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Abstract. A particle filter (PF) is an ensemble data assimilation method that does not assume Gaussian error distributions. 15 

Recent studies proposed local PFs (LPFs), which use localization as in the ensemble Kalman filter, to apply the PF for high-

dimensional dynamics efficiently. Among others, Penny and Miyoshi developed an LPF in the form of the ensemble transform 

matrix of the Local Ensemble Transform Kalman Filter (LETKF). The LETKF has been widely accepted for various 

geophysical systems including numerical weather prediction (NWP) models. Therefore, implementing consistently with an 

existing LETKF code is useful. 20 

This study developed a software platform for the LPF and its Gaussian mixture extension (LPFGM) by making slight 

modifications to the LETKF code with a simplified global climate model known as Simplified Parameterizations, Primitive 

Equation Dynamics (SPEEDY). A series of idealized twin experiments were accomplished under the ideal model assumption. 

With large inflation by the relaxation to prior spread, the LPF showed stable filter performance with dense observations but 

became unstable with sparse observations. The LPFGM showed more accurate and stable performances than the LPF with 25 

both dense and sparse observations. In addition to the relaxation parameter, regulating the resampling frequency and the 

amplitude of Gaussian kernels was important for the LPFGM. With a spatially inhomogeneous observing network, the LPFGM 

was superior to the LETKF in sparsely observed regions where the background ensemble spread and non-Gaussianity are 

larger. The SPEEDY-based LETKF, LPF, and LPFGM systems were available as open-source software on Github 

(https://github.com/skotsuki/speedy-lpf) and can be adapted to various models relatively easily like the LETKF. 30 

 

Short Summary. Data assimilation takes an important part in numerical weather prediction (NWP) to combine forecasted 

states and millions of observations. While data assimilation methods in NWP usually assume the Gaussian error distribution, 
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some variables in the atmosphere are known to have non-Gaussian error statistics such as precipitation. This study extended a 

widely used ensemble data assimilation algorithm for enabling to assimilate more non-Gaussian observations. 35 

1 Introduction 

Ensemble data assimilation (DA) has been broadly applied in geoscience fields such as weather and ocean predictions. 

The ensemble Kalman filter (EnKF) has been intensely investigated for the past two decades, such as for the perturbed 

observation method (Evensen, 1994; Burgers et al., 1998; Houtekamer and Mitchel, 1998) and ensemble square root filters 

(e.g., Anderson, 2001; Bishop, 2001; Whitaker and Hamill, 2002; Hunt et al., 2007). The EnKF has advantages in flow-40 

dependent error estimates represented by an ensemble and in its relative ease of implementation to nonlinear dynamical systems 

such as numerical weather prediction (NWP) models. The degrees of freedom of dynamical models (e.g., > 𝑂ሺ10଼ሻ for NWP 

models) are much larger than the typically affordable ensemble size (< 𝑂ሺ10ଷሻ). On the other hand, atmospheric and oceanic 

models shows local low dimensionality (Patil et al., 2001; Oczkowski et al. 2005), and practical EnKF with these systems uses 

a localization technique that limits the impact of distant observations within a local area and reduces the effective degrees of 45 

freedom. Among various kinds of EnKFs, the local ensemble transform Kalman filter (LETKF; Hunt et al., 2007) is widely 

utilized in operational NWP centers in the same manner with the Deutscher Wetterdienst (DWD) and the Japan Meteorological 

Agency (JMA). Analysis updates of the LETKF are performed by multiplying the ensemble transform matrix by the prior 

ensemble perturbation matrix, following the ensemble transform Kalman filter (ETKF, Bishop et al. 2001). 

The particle filter (PF) is another ensemble DA method broadly applicable to nonlinear and non-Gaussian problems 50 

(cf. van Leeuwen 2009 and van Leeuwen et al. 2019 for reviews on geoscience applications). The PF potentially solves some 

issues in EnKF, such as the nonlinear observation operator and non-Gaussian likelihood functions (Penny and Miyoshi, 2016). 

For example, assimilating precipitation observations with a standard EnKF is difficult partly because of their non-Gaussian 

errors (Lien et al., 2013, 2016; Kotsuki et al., 2017a). The PF can treat such variables with non-Gaussian errors properly. 

Several PF methods have been explored for low-dimensional problems in early studies (Gordon et al. 1993; van Leeuwen et 55 

al. 2009). However, applying the PF to high-dimensional dynamical systems is generally difficult because the number of 

particles or the ensemble size need to be increased exponentially with the system size to avoid a weight collapse in which very 

few particles occupy most of the weights (Snyder et al., 2008, 2015). If a weight collapse occurs, the PF loses the diversity of 

the particles after resampling. Therefore, we need to assure that the weights are similarly distributed among particles. Previous 

studies developed the equivalent-weights particle filter (ETPF; van Leeuwen et al. 2010; Ades and van Leeuwen 2013, 2015; 60 

Zhu et al. 2016) to avoid a weight collapse by using the proposal density to drive the particles toward the high-probability 

region of the posterior.  

Alternatively, the local particle filter (LPF) uses localization to avoid a weight collapse by limiting the impact of 

observations within a local domain. Localization is a well-adopted method in EnKF to treat sampling errors due to a limited 

ensemble size. Several LPFs have been proposed to apply the PF efficiently to high-dimensional systems (e.g., Bengston et 65 
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al., 2003; van Leeuwen, 2009; Poterjoy, 2016; Penny and Miyoshi, 2016; Poterjoy and Anderson, 2016; Farchi and Bocquet, 

2018; van Leeuwen et al. 2019). Among them, Penny and Miyoshi (2016) developed an LPF by means of the ensemble 

transform matrix of the LETKF. The LETKF has been commonly used for diverse geophysical systems, and consistent 

implementation with an available LETKF code would be useful. The DWD implemented the LPF in an operational global 

model based on the operational LETKF code and described stable performance in the operational setting (Potthast et al., 2019). 70 

Walter and Potthast (2022; hereafter WP22) extended the LPF to the Gaussian mixture for further improvements. 

The goal of this study is to develop and provide a software platform to accelerate research on LPF and its Gaussian 

mixture extension (hereafter, LPFGM). Although many studies on LPF have used simple idealized chaotic models, such as the 

40-variable Lorenz model (hereafter, “L96”; Lorenz, 1996; Lorenz and Emanuel, 1998), the present study uses a simplified 

atmospheric general circulation model defined as the Simplified Parameterizations, Primitive Equation Dynamics (SPEEDY) 75 

model (Molteni, 2003). Miyoshi (2005) coupled the LETKF with the SPEEDY model for the first time, and the source code is 

accessible at https://github.com/takemasa-miyoshi/letkf. This study extends the SPEEDY-LETKF code and implements the 

LPF and LPFGM. As demonstrated below, the LPF and LPFGM can be implemented easily with simple modifications to the 

existing LETKF code.  

The remainder of this paper is organized as follows. Section 2 explains the mathematical formulation of the LETKF, 80 

LPF, and LPFGM, followed by the description of specific modifications made to the existing LETKF code. Section 3 presents 

the experimental settings. Section 4 outlines the results and discussions. Lastly, section 5 provides a summary. 

