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Abstract. A particle filter (PF) is an ensemble data assimilation method that does not assume Gaussian error distributions. 15 

Recent studies proposed local PFs (LPFs), which use localization as in the ensemble Kalman filter, to apply the PF for high-

dimensional dynamics efficiently. Among others, Penny and Miyoshi developed an LPF in the form of the ensemble transform 

matrix of the Local Ensemble Transform Kalman Filter (LETKF). The LETKF has been widely accepted for various 

geophysical systems including numerical weather prediction (NWP) models. Therefore, implementing the LPF consistently 

with an existing LETKF code is useful. 20 

This study develops a software platform for the LPF and its Gaussian mixture extension (LPFGM) by making slight 

modifications to the LETKF code with a simplified global climate model known as Simplified Parameterizations, Primitive 

Equation Dynamics (SPEEDY). A series of idealized twin experiments were accomplished under the ideal model assumption. 

With large inflation by the relaxation to prior spread, the LPF showed stable filter performance with dense observations but 

became unstable with sparse observations. The LPFGM showed more accurate and stable performance than the LPF with both 25 

dense and sparse observations. In addition to the relaxation parameter, regulating the resampling frequency and the amplitude 

of Gaussian kernels was important for the LPFGM. With a spatially inhomogeneous observing network, the LPFGM was 

superior to the LETKF in sparsely observed regions where the background ensemble spread and non-Gaussianity are larger. 

The SPEEDY-based LETKF, LPF, and LPFGM systems are available as open-source software on Github 

(https://github.com/skotsuki/speedy-lpf) and can be adapted to various models relatively easily like the LETKF. 30 

 

Short Summary. Data assimilation takes an important part in numerical weather prediction (NWP) to combine forecasted 

states and observations. While data assimilation methods in NWP usually assume the Gaussian error distribution, some 
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variables in the atmosphere are known to have non-Gaussian error statistics such as precipitation. This study extended a widely 

used ensemble data assimilation algorithm for enabling to assimilate more non-Gaussian observations. 35 

1 Introduction 

Ensemble-based data assimilation (DA) has been broadly applied in geoscience fields such as weather and ocean 

prediction. The ensemble Kalman filter (EnKF) has been intensely investigated for the past two decades, such as for the 

perturbed observation method (Evensen, 1994; Burgers et al., 1998; Houtekamer and Mitchel, 1998; van Leeuwen 2020) and 

ensemble square root filters (e.g., Anderson, 2001; Bishop, 2001; Whitaker and Hamill, 2002; Hunt et al., 2007). The EnKF 40 

has advantages in flow-dependent error estimates represented by an ensemble and in its relative ease of implementation to 

nonlinear dynamical systems such as numerical weather prediction (NWP) models. The degrees of freedom of dynamical 

models (e.g., > 𝑂ሺ10଼ሻ for NWP models) are much larger than the typically affordable ensemble size (< 𝑂ሺ10ଷሻ). On the other 

hand, atmospheric and oceanic models show local low dimensionality (Patil et al., 2001; Oczkowski et al. 2005), and practical 

EnKF implementations use a localization technique that limits the impact of distant observations while also reducing the 45 

effective degrees of freedom. Among various kinds of EnKFs, the local ensemble transform Kalman filter (LETKF; Hunt et 

al., 2007) is widely utilized in operational NWP centers in the same manner with the Deutscher Wetterdienst (DWD) and the 

Japan Meteorological Agency (JMA). Analysis updates of the LETKF are performed by multiplying the ensemble transform 

matrix to the prior ensemble perturbation matrix, following the ensemble transform Kalman filter (ETKF, Bishop et al. 2001; 

Wang et al. 2004). 50 

The particle filter (PF) is another ensemble DA method broadly applicable to nonlinear and non-Gaussian problems 

(cf. van Leeuwen 2009 and van Leeuwen et al. 2019 for reviews on geoscience applications). The PF potentially solves some 

issues in the basic assumptions of the EnKF by permitting nonlinear observation operators and non-Gaussian likelihood 

functions (Penny and Miyoshi, 2016). For example, assimilating precipitation observations with a standard EnKF is difficult 

partly because of their non-Gaussian errors (Lien et al., 2013, 2016; Kotsuki et al., 2017a). The PF can treat such variables 55 

with non-Gaussian errors properly. Several PF methods have been explored for low-dimensional problems in early studies 

(Gordon et al. 1993; van Leeuwen et al. 2009). However, applying the PF to high-dimensional dynamical systems is generally 

difficult because the number of particles or the ensemble size must to be increased exponentially with the system size to avoid 

a weight collapse in which very few particles occupy most of the weights (Snyder et al., 2008, 2015). If a weight collapse 

occurs, the PF loses the diversity of the particles after resampling. Therefore, we need to assure that the weights are similarly 60 

distributed among particles. Previous studies developed the equivalent-weights particle filter (EWPF; van Leeuwen et al. 2010; 

Ades and van Leeuwen 2013, 2015; Zhu et al. 2016) to extend time until a weight collapse by using the proposal density to 

drive the particles toward the high-probability region of the posterior. Even PFs with proposal densities, however, are unable 

to prevent the weights from collapsing. 
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Alternatively, the local particle filter (LPF) uses localization to avoid a weight collapse by limiting the impact of 65 

observations within a local domain. Localization is a well-adopted method for the EnKF to treat sampling errors due to a 

limited ensemble size. Several LPFs have been proposed to apply the PF efficiently to high-dimensional systems (e.g., 

Bengston et al., 2003; van Leeuwen, 2009; Poterjoy, 2016; Penny and Miyoshi, 2016; Poterjoy and Anderson, 2016; Farchi 

and Bocquet, 2018; van Leeuwen et al. 2019). Among them, Penny and Miyoshi (2016) developed an LPF by means of the 

ensemble transform matrix of the LETKF. The LETKF has been commonly used for diverse geophysical systems, and 70 

consistent implementation with an available LETKF code would be useful. The DWD implemented the LPF in an operational 

global model based on the operational LETKF code and described stable performance in the operational setting (Potthast et 

al., 2019). Walter and Potthast (2022; hereafter WP22) extended the LPF to the Gaussian mixture for further improvements. 

The goal of this study is to develop and provide a software platform to accelerate research on LPF and its Gaussian 

mixture extension (hereafter, LPFGM). Although many studies on LPF have used simple idealized chaotic models, such as the 75 

40-variable Lorenz model (hereafter, “L96”; Lorenz, 1996; Lorenz and Emanuel, 1998), the present study uses a simplified 

atmospheric general circulation model defined as the Simplified Parameterizations, Primitive Equation Dynamics (SPEEDY) 

model (Molteni, 2003). Miyoshi (2005) coupled the LETKF with the SPEEDY model for the first time, and the source code is 

accessible at https://github.com/takemasa-miyoshi/letkf. This study extends the SPEEDY-LETKF code and implements the 

LPF and LPFGM. As demonstrated below, the LPF and LPFGM can be implemented easily with simple modifications to the 80 

existing LETKF code.  

The remainder of this paper is organized as follows. Section 2 explains the mathematical formulation of the LETKF, 

LPF, and LPFGM, followed by the description of specific modifications made to the existing LETKF code. Section 3 presents 

the experimental settings. Section 4 outlines the results and discussions. Lastly, section 5 provides a summary. 

2 Methodology 85 

2.1 Local ensemble transform Kalman filter 

Hunt et al. (2007) introduced the LETKF as a computationally efficient EnKF by combining the local ensemble 

Kalman filter (Ott et al., 2004) and ETKF (Bishop et al., 2001). Let 𝐗௧ be a matrix composed of m ensemble state vectors. The 

ensemble mean vector and perturbation matrix of 𝐗௧ are given by 𝐱ത௧  (∈ ℝ௡) and 𝐙௧ ≡ ቄ𝐱௧
ሺଵሻ െ 𝐱ത௧, . . . , 𝐱௧

ሺ௠ሻ െ 𝐱ത௧ቅ (∈ ℝ௡ൈ௠), 

respectively, where n is the system size. The subscript t indicates the time, and the superscript (i) denotes the ith ensemble 90 

member. The analysis equations of the LETKF are specified by: 

𝐗௧,௅ா்௄ி
௔ ൌ 𝐱ത௧

௕ ⋅ 𝟏 ൅ 𝐙௧
௕𝐓௧,௅ா்௄ி,         (1) 

𝐓௧,௅ா்௄ி ൌ 𝐏෩௧
௔ሺ𝐘௧

௕ሻ்𝐑௧
ିଵ ቀ𝐲௧

௢ െ 𝐻௧ሺ𝐗௧
௕ሻቁ ⋅ 𝟏 ൅ ൣሺ𝑚 െ 1ሻ𝐏෩௧

௔൧
ଵ/ଶ

,     (2) 

コメントの追加 [小槻17]: RC2’s Specific Comment (13) 

コメントの追加 [s18]: RC2’s Specific Comment (34) 

コメントの追加 [小槻19]: RC2’s Specific Comment (14) 



4 
 

where 1 is a row vector whose all elements are 1 (∈ ℝ௠), T is the ensemble transform matrix (∈ ℝ௠ൈ௠), 𝐏෩  is the error 

covariance matrix in the ensemble space (∈ ℝ௠ൈ௠), 𝐘 ≡ 𝐇𝐙  is the ensemble perturbation matrix in the observation space (∈95 

ℝ௣ൈ௠), R is the observation error covariance matrix (∈ ℝ௣ൈ௣), y is the observation vector (∈ ℝ௣), H is the linear observation 

operator matrix (∈ ℝ௣ൈ௡), and H is the observation operator that may be nonlinear. Here, p is the number of observations. The 

superscripts o, b, and a denote the observation, background (prior), and analysis (posterior), respectively. The matrix 𝐓௅ா்௄ி 

denotes the ensemble transform matrix of the LETKF. The first and second terms of the right-hand side of Eq. (2) correspond 

to the updates of ensemble mean and perturbation, respectively. The ETKF computes the analysis error covariance matrix in 100 

the ensemble space 𝐏෩௧
௔  by: 

𝐏෩௧௔ ൌ ቂ
ሺ௠ିଵሻ

ఉ
𝐈 ൅ ሺ𝐘௧௕ሻ்𝐑௧

ିଵ𝐘௧௕ቃ
ିଵ

,         (3) 

where β is a multiplicative inflation factor. Equations (1) and (2) are derived from the Kalman filter equations given by: 

𝐱ത௧
௔ ൌ 𝐱ത௧

௕ ൅ 𝐊௧ ቀ𝐲௧
௢ െ 𝐻௧ሺ𝐗௧

௕ሻቁ,         (4) 

𝐊௧ ൌ 𝐏௧௕𝐇௧
்ሺ𝐇௧𝐏௧௕𝐇௧

் ൅ 𝐑௧ሻିଵ ൌ 𝐏௧௔𝐇௧
்𝐑௧

ିଵ,        (5) 105 

𝐏௧
௔ ൌ ሺ𝐈 െ 𝐊௧𝐇௧ሻ𝐏௧

௕ ⟺ ሺ𝐏௧
௔ሻିଵ ൌ ሺ𝐏௧

௕ሻିଵ ൅ 𝐇௧
்𝐑௧

ିଵ𝐇௧,      (6) 

where K is the Kalman gain (∈ ℝ௡ൈ௣) and P is the error covariance matrix in the model space (∈ ℝ௡ൈ௡). Derivations of Eqs. 

