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Abstract. This paper presents the AirGAM 2022r1 model – an air quality trend and prediction model developed at the 5 

Norwegian Institute for Air Research (NILU) in cooperation with the European Environment Agency (EEA) over 2017-2021. 

AirGAM is based on nonlinear regression GAM – Generalized Additive Models – capable of estimating trends in daily 

measured pollutant concentrations at air quality monitoring stations, discounting for the effects of trends and time variations 

in corresponding meteorological data. The model has been developed primarily for the compounds NO2, O3, PM10 and PM2.5. 

Meteorological input data consist of temperature, wind speed and direction, planetary boundary layer height, relative and 10 

absolute humidity, cloud cover and precipitation over the period considered. The exact set of meteorological variables used in 

the model depends on the compound selected for analysis. In addition to meteorological variables introduced in the model as 

covariates, i.e. explanatory variables for the concentration levels, the model also incorporates time variables such as day of the 

week, day of the year, and overall time, related to the model's trend term. The trend analysis is performed at each station 

separately. Thus, the model only considers the temporal features of concentrations and meteorology at a station, not any spatial 15 

correlations or dependencies between stations. AirGAM is implemented using the R language for statistical computing and, in 

particular, the GAM package mgcv. In the model, meteorological and time covariates are represented and estimated as smooth 

nonlinear functions of the corresponding variables. Thus, the trend term is defined and estimated as a smooth nonlinear function 

of time over the period selected for analysis. Once fitted to training data, the model may be used as a prediction tool capable 

of predicting air pollutant concentrations for new sets of meteorological and time data which are not in the training set – e.g. 20 

for cross-validation or forecasting purposes. The model does not explicitly use emissions or background concentrations – these 

are sought to be implicitly represented through the estimated nonlinear relations between meteorology, time and 

concentrations. In addition to meteorology-adjusted trends, the program also produces unadjusted trends – i.e., trends based 

on the same regression set-up but only including the time covariates. Both types of trends can be output in the same run, 

making it possible to compare them. Ideally, the meteorology-adjusted trend will show the trend in concentration mainly due 25 

to changes in emissions or physio-chemical processes not induced by changes in meteorology. AirGAM has been developed 

and tested primarily in trend studies based on measurement data hosted by EEA, including the Airbase data (before 2013) and 

the Air Quality e-Reporting (AQER) data from 2013 and onwards. Still, the model is general and could be applied in other 

regions with other input data. The EEA data provide daily or hourly surface measurements at individual monitoring stations 

in Europe. For input meteorological data, we extract time-series from the gridded meteorological re-analysis (ERA5) provided 30 
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by the European Centre for Medium-Range Weather Forecast (ECMWF) for each monitoring station. The paper presents 

results with the model for all Airbase/AQER stations in Europe from the latest EEA trend study for 2005-2019. 

1 Introduction 

The atmospheric level of pollutants at a given site and time is determined by the emissions, meteorology, and various physio-

chemical conditions (vegetational uptake, solar radiation, etc.). The evaluation of emission abatement protocols relies on long-35 

term trends in measured air pollutant concentrations. These analyses are complicated by the influence of year-to-year variations 

in meteorology. Although the measurements are based on daily or hourly data throughout the year, seasonal anomalies in the 

weather conditions could significantly alter the annual statistics used in the trend calculations, such as e.g. the 2003 and 2018 

heatwaves affecting the surface ozone levels in Europe (Logan et al., 2012; Sicard et al., 2013, Simpson et al., 2014, Diaz et 

al., 2020; Johansson et al., 2020). State-of-the-art CTMs (Chemical Transport Models) simulating the physio-chemical 40 

processes in the atmosphere is the common tool to meet this challenge. However, applying CTMs for long periods in a multi-

scenario approach could be costly and time-consuming. 

 

Furthermore, the analyses of trends become non-trivial when there are significant discrepancies between the CTM calculations 

and the measured level of pollutants. One background for our development of the AirGAM model – which is based on statistical 45 

regression generalized additive modelling or GAM (Hastie and Tibshirani, 1990; Wood, 2017) – was a statement in the 2013 

Air Quality Report (EEA, 2013): "… there is a discrepancy between the past reductions in emissions of O3 precursor gases in 

Europe and the change in observed average O3 concentrations in Europe". This raised the question of whether the discrepancy 

was due to errors in the emission data, lack of performance by the CTMs or simply a result of the uncertainty of the data. 

 50 

A large number of scientific papers have shown that statistical-based models focussed on the normalisation or removal of the 

impact of meteorological anomalies are valuable tools that could complement the CTMs when designed carefully (e.g. 

Thompson et al., 2001; Ordóñez et al., 2005; Camalier et al., 2007; Zheng et al., 2007; Chan and Vet, 2010; Davis et al., 2011; 

Grange et al., 2018; Fix et al., 2018; Otero et al., 2018; Grange and Carslaw, 2019; Pernak et al., 2019). A variety of names 

and types of these statistical models have been used for the assessment of long-term atmospheric data, like random forest (RF) 55 

models (e.g. Grange et al., 2018; Grange and Carslaw, 2019, Pernak et al., 2019), boosted regression trees (Carslaw, 2021), 

gradient boosting techniques (Barré et al., 2021; Keller et al., 2021, Petetin et al., 2020),  as well as generalized additive models 

(Ordóñez et al., 2020) as used in this work. Note that standard trend estimation techniques, such as, e.g. curve fitting, smoothing 

methods (moving average), or robust methods, such as e.g. Theil-Sen estimation etc., can be used to estimate trends in time-

series of concentrations but cannot account for trends in or impact of the corresponding meteorology. For this, regression-60 

based methods are needed. An excellent recent overview of scientific issues and statistical methods for trend analysis in 

atmospheric time series is given by Chang et al. (2021). 
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The initial development of the AirGAM model (Solberg et al., 2018a) was based on a statistical method that was used by the 

US-EPA (Environmental Protection Agency) routinely to assess surface ozone trends, adjusting for the inter-annual influence 65 

of changing meteorology (Camalier et al., 2007). Subsequently, the model has been gradually refined and extended for NO2, 

PM10 and PM2.5 (Solberg et al., 2018b; Solberg et al., 2019; Solberg et al., 2021a). 

1.1 The AirGAM model 

AirGAM is a model for estimating trends in daily measured pollutant concentrations at one or more monitoring stations over 

a given period by adjusting for trends and time variations in corresponding meteorological data. It is based on nonlinear 70 

regression GAM modelling and has been developed primarily for the compounds NO2, O3, PM10 and PM2.5. Meteorological 

data consist of temperature, wind speed and direction, planetary boundary layer height, relative and absolute humidity, cloud 

cover and precipitation. The exact set of meteorological variables used in the model depends on the compound selected for 

analysis. In addition to meteorological variables introduced as covariates, i.e. explanatory variables for the concentrations, the 

model also uses time variables as covariates such as day of the week, day of the year (seasonality), and total time (days) over 75 

the period; the latter of which is associated with the model's trend term. The trend analysis is performed at each station 

separately. Thus, the model only considers the temporal features of concentrations and meteorology at a station, not spatial 

correlations or dependencies between stations. 

 

The model is implemented using the R language for statistical computing (R Core Team, 2022) and, in particular, the GAM 80 

(Generalized Additive Modelling) statistical modelling package mgcv (Wood, 2017). The program also uses the air pollution 

data analysis package openair (Carslaw and Ropkins, 2012; Carslaw, 2019) for analysis and plotting purposes and the 

sandwich package (Zeileis, 2004) for some statistical calculations. Using the GAM regression approach, the relationships 

between concentrations and meteorological and time covariates are represented and estimated as smooth nonlinear functions 

of the variables. Thus, the trend term is defined and estimated as a smooth nonlinear function of time (days) over the period 85 

selected for analysis.  

 

In GAM modelling, the eventual nonlinear relations between the response (concentration) and covariates need not be known 

in advance. Still, they will, in a sense, be uncovered as part of the estimation procedure. Further, regularisation by penalising 

variability (wiggliness) of each nonlinear relation helps identify a more generalizable model and avoid overfitting. This 90 

represents one of the essential advantages of using a GAM model. Other standard regression model approaches, such as 

multiple linear regression (MLRs) with linear or polynomial terms or generalized linear models (GLMs) incorporating only 

linear relationships between the meteorology and time covariates and the concentrations, cannot model these dependencies 

with sufficient flexibility and accuracy since they usually are of a more complex and unspecified nonlinear form. 