2 Methodology 

2.1 Local ensemble transform Kalman filter 

Hunt et al. (2007) introduced the LETKF as a computationally efficient EnKF by combining the local ensemble 85 

Kalman filter (Ott et al., 2004) and ETKF (Bishop et al., 2001). Let 𝐗௧ be a matrix composed of m ensemble state vectors. The 

ensemble mean vector and perturbation matrix of 𝐗௧ are given by 𝐱ത௧  (∈ ℝ) and 𝐙௧ ≡ ቄ𝐱௧
ሺଵሻ െ 𝐱ത௧ , . . . , 𝐱௧

ሺሻ െ 𝐱ത௧ቅ (∈ ℝൈ), 

respectively, where n is the system size. The subscript t indicates the time, and the superscript (i) denotes the ith ensemble 

member. The analysis equations of the LETKF are specified by: 

𝐗௧,ா்ி
 ൌ 𝐱ത௧

 ⋅ 𝟏  𝐙௧
𝐓௧,ா்ி,         (1) 90 

𝐓௧,ா்ி ൌ 𝐏෩௧
ሺ𝐘௧

ሻ𝐓𝐑௧
ିଵ ቀ𝐲௧

 െ 𝐻௧ሺ𝐗௧
ሻቁ ⋅ 𝟏  ൣሺ𝑚 െ 1ሻ𝐏෩௧

൧
ଵ/ଶ

,     (2) 

where 1 is a row vector whose all elements are 1 (∈ ℝ), T is the ensemble transform matrix (∈ ℝൈ), 𝐏෩  is the error 

covariance matrix in the ensemble space (∈ ℝൈ), 𝐘 ≡ 𝐇𝐙  is the ensemble perturbation matrix in the observation space (∈

ℝൈ), R is the observation error covariance matrix (∈ ℝൈ), y is the observation vector (∈ ℝ), H is the linear observation 

operator matrix (∈ ℝൈ), and H is the observation operator that may be nonlinear. Here, p is the number of observations. The 95 
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superscripts o, b, and a denote the observation, background (prior), and analysis (posterior), respectively. Transform matrix 

𝐓ா்ி denotes the ensemble transform matrix of the LETKF. The first and second terms of the right-hand side of Eq. (2) 

correspond to the updates of ensemble mean and perturbation, respectively. The ETKF computes the analysis error covariance 

matrix in the ensemble space 𝐏෩௧
  by: 

𝐏෩௧
 ൌ ሾሺ𝑚 െ 1ሻ𝐈/𝛽  ሺ𝐘௧

ሻ𝐓𝐑௧
ିଵ𝐘௧

ሿିଵ,        (3) 100 

where β is a multiplicative inflation factor. Equations (1) and (2) are derived from the Kalman filter equations given by: 

𝐱ത௧
 ൌ 𝐱ത௧

  𝐊௧ ቀ𝐲௧
 െ 𝐻௧ሺ𝐗௧

ሻቁ,         (4) 

𝐊௧ ൌ 𝐏௧
𝐇௧

𝐓ሺ𝐇௧𝐏௧
𝐇௧

𝐓  𝐑௧ሻିଵ ൌ 𝐏௧
𝐇௧

𝐓𝐑௧
ିଵ,       (5) 

𝐏௧
 ൌ ሺ𝐈 െ 𝐊௧𝐇௧ሻ𝐏௧

,          (6) 

where K is the Kalman gain (∈ ℝൈ ) and P is the error covariance matrix in the model space (∈ ℝൈ ). The EnKF 105 

approximates the error covariance matrix by 𝐏 ൎ
ଵ

ିଵ
𝐙ሺ𝐙ሻ𝐓. Hunt et al. (2007) provides more details on deriving Eqs. (1) and 

(2) from the Kalman filter equations. For nonlinear observation operators, the following approximation is used: 

   𝐘 ≡ 𝐇𝐙 ൎ 𝐻ሺ𝐗ሻ െ 𝐻ሺ𝐗ሻ ⋅ 𝟏.         (7) 

The LETKF provides 𝐏෩௧
 and ൫𝐏෩௧

൯
ଵ/ଶ

 of Eq. (2) by solving the eigenvalue decomposition of ൫𝐏෩௧
൯

ିଵ
ൌ 𝐔𝚲𝐔𝐓, where 

U is a square matrix (∈ ℝൈ ) composed of eigenvectors, and Λ is a diagonal matrix (∈ ℝൈ ) composed of the 110 

corresponding eigenvalues. The eigenvalue decomposition leads to 𝐏෩௧
 ൌ 𝐔𝚲ିଵ𝐔𝐓 and ൫𝐏෩௧

൯
ଵ/ଶ

ൌ 𝐔𝚲ିଵ/ଶ𝐔𝐓. 

The localization is practically important for mitigating sampling errors in the ensemble-based error covariance with 

a limited ensemble size (Houtekamer and Zhang, 2016). With localization, the LETKF computes the transform matrix 𝐓ா்ி 

at every model grid point independently by assimilating a subset of observations within the localization cut-off radius. The 

LETKF employs localization by inflating the observation error variance so that observations distant from the analysis model 115 

grid point have fewer impacts (Hunt et al., 2007; Miyoshi and Yamane, 2007). 

For local analysis schemes, a spatially smooth transition of the transform matrix 𝐓ா்ி is essential to prevent abrupt 

changes in the analyses of neighboring grid points. The LETKF realizes a smooth transition of the transform matrix by using 

the symmetric square root of 𝐏෩௧
 (Hunt et al., 2007). 

The EnKF generally underestimates the error variance mainly because of model errors, nonlinear dynamics, and 120 

limited ensemble size. Therefore, a covariance inflation technique is used to inflate the underestimated error variance 

(Houtekamer and Mitchell, 1998). Among several kinds of covariance inflations methods, the present study considers 

multiplicative inflation (Anderson and Anderson, 1999) and relaxation to prior (Zhang et al., 2004). In multiplicative inflation, 

the ensemble-based covariance is multiplied by a factor β (𝐏 → 𝛽𝐏). This multiplicative inflation is employed in Eq. (3) in 
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the LETKF. In this study, the LETKF experiments use the approach of Miyoshi (2011) which adaptively estimates a spatially 125 

varying inflation factor on the basis of the innovation statistics of Desroziers et al. (2005). In realistic problems, covariance 

relaxation methods are often used to inflate the posterior perturbation (e.g., Terasaki et al. 2019; Kotsuki et al., 2019b). This 

study utilizes the relaxation to prior spread (RTPS; Whitaker and Hamill, 2012) given by:  

𝐙௧ሺሻ
 ← ൭ሺ1 െ 𝛼ሻ  𝛼

ఙሺೖሻ
್

ఙሺೖሻ
ೌ ൱ 𝐙௧ሺሻ

 ,         (8) 

where α is the RTPS parameter, and σ is the ensemble spread. The subscript (k) denotes the kth model variable or the kth 130 

component of state vector. Although this study uses only multiplicative inflation for the LETKF experiments, the posterior 

error perturbation is inflated by RTPS for LPF and LPFGM. 

2.2 Local particle filter with ensemble transform matrix 

Here, we describe the LPF in the form of the ensemble transform matrix of the LETKF (Reich, 2013; Penny and 

Miyoshi, 2016; Potthast et al. 2019). The PF is a direct Monte Carlo realization of Bayes’ theorem given by: 135 

𝜋ሺ𝐱௧|𝐲ଵ:௧
 ሻ ൌ

గ൫𝐲
|𝐱൯గ൫𝐱|𝐲భ:షభ

 ൯

గ൫𝐲
|𝐲భ:షభ

 ൯
 ,         (9) 

where 𝜋ሺ𝐱௧|𝐲ଵ:௧
 ሻ is the probability of state x given all observations 𝐲 up to time t. The PF approximates the prior probability 

density function (PDF), which appears in the numerator of Eq. (9), using an ensemble forecast: 

𝜋ிሺ𝐱௧|𝐲ଵ:௧ିଵ
 ሻ ൎ ∑ 𝑤௧

ሺሻ𝛿൫𝐱௧ െ 𝐱௧
ሺሻ൯

ୀଵ ,        (10) 

where δ is the Dirac’s delta function and wሺሻ is the prior weight of the ith particle (i.e., ensemble member) at the previous 140 

analysis time. If particles are resampled at the previous analysis time, all particles have the same weight 𝑤ሺሻ ൌ

1/𝑚 ሺ𝑖 ൌ 1, … ,𝑚ሻ. The sum of the weights ∑ 𝑤௧
,ሺሻ

ୀଵ  is always 1. The denominator of the right-hand side of Eq. (9) can be 

estimated by:  

𝜋ሺ𝐲௧
|𝐲ଵ:௧ିଵ

 ሻ ൌ 𝜋ሺ𝐲௧
|𝐱௧ሻ𝜋ሺ𝐱௧|𝐲ଵ:௧ିଵ

 ሻ𝑑𝐱௧ ൎ ∑ 𝑤௧
ሺሻ𝜋ሺ𝐲௧

|𝐱௧
ሺሻሻ

ୀଵ .     (11) 

This study assumes a Gaussian likelihood function given by: 145 

𝜋ሺ𝐲௧
|𝐱௧ሻ ∝ exp ቂെ

ଵ

ଶ
ሺ𝐻௧ሺ𝐱௧ሻ െ 𝐲௧

ሻ𝐓𝐑௧
ିଵሺ𝐻௧ሺ𝐱௧ሻ െ 𝐲௧

ሻቃ.      (12) 

Then, the posterior can be expressed by: 