(5) and (6) are detailed in Appendix A. The EnKF approximates the error covariance matrix by 𝐏 ൎ ଵ

௠ିଵ
𝐙ሺ𝐙ሻ். Hunt et al. 

(2007) provides more details on deriving Eqs. (1) and (2) from the Kalman filter equations. For nonlinear observation operators, 

the following approximation is used: 110 

   𝐘 ≡ 𝐇𝐙 ൎ 𝐻ሺ𝐗ሻ െ 𝐻ሺ𝐗ሻ ⋅ 𝟏.         (7) 

The LETKF provides 𝐏෩௧
௔ and ൫𝐏෩௧

௔൯
ଵ/ଶ

 of Eq. (2) by solving the eigenvalue decomposition of ൫𝐏෩௧
௔൯

ିଵ
ൌ 𝐔𝚲𝐔், where 

U is a square matrix (∈ ℝ௠ൈ௠ ) composed of eigenvectors, and Λ is a diagonal matrix (∈ ℝ௠ൈ௠ ) composed of the 

corresponding eigenvalues. The eigenvalue decomposition leads to 𝐏෩௧
௔ ൌ 𝐔𝚲ିଵ𝐔் and ൫𝐏෩௧

௔൯
ଵ/ଶ

ൌ 𝐔𝚲ିଵ/ଶ𝐔். 

The localization is practically important for mitigating sampling errors in the ensemble-based error covariance with 115 

a limited ensemble size (Houtekamer and Zhang, 2016). With localization, the LETKF computes the transform matrix 𝐓௅ா்௄ி 

at every model grid point independently by assimilating a subset of observations within the localization cut-off radius. The 

LETKF employs localization by inflating the observation error variance so that observations distant from the analysis model 

grid point have fewer impacts (Hunt et al., 2007; Miyoshi and Yamane, 2007). 

For local analysis schemes, a spatially smooth transition of the transform matrix 𝐓௅ா்௄ி is essential to prevent abrupt 120 

changes in the analyses of neighboring grid points. The LETKF realizes a smooth transition of the transform matrix by using 

the symmetric square root of 𝐏෩௧௔ (Hunt et al., 2007). The symmetric square root matrix minimizes the mean-square distance 
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between identity matrix I and ൣሺ𝑚 െ 1ሻ𝐏෩௧௔൧
ଵ/ଶ

; therefore, the analysis ensemble perturbations can be closer to the background 

ensemble perturbation. 

The EnKF generally underestimates the error variance mainly because of model errors, nonlinear dynamics, and 125 

limited ensemble size. Therefore, a covariance inflation technique is used to inflate the underestimated error variance 

(Houtekamer and Mitchell, 1998). Among several kinds of covariance inflations methods, the present study considers 

multiplicative inflation (Anderson and Anderson, 1999) and relaxation to prior scheme (Zhang et al., 2004) as implemented 

by Whitaker and Hamill (2012). In multiplicative inflation, the ensemble-based covariance is multiplied by a factor β (𝐏௕ →

𝛽𝐏௕). This multiplicative inflation is employed in Eq. (3) in the LETKF. In this study, the LETKF experiments use the 130 

approach of Miyoshi (2011) which adaptively estimates a spatially varying inflation factor on the basis of the innovation 

statistics of Desroziers et al. (2005). In realistic problems, covariance relaxation methods are often used to inflate the posterior 

perturbation (e.g., Terasaki et al. 2019; Kotsuki et al., 2019b). This study utilizes the relaxation to prior spread (RTPS; 

Whitaker and Hamill, 2012) given by:  

𝐙௧ሺ௞ሻ
௔ ← ൭ሺ1 െ 𝛼ሻ ൅ 𝛼

ఙ೟ሺೖሻ
್

ఙ೟ሺೖሻ
ೌ ൱ 𝐙௧ሺ௞ሻ

௔ ,         (8) 135 

where α is the RTPS parameter, and σ is the ensemble spread. The subscript (k) denotes the kth model variable or the kth 

component of state vector. Although this study uses only multiplicative inflation for the LETKF experiments, the posterior 

error perturbation is inflated by RTPS for LPF and LPFGM. 

2.2 Local particle filter with ensemble transform matrix 

Here, we describe the LPF in the form of the ensemble transform matrix of the LETKF (Reich, 2013; Penny and 140 

Miyoshi, 2016; Potthast et al. 2019). The PF is a direct Monte Carlo realization of Bayes’ theorem given by: 

𝜋ሺ𝐱௧|𝐲ଵ:௧
௢ ሻ ൌ

గ൫𝐲೟
೚|𝐱೟൯గ൫𝐱೟|𝐲భ:೟షభ

೚ ൯

గ൫𝐲೟
೚|𝐲భ:೟షభ

೚ ൯
 ,         (9) 

where 𝜋ሺ𝐱௧|𝐲ଵ:௧
௢ ሻ is the probability of state x given all observations 𝐲௢ up to time t. The PF approximates the prior probability 

density function (PDF), which appears in the numerator of Eq. (9), using an ensemble forecast: 

𝜋௅௉ிሺ𝐱௧|𝐲ଵ:௧ିଵ
௢ ሻ ൎ ∑ 𝑤௧

௕ሺ௜ሻ𝛿൫𝐱௧ െ 𝐱௧
௕ሺ௜ሻ൯௠

௜ୀଵ ,        (10) 145 

where δ is the Dirac’s delta function and w௕ሺ௜ሻ is the prior weight of the ith particle (i.e., ensemble member) at the previous 

analysis time. If particles are resampled at the previous analysis time, all particles have the same weight 𝑤௕ሺ௜ሻ ൌ

1/𝑚 ሺ𝑖 ൌ 1, … ,𝑚ሻ. The sum of the weights ∑ 𝑤௧
௔,௕ሺ௜ሻ௠

௜ୀଵ  is always 1. The denominator of the right-hand side of Eq. (9) can be 

estimated by:  

𝜋ሺ𝐲௧
௢|𝐲ଵ:௧ିଵ

௢ ሻ ൌ 𝜋ሺ𝐲௧׬
௢|𝐱௧ሻ𝜋ሺ𝐱௧|𝐲ଵ:௧ିଵ

௢ ሻ𝑑𝐱௧ ൎ ∑ 𝑤௧
௕ሺ௜ሻ𝜋ሺ𝐲௧

௢|𝐱௧
௕ሺ௜ሻሻ௠

௜ୀଵ .     (11) 150 
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This study assumes a Gaussian likelihood function given by: 

𝜋ሺ𝐲௧
௢|𝐱௧ሻ ∝ exp ቂെ ଵ

ଶ
൫𝐲௧

௢ െ 𝐻௧ሺ𝐱௧ሻ൯
்
𝐑௧
ିଵ൫𝐲௧

௢ െ 𝐻௧ሺ𝐱௧ሻ൯ቃ.      (12) 

This assumption means the observation error distribution is assumed to be Gaussian. Then, the posterior can be expressed by: 

𝜋௅௉ிሺ𝐱௧|𝐲ଵ:௧
௢ ሻ ൎ ∑ 𝑤௧

௔ሺ௜ሻ𝛿൫𝐱௧ െ 𝐱௧
௕ሺ௜ሻ൯௠

௜ୀଵ ,        (13) 

𝑤௧
௔ሺ௜ሻ ൌ 𝑤௧

௕ሺ௜ሻ𝜋௅௉ி൫𝐲ଵ:௧
௢ |𝐱௧

௕ሺ௜ሻ൯/∑ 𝑤௧
௕ሺ௜ሻ𝜋௅௉ி൫𝐲ଵ:௧

௢ |𝐱௧
௕ሺ௝ሻ൯ ൌ 𝑤௧

௕ሺ௜ሻ௠
௝ୀଵ 𝑞௧

ሺ௜ሻ/∑ 𝑤௧
௕ሺ௞ሻ𝑞௧

ሺ௞ሻ௠
௞ୀଵ ,   (14) 155 

𝑞௧
ሺ௜ሻ ൌ exp ൤െ ଵ

ଶ
ቀ𝐲௧௢ െ 𝐻௧൫𝐱௧

௕ሺ௜ሻ൯ቁ
்
𝐑௧
ିଵ ቀ𝐲௧௢ െ 𝐻௧൫𝐱௧

௕ሺ௜ሻ൯ቁ൨,      (15) 

where q is the likelihood. Equation (14) results in posterior weights that satisfy ∑ 𝑤௧
௔ሺ௜ሻ௠

௜ୀଵ ൌ 1. 

To mitigate weight collapse, the local PF (LPF) solves the PF equations by assimilating local observations 

surrounding the analysis grid point. This study uses Penny and Miyoshi (2016)’s approach that computes the analysis at every 

model grid point independently with the observation error covariance R being inflated by the inverse of a localization function 160 

as in the LETKF (Penny and Miyoshi, 2016).  