 95 
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Once fitted to training data, the model may be used as a prediction tool capable of predicting air pollutant concentrations for 

new sets of meteorological and time data which are not in the training set – e.g. for cross-validation or forecasting purposes. 

The model's predictive capability is evaluated with associated plots using several deterministic and probabilistic model 

evaluation metrics. A leave-one-year-out cross-validation procedure is incorporated in AirGAM and is usually performed 

automatically as part of the model run.  100 

 

The model has been mainly developed for trend studies based on the air quality (AQ) measurement data hosted by the European 

Environmental Agency (EEA), including the Airbase data (before 2013) and the AQER data (Air Quality e-Reporting) from 

2013 and onwards. The EEA data provide daily or hourly surface concentrations at individual monitoring stations. For the 

input meteorological data, we extract time-series from the gridded meteorological re-analysis data (ERA5) provided by 105 

ECMWF for each monitoring station (Hersbach et al., 2018; Hersbach et al., 2020). Figure 1 shows a schematic of the data 

flow of AirGAM. 

 

 

Figure 1. AirGAM data flow scheme. 110 

In addition to concentrations and meteorology, the program reads several control options for the model run. Another feature 

of AirGAM is that it may sometimes check for errors in the air quality data. We have often found the poor performance of the 

model, e.g. low correlations between observed and model-predicted concentrations from cross-validation, associated with 

dubious measurement data. 

 115 
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AirGAM does not explicitly use emissions or background concentrations – these are sought to be implicitly represented 

through the estimated nonlinear relations between the concentrations and the meteorology and time variables. In addition to 

meteorology-adjusted trends, the program may also produce unadjusted trends – i.e., trends based on the same regression set-

up but only including the time covariates. Both types of trends can be output in the same run, making it possible to compare 

them. 120 

 

The model estimates trends over a user-defined period, from a minimum of two years upwards. For each year, the user may 

select the whole year; or a sub-part of the year, e.g. only winter months (say October-March), summer months (say April-

September), or any user-defined interval of months for the trend analysis. Usually, only a single set of smooth relations between 

concentrations and the covariates is estimated from the data in the model. However, it is possible to operate with different 125 

groups of estimated smooth relations for different parts of the year (or sub-year) if needed, e.g. one set for the winter, say 

October-March, and another for the summer, say April-September. This latter capability of the model is typically necessary 

for modelling O3 and PM2.5 using data for the whole year since the relationships usually are different in the wintertime than in 

the summer. 

1.2 Predictions in the Covid-year 2020 130 

The conceptual idea behind a statistical model such as AirGAM is that the model is "trained" to find patterns between various 

input data (local temperature, wind speed, mixing height etc.) and the daily level of pollutants (NO2, O3 etc.) for a given 

training period. Based on these patterns, the model can predict pollutant levels outside the training period. The main advantage 

compared to CTMs is that no assumptions on emissions are needed. Thus, the exceptional conditions experienced during the 

Covid-19 lockdown in 2020 offered a perfect task for such statistical models. We applied the AirGAM model for EEA's AQER 135 

(Air Quality e-Reporting) data of NO2 (EEA, 2020; Solberg et al., 2021b) during the first lockdown in Europe (March-July 

2020) and trained the model on data for the previous five years (2015-2019). The difference between the AirGAM predictions 

("business-as-usual") and the observed NO2 levels could then be related to the impact of the lockdown on mobility (road 

transport, aviation etc.). Compared to gridded models such as CTMs, statistical models could be applied directly to urban 

stations. We found that the AirGAM model performed fine for most sites while performing more poorly for a minor number 140 

of stations, partly explained by inconsistent measurement data. After aggregating all traffic sites (urban and suburban) for 

individual countries, the results showed good compliance between predicted and observed daily NO2 levels. 

 

The predictive capabilities of the AirGAM model come in addition to the application for long-term trend assessments. The 

experience from applying AirGAM specifically for a Covid-19 analysis (Solberg et al., 2021b) was that the model performed 145 

very well for NO2 at the urban and suburban background and traffic sites. In contrast, as expected, the performance was lower 

at rural locations since the NO2 levels outside the urban areas are less determined by local meteorological conditions. The 

performance was lower for O3 and PM, which is also expected since secondary formation and long-range transport are more 
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important processes for these compounds. Such processes are only indirectly captured by AirGAM. These results do not imply 

that the AirGAM model and other statistical tools are unfit for O3 and PM assessments, just that the model performance is 150 

somewhat lower than for a primary pollutant such as NO2. 

1.3 Outline of the paper 

First, in Sect. 2, we overview the statistical GAM methodology implemented in the AirGAM model and how to interpret its 

trends. Section 3 gives results from a recent EEA trend study for 2005-2019, using all available Airbase/AQER stations in 

Europe. Section 4 compares GAM with the RF method in the R package rmweather. In Sect. 5, we shortly discuss how 155 

AirGAM can also be used as a tool for data quality investigations. Finally, Sect. 6 contains a summary and conclusions. 

Appendix A lists some questions and answers (Q & A) regarding the model. The accompanying data supplement to the paper 

includes a User’s Guide to the model describing details of its numerical implementation, all inputs to the model and how to 

run it on Windows and Linux, and all results files. It also contains instructions on installing the model and some run examples. 

2 Model formulation 160 

2.1 GAM models 

In statistics, a GAM model (Hastie and Tibshirani, 1990; Wood, 2017) is a nonlinear regression model linking expected values 

i  of a given response variable iY  to one or more explanatory variables ijx  through the following relations: 

 

( ) ( ) ( )0

1

;   
p

i j ij i i

j

g x E Y   
=

= + = , (1) 165 

 

where 0  is a constant (the intercept), and where ( )j  , for 1,...,j p= , represents smooth functions of the covariates ijx , 

with p  the number of covariates. In our implementation of this model for air quality analysis, the response variable iY  in Eq. 

(1) represents a daily average (NO2 or PM) or maximum 8-hour running mean (O3) concentration at day number i  at a given 

site, while ijx  represent the values of the explanatory variables, for 1,...,j p= , at the same location and day. These consist of 170 

various meteorological variables such as temperature, wind, etc., and time variables such as day of the week, day of the year, 

etc. The meteorological covariates depend on the air pollutant being modelled, as shown in Table 1.  

 

In Eq. (1), ( )g   is a function (the link function) that links the statistically expected value of the response variable iY , i.e. i , 

to the covariates ijx . Also, iY  is assumed to have a definite probability distribution, the response distribution, with mean i  175 
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and variance iV . Further, in Eq. (1), each j  is a smooth function of ijx , and not simply a constant to be multiplied with ijx  

as in multiple linear regression (MLR) or generalized linear regression models (GLMs). Thus, GAM models represent an 

extension of these models for regression. GAMs are also more flexible than MLR models (but not GLMs) since the mean 

value i  is related to the covariates through a link function ( )ig  , which need not be the identity function ( )g  = . 

 180 

Since the relation between air pollution and meteorology is generally nonlinear, MLR models or GLMs cannot naturally model 

this relationship. Only a nonlinear model, such as a GAM, capable of fitting nonlinear relations between an air pollutant and a 

set of meteorological covariates will have a chance of succeeding in this regard. It is then vital to choose the "right" set of 

meteorological covariates for each type of air pollutant to be modelled. Besides, various time covariates will also be needed.  

 185 

Note that emissions, background concentrations, physio-chemical processes and depositions have deliberately been left out 

from the design of such a regression model, even though we know that air pollutants are closely linked to and primarily 

determined by these factors and processes in addition to meteorology. The idea is to see how far we can use meteorology and 

time data to model air pollutants. Limitations depend on the compound and type of data. Over the last four years, the current 

model has been developed for NO2, O3, PM10 and PM2.5. This development has resulted in a set of meteorological and time 190 

covariates found to model and predict concentrations of these compounds well (Table 1). 

 

For NO2, PM10 and PM2.5, we apply a log link ( ) logg  =  and Gamma distributions as response distributions. This is 

because these compounds generally have a somewhat more extensive range of concentration variations than O3, with the 

variance of iY , i.e. iV , typically proportional to 
2

i . For such variables, it is usual practice in GAM modelling to select a 195 

logarithmic link function and a distribution potentially skewed to the right, such as a Gamma, as a response distribution for  

(Wood, 2017). This was also applied in the previous trend studies (Solberg et al., 2018a; 2018b; 2019). 