𝜋ிሺ𝐱௧|𝐲ଵ:௧
 ሻ ൎ ∑ 𝑤௧

ሺሻ𝛿൫𝐱௧ െ 𝐱௧
ሺሻ൯

ୀଵ ,        (13) 

𝑤௧
ሺሻ ൌ 𝑤௧

ሺሻ𝜋ி൫𝐲ଵ:௧
 |𝐱௧

ሺሻ൯/∑ 𝑤௧
ሺሻ𝜋ி൫𝐲ଵ:௧

 |𝐱௧
ሺሻ൯ ൌ 𝑤௧

ሺሻ
ୀଵ 𝑞௧

ሺሻ/∑ 𝑤௧
ሺሻ𝑞௧

ሺሻ
ୀଵ ,   (14) 
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𝑞௧
ሺሻ ൌ exp ቂെ

ଵ

ଶ
൫𝐻௧൫𝐱௧

ሺሻ൯ െ 𝐲௧
൯

𝐓
𝐑௧
ିଵ൫𝐻௧൫𝐱௧

ሺሻ൯ െ 𝐲௧
൯ቃ,      (15) 150 

where q is the likelihood. Equation (14) results in posterior weights that satisfy ∑ 𝑤௧
ሺሻ

ୀଵ ൌ 1. 

To mitigate weight collapse, the local PF (LPF) solves the PF equations by assimilating local observations 

surrounding the analysis grid point. This study uses Penny and Miyoshi (2016)’s approach that computes the analysis at every 

model grid point independently with the observation error covariance R being inflated by the inverse of a localization function 

as in the LETKF (Penny and Miyoshi, 2016).  155 

Sampling importance resampling (SIR) is a technique for applying the PF for high-dimensional dynamics with a 

limited amount of particles. The resampling process rearranges the particles to effectively represent the densest areas of the 

posterior PDF. After resampling, each particle has equal weights and the posterior PDF is given by: 

𝜋ிሺ𝐱௧|𝐲ଵ:௧
 ሻ ൎ

ଵ


∑ 𝛿൫𝐱௧ െ 𝐱௧

ሺሻ൯
ୀଵ .        (16) 

The resampling process can be expressed equally valid to the ensemble transform matrix of the ETKF (Reich, 2013; Penny 160 

and Miyoshi, 2016) given by: 

𝐗௧,ி
 ൌ 𝐗௧

𝐓௧,ி ൌ ሺ𝐱ത௧
 ⋅ 𝟏  𝐙௧

ሻ𝐓௧,ி ൌ 𝐱ത௧
 ⋅ 𝟏  𝐙௧

𝐓௧,ி.      (17) 

where 𝐓ி  denotes the ensemble transform matrix of the LPF. Here, we applied ሺ𝐱ത௧
 ⋅ 𝟏ሻ𝐓௧,ி ൌ 𝐱ത௧

 ⋅ 𝟏  based on the 

following necessary condition of the ensemble transform matrix for the LPF: 

∑ 𝐓௧,ி
ሺ,ሻ ൌ 1

ୀଵ ,   𝑗 ൌ 1, . . . ,𝑚           (18) 165 

In addition to Eq. (18), the ideal resampling matrix satisfies the following two conditions: 

 ∑ 𝐓௧,ி
ሺ,ሻ ൌ 𝑚 ⋅ 𝑤௧

ሺሻ
ୀଵ ,   𝑖 ൌ 1, . . . ,𝑚 

⇔ 𝐱ത௧
 ൌ ∑ 𝐱௧

ሺሻ ⋅ 𝑤௧
ሺሻ

ୀଵ   ,       (19) 

  spatially smooth transition of 𝐓௧,ி . 

 The resampling matrix significantly affects the filter performance (Farchi and Bocquet, 2018). The present study 170 

constructs resampling matrices based on the Monte-Carlo approach. This resampling method uses m random numbers 𝐫ሺሻ ሺ𝑖 ൌ

1, … ,𝑚ሻ drawn from uniform distribution U ([0,1]) and accumulated weights 𝑤௧,: 

𝑤௧,
ሺሻ ൌ 0,   𝑤௧,

ሺሻ ൌ 𝑤௧,
ሺିଵሻ  𝑤௧

ሺሻ,   𝑖 ൌ 1, . . . ,𝑚.      (20) 

By definition, 𝑤௧,
ሺሻ  is 1. After sorting r to be the ascending order 𝐫௦௧ௗ, we generate the resampling matrix using Algorithm 

1. This procedure is similar to the resampling of Potthast et al. (2019), but it employs an additional treatment so that the 175 

resampling matrix is close to the identity matrix (line 10 of Algorithm 1; Fig. 1 b and c). 
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 Classical resampling can produce the same particles resulting in the loss of diversity of posterior particles. Therefore, 

additional treatments are required to generate slightly different posterior particles. Potthast et al. (2019) proposed adding 

Gaussian random noise to 𝐓௧,ி to prevent the generation of the same particles. As an alternative, the present study uses the 

Monte-Carlo approach that repeats Algorithm 1 many times with different random numbers and takes the average of the 180 

generated resampling matrices (Fig. 1). Using different random numbers r, the resampling matrices differ (Fig. 1 b, c) even if 

the same weight is used (Fig. 1 a). By averaging the resampling matrices generated by using different random numbers, we 

get matrices that have higher weights in the diagonal components and lower weights in the off-diagonal components (Fig. 1 d, 

e). The Monte-Carlo approach makes the resampling matrix closer to the identity matrix, which is beneficial for a smooth 

transition in space. In addition, this stochastic approach approximates Eq. (19) using the Monte-Carlo approach. The generated 185 

transform matrix with 200 samples (Fig. 1 c) is close to that with 10,000 samples (Fig. 1 d) in the case of 40 particles. Therefore, 

the transformation matrices are generated by averaging 200 sampled matrices in subsequent LPF experiments. Hereafter, we 

call this resampling method “MC resampling” which is used in the following experiments.  

 The effective particle size 𝑁 (Kong et al., 1994) is useful to measure the diversity of particles in LPF: 

𝑁௧, ൌ 1/∑ ൫𝑤௧
ሺሻ൯

ଶ
ୀଵ ∈ ሾ1,𝑚ሿ.         (21) 190 

If 𝑁 is sufficiently large (𝑁 ൎ 𝑚), no resampling is needed. This study considers a tunable parameter 𝑁 as a criterion 

for resampling: 

𝐓௧,ி ← ൜
𝐈

𝐓௧,ி
  

𝑖𝑓 𝑁௧,  𝑁
𝑒𝑙𝑠𝑒

.        (22) 

Without resampling (𝑁௧,  𝑁), the posterior weight is succeeded for the subsequent forecast as follows: 

𝐰௧ାଵ
 ← ሺ1 െ 𝜏ሻ ⋅ 𝐰௧

  𝜏/𝑚,         (23) 195 

where τ is the tunable forgetting factor 𝜏 ∈ ሾ0: 1ሿ. This weight succession (Eq. 23) can be interpreted as a temporal localization 

that reduces the impact of observations distant from the assimilation time. Here, the weight succession in local PF is not trivial 

because the weight (or likelihood of particles) would move with the dynamical flow. Similar discussions can be found for the 

advection of localization functions (e.g., Ota et al., 2013; Kotsuki et al. 2019a). This study assumes no flow motion of the 

weights and simply use Eq. (23) at each grid point independently. 200 

 Although the LETKF applies inflation to the prior error covariance (i.e., 𝐏 → 𝛽𝐏), this inflation is suboptimal to 

the LPF partly because the weight collapse occurs more easily if multiplicative inflation is applied to the prior perturbation (cf. 