Sampling importance resampling (SIR) is a technique for applying the PF for high-dimensional dynamics with a 

limited amount of particles. The resampling process rearranges the particles to effectively represent the densest areas of the 

posterior PDF. After resampling, each particle has equal weights and the posterior PDF is given by: 

𝜋௅௉ிሺ𝐱௧|𝐲ଵ:௧
௢ ሻ ൎ

ଵ

௠
∑ 𝛿൫𝐱௧ െ 𝐱௧

௔ሺ௜ሻ൯௠
௜ୀଵ .        (16) 165 

The resampling process can be expressed equally valid to the ensemble transform matrix of the ETKF (Reich, 2013; Penny 

and Miyoshi, 2016) given by: 

𝐗௧,௅௉ி
௔ ൌ 𝐗௧௕𝐓௧,௅௉ி ൌ ሺ𝐱ത௧௕ ⋅ 𝟏 ൅ 𝐙௧௕ሻ𝐓௧,௅௉ி ൌ 𝐱ത௧௕ ⋅ 𝟏 ൅ 𝐙௧௕𝐓௧,௅௉ி.      (17) 

where 𝐓௅௉ி  denotes the ensemble transform matrix of the LPF. Here, we applied ሺ𝐱ത௧
௕ ⋅ 𝟏ሻ𝐓௧,௅௉ி ൌ 𝐱ത௧

௕ ⋅ 𝟏  based on the 

following necessary condition of the ensemble transform matrix for the LPF: 170 

∑ 𝐓௧,௅௉ி
ሺ௜,௝ሻ ൌ 1௠

௜ୀଵ ,   𝑗 ൌ 1, . . . ,𝑚           (18) 

In addition to Eq. (18), the ideal resampling matrix satisfies the following two conditions: 

 ∑ 𝐓௧,௅௉ி
ሺ௜,௝ሻ ൌ 𝑚 ⋅ 𝑤௧

௔ሺ௜ሻ௠
௝ୀଵ ,   𝑓𝑜𝑟  𝑖 ൌ 1, . . . ,𝑚 

⇔ 𝐱ത௧
௕ ൌ ∑ 𝐱௧

௕ሺ௜ሻ ⋅ 𝑤௧
௔ሺ௜ሻ௠

௜ୀଵ   ,       (19) 

  spatially smooth transition of 𝐓௧,௅௉ி  . 175 

where m is the ensemble size, and 𝐓ሺ௜,௝ሻ indicates the ith-row and jth-column element of the matrix T.  
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The resampling matrix significantly affects the filter performance (Farchi and Bocquet, 2018). The present study 

constructs resampling matrices based on the Monte-Carlo approach. This resampling method uses m random numbers 𝐫ሺ௜ሻ ሺ𝑖 ൌ

1, … ,𝑚ሻ drawn from uniform distribution U ([0,1]) and accumulated weights 𝑤௧,௔௖௖: 

𝑤௧,௔௖௖
ሺ଴ሻ ൌ 0,   𝑤௧,௔௖௖

ሺ௜ሻ ൌ 𝑤௧,௔௖௖
ሺ௜ିଵሻ ൅ 𝑤௧

௔ሺ௜ሻ,   𝑖 ൌ 1, . . . ,𝑚.      (20) 180 

By definition, 𝑤௧,௔௖௖
ሺ௠ሻ  is 1. After sorting r to be the ascending order 𝐫௦௢௥௧௘ௗ, we generate the resampling matrix using Algorithm 

1. This procedure is similar to the resampling of Potthast et al. (2019), but it employs an additional treatment so that the 

resampling matrix is close to the identity matrix (line 10 of Algorithm 1; Fig. 1 b and c). 

 Classical resampling can produce the same particles resulting in the loss of diversity of posterior particles. Therefore, 

additional treatments are required to generate slightly different posterior particles. Potthast et al. (2019) proposed adding 185 

Gaussian random noise to 𝐓௧,௅௉ி  to prevent the generation of the same particles. As an alternative, the present study uses the 

Monte-Carlo approach that repeats Algorithm 1 many times with different random numbers and takes the average of the 

generated resampling matrices (Fig. 1). Using different random numbers r, the resampling matrices differ (Fig. 1 b, c) even if 

the same weight is used (Fig. 1 a). By averaging the resampling matrices generated by using different random numbers, we 

get matrices that have higher weights in the diagonal components and lower weights in the off-diagonal components (Fig. 1 d, 190 

e). The Monte-Carlo approach makes the resampling matrix closer to the identity matrix, which is beneficial for a smooth 

transition in space. In addition, this stochastic approach approximates Eq. (19) using the Monte-Carlo approach. The generated 

transform matrix with 200 samples (Fig. 1 c) is close to that with 10,000 samples (Fig. 1 d) in the case of 40 particles. Therefore, 

the transform matrices are generated by averaging 200 sampled matrices in subsequent LPF experiments. Hereafter, we call 

this resampling method “MC resampling” which is used in the following experiments. The number of required samples for 195 

MC resampling is briefly investigated in Appendix B. 

 The effective particle (or ensemble) size 𝑁௘௙௙ (Kong et al., 1994) is useful to measure the diversity of particles in 

LPF: 

𝑁௧,௘௙௙ ൌ 1/∑ ൫𝑤௧
௔ሺ௜ሻ൯

ଶ௠
௜ୀଵ ∈ ሾ1,𝑚ሿ.         (21) 

If 𝑁௘௙௙ is sufficiently large (𝑁௘௙௙ ൎ 𝑚), no resampling is needed. This study considers a tunable parameter 𝑁଴ as a criterion 200 

for resampling: 

𝐓௧,௅௉ி ← ൜
𝐈

𝐓௧,௅௉ி
  

𝑖𝑓 𝑁௧,௘௙௙ ൐ 𝑁଴
𝑒𝑙𝑠𝑒

.        (22) 

Without resampling (𝑁௧,௘௙௙ ൐ 𝑁଴), the posterior weight is succeeded for the subsequent forecast as follows: 

𝐰௧ାଵ
௕ ← ሺ1 െ 𝜏ሻ ⋅ 𝐰௧

௔ ൅ 𝜏/𝑚,         (23) 
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where τ is the tunable forgetting factor 𝜏 ∈ ሾ0: 1ሿ. Here, 𝜏 ൌ 1 means the subsequent prior weight 𝐰௧ାଵ
௕  has the same weights 205 

1/m whereas the posterior weight 𝐰௧
௔ is completely succeeded to 𝐰௧ାଵ

௕  when 𝜏 ൌ 0. This weight succession (Eq. 23) can be 

interpreted as a temporal localization that reduces the impact of observations temporally distant from the assimilation time. 

The weight succession in local PF is not trivial because the weight (or likelihood of particles) would move with the dynamical 

flow. Similar discussions can be found for the advection of localization functions (e.g., Ota et al., 2013; Kotsuki et al. 2019a). 

This study assumes no flow motion of the weights and simply use Eq. (23) at each grid point independently. 210 

 Although the LETKF applies inflation to the prior error covariance (i.e., 𝐏௕ → 𝛽𝐏௕), this inflation is suboptimal to 

the LPF partly because the weight collapse occurs more easily if multiplicative inflation is applied to the prior perturbation (cf. 

Eq. 15). Therefore, the LPF usually applies inflation to the posterior particles (e.g., Penny and Miyoshi 2016; Farchi and 

Bocquet 2018). The present study uses the RTPS to inflate posterior perturbations for the LPF. We do not use the RTPS for 

the LETKF experiments since the Miyoshi (2011)’s adaptive multiplicative inflation is known to outperform the manually-215 

tuned RTPS for idealized twin experiments with SPEEDY based on the authors’ preliminary experiments and personal 

communication (Ota et al. 2021). 

Preliminary experiments showed that the RTPS outperformed the relaxation to prior perturbation (RTPP; Zhang et 

al., 2004) for the LPF. Having some noise in the transform matrix is important, so that the LPF can maintain the diversity of 

posterior particles. The RTPP makes the transform matrix closer to the identity matrix, resulting in less diverged posterior 220 

particles. Therefore, the RTPS would be a more suitable relaxation method than the RTPP for LPF. 

2.3 LPF with Gaussian mixture extension 

Assimilating too many independent observations in the local area is not desirable for the LPF to avoid weight collapse 

(van Leuuwen et al., 2019). To solve this problem, hybrid algorithms of EnKF and PF have been explored to efficiently 

assimilate massive observation data. The Gaussian mixture extension of the LPF is one such hybrid algorithms (Hoteit et al. 225 

2008; Stordal et al., 2011; WP22). In the Gaussian mixture extension, the previous PDF is approximated by a combination of 

Gaussian distributions centered at the values of the particles, given by: 

𝜋௅௉ிீெሺ𝐱௧|𝐲ଵ:௧ିଵ
௢ ሻ ൎ ∑ 𝑤௧

௕ሺ௜ሻ𝑁൫𝐱௧
௕ሺ௜ሻ,𝐏෡௧

௕൯௠
௜ୀଵ  ,       (24) 

where 𝑁൫𝐱௧
௕ሺ௜ሻ,𝐏෡௧

௕൯ is the Gaussian kernel with mean 𝐱௧
௕ሺ௜ሻ and covariance 𝐏෡௧

௕. Here, hat indicates matrices for the Gaussian 

kernels (e.g., prior error covariance 𝐏෡௕,  observation error covariance 𝐑෡ and Kalman gain 𝐊෡). The covariance of the Gaussian 230 

kernel uses the sampled covariance matrix 𝐏௧௕ such that: 

𝐏෡௧௕ ൌ 𝛾𝐏௧௕ ൎ
ఊ

௠ିଵ
𝐙௧௕ሺ𝐙௧௕ሻ் ,         (25) 

where γ (>0) is a tunable parameter that regulates the amplitude and width of the Gaussian kernel (i.e., uncertainty of particles). 