 

For O3, we apply an identity link ( )g  =  and Normal distribution as a response distribution. This choice is because O3 has 

a relatively small range of concentration variations where the variance of iY , i.e. iV , does not change very much with the mean 200 

i . Thus the response distribution is well represented with a symmetric distribution such as a Normal. 

 

The input variables have been selected by combining a priori knowledge of the main physio-chemical processes and experience 

during the model development. Extensive research in previous work with the model (Solberg et al., 2018a; 2018b; 2019) 

resulted in meteorological and time variables used, as presented in Table 1. Absolute humidity is introduced as a variable for 205 

O3 since the gas-phase reaction O'D + H2O → 2OH is the main production path for OH in the atmosphere and since OH, in 

iY
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turn, is decisive for the O3-formation. For PM and NO2, we used relative humidity to reflect the importance of wet deposition 

and cloudiness. 

 

Table 1. List of meteorological and time variables used in the AirGAM model (Eq. (1)) for various compounds. The short names refer to 210 
those used in the text and graphics files in Sect. S5 in the supplement. 

 Meteorological variable Short name Unit Used by compound 

x1 
Daily mean temperature at 2 m 

Daily temperature at 2 m at 18 UT 

temp 

temp 

°C 

°C 

All except O3 

O3 

x2 Daily mean wind speed at 10 m ws m s-1 All 

x3 Daily mean wind direction at 10 m wd ° All 

x4 Daily mean planetary boundary layer height pblh m All 

x5 
Daily mean relative humidity 

Daily absolute humidity at 18 UT 

rh 

h2o 

% 

g kg-1 

All except O3 

O3 

x6 Medium-height cloud cover mcc % All 

x7 Daily total precipitation prec mm day-1 PM10 and PM2.5 

x8 Weekday number dayofweek day All 

x9 Day number in the year or sub-part of the year dayofyear day All 

x10 
Continuous-time in fraction of years 

(0.0 at the start of the period). This is the trend term. 
years year All 

 

In the model, the trend term is represented as a smooth function of time (x10= t ) rather than a straight line, as in some previous 

studies (Solberg et al., 2018a, 2018b). The main reason for this choice is for the model to be better prepared for trend studies 

over extended periods. In such cases, it is less relevant to represent the whole trend over the entire period as a straight line.  215 

 

Since meteorological variables are included in this GAM model to explain the expected ( i ) and observed ( iY ) concentrations 

of air pollutants at each time point it , the estimated trend ( )10 t  in Eq. (1) will represent a so-called meteorology-adjusted 

trend, i.e. a trend discounting for the effects of trends or time variations in these meteorological variables over the period 

selected for the analysis. This represents the main output from AirGAM. 220 

 

Note that none of the covariates is transformed in the model, only the concentrations of NO2 and PM. Wind direction is the 

only variable which is cyclic. Day of week and day of year are not defined as cyclic variables since Sunday and Monday, and 

31 December and 1 January may differ considerably. 

 225 
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Also, wind direction and relative humidity are not provided directly in the ECMWF ERA5 data used in this study. Instead, 

they have been calculated from the u- and v-components of wind, and absolute humidity, surface temperature, and pressure 

found in these data. Details of this pre-processing of the ERA5 data are found in Appendix C in the supplement. 

 

In addition to meteorology-adjusted trends produced by the model described above, AirGAM may also estimate so-called 230 

unadjusted trends. These are trends produced by the same GAM regression model set-up as above, but only including the time 

covariates x8-x10, i.e., removing all the meteorological covariates x1-x7. Both trends can be produced individually and output 

from the same run, making it possible to compare them. These two models will be called the meteorology-adjusted and 

unadjusted models in the following. 

 235 

Note that in AirGAM, we only use GAM models with covariates in a purely additive form, as shown by Eq. (1). Thus, no 

interactions between the variables are used, such as, e.g. multiplications between variables, defining 2-dimensional smooth 

functions, etc. This makes the models easy to interpret since the estimated nonlinear functions encode each independent 

variable's contribution to the predicted concentration. Sect. 4 compares our GAM models to RF models that incorporate 

interactions between the variables. We show that our GAM approach produces models with predictive performance on par 240 

with this method. Thus, we argue that a purely additive model seems sufficient to build models with good predictive 

performance, at least for the data analysed in this paper.  

2.2 Calculation of physically interpretable trend curves 

AirGAM outputs trend curves as plots and data values to various result files described in Sects. S5.1.1-S5.1.2 and S5.1.9-

S5.1.10 in the supplement. To interpret a change in the trend level between two arbitrary time-points in these plots and data 245 

files as a change in the expected concentration levels between the same two time points under certain well-defined conditions, 

it is essential to adjust the raw trend given by the estimated trend function ( )10 t  from Eq. (1) into a physically interpretable 

trend curve ( )trendy t .  

 

This section describes how this is done for the various compounds and the meteorology-adjusted and unadjusted models. 250 

 

First, we focus on the meteorology-adjusted model. For compounds such as O3, where we apply an identity link ( )g  =  in 

Eq. (1), the expected concentration at the time t  is given by 

 

( ) ( )( ) ( ) ( ) ( )
1

0

1

p

j j p

j

t x t t A t B t   
−

=

= + + = + , (2) 255 
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with  ( ) ( )( )
1

0 1

p

j jj
A t x t 

−

=
= +  and ( ) ( ) ( )p trendB t t t = = . Here ( )A t  is the contribution to the expected concentration 

at the time t  from meteorology and the time variables day of week and day of the year, while ( )B t  is the contribution to the 

expected concentration at the time t  from the trend term. In this case, the physically interpretable trend curve is sought defined 

as the function 260 

 

( ) ( )trendy t A B t= + , (3) 

 

with A  determined so that a difference in trend values between two arbitrary time points, say 1t  and 2t , can be interpreted as 

the difference in the expected concentrations between these two time points, i.e., we need to have 265 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 1 2 1 2 1

2 1 2 2 1 1

( )

,

trend trendy t y t A B t A B t B t B t

t t A t B t A t B t 

− = + − + = − =

− = + − −
 (4) 

 

which holds for all values of A  as long as ( ) ( )1 2A t A t= , i.e. as long as the impact of meteorology and the two time variables 

is the same for the two time points. Under this assumption, Eq. (3) can be used as a physically interpretable trend curve for 270 

any value of A . However, it is natural to set A  so that the trend curve values have the same time average over the period as 

the actual observations, i.e. trendy Y= . Then, since the smooth trend -function from GAM always averages to zero over the 

time points of the trend estimation, which is a property of GAM modelling, it follows from Eq. (3) that this corresponds to 

setting A Y= . Changes in the trend curve values can then be interpreted as changes in the expected concentrations if we 

assume the same impact of meteorology and day of week and day of the year for the two time points, i.e. ( ) ( )1 2A t A t= . Note 275 

that the actual values ( )1A t  and ( )2A t  will usually differ.  

 

The same development as above also holds in the case of the unadjusted GAM model. There are only two time variables, day 

of week and day of the year, in the ( )A t  function in this case. Thus, Eq. (3) with A Y=  can be used as a physically 

interpretable trend curve, where changes in the trend curve values can be interpreted as changes in the expected concentrations 280 

if we assume that ( ) ( )1 2A t A t= , i.e. as long as the impact of, in this case, only the day of week and day of the year, is the 

same for the two time points. 

 

Next, we apply the log-link function ( ) logg  =  to the more complicated GAM models for NO2 and PM. Again, we focus 

first on the meteorology-adjusted model. The expected concentration level at time t  is now given by 285 
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( ) ( )( ) ( ) ( ) ( )
1

0

1

exp
p

j j p

j

t x t t A t B t   
−

=

 
= + + = 

 
 , (5) 

 

with  ( ) ( )( ) 1

0 1
exp

p

j jj
A t x t 

−

=
= +  and ( ) ( )  ( ) exp expp trendB t t t = = . Here again, ( )A t  is the contribution to the 

expected concentration at the time t  from meteorology and the time variables day of week and day of the year, while ( )B t  is 290 

the contribution to the expected concentration at the time t  from the trend term, both as factors in this case. Now a physically 

interpretable trend curve is sought defined as a function that, in this case, reads 

 

( ) ( )trendy t A B t=  , (6) 

 295 

with A  determined so that again a difference in trend values between two arbitrary time points, say 1t  and 2t , can be 

interpreted as the difference in expected concentrations between these two time points, i.e., we need to have 

 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2 1 2 1 2 1

2 1 2 2 1 1 ,

trend trendy t y t A B t A B t A B t B t

t t A t B t A t B t 

− =  −  =  − =

− =  − 
 (7) 

 300 

which holds as long as ( ) ( )1 2A A t A t= = , i.e., as long as the impact of meteorology and the two time variables is the same 

for these two time points and A  is equal to this value.  