Eq. 15). Therefore, the LPF usually applies inflation to the posterior particles (e.g., Farchi and Bocquet 2018). The present 

study uses the RTPS to inflate posterior perturbations for the LPF. We do not use the RTPS for the LETKF experiments since 

the Miyoshi (2011)’s adaptive multiplicative inflation is known to outperform the manually-tuned RTPS for idealized twin 205 

experiments with SPEEDY based on authors’ preliminary experiments and personal communication (Ota et al. 2021). 
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Preliminary experiments showed that the RTPS outperformed the relaxation to prior perturbation (RTPP; Zhang et 

al., 2004) for the LPF. Having some noise in the transform matrix is important, so that the LPF can maintain the diversity of 

posterior particles. The RTPP makes the transform matrix closer to the identity matrix, resulting in less diverged posterior 

particles. Therefore, the RTPS would be a more suitable relaxation method than the RTPP for LPF. 210 

2.3 LPF with Gaussian mixture extension 

Assimilating too many independent observations in the local area is not desirable for the LPF to avoid weight collapse 

(van Leuuwen et al., 2019). To solve this problem, hybrid algorithms of EnKF and PF have been explored to efficiently 

assimilate massive observation data. The Gaussian mixture extension of the LPF is a kind of such hybrid algorithms (Hoteit et 

al. 2008; Stordal et al., 2011; WP22). In the Gaussian mixture extension, the previous PDF is approximated by a combination 215 

of Gaussian distributions centered at the values of the particles, given by: 

𝜋ிீெሺ𝐱௧|𝐲ଵ:௧ିଵ
 ሻ ൎ ∑ 𝑤௧

ሺሻ𝑁൫𝐱௧
ሺሻ,𝐏௧

൯
ୀଵ  ,       (24) 

where 𝑁൫𝐱௧
ሺሻ,𝐏௧

൯ is the Gaussian kernel with mean 𝐱௧
ሺሻ and covariance 𝐏௧

. Here, hut indicates matrices for the Gaussian 

kernels (e.g., prior error covariance 𝐏,  observation error covariance 𝐑 and Kalman gain 𝐊). The covariance of the Gaussian 

kernel uses the sampled covariance matrix 𝐏௧
 such that: 220 

𝐏௧
 ൌ 𝛾𝐏௧

 ൎ
ఊ

ିଵ
𝐙௧
ሺ𝐙௧

ሻ𝐓 ,         (25) 

where γ (>0) is a tunable parameter that regulates the amplitude and width of the Gaussian kernel (i.e., uncertainty of particles). 

For example, larger γ reduces amplitude and increases width of the Gaussian kernel. 

The Gaussian mixture performs a two-step update to obtain the posterior particles. The first update moves the center 

of the Gaussian kernel with observations. Since kernels are Gaussian, we can use the Kalman filter for the first update: 225 

𝐱௧
ሺሻ ൌ 𝐱௧

ሺሻ  𝐊௧ ቀ𝐲௧
 െ 𝐻൫𝐱௧

ሺሻ൯ቁ ,   ሺ𝑖 ൌ 1, . . . ,𝑚ሻ 

⇔ 𝐗௧,ீெ
 ൌ 𝐗௧

  𝐊௧ ቀ𝐲௧
 ⋅ 𝟏 െ 𝐻௧ሺ𝐗௧

ሻቁ,        (26) 

where 𝐊 ൌ 𝐏𝐇𝐓𝐑ିଵ  as in Eq. (5). In the LETKF, the Kalman gain K is computed by 𝐊 ൌ 𝐏𝐇𝐓𝐑ିଵ ൎ
ଵ

ିଵ
𝐙𝐏෩ሺ𝐙ሻ𝐓𝐇𝐓𝐑ିଵ. Since the Gaussian kernel uses the ensemble-based error covariance (Eq. 25), we can apply the exact 

algorithms of the LETKF by replacing β of Eq. (3) with γ. Consequently, Eq. (26) is equivalent to: 230 

𝐗௧,ீெ
 ൌ 𝐱ത௧

 ⋅ 𝟏  𝐙௧
𝐓௧,ீெ,          (27) 

where  

𝐒௧ ൌ 𝐏෩௧
ሺ𝐘௧

ሻ𝐓𝐑௧
ିଵ ቀ𝐲௧

 ⋅ 𝟏 െ 𝐻௧ሺ𝐗௧
ሻቁ, and        (28) 
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𝐓௧,ீெ ൌ 𝐒௧  𝐈.           (29) 

Here, 𝐓ீெ denotes the ensemble transform matrix of the Gaussian mixture.  235 

The second update resamples the particles based on the likelihood of the posterior kernel given by: 

𝑞௧
ሺሻ ൌ exp ቂെ

ଵ

ଶ
൫𝐻௧൫𝐱௧

ሺሻ൯ െ 𝐲୲
୭൯

𝐓
𝐑௧ିଵ൫𝐻௧൫𝐱௧

ሺሻ൯ െ 𝐲௧
൯ቃ,      (30) 

where 

𝐑௧ ൌ 𝐑௧  𝐇௧𝐏௧
𝐇௧

𝐓.          (31) 

Hoteit et al. (2008) and Stordal et al. (2011) used Equation (30) for computing the likelihood of posterior kernels. Alternatively, 240 

WP22 suggested that using Eq. (15) instead of Eq. (30) is a reasonable approximation in the case of a smaller variance of 𝐏௧
 

compared to the observation departure 𝐻௧൫𝐱௧
ሺሻ൯ െ 𝐲௧

. This study follows the WP22’s approximation because computing 

inverse of Eq. (31) is computationally much more expensive than computing inverse of diagonal R. Using WP22’s 

approximation, the solution of the LPFGM is given by: 

𝐗௧,ிீெ
 ൌ 𝐗௧,ீெ

 𝐓௧,ி ൌ ൫𝐱ത௧
 ⋅ 𝟏  𝐙௧

𝐓௧,ீெ൯𝐓௧,ி ൌ 𝐱ത௧
 ⋅ 𝟏  𝐙௧

𝐓௧,ீெ𝐓௧,ி.    (32) 245 

Here, we used ሺ𝐱ത௧
 ⋅ 𝟏ሻ𝐓௧,ி ൌ 𝐱ത௧

 ⋅ 𝟏 (cf. Eq. (18)). Consequently, the transform matrix of the LPFGM (𝐓ிீெ) is given by: 

𝐓௧,ிீெ ൌ 𝐓௧,ீெ𝐓௧,ி.          (33) 

Namely, the LPFGM can be described as the ensemble transform matrix form. 

The two-step update of the LPFGM may appear using the same observations twice, but this is not true. To understand 

the principles, here we consider a simple scalar example with H=1.0 with illustrations of Fig. 2. Let 𝜋ሺ𝑦௧
ሻ be an observation 250 

PDF (Fig. 2 top row), and the prior and posterior PDFs of the LPF are given by 𝜋ிሺ𝑥௧ሻ ൎ
ଵ


∑ 𝛿൫𝑥௧ െ 𝑥௧

ሺሻ൯
ୀଵ  and 

𝜋ிሺ𝑥௧|𝑦௧
ሻ, respectively (Fig. 2a, 2nd and 3rd rows). The LPF employs resampling by approximating the posterior PDF as a 

combination of prior particles such that 𝜋ிሺ𝑥௧|𝑦௧
ሻ ൎ ∑ 𝑤௧

ሺሻ𝛿൫𝑥௧ െ 𝑥௧
ሺሻ൯

ୀଵ  (Fig. 2a, bottom row). Next, we focus on the 

5th particle of the LPFGM (Fig. 2b). Prior and posterior PDFs of the 5th particle are given by 𝜋൫𝑥௧
ሺହሻ൯ ൌ 𝑁൫𝑥௧

ሺହሻ,𝑃௧
൯ and 

𝜋൫𝑥௧
ሺହሻ|𝑦௧

൯ ൌ 𝑁൫𝑥௧
ሺହሻ,𝑃௧

൯ ⋅ 𝑁ሺ𝑦௧
,𝑅௧ሻ, respectively (Fig. 2b, 2nd and 3rd rows). Since the Gaussian kernels are assumed for 255 

the prior particles, the center of the posterior kernel moves such that 𝜋൫𝑥௧
ሺହሻ|𝑦௧

൯ ∝ 𝑁൫𝑥௧
ሺହሻ,𝑃௧

൯, where 𝑥௧
ሺହሻ and 𝑃௧

 can be 

computed by the Kalman filter (from the blue circle to the red circle in Fig. 2b). Since the LPFGM moves all particles, the 

posterior PDF of the LPFGM is given by 𝜋ிீெሺ𝑥௧|𝑦௧
ሻ ൎ

ଵ


∑ 𝜋൫𝑥௧

ሺሻ|𝑦௧
൯

ୀଵ  (Fig. 2c, 3rd row). These movements 

correspond to the first update of the LPFGM. In contrast to the LPF, the posterior PDF of the LPFGM is approximated by a 

combination of the posterior Gaussian kernels (red circles of Fig. 2c, 3rd row). The LPFGM employs the resampling based on 260 

the moved particles such that 𝜋ிீெሺ𝑥௧|𝑦௧
ሻ ൎ ∑ 𝑤௧

ሺሻ𝑁൫𝑥௧
ሺሻ,𝑃௧

൯
ୀଵ  (Fig. 2c, bottom row). This resampling corresponds 
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to the second update of the LPFGM. As seen in this example, the two-step update of the LPFGM does not use the same 

observations twice. 