For example, larger γ reduces amplitude and increases width of the Gaussian kernel. Because the kernel is supposed to have a 
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Gaussian distribution, increasing the Gaussian kernel's width results in a decrease in amplitude. The LPFGM results in the 235 

same analysis of the LPF when γ  is 0 (𝛾 → 0).    

The Gaussian mixture performs a two-step update to obtain the posterior particles. The first update moves the center 

of the Gaussian kernel with observations. Since kernels are Gaussian, we can use the Kalman filter for the first update: 

𝐱௧
௔ሺ௜ሻ ൌ 𝐱௧

௕ሺ௜ሻ ൅ 𝐊෡௧ ቀ𝐲௧௢ െ 𝐻൫𝐱௧
௕ሺ௜ሻ൯ቁ ,   ሺ𝑖 ൌ 1, . . . ,𝑚ሻ 240 

⇔ 𝐗௧,ீெ
௔ ൌ 𝐗௧

௕ ൅ 𝐊෡௧ ቀ𝐲௧
௢ ⋅ 𝟏 െ 𝐻௧ሺ𝐗௧

௕ሻቁ,        (26) 

where 𝐊෡ ൌ 𝐏෡௔𝐇்𝐑ିଵ as in Eq. (5). In the LETKF, the Kalman gain K is computed by 𝐊 ൌ 𝐏௔𝐇்𝐑ିଵ ൎ 𝐙௕𝐏෩௔ሺ𝐙௕ሻ𝐓𝐇்𝐑ିଵ. 

Since the Gaussian kernel uses the ensemble-based error covariance (Eq. 25), we can apply the exact algorithms of the LETKF 

to compute 𝐏෡௔ by replacing β of Eq. (3) with γ (i.e., 𝐏෡௔ ൌ ቂ
ሺ௠ିଵሻ

ఊ
𝐈 ൅ ሺ𝐘௧௕ሻ்𝐑௧

ିଵ𝐘௧௕ቃ
ିଵ

). Here the same gain matrix 𝐊෡  is applied 

to update each particle independently while the gain matrix 𝐊෡  is based on the forecast error covariance estimated from the 

entire ensemble. Consequently, Eq. (26) is equivalent to: 245 

𝐗௧,ீெ
௔ ൌ 𝐱ത௧

௕ ⋅ 𝟏 ൅ 𝐙௧
௕𝐓௧,ீெ,          (27) 

where  

𝐒௧ ൌ 𝐏෩௧
௔ሺ𝐘௧

௕ሻ்𝐑௧
ିଵ ቀ𝐲௧

௢ ⋅ 𝟏 െ 𝐻௧ሺ𝐗௧
௕ሻቁ, and        (28) 

𝐓௧,ீெ ൌ 𝐒௧ ൅ 𝐈.           (29) 

Here, 𝐓௧,ீெ denotes the ensemble transform matrix of the Gaussian mixture.  250 

The second update resamples the particles based on the likelihood of the posterior kernel given by: 

𝑞௧
ሺ௜ሻ ൌ exp ൤െ ଵ

ଶ
ቀ𝐲୲୭ െ 𝐻௧൫𝐱௧

௕ሺ௜ሻ൯ቁ
்
𝐑෡௧ିଵ ቀ𝐲୲୭ െ 𝐻௧൫𝐱௧

௕ሺ௜ሻ൯ቁ൨,      (30) 

where 

𝐑෡௧ ൌ 𝐑௧ ൅ 𝐇௧𝐏෡௧௕𝐇௧
்.          (31) 

Hoteit et al. (2008) and Stordal et al. (2011) used Equation (30) for computing the likelihood of posterior kernels. Alternatively, 255 

WP22 suggested that using Eq. (15) instead of Eq. (30) is a reasonable approximation in the case of a smaller variance of 𝐏෡௧௕ 

compared to the observation departure 𝐲௧௢ െ 𝐻௧൫𝐱௧
௕ሺ௜ሻ൯. This study follows the WP22’s approximation because computing 

inverse of Eq. (31) is computationally much more expensive than computing inverse of diagonal R. Using WP22’s 

approximation, the solution of the LPFGM is given by: 

𝐗௧,௅௉ிீெ
௔ ൌ 𝐗௧,ீெ

௔ 𝐓௧,௅௉ி ൌ ൫𝐱ത௧
௕ ⋅ 𝟏 ൅ 𝐙௧

௕𝐓௧,ீெ൯𝐓௧,௅௉ி ൌ 𝐱ത௧
௕ ⋅ 𝟏 ൅ 𝐙௧

௕𝐓௧,ீெ𝐓௧,௅௉ி.    (32) 260 
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Here, we used ሺ𝐱ത௧௕ ⋅ 𝟏ሻ𝐓௧,௅௉ி ൌ 𝐱ത௧௕ ⋅ 𝟏 (cf. Eq. 18). Consequently, the transform matrix of the LPFGM (𝐓௅௉ிீெ) is given by: 

𝐓௧,௅௉ிீெ ൌ 𝐓௧,ீெ𝐓௧,௅௉ி.          (33) 

Namely, the LPFGM can be described as the ensemble transform matrix form. Representing the LPFGM with only one 

transform matrix 𝐓௅௉ிீெ is practically beneficial if one aimed to reduce computational costs by the weight interpolation as for 

the LETKF in which the transform matrices at higher-resolution model grid points are interpolated by transform matrices at 265 

coarser model grid points (Yang et al. 2009; Kotsuki et al. 2020). The weight interpolation is also useful for ensuring spatially 

smooth transition of the transform matrix (Potthast et al. 2019).  

The two-step update of the LPFGM may appear to use the same observations twice, but this is not true. To understand 

the principles, here we consider a simple scalar example with H=1.0 with illustrations of Fig. 2. Let 𝜋ሺ𝑦௧௢ሻ be an observation 

PDF (Fig. 2 top row), and the prior and posterior PDFs of the LPF are given by 𝜋௅௉ிሺ𝑥௧ሻ ൎ
ଵ

௠
∑ 𝛿൫𝑥௧ െ 𝑥௧

௕ሺ௜ሻ൯௠
௜ୀଵ  and 270 

𝜋௅௉ிሺ𝑥௧|𝑦௧
௢ሻ, respectively (Fig. 2a, 2nd and 3rd rows). The LPF employs resampling by approximating the posterior PDF as a 

combination of prior particles such that 𝜋௅௉ிሺ𝑥௧|𝑦௧
௢ሻ ൎ ∑ 𝑤௧

௔ሺ௜ሻ𝛿൫𝑥௧ െ 𝑥௧
௕ሺ௜ሻ൯௠

௜ୀଵ  (Fig. 2a, bottom row). Next, we focus on the 

5th particle of the LPFGM (Fig. 2b). Prior and posterior PDFs of the 5th particle are given by 𝜋൫𝑥௧
ሺହሻ൯ ൌ 𝑁൫𝑥௧

௕ሺହሻ,𝑃෠௧
௕൯ and 

𝜋൫𝑥௧
ሺହሻ|𝑦௧

௢൯ ൌ 𝑁൫𝑥௧
௕ሺହሻ,𝑃෠௧

௕൯ ⋅ 𝑁ሺ𝑦௧
௢ ,𝑅௧ሻ, respectively (Fig. 2b, 2nd and 3rd rows). Since the Gaussian kernels are assumed for 

the prior particles, the center of the posterior kernel moves such that 𝜋൫𝑥௧
ሺହሻ|𝑦௧

௢൯ ∝ 𝑁൫𝑥௧
௔ሺହሻ,𝑃෠௧

௔൯, where 𝑥௧
௔ሺହሻ and 𝑃෠௧

௔ can be 275 

computed by the Kalman filter (from the blue circle to the red circle in Fig. 2b). Since the LPFGM moves all particles, the 

posterior PDF of the LPFGM is given by 𝜋௅௉ிீெሺ𝑥௧|𝑦௧
௢ሻ ൎ ଵ

௠
∑ 𝜋൫𝑥௧

ሺ௜ሻ|𝑦௧
௢൯௠

௜ୀଵ  (Fig. 2c, 3rd row). These movements 

correspond to the first update of the LPFGM. In contrast to the LPF, the posterior PDF of the LPFGM is approximated by a 

combination of the posterior Gaussian kernels (red circles of Fig. 2c, 3rd row). The LPFGM employs the resampling based on 

the moved particles such that 𝜋௅௉ிீெሺ𝑥௧|𝑦௧௢ሻ ൎ ∑ 𝑤௧
௔ሺ௜ሻ𝑁൫𝑥௧

௔ሺ௜ሻ,𝑃෠௧௔൯
௠
௜ୀଵ  (Fig. 2c, bottom row). This resampling corresponds 280 

to the second update of the LPFGM. As seen in this example, the two-step update of the LPFGM does not use the same 

observations twice. 

2.4 Implementation and computational complexity 

We implemented the LPFGM based on the available LETKF code from Miyoshi (2005) and follow-on studies 

(Miyoshi and Yamane 2007, Kondo and Miyoshi 2019; Kotsuki et al. 2020; https://github.com/takemasa-miyoshi/letkf). 285 

Figure 3 compares the workflows of the LETKF, LPF, and LPFGM. All DA methods execute the same first four steps (steps 

A‒D). After step D, the LETKF involves four additional steps (steps E‒H) to compute 𝐓௅ா்௄ி. The LPF computes the weights 

of particles (step J), followed by the generation of the transform matrix 𝐓௅௉ி  (step K). The LPFGM first executes steps E‒G, 

as in the LETKF, and then executes step I to compute 𝐓ீெ, followed by the LPF algorithms to compute 𝐓௅௉ி  (steps J and K). 
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Finally, the LPFGM multiplies 𝐓ீெ and 𝐓௅௉ி to compute 𝐓௅௉ிீெ (step L). At the end of the process, the transform matrix is 290 

applied to the prior perturbation matrix 𝐙௕ to produce the analysis ensemble (step M), followed by the RTPS (step N).  

If the LETKF code is available, the LPF in the transform matrix form can be developed by coding two steps J and K. 

The LPFGM can also be developed easily by coding two more steps I and L if the LETKF and LPF codes are available. 