 

Again, it is natural to set A  so that the trend curve values have the same time average over the period as the actual observations, 

i.e. trendy Y= . Thus, A Y B=  where B  is the average of the ( )B t  values over the period of trend estimation (note that this 305 

latter average is a positive number due to the exponentiation in Eq. (5)). Changes in the trend curve values can then be 

interpreted as changes in the expected concentrations if we assume this average impact of meteorology and day of week and 

day of the year for the two time points, i.e. ( ) ( )1 2A t A t A= = . Note again that the actual values ( )1A t  and ( )2A t  will usually 

differ and also differ from A . 

 310 

To better understand the impact factor A  in the previous paragraph, we give a formula for the expected value of this quantity. 

Since the conditioned observed concentrations |i iY   have expected values ( )i it = , from Eq. (1), we have 

 



12 

 

( ) ( )

( )
( )1

1

1

1

1

N

i i N
i

i iN
i

i

i

A t B t
EY N

EA w A t
B B

B t
N

 =

=

=

= = = =





, (8) 

 315 

with ( ) ( )
1

N

i i ii
w B t B t

=
=  . Thus, EA  represents a weighted average of the ( )iA t  factors with weights iw  for 1,...,i N= , 

where N  is the number of days for the trend estimation. If ( )var |i iY   is uniformly bounded above, i.e., ( )var |i iY V   for 

some 0V   for all i , and ( )cor | , |i k i k i iY Y + +  exponentially approaching zero as k → , which holds almost invariably 

for air quality observations, we have from Serfling’s strong law of large numbers applied to i iY −  (McFadden, 2000, Ch. 4, 

p. 92) that 0A EA− →  almost surely as N → . Thus, for large ,N A EA , and the average factor A  in the physically 320 

interpretable trend curve will be close to a weighted average of the factors from the meteorological and time variables over the 

period for trend estimation given by Eq. (8), with weights based on the meteorology-adjusted ( )B t  values. 

 

The same development as above also holds in the case of the unadjusted GAM model. There are only two time variables, day 

of week and day of the year, in the ( )A t  factor function in this case. Again, for large N , A  will be close to a weighted 325 

average of these factor values as in Eq. (8), but with weights based on the unadjusted ( )B t  values. 

2.3 AirGAM User’s Guide 

A User’s Guide to the model can be found in the supplement to this paper. This contains a description of all input files, how 

to run the model on Windows and Linux, and a description and presentation of all result files. It also contains a few run 

examples. Further, it gives details of the model’s numerical implementation, including the choice of solution methods, 330 

automatic model selection, the choice of number and type of basis functions, and how uncertainties are interpreted and 

calculated in the trend and in the model predictions. Appendices in the supplement contain information on downloading and 

installing the model for Windows and Linux and an overview of the model’s warning and error messages. 

 

Currently, the AirGAM model is developed as a single R script rather than an R-library of user-callable routines. Even though 335 

having the model as a single script is less flexible than having it as a set of callable routines, we also believe our single script 

provides some advantages for an end user, such as automating the sequence of steps needed to perform trend analysis for a 

whole or seasonal part of years for a large number of stations with automatic data checking and files automatically produced 

with easy identification of outcomes. The script also enables the automatic creation of model evaluation results with cross-

validation analysis and model predictions for a selectable number of years. In addition, batch scripts are provided, allowing 340 

the user to perform the model runs in parallel on Windows and Linux in the case of a large number of stations. A user only 
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needs to provide input data, define optional parameters, and run the batch scripts. This requires minimal knowledge of R and 

GAM modelling – since the model and the run scripts automate all the necessary steps.  

 

The model script may also be used as an advanced starting point to develop further or from which to extract code. However, 345 

having an R-library with user-callable routines based on the current script code will further the model's scope and flexible use. 

Thus, we might pursue developing the model also as an R-library in the future. 

3 Results for a European trend study 2005-2019 

Here we give some results with the AirGAM model based on data from the latest EEA trend study 2005-2019 (Solberg et al., 

2021a). Our experience from previous similar studies (Solberg et al., 2018a, 2018b, 2019) is that the model overall seems to 350 

perform best for NO2, followed by O3 and PM10, and worst for PM2.5. Sections 3.1-3.4 below present results for the 

compounds NO2, O3, PM10 and PM2.5, respectively. 

 

Seasonal conditioning was not used for model runs, i.e. use_season_cond=0. Thus, only a single set of smooth relations 

between the concentrations and the meteorological and time covariates were estimated and used by the model. The trend type 355 

was set to nonlinear (trend_type=nonlinear), and the number of basis functions to be used by the trend term was set to 

missing (k_years=NA), which implies that five basis functions (15 years/3) were used to represent the trend term in the 

model. Introducing a basis function for the trend every three years was considered an appropriate setting in this long-term 

trend study since we did not want to focus on, or model, too much of the short-term variations in the trend at individual stations 

but rather focus on the more main features and more long-term variations in the trend. 360 

 

The bam routine in the mgcv package was always tried before the gam routine (incl_bam=1) (incidentally, no gam-calls 

were executed), and automatic model selection was turned on (incl_select=1). The AR(1) model was not invoked for 

these runs (incl_ar1=0) to reduce the computational time, which means autocorrelation in the time series was not considered. 

Thus, the focus is not accurately estimating individual trend curves' uncertainties. In the cross-validation, the “limit-covariates” 365 

approach was used to obtain robust predictions (rob_pred=limcov), i.e. covariate values outside the training interval were 

set to the nearest value in this interval before being used in the predictions. For all compounds except for O3, all months in 

each year were used to estimate the trend (subyear=jan-dec). For O3, only the summer period (April-September) was 

used for a summer-trend study (subyear=apr-sep). 

3.1 NO2 370 

For NO2, there are 1485 stations in the Airbase/AQER database for 2005-2019, fulfilling the data coverage criteria for this 

compound (75 % coverage for individual years and 75 % coverage of years in the period), excluding the industrial stations. 
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This forms the basis for the trend study for this compound. Due to the large number of stations for NO2, we refrain from 

showing any individual station results here. Input data and results for all stations for this compound can be found in the model’s 

data repository (Walker and Solberg, 2022b-c).  375 

 

However, the results for station EE0018Ah (Õismäe) are shown in Sect. S5 in the supplement, which describes the output 

results from the AirGAM model. This is a background station in an urban part of Tallinn, Estonia, with coordinates 52.41417°N 

and 24.64946°E, at 6 m a.s.l. This station was chosen to illustrate the results since it is the exact median station of all stations 

based on the cross-validation correlation results for NO2. Thus, it is neither the best nor the worst station but may be viewed 380 

as “typical” for the results for this compound. In the supplement, Figure S2 shows the primary trend results in a meteorology-

adjusted trend for 2005-2019. Figure S3 shows plots of all smooth functions of meteorology and time-explanatory variables 

based on all training data for the same period. A plot of model predictions from the cross-validation for 2019 based on data 

for the left-out years 2005-2018 is presented in Fig. S4. Figs. S5-S8 shows plots of observed and predicted annual and monthly 

average concentrations with trend curves and yearly and monthly median concentrations. Further, for this station, you may 385 

also find plots of all evaluation results in the supplement in the individual sub-sections of Sects. S5.2-S5.3. All results are 

commented upon in the respective sub-sections of Sects. S5.1-S5.3 there. 

3.1.1 Results for all stations 

Figure 2 shows a panel of three maps of stations over Europe. The maps are made for three categories of stations: (1) 

Background stations in rural areas (left); (2) Background stations in urban/suburban areas (middle); and (3) Traffic stations in 390 

any area  (right). In each map, we present the percentage change in expected concentrations of NO2 from 2005 to 2019 relative 

to the initial levels in 2005 based on the estimated meteorology-adjusted trend for NO2 for each station. The stations plotted 

in each map are the stations for which the 2005-2019 cross-validation gave a correlation between observed and model-predicted 

values above 0.65. This resulted in 205, 742 and 409 stations, respectively, for the three types of stations, 1356 in total.  