2.4 Implementation and computational complexity 

We implemented the LPFGM based on the available LETKF code from Miyoshi (2005) and follow-on studies 265 

(Miyoshi and Yamane 2007, Kondo and Miyoshi 2019; Kotsuki et al. 2020; https://github.com/takemasa-miyoshi/letkf). 

Figure 3 compares the workflows of the LETKF, LPF, and LPFGM. All DA methods execute the same first four steps (steps 

A‒D). After step D, the LETKF involves four additional steps (steps E‒H) to compute 𝐓ா்ி. The LPF computes the weights 

of particles (step J), followed by the generation of the transform matrix 𝐓ி (step K). The LPFGM first executes steps E‒G, 

as in the LETKF, and then executes step I to compute 𝐓ீெ, followed by the LPF algorithms to compute 𝐓ி (steps J and K). 270 

Finally, the LPFGM multiplies 𝐓ீெ and 𝐓ி to compute 𝐓ிீெ (step L). At the end of the process, the transform matrix is 

applied to the prior perturbation matrix 𝐙 to produce the analysis ensemble (step M), followed by the RTPS (step N).  

If the LETKF code is available, the LPF in the transform matrix form can be developed by coding two steps J and K. 

The LPFGM can also be developed easily by coding two more steps I and L if the LETKF and LPF codes are available. 

Here we compare the computational complexities of the LETKF, LPF and LPFGM algorithms (Table 1). The total 275 

cost (𝐶்) of a DA cycle is identical to the overhead of the assimilation system (𝐶ு), plus n times the average local analysis 

cost (𝐶), and m times the cost of one-member model forecast (𝐶ெ): 

𝐶்ሺ𝑛,𝑝,𝑚ሻ ൌ 𝐶ுሺ𝑛,𝑝,𝑚ሻ  𝑛 ⋅ 𝐶ሺ𝑝,𝑚ሻ 𝑚 ⋅ 𝐶ெ,       (34) 

where 𝑝 is the number of local observations within the localization cut-off radius. We assume that the overhead and model 

costs are equivalent among the three methods. In addition, the total computational cost of DA usually depends on the local 280 

analysis cost (𝐶): 

 𝐶
ா்ி ൌ 𝑂ሺ𝑚ଷ  𝑚ଶ𝑝ሻ,          (35) 

   𝐶
ி ൌ 𝑂ሺ𝑚ଶ𝑁ெሻ,          (36) 

   𝐶
ிீெ ൌ 𝑂ሺ𝑚ଷ  𝑚ଶ𝑝  𝑚ଶ𝑁ெሻ,        (37) 

where 𝑁ெ is the number of times the resampling matrices are generated by Algorithm 1. The number of local observations 285 

𝑝 is usually much greater than the ensemble size m and 𝑁ெ. In this case, 𝑂ሺ𝑚ଶ𝑝ሻ is dominant for the LETKF, and LPFGM.  

The computational cost of LPF here is more expensive than that with a simpler resampling algorithm such as the 

stochastic uniform resampling (𝑂ሺ𝑚ሻ; Penny and Miyoshi 2016, Farchi and Bocquet, 2018) due to the relatively complex 

Algorithm 1 (𝑂ሺ𝑚ଶ𝑁ெሻ). We could not use such simpler approaches in this study since they do not yield ideal resampling 

matrices that satisfy the two conditions (Eq. 19 and spatially smooth transition of 𝐓௧,ி). 290 
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3 Experimental settings 

3.1 SPEEDY model 

This study used the intermediate global atmospheric general circulation model SPEEDY (Molteni, 2003) to compare 

the LETKF, LPF and LPFGM. The SPEEDY model is a computationally-inexpensive hydrostatic model with fundamental 

physical parameterization schemes such as surface flux, radiation, convection, cloud and condensation. The SPEEDY model 295 

has 96 × 48 grid points in the horizontal plane (T30 ~ 3.75° × 3.75°) and sigma-coordinate seven vertical layers. The SPEEDY 

consists of five prognostic variables: temperature (T), specific humidity (Q), zonal wind (U), and meridional wind (V) at seven 

layers, as well as surface pressure (Ps). Although running the SPEEDY model is, the model contains The SPEEDY model 

coupled with the LETKF (SPEEDY−LETKF) has been widely used in DA studies (Miyoshi 2005 and many follow-on studies, 

e.g., Miyoshi 2011; Kondo et al., 2013; Kondo and Miyoshi, 2016, 2019; Kotsuki and Bishop 2021). We implemented the 300 

LPF and LPFGM based on the existing SPEEDY−LETKF code following the procedures described in section 2.4. 

3.2 Experimental design 

The experimental settings follow the previous SPEEDY−LETKF experiments (Miyoshi 2005 and follow-on studies, 

e.g., Kotsuki et al., 2020). A series of idealized twin experiments (also known as observing system simulation experiments) 

were conducted without model errors. We first performed a spin-up run for one year initialized by the standard atmosphere 305 

during rest, followed by the nature run started at 0000 UTC on January 1 of the second year. We assumed diagonal observation 

error covariance R (i.e., uncorrelated observation error). Gaussian noises were added to the nature run to produce observation 

data whose interval is 6 h. The standard deviations of the Gaussian noise are 1.0 K for T, 1.0 m sିଵ for U and V, 0.1 g kgିଵ 

for Q, and 1 hPa for surface pressure. This study considered two observing networks (Figs. 4 a and b): the regularly distributed 

network (hereafter REG2) and the radiosonde-like inhomogeneous network (hereafter RAOB). We observe T, U and V at 310 

every seven layers, whereas Q was observed at the 1st−4th layers. The ensemble size is 40 and their initial conditions were 

taken from an independent nature run. 

Table 2 summarizes the settings of the LETKF, LPF, and LPFGM experiments. The observation error variance was 

inflated for the localization, by using the Gaussian-based function given by: 

 𝑙 ൌ ቊexp ቂെ
ଵ

ଶ
ሼሺ𝑑ℎ/𝜌ℎሻଶ  ሺ𝑑௩/𝜌௩ሻଶሽቃ  𝑖𝑓  𝑑ℎ ൏ 2ඥ10/3𝜌ℎ 𝑎𝑛𝑑 𝑑௩ ൏ 2ඥ10/3𝜌௩

0 𝑒𝑙𝑠𝑒
  ,   (38) 315 

where l is the localization function, and its inverse 𝑙ିଵ is multiplied and used to inflate R. dh and dv are horizontal and vertical 

distances (km and log(Pa)) between the observation and analysis grid point. 𝜌ℎ and 𝜌௩  are tunable horizontal and vertical 

localization scales (km and log(Pa)). Subscripts h and v represent horizontal and vertical, respectively. This study set the 

vertical localization scale 𝜌௩  be 0.1 log(Pa) following Greybush et al. (2011) and Kondo et al. (2013). The horizontal 
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localization scales of the LETKF were optimized manually before the experiments to minimize the first-guess root mean square 320 

error (RMSE) of the fourth layer temperature of the SPEEDY-LETKF. 

The LETKF experiments used the adaptive multiplicative inflation method of Miyoshi (2011) in which the inflation 

factor β was estimated adaptively. On the basis of sensitivity experiments for γ, we chose γ = 1.5. Sensitivity to γ is discussed 

in section 4.3.3. 

 We first performed a one-year SPEEDY-LETKF experiment over the second year from January to December 325 

following the one-year spin-up. We then performed LETKF, LPF, and LPFGM experiments from January to April in the third 

year initialized by the first-guess ensemble of the LETKF at 0000 UTC on January 1 of the third year. The results from the 

last three months, i.e., February to April, were used for verification. We assessed the 6-h forecast or background RMSE for T 

at the fourth model level (~500 hPa) since this is among the most important variables for medium-range NWP. This study 

mainly discusses the RMSE and ensemble spread for T, similar results are observed for other variables. 330 

4 Results and discussion 

4.1 Experiments with a regularly distributed observing network 

 We first compare the LETKF, LPF, and LPFGM with REG2 in which the manually-tuned horizontal localization 

scale for the LETKF is 600 km.  