Here we compare the computational complexities of the LETKF, LPF and LPFGM algorithms (Table 1). The total 

cost (𝐶்) of a DA cycle is identical to the overhead of the assimilation system (𝐶ு), plus n times the average local analysis 295 

cost (𝐶௅), and m times the cost of one-member model forecast (𝐶ெ): 

𝐶்ሺ𝑛,𝑝,𝑚ሻ ൌ 𝐶ுሺ𝑛, 𝑝,𝑚ሻ ൅ 𝑛 ⋅ 𝐶௅ሺ𝑝௅,𝑚ሻ ൅𝑚 ⋅ 𝐶ெ,       (34) 

where 𝑝௅ is the number of local observations within the localization cut-off radius. We assume that the overhead and model 

costs are equivalent among the three methods. In addition, the total computational cost of DA usually depends on the local 

analysis cost (𝐶௅): 300 

 𝐶௅௅ா்௄ி ൌ 𝑂ሺ𝑚ଷ ൅ 𝑚ଶ𝑝௅ሻ,          (35) 

   𝐶௅௅௉ி ൌ 𝑂ሺ𝑚ଶ𝑁ெ஼ሻ,          (36) 

   𝐶௅
௅௉ிீெ ൌ 𝑂ሺ𝑚ଷ ൅𝑚ଶ𝑝௅ ൅ 𝑚ଶ𝑁ெ஼ሻ,        (37) 

where 𝑁ெ஼ is the number of times the resampling matrices are generated by Algorithm 1. The number of local observations 

𝑝௅ is usually much greater than the ensemble size m and 𝑁ெ஼. In this case, 𝑂ሺ𝑚ଶ𝑝௅ሻ is dominant for the LETKF, and LPFGM.  305 

The computational cost of LPF here is more expensive than that with a simpler resampling algorithm such as the 

stochastic uniform resampling (𝑂ሺ𝑚ሻ; Penny and Miyoshi 2016, Farchi and Bocquet, 2018) due to the relatively complex 

Algorithm 1 (𝑂ሺ𝑚ଶ𝑁ெ஼ሻ). We could not use such simpler approaches in this study since they do not yield ideal resampling 

matrices that satisfy the two conditions (Eq. 19 and spatially smooth transition of 𝐓௧,௅௉ி). The computational cost  𝑂ሺ𝑚ଶ𝑁ெ஼ሻ 

of LPF is still much smaller than the LETKF if 𝑁ெ஼ ≪  𝑝௅. 310 

3 Experimental settings 

3.1 SPEEDY model 

This study used the intermediate global atmospheric general circulation model SPEEDY (Molteni, 2003) to compare 

the LETKF, LPF and LPFGM. The SPEEDY model is a computationally-inexpensive hydrostatic model with fundamental 

physical parameterization schemes such as surface flux, radiation, convection, cloud and condensation. The SPEEDY model 315 

has 96 × 48 grid points in the horizontal plane (T30 ~ 3.75° × 3.75°) and sigma-coordinate seven vertical layers. The SPEEDY 

consists of five prognostic variables: temperature (T), specific humidity (Q), zonal wind (U), and meridional wind (V) at seven 

layers, as well as surface pressure (Ps). Although running the SPEEDY model is, the model contains The SPEEDY model 
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coupled with the LETKF (SPEEDY−LETKF) has been widely used in DA studies (Miyoshi 2005 and many follow-on studies, 

e.g., Miyoshi 2011; Kondo et al., 2013; Kondo and Miyoshi, 2016, 2019; Kotsuki and Bishop 2022). We implemented the 320 

LPF and LPFGM based on the existing SPEEDY−LETKF code following the procedures described in section 2.4. 

3.2 Experimental design 

The experimental settings follow the previous SPEEDY−LETKF experiments (Miyoshi 2005 and follow-on studies, 

e.g., Kotsuki et al., 2020). A series of idealized and identical twin experiments (also known as observing system simulation 

experiments) were conducted without model errors. We first performed a spin-up run for one year initialized by the standard 325 

atmosphere during rest, followed by the nature run started at 0000 UTC on January 1 of the second year. We assumed diagonal 

observation error covariance R (i.e., uncorrelated observation error). Gaussian noise was added to the nature run to produce 

observation data at 6 h intervals. The standard deviations of the Gaussian noise are 1.0 K for T, 1.0 m sିଵ for U and V, 0.1 g 

kgିଵ for Q, and 1 hPa for surface pressure. This study considered two observing networks (Figs. 4 a and b): the regularly 

distributed network (hereafter REG2) and the radiosonde-like inhomogeneous network (hereafter RAOB). We observe T, U 330 

and V at all seven layers, whereas Q was observed at the 1st−4th layers. The ensemble size is 40 and their initial conditions 

were taken from an independent single deterministic SPEEDY forecast with sufficient spin-up simulation. 

Table 2 summarizes the settings of the LETKF, LPF, and LPFGM experiments. The observation error variance was 

inflated for the localization, by using the Gaussian-based function given by: 

 𝑙 ൌ ቊexp ቂെ ଵ

ଶ
ሼሺ𝑑ℎ/𝜌ℎሻଶ ൅ ሺ𝑑௩/𝜌௩ሻଶሽቃ  𝑖𝑓  𝑑ℎ ൏ 2ඥ10/3𝜌ℎ 𝑎𝑛𝑑 𝑑௩ ൏ 2ඥ10/3𝜌௩

0 𝑒𝑙𝑠𝑒
  ,   (38) 335 

where l is the localization function, and its inverse 𝑙ିଵ is multiplied and used to inflate R. dh and dv are horizontal and vertical 

distances (km and log(Pa)) between the observation and analysis grid point. 𝜌ℎ and 𝜌௩ are tunable horizontal and vertical 

localization scales (km and log(Pa)). Subscripts h and v represent horizontal and vertical, respectively. This study set the 

vertical localization scale 𝜌௩  be 0.1 log(Pa) following Greybush et al. (2011) and Kondo et al. (2013). The horizontal 

localization scales of the LETKF were tuned manually before the experiments to minimize the first-guess root mean square 340 

error (RMSE) of the fourth layer (~500 hPa) temperature of the SPEEDY-LETKF since this is among the most important 

variables for medium-range NWP. 

The LETKF experiments used the adaptive multiplicative inflation method of Miyoshi (2011) in which the inflation 

factor β was estimated adaptively. On the basis of sensitivity experiments for γ, we chose γ = 1.5. Sensitivity to γ is discussed 

in section 4.3.3. 345 

 We first performed a one-year SPEEDY-LETKF experiment over the second year from January to December 

following the one-year spin-up. We then performed LETKF, LPF, and LPFGM experiments from January to April in the third 

year initialized by the first-guess ensemble of the LETKF at 0000 UTC on January 1 of the third year. The results from the 

last three months, i.e., February to April, were used for verification. We assessed the 6-h forecast or background RMSE for T 
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at the fourth model level (~500 hPa). While this study mainly discusses the RMSE and ensemble spread for T, similar results 350 

are observed for other variables. Here, this study will concentrate on the fourth-level T as an important variable for NWPs 

since the major goal of this study is to investigate the stabilities of LPF and LPFGM compared with the LETKF. Humidity 

verification or accounting for nonlinear observation operators and non-Gaussian observation errors are still crucial studies to 

investigate advantages of the LPF and LPFGM w.r.t. the LETKF.  

4 Results and discussion 355 

4.1 Experiments with a regularly distributed observing network 

 We first compare the LETKF, LPF, and LPFGM with REG2 in which the manually-tuned horizontal localization 

scale for the LETKF is 600 km. First, sensitivities to the horizontal localization scale (𝜌௛) and RTPS parameter (α) are 

investigated for the LPF. Figure 5 indicates the time-mean background RMSEs and ensemble spreads for LETKF and LPF. 

The LPF requires large inflation (α ≥ 1.0) to avoid filter divergence. With large inflation (α ≥ 1.0), the LPF experiment with 360 

𝜌௛ = 600 km resulted in the smallest RMSEs among the three LPF experiments. The best performing localization scale of LPF 

was found similar to that of the LETKF. The four LPF experiments exhibited larger RMSEs than the LETKF, as demonstrated 

by the previous studies with a low-dimensional L96 model (Poterjoy, 2016; Penny and Miyoshi, 2016; Farichi and Bouquet, 

2018). The LPF experiment with 𝜌௛ = 700 km shows filter divergence when α = 1.0. The ensemble spreads of LPF are smaller 

than the RMSEs when α = 1.0. This under dispersive ensemble is a typical behavior of LPF (e.g., Poterjoy and Anderson 2016). 365 

 Second, we compare the time series of the background RMSEs, ensemble spreads, and effective particle sizes 𝑁௘௙௙ 

(Fig. 6). The RMSE and ensemble spread are consistent in the LETKF. However, the LPF shows generally smaller ensemble 

spreads than the RMSEs. Since the beginning of the experiments on January 1, the three LPF experiments showed rapid 

increases in the ensemble spread (Fig. 6 a), and a rapid decrease in the effective particle size (Fig. 6 b) within two weeks. After 

the rapid changes, the ensemble spreads and effective particle sizes were stabilized. The three LPF experiments increased 370 

RMSEs until the beginning of March. The LPF with 𝜌௛ = 500 km showed filter divergence in April. The LPF with 𝜌௛ = 400 

km and 𝜌௛ = 600 km also showed increasing trends in RMSE until the end of April while their ensemble spreads and effective 

particle sizes were stable. 

Next, sensitivities to the RTPS parameter (α), resampling frequency (𝑁଴), and forgetting factor (τ) are investigated 

for the LPFGM. The best performing localization scale of LPF was identical to that of the LETKF (Fig. 5). Therefore, we 375 

choose the same 600-km localization scale for the LPFGM. Figure 7 compares the time-mean background RMSEs and 

ensemble spreads for LETKF and LPFGM. In the LPFGM experiments, we investigate six experimental settings for τ = 0.0, 

0.1, 0.2, 0.3, 0.5, and 1.0. With τ = 0.0, (Fig. 7 a), the LPFGM shows RMSEs similar to those of LETKF with best performing 

parameters for α and 𝑁଴. Regulating the resampling frequency (𝑁଴) would be needed for LPFGM because the LPFGM shows 

filter divergence when resampling is employed at all assimilation steps excluding the case of α = 1.0 (magenta line in Fig. 7 380 
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a). The LPFGM employs two ensemble updates: the Gaussian mixture and resampling. Owing to the first update by the 

Gaussian mixture, the LPFGM would not require resampling at all assimilation steps. With τ = 0.0, the best performing 

relaxation parameter α is approximately 0.6‒0.9, excluding the case employing resampling at all assimilation steps. 