 395 
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Figure 2. Maps of stations in Europe with the percentage change in expected concentrations from 2005 to 2019 relative to the initial level 

in 2005 based on the meteorology-adjusted trend for NO2. Left: Background stations in rural areas; Middle: Background stations in 

urban/suburban areas; and Right: Traffic stations. 

For each station, the change in the expected concentration level is calculated based on the physically interpretable trend curves 400 

( )trendy t  as output from the model at the two time points 1t  and 1t  corresponding to the start and end of the trend estimation 

period 2005-2019, respectively, i.e. 1 January 2005 and 31 December 2019. Thus, the absolute change in expected 

concentration is calculated as ( ) ( )trend 2 trend 1y t y t− , while the relative per cent change is calculated as 

( ) ( )( ) ( )trend 2 trend 1 trend 1100 y t y t y t − . Section 2.2 describes how the trend curves are interpreted and calculated based on the 

output from the GAM model.  405 

 

The maps indicate a weak west-to-east gradient with more substantial declines in the west and smaller in the east. This is 

particularly marked for the urban/suburban background stations (middle panel), with the densest geographical coverage. The 

result is mixed with countries showing both substantial reductions and sites with no trend or even increasing levels for traffic 

sites. This reflects that the roadside stations are more heterogeneous and subject to changes in the local urban environment 410 

(roads, buildings, etc.). Additionally, the NO2/NOx ratio in tailpipe emissions will strongly influence these sites, depending on 

the fleet of vehicles (fraction of diesel cars) and the ambient ozone level. These issues will be reduced and smoothed out for 

background stations due to atmospheric mixing and the NO2/NOx concentration ratio approaching the photo-stationary steady 

state determined by solar radiation, temperature, and ozone level. 

 415 

Figure 3 shows box plots of the same changes in expected concentrations for the same three categories of stations. The three 

left plots show the relative change in per cent as in Fig. 2, while the three right plots show the absolute changes in concentration 

levels.  
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Figure 3. Box plots of changes in expected concentrations over the same three types of stations as in the map plots in Fig. 2. The left panel 420 
shows relative per cent changes, while the right panel shows absolute changes from 2005 to 2019. Units: % and µgm-3. 

 

The results in Fig. 3 show that the NO2 concentration has decreased approximately at the same rate at all station categories 

during 2005-2019. Median reductions of 29 % are found for the rural and urban/suburban stations and 31 % for the traffic 

stations, with corresponding decreases in concentrations of 4-13 µgm-3.  425 

 

Figure 4 shows box plots of some selected statistical evaluation parameters based on the cross-validation for 2005-2019. Again, 

the box plots are made for the same three categories of stations as in Figs. 2-3.  

 

Figure 4. Box plots of some selected evaluation parameters from the cross-validation for 2005-2019, again for the same three categories of 430 
stations.  
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As seen from Fig. 4, the predictive performance of the AirGAM model for NO2 concerning correlation (r) and coefficient of 

efficiency (COE) is somewhat better for the urban/suburban background stations than for the traffic and rural ones. However, 

the median values of r and COE are pretty decent for all three types. Regarding FAC2 (fraction of days with predictions within 

a factor two of observations) and RMSE (root mean squared error), traffic and rural sites are best, respectively, whence we 435 

have a somewhat mixed picture. Nevertheless, FAC2, r and COE are slightly poorer, i.e. lower, for rural stations, which is 

expected since the NO2 levels at these sites depend less on the local meteorological conditions than suburban and urban sites. 

Also, note that the median bias is close to zero for all three types of stations, which is good. 

3.2 O3 

For O3, there are 1175 non-industrial stations in the Airbase/AQER database for 2005-2019, fulfilling the data coverage criteria 440 

for this compound (75 % coverage for individual years and 75 % coverage of years in the period). For this compound, the air 

quality data consist of maximum daily running 8-h average (MDA8) concentrations for each day. Again, no individual station 

results are shown here, but all data and results for this compound for all stations can be found in the model’s data repository 

(Walker and Solberg, 2022b; Walker and Solberg, 2022d). Figures 5-7 show the same type of results as for NO2. 

 445 

The stations plotted in each map in Fig. 5 and as data values in Fig. 6 are the stations for which the 2005-2019 cross-validation 

for O3 gave a correlation above 0.65. This resulted in 303, 594 and 44 stations, respectively, for the three types of stations, 941 

in total. However, for the evaluation in Fig. 7, all 1175 stations are used, 368, 729 and 78 in each category. 

 

Figure 5. Maps of stations in Europe with the percentage change in expected concentrations from 2005 to 2019 relative to the initial level 450 
in 2005 based on the meteorology-adjusted trend for O3. Left: Background stations in rural areas; Middle: Background stations in 

urban/suburban areas; and Right: Traffic stations. 
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The geographical distribution of the ozone-summer-time changes of mean MDA8 shows no clear patterns (Fig. 5). The rural 

stations offer reductions (yellow-green colours) over most areas, with more substantial decreases at some stations, mainly in 455 

Portugal and Italy. The changes at urban/suburban sites are closer to zero at many locations, but several stations also show 

marked reductions.  

 

Figure 6. Box plots of changes in expected concentrations over the same three types of stations as in the map plots in Fig. 5. The left panel 

shows relative per cent changes, while the right panel shows absolute changes from 2005 to 2019. Units: % and µgm-3. 460 

 

As shown in Fig. 6, the calculated changes in the mean summer half-year of MDA8 during 2005-2019 are substantially smaller 

than the changes found for NO2 over the same period. For the rural and urban/suburban stations, a median reduction of 6 % 

and 5 % is found, respectively, while a slight increase of 2 % is seen for the traffic sites. The corresponding changes in 

concentrations are from -6 to 2 µgm-3 from 2005 to 2019. 465 
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Figure 7. Box plots of evaluation parameters from the cross-validation for 2005-2019, again for the same three types of stations.  

Otherwise, the results for ozone (Fig. 7) show the opposite compared to NO2 regarding model performance; the best 

performance (high FAC2, r and COE) is seen at rural stations and the poorest at traffic sites. However, the model performance 

for the urban/suburban category is very close to the rural one.  470 

3.3 PM10 

For PM10, there are 1243 non-industrial stations in the Airbase/AQER database for 2005-2019, fulfilling the data coverage 

criteria for this compound (75 % coverage for individual years and 65 % coverage of years in the period). No individual 

stations are shown, but all data and results can be found in the model’s data repository (Walker and Solberg, 2022b; Walker 

and Solberg, 2022e).  475 

 

Figures 8-10 show the same type of results as for the previous compounds. The stations plotted in each map in Fig. 8 and as 

data values in Fig. 9 are the stations for which the 2005-2019 cross-validation for PM10 gave a correlation above 0.55. This 

resulted in 176, 627 and 351 stations, respectively, for the three types of stations, 1154 in total. For the evaluation in Fig. 10, 

all 1243 stations are used, 204, 658 and 381 in each category.  480 
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Figure 8. Maps of stations in Europe with the percentage change in expected concentrations from 2005 to 2019 relative to the initial level 

in 2005 based on the meteorology-adjusted trend for PM10. Left: Background stations in rural areas; Middle: Background stations in 

urban/suburban areas; and Right: Traffic stations. 

 485 

For PM10, AirGAM estimates marked reductions during 2005-2019 with indications of a west-to-east gradient (Fig. 8), as was 

found for NO2. Median decreases of 31 % are found for the rural and urban/suburban stations and 37 % for the traffic stations 

(Fig. 9), with corresponding reductions in concentrations of 7-13 µgm-3. Many Polish and Baltic sites have no change or even 

increased levels. Due to the shift from daily-based sampling to hourly in France, no trends could be calculated for sites there.  

 490 

Figure 9. Box plots of changes in expected concentrations over the same three types of stations as in the map plots in Fig. 8. The left panel 

shows relative per cent changes, while the right panel shows absolute changes from 2005 to 2019. Units: % and µgm-3. 
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Figure 10. Box plots of evaluation parameters from the cross-validation for 2005-2019, again for the same three types of stations.  495 

The AirGAM performance is best at the traffic and urban/suburban sites, with slightly poorer results for the rural ones (Fig. 

10). This is as expected for PM10 (as for NO2), mainly due to these stations being exposed to more direct local emissions. In 

contrast, the PM10 at rural sites is more influenced by long-range air mass transport and external processes not captured so well 

by the AirGAM model, such as windblown dust, forest fires, agricultural fires, etc.  