First, sensitivities to the horizontal localization scale (𝜌) and RTPS parameter (α) are investigated for the LPF. Figure 335 

5 indicates the time-mean background RMSEs and ensemble spreads for LETKF and LPF. The LPF requires large inflation (α 

≥ 1.0) to avoid filter divergence. With large inflation (α ≥ 1.0), the LPF experiment with 𝜌 = 600 km resulted in the smallest 

RMSEs among the three LPF experiments. The optimal localization scale of LPF was found similar to that of the LETKF. The 

four LPF experiments exhibited larger RMSEs than the LETKF, as demonstrated by the previous studies with a low-

dimensional L96 model (Poterjoy, 2016; Penny and Miyoshi, 2016; Farichi and Bouquet, 2018). The LPF experiment with 𝜌 340 

= 700 km shows filter divergence when α = 1.0. The ensemble spreads of LPF are smaller than the RMSEs when α = 1.0. This 

under dispersive ensemble is a typical behavior of LPF (e.g., Poterjoy and Anderson 2016). 

 Second, we compare the time series of the background RMSEs, ensemble spreads, and effective particle sizes 𝑁 

(Fig. 6). The RMSE and ensemble spread are consistent in the LETKF. However, the LPF shows generally smaller ensemble 

spreads than the RMSEs. Since the beginning of the experiments on January 1, the three LPF experiments showed rapid 345 

increases in the ensemble spread (Fig. 6 a), and a rapid decrease in the effective particle size (Fig. 6 b) within two weeks. After 

the rapid changes, the ensemble spreads and effective particle sizes were stabilized. The three LPF experiments increased 

RMSEs until the beginning of March. The LPF with 𝜌 = 500 km showed filter divergence in April. The LPF with 𝜌 = 400 

km and 𝜌 = 600 km also showed increasing trends in RMSE until the end of April while their ensemble spreads and effective 

particle sizes were stable. 350 
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Next, sensitivities to the RTPS parameter (α), resampling frequency (𝑁), and forgetting factor (τ) are investigated 

for the LPFGM. The optimal localization scale of LPF was identical to that of the LETKF (Fig. 5). Therefore, we choose the 

same 600-km localization scale for the LPFGM. Figure 7 compares the time-mean background RMSEs and ensemble spreads 

for LETKF and LPFGM. In the LPFGM experiments, we investigate two experimental settings: with weight successions (τ = 

0.0, Figs. 7 a) and without weight successions (τ = 1.0, Figs. 7 b). With weight successions (Fig. 7 a), the LPFGM shows 355 

RMSEs similar to those of LETKF with optimal parameters for α and 𝑁. Regulating the resampling frequency (𝑁) would be 

needed for LPFGM because the LPFGM shows filter divergence when resampling is employed at all assimilation steps 

excluding the case of α = 1.0 (magenta line in Fig. 7 a). The LPFGM employs two ensemble updates: the Gaussian mixture 

and resampling. Owing to the first update by the Gaussian mixture, the LPFGM would not require resampling at all assimilation 

steps. With weight succession, the optimal relaxation parameter α is approximately 0.6‒0.9, excluding the case employing 360 

resampling at all assimilation steps. 

 Without weight succession, the RMSEs of the LPFGM are less sensitive to the resampling parameter 𝑁 and RTPS 

parameter α (Fig. 7 b), implying that the LPFGM is more stable without weight succession. Owing to the first update by the 

Gaussian mixture, succeeding weights may be unnecessary for the LPFGM. In addition, the method of succeeding weights in 

the local PF is not trivial because the weights would move with the dynamical flow. While this study considers only two 365 

weight succession patterns for the LPFGM (i.e., τ = 0.0 or 1.0), the optimal parameter may exist in the definition range of the 

forgetting factor (𝜏 ∈ ሾ0: 1ሿ). Such additional investigations on the weight succession are important research directions for our 

future studies. Because the results of the LPFGM experiments without weight succession were superior to those with weight 

succession, the remainder of this paper focuses on the LPFGM experiments without weight succession. 

 The time series of background RMSEs, and effective particle sizes for LPFGM experiments show that the LPFGM 370 

with every-time resampling (𝑁 = 40) exhibits large RMSEs and the smallest effective particle sizes (Fig. 8, magenta). In 

contrast, the LPFGM experiments with infrequent resampling (𝑁 = 10, 5, and 2) show small RMSEs similar to that of the 

LETKF and maintain larger effective particle sizes than the LPF (Fig. 8, red, blue and green lines). 

 Finally, we compare the spatial patterns of the RMSEs at a fourth model level for the LETKF, LPF, and LPFGM with 

optimal parameter settings (Fig. 9). The LETKF and LPFGM show larger RMSEs in the tropics and polar regions (Figs. 9 a 375 

and c), possibly because of uncertainties from convective dynamics in the tropics and sparser observations in the polar regions. 

The LPF shows a larger RMSE than the LETKF globally (Fig. 9 b, d). By contrast, slight improvements were observed globally 

in the LPFGM relative to the LETKF as indicated by generally warm colors in Fig. 9 (e), especially around the North Pole. 

4.2 Experiments with a realistic observing network 

Here we compare the LETKF, LPF, and LPFGM with the realistic observing network RAOB. With this spatially 380 

inhomogeneous observing network, all LPF experiments showed filter divergence, even with a broad range of the localization 

and RTPS parameters. In addition, the LPFGM was unstable with weight succession. Therefore, this section focuses on the 

comparison of the LETKF and LPFGM without weight succession (τ = 1.0) only. 

https://doi.org/10.5194/gmd-2022-69
Preprint. Discussion started: 7 June 2022
c© Author(s) 2022. CC BY 4.0 License.



14 
 

 First, sensitivities to the RTPS parameter (α) and resampling frequency (𝑁) are investigated for the LPFGM. Figure 

10 compares the time-mean background RMSEs and ensemble spreads for the LETKF and LPFGM. The optimal horizontal 385 

localization scale for the LETKF is 1100 km, and the same localization scale is used for the LPFGM. The LPFGM with every-

time resampling (𝑁 = 40) shows the largest RMSEs (Fig. 10 a, magenta). By contrast, some LPFGM experiments show smaller 

RMSEs than the LETKF (Fig. 10 b). In this experimental setting, the resampling parameter of N0 = 2.0 shows the most stable 

performance. With 𝑁 = 2.0, the LPFGM outperforms the LETKF slightly for α=0.5‒0.7 (green line of Fig. 10 b). 

 The time series of the background RMSEs and effective particle sizes show that the LPFGM with every-time 390 

resampling (𝑁 = 40; Fig. 11 a, magenta), and relatively-frequent resampling (𝑁 = 10; Fig. 11 a, red) caused filter divergences. 

The times when the filters diverged seem to correspond to the times when the effective particle sizes decreased (Fig. 11 b, 

magenta and red). This reduction in effective particle size is a typical sign of filter divergence for PF (Snyder et al., 2008). In 

contrast, the LPFGM experiments with infrequent resampling (𝑁 = 5 and 2) show stable RMSEs and maintain a larger 

effective particle size. These stable LPFGM experiments maintain the amplitude of the ensemble spreads similar to that of the 395 

RMSEs. 

 We further explore regions where the LPFGM outperforms the LETKF. Figure 12 compares the space-based patterns 

of the background RMSEs for T (K) at the fourth model level for LETKF and LPFGM. Errors in sparsely recognized regions, 

such as the South Pacific Ocean, Indian Ocean, and polar regions, tend to be larger (Figs. 12 a and b). The LPFGM outperforms 

the LETKF in such sparsely observed regions (Fig. 12 c). The regions showing improvements correspond to the regions where 400 

the ensemble spreads and first-guess non-Gaussianity are larger (Fig. 13). Here, we measure the non-Gaussianity by Kullback–

Leibler divergence (Kullback and Leibler, 1951).  

The first update of the LPFGM (the Gaussian mixture) is similar to the LETKF update as discussed. Therefore, the 

improvements of the LPFGM with respect to the LETKF would be owing to the resampling step. Previous studies demonstrated 

that the LPF outperformed the LETKF for non-Gaussian DA with non-Gaussian observation and prior PDFs (Poterjoy et al. 405 

2016a, 2016b, Penny and Miyoshi 2016). Therefore, the improvements of the LPFGM would come from the consideration of 

non-Gaussian prior PDF in sparsely observed regions. 