 Increasing τ leads to the LPFGM being less sensitive to the resampling parameter 𝑁଴ and RTPS parameter α (Fig. 7 

b-f), implying that the LPFGM is more stable when the LPFGM forgets weights (τ ≥ 0.1). Additionally, the LPFGM requires 385 

less inflation (i.e., smaller α) when the forgetting factor τ becomes larger. Owing to the first update by the Gaussian mixture, 

succeeding weights completely may be unnecessary for the LPFGM. In addition, the method of succeeding weights in the 

local PF is not trivial because the weights would move with the dynamical flow. Because the results of the LPFGM experiments 

without weight succession (τ = 1.0) were superior to those with weight succession (τ = 0.0), the remainder of this paper focuses 

on the LPFGM experiments without weight succession (τ = 0.0). 390 

 The time series of background RMSEs, and effective particle sizes for LPFGM experiments show that the LPFGM 

with every-time resampling (𝑁଴ = 40) exhibits large RMSEs and the smallest effective particle sizes (Fig. 8, magenta). In 

contrast, the LPFGM experiments with infrequent resampling (𝑁଴ = 10, 5, and 2) show small RMSEs similar to that of the 

LETKF and maintain larger effective particle sizes than the LPF (Fig. 8, red, blue and green lines).  

 Finally, we compare the spatial patterns of the RMSEs at a fourth model level for the LETKF, LPF, and LPFGM with 395 

best performing parameter settings (Fig. 9). The LETKF and LPFGM show larger RMSEs in the tropics and polar regions 

(Figs. 9 a and c), possibly because of uncertainties from convective dynamics in the tropics and sparser observations in the 

polar regions. The LPF shows a larger RMSE than the LETKF globally (Fig. 9 b, d). By contrast, slight improvements were 

observed globally in the LPFGM relative to the LETKF as indicated by generally warm colors in Fig. 9 (e), especially around 

the North Pole. 400 

4.2 Experiments with a realistic observing network 

Here we compare the LETKF, LPF, and LPFGM with the realistic observing network RAOB. With this spatially 

inhomogeneous observing network, all LPF experiments showed filter divergence, even with a broad range of the localization 

and RTPS parameters. Since there are fewer assimilated observations in RAOB than in REG2, the weight collapse would not 

be the primary cause of the LPF filter divergence. Because the LPF creates posterior particles by linearly combining prior 405 

particles, it is preferable for the LPF to have observations within the range of the prior particles. Filter divergence must be 

prevented by maintaining synchronization between the LPF and the observations. The LPF would require more observations 

for the synchronization than the LETKF, which was also shown in the authors' initial tests with L96. In addition, the LPFGM 

was unstable with weight succession (τ = 0.0). Therefore, this section focuses on the comparison of the LETKF and LPFGM 

without weight succession (τ = 1.0) only. 410 

 First, sensitivities to the RTPS parameter (α) and resampling frequency (𝑁଴) are investigated for the LPFGM. Figure 

10 compares the time-mean background RMSEs and ensemble spreads for the LETKF and LPFGM. The best performing 

horizontal localization scale for the LETKF is 1100 km, and the same localization scale is used for the LPFGM. The LPFGM 
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with every-time resampling (𝑁଴ = 40) shows the largest RMSEs (Fig. 10 a, magenta). By contrast, some LPFGM experiments 

show smaller RMSEs than the LETKF (Fig. 10 b). In this experimental setting, the resampling parameter of N0 = 2.0 shows 415 

the most stable performance. With 𝑁଴ = 2.0, the LPFGM outperforms the LETKF slightly for α=0.5‒0.7 (green line of Fig. 10 

b). 

 The time series of the background RMSEs and effective particle sizes show that the LPFGM with every-time 

resampling (𝑁଴ = 40; Fig. 11 a, magenta), and relatively-frequent resampling (𝑁଴ = 10; Fig. 11 a, red) caused filter divergences. 

The times when the filters diverged seem to correspond to the times when the effective particle sizes decreased (Fig. 11 b, 420 

magenta and red). This reduction in effective particle size is a typical sign of filter divergence for PF (Snyder et al., 2008). 

One may speculate the assumption of 𝐑෡௧ ൎ 𝐑௧  in the LPFGM (section 2.3) would be a reason for the filter divergence. 

However, adopting the appropriate norm (𝐑෡௧ ൌ 𝐑௧ ൅ 𝐇௧𝐏෡௧
௕𝐇௧

்) for the LPFGM did not eliminate the filter divergence (not 

shown). An effective solution for avoiding the filter divergence with every-time resampling is still unknown, but a possible 

reason is the method of creating a transform matrix using the Monte-Carlo method that approximates two ideal conditions (Eq. 425 

19 and a spatially smooth transition). For deeper understanding, using other resampling techniques such as the optimal 

transport (see section 4.3.2) would be useful. In contrast, the LPFGM experiments with infrequent resampling (𝑁଴ = 5 and 2) 

show stable RMSEs and maintain a larger effective particle size. These stable LPFGM experiments maintain the amplitude of 

the ensemble spreads similar to that of the RMSEs. 

 We further explore regions where the LPFGM outperforms the LETKF. Figure 12 compares the space-based patterns 430 

of the background RMSEs for T (K) at the fourth model level for LETKF and LPFGM. Errors in sparsely recognized regions, 

such as the South Pacific Ocean, Indian Ocean, and polar regions, tend to be larger (Figs. 12 a and b). The LPFGM outperforms 

the LETKF in such sparsely observed regions (Fig. 12 c). The regions showing improvements correspond to the regions where 

the ensemble spreads and first-guess non-Gaussianity are larger (Fig. 13). Here, we measure the non-Gaussianity by Kullback–

Leibler divergence (Kullback and Leibler, 1951).  435 

The first update of the LPFGM (the Gaussian mixture) is similar to the LETKF update as discussed. Therefore, the 

improvements of the LPFGM with respect to the LETKF would be owing to the resampling step. Previous studies demonstrated 

that the LPF outperformed the LETKF for non-Gaussian DA with non-Gaussian observation and prior PDFs (Poterjoy et al. 

2016a, 2016b, Penny and Miyoshi 2016). Therefore, the improvements of the LPFGM would come from the consideration of 

non-Gaussian prior PDF in sparsely observed regions. 440 

Finally, we investigate the region where the difference in RMSE between the LETKF and LPFGM is large 

(120°W˗60°W and 70°S˗30°S; indicated by black dashed rectangles in Figs. 12 and 13). Figure 14 compares the time series 

of RMSE, ensemble spread, effective particle size, and Kullback–Leibler divergence averaged over the region for the LETKF 

and LPFGM. Here, we conducted an additional LPFGM experiment that employs no resampling (i.e., 𝑁଴ ൌ 0) to investigate 

the importance of resampling. Vertical red lines in Fig. 14 represent the cases when the LETKF has large RMSEs greater than 445 

0.8 K. Figure 14 (a) indicates that the LPFGM tends to mitigate large RMSEs in contrast to the LETKF. Since no significant 
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increase is seen in Kullback–Leibler divergence at the four cases (Fig. 14 c), the large RMSEs of LETKF would not be caused 

by analyses with highly non-Gaussian first-guess ensemble. For the last three cases, the LPFGM has significantly smaller 

RMSEs than the LETKF. The improvement of the LPFGM would be partially led by larger ensemble spread than the LETKF 

(Fig. 14 b). However, the LPFGM with resampling (𝑁଴ ൌ 2) outperforms the LPFGM without resampling (𝑁଴ ൌ 0), indicating 450 

that resampling improves the RMSE. The LETKF and LPFGM exhibit reduced effective particle size at the three later cases 

(Fig. 14 d). Because of the smaller effective particle size, fewer ensembles predict states that are closer to observations, and 

the LPFGM employed more resampling in the region. In addition to the particle shift, the LPFGM would reduce RMSE further 

by the resampling. 

The LPFGM occasionally resulted in larger RMSE than the LETKF (e.g., beginning of March in Fig. 14a). However, 455 

the LPFGM has the potential to outperform the LETKF overall by reducing the RMSE in sparsely observed regions. While 

operational NWP systems assimilate massive observations, the LPFGM would be useful when spatially and temporally sparse 

observations are used, e.g., in the twentieth century reanalysis projects (e.g. Compo et al. 2011; Laloyaux et al. 2018) and 

paleo climate reconstructions (Acevedo et al. 2017; Okazaki and Yoshimura 2017).  

4.3 Factors requiring further investigation 460 

Finally, we discuss other issues for potential further improvement of the LPF and LPFGM in future studies. 

4.3.1 Inflation 

 This study used the RTPS to inflate the posterior perturbation for the LPF and LPFGM. As shown in Figs. 5, 7 and 

10, the RMSEs of the LPF and LPFGM are sensitive to the RTPS parameter. There is a need to investigate methods that 

estimate the RTPS parameter adaptively, as in the EnKF (Ying and Zhang, 2015; Kotsuki et al., 2017b). However, the adaptive 465 

relaxation methods used in the EnKF cannot be applied directly to the LPF because they use the innovation statistics 

(Desroziers et al., 2005) that assume analysis updates by the Kalman filter. Therefore, substantially different adaptive 

relaxation methods should be investigated for the LPF and LPFGM. 