3.4 PM2.5 500 

For PM2.5, there are 354 non-industrial stations in the Airbase/AQER database for 2005-2019, fulfilling the data coverage 

criteria for this compound (75 % coverage for individual years and 65 % coverage of years in the period). No individual 

stations are shown, but all data and results can be found in the model’s data repository (Walker and Solberg, 2022b; Walker 

and Solberg, 2022f).  

 505 

Figures 11-13 show the same type of results as for the previous compounds. The stations plotted in each map in Fig. 11 and as 

data values in Fig. 12 are the stations for which the 2005-2019 cross-validation for PM2.5 gave a correlation above 0.55. This 

resulted in 59, 186 and 80 stations, respectively, for the three types of stations, 325 in total. For the evaluation in Fig. 13, all 

354 stations are used, 67, 201, and 86 in each category. 
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 510 

Figure 11. Maps of stations in Europe with the percentage change in expected concentrations from 2005 to 2019 relative to the initial level 

in 2005 based on the meteorology-adjusted trend for PM2.5. Left: Background stations in rural areas; Middle: Background stations in 

urban/suburban areas; and Right: Traffic stations. 

 

The number of stations for PM2.5 is substantially lower than for the other compounds, and thus the interpretation of the results 515 

becomes more uncertain. However, the sites with sufficient monitoring length showed a marked reduction in the expected 

concentration level (with a few exceptions) during 2005-2019 (Fig. 11). The geographical coverage is too sparse to conclude 

the spatial pattern in the trends. As a median over the sites, we find relative reductions of 28 %,  31 % and 37 % at rural, 

urban/suburban and traffic sites, respectively (Fig. 12), with corresponding reductions in the concentration of 4-7 µgm-3.  

 520 

Figure 12. Box plots of changes in expected concentrations over the same three types of stations as in the map plots in Fig. 11. The left 

panel shows relative per cent changes, while the right panel shows absolute changes from 2005 to 2019. Units: % and µgm-3. 
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Figure 13. Box plots of evaluation parameters from the cross-validation for 2005-2019, again for the same three types of stations.  525 

The AirGAM performance is best at the traffic stations concerning FAC2 but nearly the same for MB and RMSE (Fig. 13). 

For correlation r and COE, the urban/suburban and traffic stations are slightly better than the rural ones.  

4 Comparison with the random forest method in rmweather 

Another approach for discounting the effect of meteorology when estimating trends in air quality data is the random forest 

(RF) method (Ho, 1995; Breiman, 2001) as implemented, e.g. in the R package rmweather (Grange et al., 2018; Grange and 530 

Carslaw, 2019). We will briefly describe the main similarities and differences between GAM and RF and then compare them 

using the data from the present trend study.  

 

Both methods attempt to solve a nonlinear regression with concentrations as a response and a given set of meteorological and 

time variables as covariates. However, the nature of their solution methods is quite different. In GAM, we estimate a set of 535 

nonlinear relations between the response and the covariates by regularisation, i.e. by maximising a penalised likelihood. This 

produces smooth and non-wiggly estimated relations between the response and each covariate resulting in a model that avoids 

overfitting and generalises well to new data not in the training set.  

 

The RF approach uses decision trees as its main building block for relating the response to the covariates. Several datasets are 540 

then created randomly by bootstrapping, i.e. random sampling of new data with replacement from the available data, including 

randomly selecting various subsets of the available covariates. Then decision trees are fitted individually to these data. Finally, 

an ensemble of such fitted trees defines the nonlinear relations and predictions. The latter are produced as mean values over 
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the predictions from individual trees in the forest. This results in a model that avoids overfitting and generalises well to new 

data. Although they cannot be classified as robust methods per se, GAM and RF are not very sensitive to outliers. They can 545 

also handle missing data well. 

 

Both methods result in interpretable models. We can quickly inspect the estimated nonlinear relations between the response 

and each covariate to see if an association makes physical sense. In GAM, for this purpose, we use the set of estimated smooth 

functions, including the smooth function for the trend, while in RF, we use a similar set of so-called estimated partial 550 

dependencies. In the latter method, a trend is estimated by calculating meteorologically normalised concentrations over time, 

i.e. mean concentrations predicted from the RF model using “average meteorology”. In GAM, uncertainties in the smooth 

functions are output directly as a bi-product of the estimation. For RF, however, bootstrapping, using randomly sampled data 

and repeated estimations, must generally be used to estimate uncertainties in the partial dependencies and the meteorologically 

normalised concentrations. 555 

 

A nice feature of the RF approach is that concurvity or collinearity between the covariates is handled efficiently and is thus 

not an essential issue for these models, while this can be detrimental for GAM models and needs to be checked. However, our 

present study's experience shows this to be a pretty minor issue, with only a few cases of potential problems, despite many 

stations. RF also has model selection built-in since the method will ignore a variable not contributing to predicting a response. 560 

GAM also has model selection built-in when we turn on the select=TRUE option in the calls to the bam and gam routines.  

 

Also, more assumptions are built into a GAM model relative to an RF model. E.g. in GAM, we need to assume a specific 

probability distribution for the response given the covariates, and we need to consider transformations of the former. In 

contrast, no distributions or transformations must be specified in an RF. Further, GAM assumes a smooth and continuous 565 

underlying relation between the response and each covariate. In our case, smooth and continuous relations are often found 

between air pollution and related meteorological and time variables. However, such smooth and continuous relations are not 

considered in an RF approach, and they can be non-smooth and discontinuous. Even if perhaps not directly discontinuous, 

more abrupt changes in the trend, e.g. may happen if policy changes or mitigation measures lead to changes in emissions and 

subsequent concentration levels at a station over a relatively short period. Such sharp transitions will typically be more 570 

smoothed out in a GAM model unless we use a higher number of basis functions around the time of the events. 

 

A trend analysis based on hourly values of NO2 for the traffic station GB0682Ah – London Marylebone Road – for 1997-2016 

was conducted in Grange and Carslaw (2019) using the RF method in rmweather. Their paper focuses on the impact on the 

trend due to various interventions imposed on road traffic in London during this period. These interventions aim to reduce 575 

primary NO2 emissions from vehicles, leading to lower NO2 concentrations. To compare AirGAM with RF, we have applied 

a similar trend analysis here for this station for 2005-2019, using daily mean values of NO2 as input rather than hourly data. In 
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our study, we use the same meteorological and time variables in RF as in AirGAM, i.e., we use meteorology from ECMWF 

ERA5 for this station rather than data from Heathrow Airport, which was used in their paper. The meteorological covariates 

are the same in both studies, except for planetary boundary layer height and cloud cover, which is used here for both models, 580 

and atmospheric pressure, which is not used. Otherwise, we run with the same hyperparameters in RF as in their paper, using 

300 trees in the forest, a minimal node size of five, and the default number of variables split at each node, three in our case. 

The seed number in the calls to the routines in rmweather was set to 1234. A default of 300 predictions was used to produce 

the meteorologically normalised concentrations.  

 585 

As for AirGAM, we run with the same set-up as for the other runs in this paper, but we introduce a somewhat more agile GAM 

model by increasing the number of basis functions for the trend from the default five to ten. This is the smallest number of 

basis functions considered sufficient according to the gam.check-routine (k-1 - edf > 0.5) – so introducing just the right 

amount of model complexity for the trend in GAM for this more detailed trend analysis. We also consider auto-correlation in 

the time-series by including an AR(1) model for the model residuals using the option incl_ar1=1 in AirGAM. 590 

 

Figure 14 shows the meteorologically normalised trend from the RF model (blue curve) as monthly averages and the 

meteorology-adjusted smooth trend from AirGAM (dark green curve) for NO2 at London Marylebone Road for 2005-2019. In 

the figure, the dark green dashed curves form a 95% confidence region for the trend from AirGAM.  

 595 

Figure 14. Meteorologically normalised trend (monthly averages) from the RF model (blue curve) together with a meteorology-adjusted 

smooth trend (dark green curve) from AirGAM with a 95% confidence region (dashed curves) for NO2 at London Marylebone Road for 

2005-2019. Unit: µgm-3. 