4.3 Factors requiring further investigation 

Finally, we discuss other issues for potential further improvement of the LPF and LPFGM in future studies. 

4.3.1 Inflation 410 

 This study used the RTPS to inflate the posterior perturbation for the LPF and LPFGM. As shown in Figs. 5, 7 and 

10, the RMSEs of the LPF and LPFGM are sensitive to the RTPS parameter. There is a need to investigate methods that 

estimate the RTPS parameter adaptively, as in the EnKF (Ying and Zhang, 2015; Kotsuki et al., 2017b). However, the adaptive 

relaxation methods used in the EnKF cannot be applied directly to the LPF because they use the innovation statistics 
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(Desroziers et al., 2005) that assume analysis updates by the Kalman filter. Therefore, substantially different adaptive 415 

relaxation methods should be investigated for the LPF and LPFGM. 

 An alternative method of inflation is adding random noise to the transform matrix (Potthast et al., 2019). However, 

regulating the amplitude of the random noise was not trivial in the authors’ preliminary experiments with L96 (not shown). 

Too small random noise results in loss of diversity of posterior particles, whereas excessively large random noise results in an 

overly dispersive ensemble. Therefore, a method to determine the optimum amplitude of random noise should be investigated 420 

as well. Moreover, additive inflation methods, as used in the EnKF, can be beneficial for producing diverse prior particles 

(Mitchell and Houtekamer, 2000; Corazza et al., 2003). 

4.3.2 Transform matrix for LPF 

 The transform matrix significantly affects the filter performance. Farchi and Bocquet (2018) demonstrated that the 

optimal transport method of Reich (2013) resulted in lower RMSE than the commonly used stochastic uniform resampling 425 

approach with the L96 model. However, it is not clear if optimal transport is beneficial for high-dimensional systems such as 

the SPEEDY model.  

In this study, all-time resampling was detrimental for the LPFGM experiments (Figs. 7 and 10). This may be due to 

the MC resampling that satisfies Eq. (19) (𝐱ത௧
 ൌ ∑ 𝐱௧

ሺሻ ⋅ 𝑤௧
ሺሻ

ୀଵ ) not exactly, but approximately. With a small effective 

particle size, the MC resampling almost satisfies Eq. (19) since the resampling is not affected by the sampling noise in the 430 

selection of particles. In contrast, satisfying Eq. (19) is more difficult when the effective particle size is larger due to the 

sampling noise. A possible solution to this problem is to use the optimal transport method (Reich 2013) that satisfies Eq. (19) 

exactly. However, the optimal-transport-based resampling was inferior to the MC resampling with SPEEDY in the authors’ 

preliminary experiments (not shown). It is necessary to investigate better methods for generating resampling matrices. 

4.3.3 Tunable parameters of LPF and LPFGM 435 

 The tunable parameters of the LPF and LPFGM should be investigated further. For example, parameter 𝑁, which 

controls the resampling frequency, significantly affected the filter accuracy and stability. Adaptive determination of this 

parameter can prevent time-consuming parameter tuning. 

 The sensitivity to parameter γ should also be investigated for the LPFGM. WP22 proposed using γ = 2.5. Since γ 

controls the amplitude and width of Gaussian kernels, the filter accuracy and stability of the LPFGM would be sensitive to this 440 

parameter. We briefly examined the sensitivity to this parameter with REG2 and RAOB (Fig. 14; γ = 2.5, 1.5, and 0.5 for red, 

blue, and green lines). The results indicate that the filter accuracy of the LPFGM is sensitive to this parameter, especially for 

spatially-inhomogeneous RAOB observing network. For our experimental settings, the optimal γ was 1.5 for both REG2 and 

RAOB. However, the optimal parameter would differ for different models, ensemble sizes, observing networks, and observing 

frequency. Therefore, adaptive determination of this parameter is helpful. 445 
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 This study considered two experimental settings with and without weight succession, i.e., τ = 0.0 and 1.0, respectively. 

The LPFGM without weight succession (τ = 1.0) resulted in lower RMSE than that with weight succession (τ = 0.0). However, 

the optimal parameter τ would be somewhere between 0.0 and 1.0. In addition, the weight succession at each model grid point 

would be suboptimal. Hence, the method for weight succession should also be explored further. 

5 Summary 450 

 This study aims to develop a software platform for the LETKF, LPF, and LPFGM with the intermediate global 

atmospheric model SPEEDY. The main results of this investigation are briefly listed as follows: 

1) The LPF and LPFGM were developed by only minor modifications to the existing LETKF system with the SPEEDY 

model. 

2) With dense observations (REG2), the LPF showed stable filter performance with large inflation by the RTPS. The 455 

optimal localization scale of the LPF was identical to that of the LETKF. The LPF forecast was less accurate than the 

LETKF forecast. With sparse observations (RAOB), the LPF did not work. 

3) The LPFGM showed more stability and lower forecast RMSEs than the LPF. In addition to the RTPS parameter, 

regulating the resampling frequency and the amplitude of Gaussian kernels was important for the LPFGM. The LPFGM 

without weight succession resulted in more stability and lower RMSEs than that with weight succession. With RAOB, 460 

the LPFGM forecast was more accurate than the LETKF forecast in a sparsely observed regions where the background 

ensemble spread and non-Gaussianity are larger. 

 As discussed in section 4.3, there is much room for improvement in the LPF and LPFGM. While the LPFGM 

potentially provides a more accurate forecast than the LETKF, the LPFGM has more tunable parameters than the LETKF. 

Manually tuning these parameters by trying numerous experiments is computationally expensive. Therefore, adaptive methods 465 

for determining such tuneable parameters need to be explored. Also, it is important to investigate computationally more 

efficient methods to generate resampling matrices for the LPF and LPFGM. 

The SPEEDY-based LETKF, LPF, and LPFGM used in this study are available as open-source software on Github 

(https://github.com/skotsuki/speedy-lpf). This can act as a useful platform to investigate the LPF and LPFGM further in 

comparison with the well-known LETKF. 470 
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Data and code availability 475 

Developed data assimilation system is available at (https://github.com/skotsuki/speedy-lpf), which is based on the 

exiting SPEEDY-LETKF system (https://github.com/takemasa-miyoshi/letkf). The data assimilation system used in this 

manuscript is archived on Zonodo (https://zenodo.org/record/6586309; doi: 10.5281/zenodo.6586309). Due to the large 

volume of data (> 6 TB) and limited disk space, processed data and scripts for visualization are also shared on Zenodo at the 

same link. 480 
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Algorithms 

Algorithm 1: Generation of the resampling matrix T 

Requirement: 𝐫௦௧ௗ and 𝐰௧,  

1: 
All components of T and z are initialized to be 0   

#z: an indicator of resampled particles 

2: do j=1 to m                                                # index of posterior particle 

3:   do i=1 to m                                              # index of prior particle 

4:     if {𝑤௧,
ሺିଵሻ ൏ 𝑟௦ௗ

ሺሻ  𝑤௧,
ሺሻ } 𝑧ሺሻ ൌ 𝑖  # resampled particle 

5:   end do 

6: end do 

7: do j=1 to m 

8:      𝑖 ൌ 𝑧ሺሻ 

9: if {𝐓ሺ,ሻ ൌ 0} then 

10: 𝐓ሺ,ሻ =1                                              # diagonal components 

11:   𝑧ሺሻ ൌ 0 

12: end if 

13: end do 

14: do i=1 to m                                               # (loop for rows of T) 

15:   if {𝑧ሺሻ ് 0} then 

16:     do j=1 to m                                           # (loop for columns of T) 

17:       if {𝑠𝑢𝑚ሺ𝐓ሺ:,ሻሻ ൌ 0} 𝐓ሺ,ሻ =1           # off-diagonal components 

18:     end do 

19:   end if 

20: end do 
 620 
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Tables 625 

Table 1: Computational complexities of LETKF, LPF, and LPFGM. Each step corresponds to the steps in Fig. 1. Cross-marks 

represent the steps used for LETKF, LPF and LPFGM. 