 An alternative method of inflation is adding random noise to the transform matrix (Potthast et al., 2019). Regulating 

the amplitude of the random noise was not trivial in the authors’ preliminary experiments with L96 (not shown). Too small 470 

random noise results in loss of diversity of posterior particles, whereas excessively large random noise results in an overly 

dispersive ensemble. Potthast et al. (2019) also suggested estimating the amplitudes of the random noise based on the 

innovation statistics. However, determining the minimum and maximum values of the amplitudes was not trivial from the 

authors’ experience with L96. Therefore, a method to determine the optimum amplitude of random noise should be investigated 

as well. Moreover, additive inflation methods, as used in the EnKF, can be beneficial for producing diverse prior particles 475 

(Mitchell and Houtekamer, 2000; Corazza et al., 2003). For example, Penny and Miyoshi (2016)’s LPF applied an additive 
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inflation Gaussian noise whose variance is scaled to a magnitude of local analysis error variance. Investigating better and 

adaptive inflation methods is very important to stabilize LPFs. 

4.3.2 Transform matrix for LPF 

 The transform matrix significantly affects the filter performance. Farchi and Bocquet (2018) demonstrated that the 480 

optimal transport method of Reich (2013) resulted in lower RMSE than the commonly used stochastic uniform resampling 

approach with the L96 model. However, it is not clear if optimal transport is beneficial for high-dimensional systems such as 

the SPEEDY model.  

In this study, all-time resampling was detrimental for the LPFGM experiments (Figs. 7 and 10). This may be due to 

the MC resampling that satisfies Eq. (19) (𝐱ത௧௕ ൌ ∑ 𝐱௧
௕ሺ௜ሻ ⋅ 𝑤௧

௔ሺ௜ሻ௠
௜ୀଵ ) not exactly, but approximately. With a small effective 485 

particle size, the MC resampling almost satisfies Eq. (19) since the resampling is not affected by the sampling noise in the 

selection of particles. In contrast, satisfying Eq. (19) is more difficult when the effective particle size is larger due to the 

sampling noise. A possible solution to this problem is to use the optimal transport method (Reich 2013) that satisfies Eq. (19) 

exactly. Another essential property for local PFs is the spatially smooth transition of the transform matrix. The optimal 

transport method would also be useful for ensuring the spatially smooth transition of the transform matrix because the posterior 490 

weights in nearby grids are typically similar. It is necessary to investigate better methods for generating resampling matrices.  

4.3.3 Tunable parameters of LPF and LPFGM 

 The tunable parameters of the LPF and LPFGM should be investigated further. For example, parameter 𝑁଴, which 

controls the resampling frequency, significantly affected the filter accuracy and stability. Adaptive determination of this 

parameter can prevent time-consuming parameter tuning. 495 

 The sensitivity to parameter γ should also be investigated for the LPFGM. WP22 proposed using γ = 2.5. Since γ 

controls the amplitude and width of Gaussian kernels, the filter accuracy and stability of the LPFGM would be sensitive to this 

parameter. We briefly examined the sensitivity to this parameter with REG2 and RAOB (Fig. 15; γ = 2.5, 1.5, and 0.5 for red, 

blue, and green lines). The results indicate that the filter accuracy of the LPFGM is sensitive to this parameter, especially for 

spatially-inhomogeneous RAOB observing network. For our experimental settings, the best performing γ was 1.5 for both 500 

REG2 and RAOB. However, the optimal parameter would differ for different models, observing networks, and observing 

frequency. Also, there might be a relation between the optimal γ and ensemble size. Therefore, adaptive determination of this 

parameter is helpful. 

 The LPFGM without weight succession (τ = 1.0) resulted in lower RMSE than that with weight succession (τ = 0.0). 

However, the optimal parameter τ would be somewhere between 0.0 and 1.0. In addition, the weight succession at each model 505 

grid point would be suboptimal. Hence, the method for weight succession should also be explored further. 
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5 Summary 

 This study aims to develop a software platform for the LETKF, LPF, and LPFGM with the intermediate global 

atmospheric model SPEEDY. The main results of this investigation are briefly listed as follows: 

1) The LPF and LPFGM were developed by only minor modifications to the existing LETKF system with the SPEEDY 510 

model. 

2) With dense observations (REG2), the LPF showed stable filter performance with large inflation by the RTPS. The best 

performing localization scale of the LPF was identical to that of the LETKF. The LPF forecast was less accurate than 

the LETKF forecast. With sparse observations (RAOB), the LPF did not work. 

3) The LPFGM showed more stability and lower forecast RMSEs than the LPF. In addition to the RTPS parameter, 515 

regulating the resampling frequency and the amplitude of Gaussian kernels was important for the LPFGM. The LPFGM 

without weight succession resulted in more stability and lower RMSEs than that with weight succession. With RAOB, 

the LPFGM forecast was more accurate than the LETKF forecast in a sparsely observed regions where the background 

ensemble spread and non-Gaussianity are larger. 

 As discussed in section 4.3, there is much room for improvement in the LPF and LPFGM. While the LPFGM 520 

potentially provides a more accurate forecast than the LETKF, the LPFGM has more tunable parameters than the LETKF. 

Manually tuning these parameters by trying numerous experiments is computationally expensive. Therefore, adaptive methods 

for determining such tuneable parameters need to be explored. Also, it is important to investigate computationally more 

efficient methods to generate resampling matrices for the LPF and LPFGM. 

The SPEEDY-based LETKF, LPF, and LPFGM used in this study are available as open-source software on Github 525 

(https://github.com/skotsuki/speedy-lpf). This can act as a useful platform to investigate the LPF and LPFGM further in 

comparison with the well-known LETKF. 

Appendix A: Derivations of Kalman gain and analysis error covariance 

Here we describe derivations of Kalman gain and analysis error covariance (Eqs. 5 and 6). The Kalman gain 𝐊௧ ൌ

𝐏௧௕𝐇௧
்ሺ𝐇௧𝐏௧௕𝐇௧

் ൅ 𝐑௧ሻିଵ can be changed as follows: 530 

𝐊௧ ൌ ሾሺ𝐏௧௕ሻିଵ ൅ 𝐇௧
்𝐑௧

ିଵ𝐇௧ሿିଵሾሺ𝐏௧௕ሻିଵ ൅ 𝐇௧
்𝐑௧

ିଵ𝐇௧ሿ𝐏௧௕𝐇௧
்ሺ𝐇௧𝐏௧௕𝐇௧

் ൅ 𝐑௧ሻିଵ     (A1) 

ൌ ሾሺ𝐏௧௕ሻିଵ ൅ 𝐇௧
்𝐑௧

ିଵ𝐇௧ሿିଵሾ𝐇௧
் ൅ 𝐇௧

்𝐑௧
ିଵ𝐇௧𝐏௧௕𝐇௧

்ሿሺ𝐇௧𝐏௧௕𝐇௧
் ൅ 𝐑௧ሻିଵ      (A2) 

ൌ ሾሺ𝐏௧௕ሻିଵ ൅ 𝐇௧
்𝐑௧

ିଵ𝐇௧ሿିଵ𝐇௧
்𝐑௧

ିଵሾ𝐑௧ ൅ 𝐇௧𝐏௧௕𝐇௧
்ሿሺ𝐇௧𝐏௧௕𝐇௧

் ൅ 𝐑௧ሻିଵ      (A3) 

ൌ ሾሺ𝐏௧
௕ሻିଵ ൅ 𝐇௧

்𝐑௧
ିଵ𝐇௧ሿିଵ𝐇௧

்𝐑௧
ିଵ.         (A4) 

Using 𝐊௧ ൌ ሾሺ𝐏௧௕ሻିଵ ൅ 𝐇௧
்𝐑௧

ିଵ𝐇௧ሿିଵ𝐇௧
்𝐑௧

ିଵ, analysis error covariance 𝐏௧௔ ൌ ሺ𝐈 െ 𝐊௧𝐇௧ሻ𝐏௧௕  can be changed as follows: 535 

𝐏௧௔ ൌ ሺ𝐈 െ 𝐊௧𝐇௧ሻ𝐏௧௕ ൌ 𝐏௧௕ െ 𝐊௧𝐇௧𝐏௧௕         (A5) 

ൌ 𝐏௧
௕ െ ሾሺ𝐏௧

௕ሻିଵ ൅ 𝐇௧
்𝐑௧

ିଵ𝐇௧ሿିଵ𝐇௧
்𝐑௧

ିଵ𝐇௧𝐏௧
௕       (A6) 

ൌ 𝐏௧௕ െ ሾሺ𝐏௧௕ሻିଵ ൅ 𝐇௧
்𝐑௧

ିଵ𝐇௧ሿିଵሾሺሺ𝐏௧௕ሻିଵ ൅ 𝐇௧
்𝐑௧

ିଵ𝐇௧ሻ െ ሺ𝐏௧௕ሻିଵሿ𝐏௧௕     (A7) 
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ൌ 𝐏௧
௕ െ ሼ𝐈 െ ሾሺ𝐏௧

௕ሻିଵ ൅ 𝐇௧
்𝐑௧

ିଵ𝐇௧ሿିଵሺ𝐏௧
௕ሻିଵሽ𝐏௧

௕       (A8) 

 ൌ ሾሺ𝐏௧
௕ሻିଵ ൅ 𝐇௧

்𝐑௧
ିଵ𝐇௧ሿିଵ.         (A9) 540 

Consequently, we can derivate ሺ𝐏௧௔ሻିଵ ൌ ሺ𝐏௧௕ሻିଵ ൅ 𝐇௧
்𝐑௧

ିଵ𝐇௧ from Eq. (A9), and 𝐊௧ ൌ 𝐏௧௔𝐇௧
்𝐑௧

ିଵ from Eq. (A4). 

