneni, R. B., Peng, S., Shi, X., Seneviratne, S. I.,
 and Wang, Y.: Climate mitigation from vegetation biophysical feedbacks during the past
 three decades, 7, 432–436, https://doi.org/10.1038/nclimate3299, 2017.
- Zhou, G., Houlton, B. Z., Wang, W., Huang, W., Xiao, Y., Zhang, Q., Liu, S., Cao, M., Wang, X., Wang, S., Zhang, Y., Yan, J., Liu, J., Tang, X., and Zhang, D.: Substantial reorganization of China's tropical and subtropical forests: based on the permanent plots,
- 1796 20, 240–250, https://doi.org/10.1111/gcb.12385, 2014.
- Zhou, J., Xia, J., Wei, N., Liu, Y., Bian, C., Bai, Y., and Luo, Y.: A traceability analysis system for model evaluation on land carbon dynamics: design and applications, Ecol Process, 10, 12, https://doi.org/10.1186/s13717-021-00281-w, 2021.
- 1800 Zuleta, D., Arellano, G., Muller-Landau, H. C., McMahon, S. M., Aguilar, S., Bunyavejchewin,
- S., Cárdenas, D., Chang-Yang, C.-H., Duque, A., Mitre, D., Nasardin, M., Pérez, R., Sun,
 I.-F., Yao, T. L., and Davies, S. J.: Individual tree damage dominates mortality risk factors
- across six tropical forests, 233, 705–721, https://doi.org/10.1111/nph.17832, 2022.

Page 10: [1] Deleted 10:42:00 AM	Weng, Ensheng (GISS-6110)[TRUSTEES OF COLUMBIA UNIVERSITY]	6/15/22	
Page 15: [2] Deleted 6:29:00 PM	Weng, Ensheng (GISS-6110)[TRUSTEES OF COLUMBIA UNIVERSITY]	6/16/22	
Å			