The vertical dashed lines in the figure show air quality interventions in London during this period, the first two highlighted in 

Grange and Carslaw (2019) as identified breakpoints from a time-series breakpoint detection analysis conducted there. These 600 

are associated with the introduction of the Low Emission Zone (LEZ) in London on 4 Apr 2008 and the change from Euro III 
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to Euro V vehicles on Route 18 at the end of 2010. The following two interventions (2nd phase of LEZ on 3 January 2012 and 

the introduction of the toxicity surcharge (T-charge) on 23 October 2017 were also considered in their paper but not identified 

as actual breakpoints for the trends in their analysis. The last intervention shown in the figure introduces the Ultra-Low 

Emission Zone (ULEZ) in London on 4 April 2019. For a more thorough description of these interventions, see Grange and 605 

Carslaw (2019). A detailed description of the history and development of various congestion charges introduced in London to 

curb the levels of air pollution from the mid-90s to the present is given in Wikipedia (2022).  

 

As shown in Fig. 14, the shape of the trend curve from the GAM model resembles the trend point values from the RF model 

with some noticeable differences. The GAM curve is smooth and not too wiggly by construction, falling gently in several 610 

phases with more flat in-between parts before decreasing sharply at the end from around the introduction of the T-charge in 

2017 and towards 2020. The concentration level is reduced from 113 µgm-3 in 2005 to 54 µgm-3 in 2020, a total reduction of 

59 µgm-3. The trend values from RF are more variable, presumably due to the more adept nature of this method. Here the level 

is reduced from 113 µgm-3 in 2005 to 64 µgm-3 in 2020, a total of 49 µgm-3, ten µgm-3 less than for GAM, mainly due to the 

differences in the trends at the very end of the period. Also noticeable is the sharp decrease in the RF trend around the time of 615 

the Route 18 bus fuel changes from late 2010 to the middle of 2011, which the GAM model does not reproduce. Instead, GAM 

estimates a smooth and gentle reduction in the concentrations over a much more extended period from just after the introduction 

of the LEZ in 2008 to the middle of 2013.  

 

Note that despite differences in the shapes of these trend curves, the RF trend is well contained within the 95% confidence 620 

region for the GAM trend, except for five months in 2010-2011 and six months at the end of the period, a total of 11 months. 

If the RF point values were the true trend, we would expect around nine monthly values (5 % of 180 months) outside this 

interval. However, they are also estimated and not identical to the true trend. It is challenging to state the most realistic trend 

– the smooth and non-wiggly trend from GAM or the more variable and detailed trend from RF. The sharp declines in the RF 

trend around the introduction of the Route 18 bus fuel changes may well indicate that the RF trend in this period is the most 625 

realistic. On the other hand, the gentle reduction in the GAM trend from the LEZ introduction in 2008 towards 2011, a period 

where the RF trend is more constant, is also interesting and may point to cuts in NO2 emissions from traffic affecting the station 

in this period. Thus, it may be beneficial to use both methods in more detailed trend analyses to obtain a more diverse picture 

of and insight into the possible nature of the actual trend. 

 630 

Comparing the trends produced from AirGAM and the RF method in rmweather for other stations and compounds (not 

shown here) gives, in most cases, the same picture as above. The GAM approach in AirGAM produces trend curves that are 

smooth and non-wiggly, while the RF approach tends to create more variable trends with more details. All in all, however, we 

found the trends to be similar in most cases. It would be interesting to study how well the two methods estimate trends using 
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controlled experiments with simulated but realistic data to know the underlying trend. We hope to pursue such a study in a 635 

forthcoming paper. 

 

Table 2 shows for the various compounds the prediction accuracy of the GAM models in AirGAM versus the RF method in 

rmweather from the cross-validation for 2005-2019. Here, the evaluation parameters, i.e. prediction performance metrics, 

are the same as those used in Sect. 3. Each metric in the table is calculated as a mean over the n  individual stations for each 640 

compound. The corresponding number in parentheses is an estimated standard deviation of this mean value obtained from 

bootstrapping using 5000 replications of the individual values in each case. 

 

Table 2. Prediction accuracy from the cross-validation for 2005-2019 of AirGAM vs RF from rmweather. The prediction performance 

metrics are the same as those used in Sect. 3. Numbers in bold mark the best-performing model for each compound and metric. 645 

Compound Model n FAC2 (sd) MB (sd) µgm-3 RMSE (sd) µgm-3 r (sd) COE (sd) 

NO2 
GAM 1485 0.957 (0.001) 0.121 (0.007) 7.223 (0.080) 0.787 (0.003) 0.439 (0.003) 

RF 1485 0.954 (0.001) 0.279 (0.007) 7.031 (0.075) 0.797 (0.002) 0.444 (0.003) 

O3 
GAM 1175 0.995 (3·10-4) 0.094 (0.014) 16.301 (0.091) 0.719 (0.003) 0.335 (0.003) 

RF 1175 0.995 (3·10-4) 0.023 (0.012) 16.113 (0.086) 0.726 (0.003) 0.347 (0.003) 

PM10 
GAM 1243 0.918 (0.001) 0.059 (0.009) 11.195 (0.136) 0.687 (0.002) 0.330 (0.002) 

RF 1243 0.909 (0.001) 0.576 (0.016) 11.274 (0.138) 0.683 (0.002) 0.314 (0.002) 

PM2.5 
GAM 354 0.884 (0.003) 0.035 (0.011) 7.751 (0.187) 0.691 (0.005) 0.341 (0.005) 

RF 354 0.874 (0.003) 0.404 (0.017) 7.759 (0.193) 0.690 (0.005) 0.328 (0.005) 

  

As shown in Table 2, the two methods are similar in predictive performance concerning the various evaluation parameters 

shown. For some compounds and performance metrics, GAM is best; for others, RF is best, but the difference between the two 

is slight, except perhaps for the mean bias (MB), where GAM is clearly better than RF for all compounds except for O3, where 

RF is slightly better. Bootstrapping the differences in the metrics between the models results in the bold numbers in the table, 650 

where one model is statistically significantly better than the other at the 1 % level. In terms of the concentration level 

independent metrics r and COE, both models seem to perform best for NO2, followed by O3 and then PM, although GAM is 

fairly good regarding COE for PM2.5. Overall, both methods perform pretty well for all metrics shown, but GAM seems to 

have an edge in PM, while the opposite is true for NO2 and O3. 

 655 
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Interaction between covariates means that a covariate's influence on the response depends on the level of one or more of the 

other covariates. RF models, such as those produced by rmweather, can potentially include complex interactions between 

the covariates. Strictly additive GAM models used by AirGAM do not have any interactions between covariates. Since they 

are very similar in predictive performance for all compounds in this comprehensive trend study, there seem to be few or no 

interactions between the covariates that need to be modelled to get good predictive performance, at least for these data. Thus, 660 

a purely additive model with no interactions appears to be sufficient.  

5 AirGAM as a tool for data quality investigations 

A spin-off from the AirGAM model is the ability to detect measurement data of dubious quality. This is easily explained as 

AirGAM is based on finding long-term systematic relationships between reported levels of air pollutants and meteorological 

and temporal data. When this approach fails, it is either due to the station being dominated by long-range transport of air 665 

pollutants (whereas AirGAM relies on local meteorological data) or a result of artefacts in the monitoring data, such as 

significant shifts in the concentration level or the seasonal cycle or other kinds of spurious effects. As described in previous 

reports (Solberg et al., 2018a; Solberg et al., 2018b), screening the AirGAM results on the lowest correlation coefficients (and 

high values for NMGE, the normalised mean gross error) has proven a valuable tool for detecting errors in the measurement 

data. Solberg et al. (2018a) and Solberg et al. (2018b) give various examples of time series of dubious quality identified by 670 

screening the AirGAM results. The examples include time series with a substantial offset in specific years and ozone data 

given in a faulty unit (ppb vs µgm-3) during parts of the period. Although such errors could have been identified with basic 

statistical tools, other types of artefacts would have been harder to detect. This includes time series of PM10 at certain stations 

and years that turned out to be displaced by one day. AirGAM predicted the daily concentrations fairly accurately for these 

time series, whereas a systematic shift of one day was seen compared to the observational time series. Further investigations 675 

confirmed that the timestamp of the measurements was indeed wrong. This type of error in the monitoring data would have 

been tough to detect by more basic statistical methods. 

6 Summary and conclusions 

This paper presents the AirGAM model – an air quality trend and prediction model developed at NILU in cooperation with 

EEA over the years 2017-2021. The model is based on solving a nonlinear regression using generalized additive modelling 680 

(GAM) of daily observed concentrations at individual air quality monitoring stations with corresponding meteorological and 

time-related explanatory variables. It has been developed primarily for NO2, O3, PM10 and PM2.5. Since the concentrations are 

conditioned on local meteorology in the regression, the trend estimated by the model may be viewed as a meteorology-adjusted 

trend – i.e. a trend in concentrations discounting for the effects of time variations and trends in the meteorological data.  