 Step Computational complexity LETKF LPF LPFGM 

𝐶ୌ 

A m applications of H X X X 

B 2mp X X X 

C 2nm X X X 

𝐶 

D ※1 X X X 

E m𝑝 (※2) X  X 

F ≤ 2𝑚ଶ𝑝 X  X 

G O(𝑚ଷ) X  X 

H O(m(m+𝑝)) X   

I O(m(m+𝑝))   X 

J O(m𝑝) (※2)  X X 

K O(𝑚ଶ ∙ 𝑁ெ)  X X 

L ≤ 2𝑚ଷ   X 

𝐶ୌ 
M ≤ 2𝑛𝑚ଶ X X X 

N O(nm) X X X 
 

※1: This computation depends on the localization scale 

※2: These computations assume the diagonal R (i.e., uncorrelated observation error) 630 

n: system size 

m: ensemble size 

p: the number of observations 

𝑝: the number of local observations 

𝑁ெ: the number of times resampling matrices to be generated by Algorithm 1 635 

 

 

 

 

 640 
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Table 2:  List of experiments 

Obs DA Purpose 𝜌  (km) α γ 𝑁 τ Figures 

REG2 

LETKF control experiment 600 ※1 / / /  

LPF 
sensitivity to 𝜌 

and α 

400/500/ 

600/700 
0.0-1.0 / / / Figs. 5, 6, 9 

LPFGM 
sensitivity to α, 

𝑁, and τ 
600 0.0-1.0 1.5 

2/4/ 

10/40 

0.0/1.

0 
Figs. 7, 8, 9 

LPFGM 
sensitivity to α and 

γ 
600 0.0-1.0 

0.5/1.5/2.

5 
2 1.0 Figs. 14 (a) 

RAOB 

LETKF control experiment 1,100 ※1     

LPF 
sensitivity to 𝜌 

and α 
1,100 0.0-1.0 / / / not shown 

LPFGM 
sensitivity to α and 

𝑁 
1,100 0.0-1.0 1.5 

2/4/ 

10/40 
1.0 

Figs. 10, 11, 12, 

13 

LPFGM 
sensitivity to α and 

γ 
1,100 0.0-1.0 

0.5/1.5/2.

5 
2 1.0 Figs. 14 (b) 

 

𝜌: horizontal localization scale (Eq. 38)    

α: relaxation parameter of RTPS (Eq. 8) 645 

γ: amplitude of Gaussian kernel of the LPFGM (Eq. 25)  

𝑁: parameter controls resampling frequency (Eq. 22) 

τ: forgetting factor of weight (Eq. 23) 

※1: Instead of RTPS, the LETKF uses Miyoshi (2011)’s adaptive multiplicative inflation 

 650 
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Figures 

 

Figure 1: Examples of the resampling matrix in the case of 40 particles with a given weight generated by uniform random 660 

numbers. (a) Weight for 40 particles. (b, c) Examples of sampled resampling matrices by Algorithm 1 using different random 

numbers r. (d, e) Resampling matrices using the Monte Carlo stochastic approach with 200 and 10,000 sampled matrices, 

respectively. 
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Figure 2: A simple scalar example of observation, prior and posterior PDFs for (a) LPF, (b) 5th particle of LPFGM and (c) 665 

LPFGM. Green, blue, red, purple dashed circles represent an observation and prior particles, moved particles, posterior 

particles, and replaced particles respectively.  
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Figure 3: Workflows of LETKF, LPFGM, and LPF. Gray, purple, green, and red boxes represent the components of LETKF, 

a similar component as in the LETKF, the components of the LPF, and a unique component of the LPFGM, respectively. 670 

Subroutines, source files, and computational complexities are also described in boxes, where n, m, p, and pʹ denote the model 

dimension, ensemble size, number of observations, and number of local observations at analysis grid points, respectively.  
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Figure 4: Observing networks for (a) REG2 and (c) RAOB experiments. Small black dots and red crosses represent model 

grid points and observing points, respectively.  675 
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Figure 5: Time-mean background RMSEs (solid lines) and ensemble spreads (dashed lines) for T (K) at the fourth model level 

(~500 hPa) as a function of RTPS parameter α averaged over three months of the third year (February-April) with REG2 

observations. Magenta, red, blue, and green lines are LPF experiments with horizontal localization scales of 700, 600, 500, 680 

and 400 km, respectively. Dashed lines represent RMSE of LETKF (0.1257 K) with adaptive multiplicative inflation instead 

of RTPS. 
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Figure 6: Time series of globally-averaged background (a) RMSEs (solid lines) and ensemble spreads (dashed lines) for T 685 

(K) and (b) effective particle size 𝑁 at the fourth model level (~500 hPa) with REG2 observations. Black lines show the 

LETKF. Red, blue, and green lines are the LPF experiments with localization scales of 600, 500, and 400 km, respectively. 

RTPS parameter α is set to 1.00 in all three LPF experiments. The abscissa shows month/day. 
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Figure 7: Similar to Figure 5, but for the LPFGM with REG2 and 600-km localization scale. Magenta, red, blue, and green 690 

lines show the cases with 𝑁 = 40, 10, 5, and 2, respectively. Dashed lines represent RMSE of LETKF (0.1257 K). Panels (a) 

and (b) show the LPFGM with and without succeeding weights (i.e., τ = 0.0 and 1.0), respectively. 
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Figure 8: Similar to Figure 6, but showing the LPFGM experiments with REG2 and 600-km localization scale. Magenta, red, 695 

blue, and green lines are LPFGM experiments with 𝑁 = 40, 10, 5, and 2, respectively. Forgetting factor τ is 1.0. The RTPS 

parameter is set to 1.00 in the experiment with 𝑁 = 40 (i.e., all-time resampling) and to 0.50 for in other experiments.  
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Figure 9: Spatial patterns of background RMSE for T (K) at the fourth model level (~500 hPa) for (a) LETKF, (b) LPF, and 

(c) LPFGM with optimal localization scale and RTPS parameter, averaged over February-April with REG2 and 600-km 700 

localization scale. Panels (d) and (e) show the differences LETKF‒LPF and LETKF‒LPFGM, respectively. The warm (cold) 

color indicates that the LPF or LPFGM is better (worse) than the LETKF. 
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Figure 10: Similar to Figure 5, but showing the LPFGM experiments with the RAOB and 1100-km localization scale. Magenta, 

red, blue, and green lines are the LPFGM experiments with 𝑁 = 40, 10, 5, and 2, respectively. Forgetting factor τ is fixed at 705 

1.0. Dashed black lines represent the RMSE of the LETKF (0.4762 K). (b) enlarges (a) for the range of the RMSE of 0.25‒

0.45. 
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Figure 11: Similar to Figure 8, but showing the LPFGM experiments with the RAOB and 1100-km localization scale. Magenta, 710 

red, blue, and green lines are LPFGM experiments with 𝑁 = 40, 10, 5, and 2, respectively. Forgetting factor τ is 1.0. 

https://doi.org/10.5194/gmd-2022-69
Preprint. Discussion started: 7 June 2022
c© Author(s) 2022. CC BY 4.0 License.



36 
 

 

Figure 12: Spatial patterns of background RMSE for T (K) at the fourth model level (~500 hPa) for (a) LETKF and (b) 

LPFGM, averaged over February-April with RAOB and 1100-km localization scale. Panel (c) shows the difference between 

LETKF and LPFGM. Warm (cold) color indicates that the LPFGM is better (worse) than the LETKF.  715 

https://doi.org/10.5194/gmd-2022-69
Preprint. Discussion started: 7 June 2022
c© Author(s) 2022. CC BY 4.0 License.



37 
 

 

Figure 13: Spatial distributions of the background (a, b) Kullback–Leibler divergence and (c, d) ensemble spread for T (K), 

at the fourth model level (~500 hPa) averaged over February-April with RAOB and 1100-km localization scale. (a, c) and (b, 

d) show the LETKF and LPFGM, respectively. 
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 720 

Figure 14: Time-mean background RMSEs for T (K) at the fourth model level (~500 hPa) as a function of RTPS parameter 

α averaged over three months of the third year (February-April). (a) shows REG2 with 600-km localization scale, and (b) 

shows RAOB with 1100-km localization scale. Red, blue, and green lines are LPFGM experiments with being γ=2.5, 1.5, and 

0.5, respectively. Black dashed lines represent RMSE of LETKF (0.1257 K) with adaptive multiplicative inflation instead of 

RTPS. Other parameters are set to be optimal: 𝑁 = 2 and τ = 1.0.  725 
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