 685 
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The model can also produce unadjusted trends, i.e. trends using the same regression set-up but only including the time 

variables. These can then be compared with the meteorology-adjusted trends to see the effect of the meteorological adjustment. 

Unadjusted trends show changes in actual concentrations with time. In contrast, meteorology-adjusted trends show changes in 

concentrations mainly due to changes in emissions or physio-chemical processes not induced by meteorology. 

 690 

The meteorological and time covariates used in AirGAM have been carefully selected on physical grounds for each pollutant 

as part of the model development. Generally, they were statistically significant both in our earlier studies and in our present 

study involving EEA Airbase/AQER stations in Europe for 2005-2019. Thus, we believe they are reasonable explanatory 

variables for the concentration variations. However, performing model selection is vital as good practice in statistical 

regression with many covariates. Due to the large number of stations to be handled, more traditional model selection techniques 695 

of including or excluding individual covariates in a step-wise fashion were found to be intractable to implement in the model. 

Instead, a form of automatic model selection is introduced via extra penalisations in the GAM solver routines, forcing any 

non-essential or superfluous covariate to be pushed towards a zero-flat function and thus “removed” from the regression. Based 

on this in our present study, most covariates were significant at the 5 % level, with only a few non-significant at some stations 

– mostly cloud cover for NO2 and precipitation for PM. 700 

 

A concurvity analysis performed in the present study show all covariates to be relatively independent of each other for all 

compounds, with concurvity values of type estimate for the most part below 0.4. Higher values occurred only in 0.55 %, 

0.09 %, 0.31 % and 0.53 % of the cases (stations and covariates) for NO2, O3, PM10 and PM2.5, respectively. For NO2 and PM, 

all values were below 0.5, while for O3, only three were in the interval [0.5, 0.6]. This generally indicates good statistical 705 

identifiability of the model variables, implying a reasonable estimation of the smooth nonlinear relations, including the trend. 

In AirGAM, as a default, a basis function is introduced in the trend term every three years with data, which typically estimates 

the trend's main features and long-term properties quite well in most cases. However, the user may choose a higher number of 

basis functions for the trend if it is essential to capture more details and short-term variations.  

 710 

Our present trend analysis in Europe for 2005-2019 shows that the NO2 concentration has decreased approximately at the same 

rate at all station categories during this period. Median reductions of 29 % are found for rural and urban/suburban stations and 

31 % for traffic stations, with corresponding decreases in concentration levels of 4-13 µgm-3. For O3 at the rural and 

urban/suburban stations, median reductions of 6 % and 5 % are found, respectively, while a slight increase of 2 % is seen for 

the traffic sites. Corresponding changes in concentrations are from -6 to 2 µgm-3. For PM10, median reductions of 31 % are 715 

found for the rural and urban/suburban stations and 37 % for the traffic stations, with corresponding decreases in concentrations 

of 7-13 µgm-3. And finally, for PM2.5, we find median reductions of 28 %,  31 % and 37 % at rural, urban/suburban and traffic 

sites, respectively, with corresponding decreases in concentrations of 4-7 µgm-3. Thus, these are our estimated changes in 

concentration levels due to changes in emissions or physio-chemical processes, not due to meteorology during this period. 
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 720 

Cross-validation at the stations in Europe for 2005-2019 shows that the model works well and can predict concentrations with 

reasonably good accuracy in this period for most stations, with correlations ranging from 0.69 for PM to 0.79 for NO2 and 

RMSE ranging from 7.2 µgm-3 for NO2 to 16.3 µgm-3 for O3. Comparison with other approaches for estimating meteorology-

adjusted trends based on nonlinear regression, such as the random forest (RF) method from the rmweather package, show 

our GAM to be on par with RF regarding prediction accuracy, e.g. in terms of RMSE and correlation while having somewhat 725 

better results regarding mean bias. Thus, despite their very different nature of construction, both methods produce models that 

avoid overfitting and generalise quite well towards new data not in the training set.  

 

Interaction means that a covariate's influence on the response depends on the level of one or more of the other covariates. RF 

models, such as those produced by rmweather, can potentially include complex interactions between the covariates. Strictly 730 

additive GAM models implemented in AirGAM do not have any interactions between covariates. Since these two models have 

very similar predictive performance for all compounds in this comprehensive trend study, there seem to be few or no 

interactions between the covariates that need to be modelled to get good predictive performance, at least for these data. Thus, 

purely additive GAM models with no interactions appear to be sufficient. 

 735 

In AirGAM, we assume a smooth and continuous underlying relation between the response concentration and each of the 

meteorological and time variables of the model – including that for the trend term. In air pollution modelling, such smooth 

relations are natural to assume since they are, for the most part, also smooth in reality. However, more abrupt changes or steep 

trends in concentrations at a station may happen if, e.g. policy changes or mitigation measures are introduced, leading to 

emission changes influencing the station over a relatively short period. In such cases, RF methods and similar tree-based 740 

techniques could be more appropriate since they generally allow the relationship between the concentrations and the total time 

variable to be non-smooth and even discontinuous. Such sharp changes in concentration levels will typically be more smoothed 

out in a GAM model unless we introduce more basis functions or adaptive basis functions around the time of such events. 

However, it is less of a problem if our focus is on the trend's main features and long-term properties. 

7 Code and data availability 745 

The current version of the AirGAM model is available on Zenodo (Walker, 2022a) under the GPL-2 licence. The exact version 

of the model (2022r1) used to produce the results used in this paper is archived on Zenodo (Walker, 2022b), as are input data 

and scripts to run the model and produce the plots for the results presented in this paper (Walker and Solberg, 2022a-b). The 

results for all individual stations and compounds can also be found on Zenodo (Walker and Solberg, 2022c-f). 
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Appendix A: AirGAM model Q & A 750 

Q: Can I run for compounds other than NO2, O3, PM10, and PM2.5? 

A: It should be possible to run for NOx = NO2 + NO and Ox = O3 + NO2 in the same way as for NO2 and O3, respectively, since 

these behave somewhat similarly to these compounds. Recently we applied the model for VOC (n-butane) at two rural 

background stations in Europe with encouraging results – showing good agreement between observed and predicted 

concentrations (Solberg et al., 2021a, Sect. 3.2.1). Including other compounds should be possible but may need additional 755 

work to investigate which meteorological variables to use.  

 

Q: Why are not hours being used in the system? 

A: We think it is most sensible to stick to daily values since one of the program's aims is to estimate trends over a more 

extended period, several years. Diurnal air quality variations and meteorology are not essential to consider or model in this 760 

respect. 

 

Q: How can I run only for a subset of stations, e.g. just for the Danish sites? 

A: You may edit the static station files (Sect. S3.4 in the supplement) to include only the stations you wish to run for, e.g., 

stations with DK in the station name. Note that you need to edit these files for each year. This may be a little tedious when 765 

there are many years and files, so we plan to develop a more automatic procedure based on filtering in later versions of the 

model. 

 

Q: Do the columns need to be in a specific order in the station input files? 

A: No, the files are read into R as data frames with headers, so the column order is irrelevant. However, the header names must 770 

be as specified in Sect. S3.4 in the supplement. 

 

Q: Can there be missing air quality or meteorology data in the station input files? 

A: Yes, you can have any number of missing data as long as you have enough complete cases, i.e., days with a complete set 

of data, to comply with the data coverage criteria. You do not need meteorology to run the model for unadjusted trends. 775 

 

Q: Do I need to have data for all years in the period selected for trend estimation? 

A: No, the model tolerates missing years in the input. However, you must have enough years to comply with the data coverage 

percentages in the AirGAM options file. E.g. if you use 75 % as the data coverage for years (perc2), you need to have at 

least eight years with data if running for ten years. 780 

 

Q: Can I use a different missing data value on input, e.g. -9900 or another unique number? 
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A: No, not currently, but this may be introduced later. For now, you can only use the two- and three-letter combinations NA 

(missing value in R) and NaN (“not a number” in R). 

 785 

Q: What happens if my data contains zero or negative concentrations? 

A: For O3, nothing happens; the data are used as-is. For the other compounds, due to the logarithmic transformation, zero or 

negative concentrations are replaced by 0.1. A warning is written to the AirGAM_log.txt file with the station name, year, 

month, day and the initial negative concentration for each such case. 
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