Appendix B: The number of required samples for the MC resampling 

 This appendix investigates the number of required samples for the MC resampling to obtain accurate transform 

matrices stably. Here we assume that 10,000 samples are sufficient to obtain accurate transform matrix (𝐓ேಾ಴ୀଵ଴,଴଴଴). An 

absolute error (AE) of transform matrix with G samples (𝐓ேಾ಴ୀீ) is defined to measure accuracy of the transform matrix: 545 

𝐴𝐸 ൌ ∑ ∑ |𝐓ேಾ಴ୀீ
ሺ௜,௝ሻ െ 𝐓ேಾ಴ୀଵ଴,଴଴଴

ሺ௜,௝ሻ |௠
௝ୀଵ

௠
௜ୀଵ .        (B1) 

Figure B1 shows the AE as a function of the number of samples for ensemble members 10, 20, 40 and 80. For this investigation, 

we obtained 1,000 independent weights generated by uniform random numbers, and average, minimum and maximum AEs of 

1,000 cases are shown. For four ensembles, AEs decrease rapidly for the first 1,000 samples, followed by gradual decrease 

until AE=0. To reach to 10 % of initial error at 𝑁ெ஼ ൌ 1, MC resampling requires about 70, 300, 400, and 600 samples for 550 

ensemble members 10, 20, 40, and 80. It suggests that more ensemble requires more samples to obtain accurate transform 

matrix stably by the MC resampling. 
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Algorithms 

Algorithm 1: Generation of the resampling matrix T 

Requirement: 𝐫௦௢௥௧௘ௗ and 𝐰௧,௔௖௖  

1: 
All components of T and z are initialized to be 0   

#z: an indicator of resampled particles 

2: do j=1 to m                                                # index of posterior particle 

3:   do i=1 to m                                              # index of prior particle 

4:     if {𝑤௧,௔௖௖
ሺ௜ିଵሻ ൏ 𝑟௦௢௥௘ௗ

ሺ௝ሻ ൑ 𝑤௧,௔௖௖
ሺ௜ሻ } 𝑧ሺ௝ሻ ൌ 𝑖  # resampled particle 

5:   end do 

6: end do 

7: do j=1 to m 

8:      𝑖 ൌ 𝑧ሺ௝ሻ 

9: if {𝐓ሺ௜,௜ሻ ൌ 0} then 

10: 𝐓ሺ௜,௜ሻ =1                                              # diagonal components 

11:   𝑧ሺ௝ሻ ൌ 0 

12: end if 

13: end do 

14: do j=1 to m                                               # (loop for rows of T) 

15:   if {𝑧ሺ௝ሻ ് 0} then 

16:     do i=1 to m                                           # (loop for columns of T) 

17:       if {𝑠𝑢𝑚ሺ𝐓ሺ:,௝ሻሻ ൌ 0} 𝐓ሺ௜,௝ሻ =1           # off-diagonal components 

18:     end do 

19:   end if 

20: end do 
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Tables 

Table 1: Computational complexities of LETKF, LPF, and LPFGM. Each step corresponds to the steps in Fig. 1. Cross-marks 

represent the steps used for LETKF, LPF and LPFGM. 

 Step Computational complexity LETKF LPF LPFGM 

𝐶ୌ 

A m applications of H X X X 

B 2mp X X X 

C 2nm X X X 

𝐶୐ 

D ※1 X X X 

E m𝑝௅ (※2) X  X 

F ≤ 2𝑚ଶ𝑝௅ X  X 

G O(𝑚ଷ) X  X 

H O(m(m+𝑝௅)) X   

I O(m(m+𝑝௅))   X 

J O(m𝑝௅) (※2)  X X 

K O(𝑚ଶ ∙ 𝑁ெ஼)  X X 

L ≤ 2𝑚ଷ   X 

𝐶ୌ 
M ≤ 2𝑛𝑚ଶ X X X 

N O(nm) X X X 
 725 

※1: This computation depends on the localization scale 

※2: These computations assume the diagonal R (i.e., uncorrelated observation error) 

n: system size 

m: ensemble size 

p: the number of observations 730 

𝑝௅: the number of local observations 

𝑁ெ஼: the number of times resampling matrices to be generated by Algorithm 1 

 

 

 735 
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Table 2:  List of experiments 

Obs DA Purpose 𝜌௛  (km) α γ 𝑁଴ τ Figures 

REG2 

LETKF control experiment 600 ※1 / / /  

LPF 
sensitivity to 𝜌௛ 

and α 

400/500/ 

600/700 
0.0-1.0 / / / Figs. 5, 6, 9 

LPFGM 
sensitivity to α, 

𝑁଴, and τ 
600 0.0-1.0 1.5 

2/4/ 

10/40 

0.0/0.1/

0.2/0.3/

0.5/1.0 

Figs. 7, 8, 9 

LPFGM 
sensitivity to α and 

γ 
600 0.0-1.0 

0.5/1.5/2.

5 
2 1.0 Figs. 15 (a) 

RAOB 

LETKF control experiment 1,100 ※1     

LPF 
sensitivity to 𝜌௛ 

and α 
1,100 0.0-1.0 / / / not shown 

LPFGM 
sensitivity to α and 

𝑁଴ 
1,100 0.0-1.0 1.5 

2/4/ 

10/40 
1.0 

Figs. 10, 11, 

12, 13 

LPFGM sensitivity to 𝑁଴ 1,100 0.60 1.5 0/2 1.0 Fig. 14 

LPFGM 
sensitivity to α and 

γ 
1,100 0.0-1.0 

0.5/1.5/2.

5 
2 1.0 Figs. 15 (b) 

 740 

𝜌௛: horizontal localization scale (Eq. 38)    

α: relaxation parameter of RTPS (Eq. 8) 

γ: amplitude of Gaussian kernel of the LPFGM (Eq. 25)  

𝑁଴: parameter controls resampling frequency (Eq. 22) 

τ: forgetting factor of weight (Eq. 23) 745 

※1: Instead of RTPS, the LETKF uses Miyoshi (2011)’s adaptive multiplicative inflation 
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Figures 755 

 

Figure 1: Examples of the resampling matrix in the case of 40 particles with a given weight generated by uniform random 

numbers. (a) Weight for 40 particles. (b, c) Examples of sampled resampling matrices by Algorithm 1 using different random 

numbers r. (d, e) Resampling matrices using the Monte Carlo stochastic approach with 200 and 10,000 sampled matrices, 

respectively. 760 



29 
 

 

Figure 2: A simple scalar example of observation, prior and posterior PDFs for (a) LPF, (b) 5th particle of LPFGM and (c) 

LPFGM. Green, blue, red, purple dashed circles represent an observation and prior particles, moved particles, posterior 

particles, and replaced particles respectively.  
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 765 

Figure 3: Workflows of LETKF, LPFGM, and LPF. Gray, purple, green, and red boxes represent the components of LETKF, 

a similar component as in the LETKF, the components of the LPF, and a unique component of the LPFGM, respectively. 

Subroutines, source files, and computational complexities are also described in boxes, where n, m, p, and pʹ denote the model 

dimension, ensemble size, number of observations, and number of local observations at analysis grid points, respectively.  

コメントの追加 [s75]: RC2’s Specific Comment (19) 
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 770 

Figure 4: Observing networks for (a) REG2 and (c) RAOB experiments. Small black dots and red crosses represent model 

grid points and observing points, respectively.  
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Figure 5: Time-mean background RMSEs (solid lines) and ensemble spreads (dashed lines) for T (K) at the fourth model level 775 

(~500 hPa) as a function of RTPS parameter α averaged over three months of the third year (February-April) with REG2 

observations. Magenta, red, blue, and green lines are LPF experiments with horizontal localization scales of 700, 600, 500, 

and 400 km, respectively. Dashed lines represent RMSE of LETKF (0.1257 K) with adaptive multiplicative inflation instead 

of RTPS. 

 780 
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Figure 6: Time series of globally-averaged background (a) RMSEs (solid lines) and ensemble spreads (dashed lines) for T 

(K) and (b) effective particle size 𝑁௘௙௙ at the fourth model level (~500 hPa) with REG2 observations. Black lines show the 

LETKF. Red, blue, and green lines are the LPF experiments with localization scales of 600, 500, and 400 km, respectively. 

RTPS parameter α is set to 1.00 in all three LPF experiments. The abscissa shows month/day. 785 
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Figure 7: Similar to Figure 5, but for the LPFGM with REG2 and 600-km localization scale. Magenta, red, blue, and green 

lines show the cases with 𝑁଴ = 40, 10, 5, and 2, respectively. Dashed lines represent RMSE of LETKF (0.1257 K). Panels 

show the LPFGM with forgetting factors for (a) τ = 0.0, (b) τ = 0.1, (c) τ = 0.2, (d) τ = 0.3, (e) τ = 0.5 and (f) τ = 1.0, respectively. 

 790 
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Figure 8: Similar to Figure 6, but showing the LPFGM experiments with REG2 and 600-km localization scale. Magenta, red, 

blue, and green lines are LPFGM experiments with 𝑁଴ = 40, 10, 5, and 2, respectively. Forgetting factor τ is 1.0. The RTPS 

parameter is set to 1.00 in the experiment with 𝑁଴ = 40 (i.e., all-time resampling) and to 0.50 for in other experiments.  
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 795 

 

Figure 9: Spatial patterns of background RMSE for T (K) at the fourth model level (~500 hPa) for (a) LETKF, (b) LPF, and 

(c) LPFGM with best performing localization scale and RTPS parameter, averaged over February-April with REG2 and 600-

km localization scale. Panels (d) and (e) show the differences LETKF‒LPF and LETKF‒LPFGM, respectively. The warm 

(cold) color indicates that the LPF or LPFGM is better (worse) than the LETKF. 800 

コメントの追加 [s77]: RC2’s Specific Comment (48) 
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Figure 10: Similar to Figure 5, but showing the LPFGM experiments with the RAOB and 1100-km localization scale. Magenta, 

red, blue, and green lines are the LPFGM experiments with 𝑁଴ = 40, 10, 5, and 2, respectively. Forgetting factor τ is fixed at 

1.0. Dashed black lines represent the RMSE of the LETKF (0.4762 K). (b) enlarges (a) for the range of the RMSE of 0.25‒

0.45. 805 
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Figure 11: Similar to Figure 8, but showing the LPFGM experiments with the RAOB and 1100-km localization scale. Magenta, 

red, blue, and green lines are LPFGM experiments with 𝑁଴ = 40, 10, 5, and 2, respectively. Forgetting factor τ is 1.0. 
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 810 

Figure 12: Spatial patterns of background RMSE for T (K) at the fourth model level (~500 hPa) for (a) LETKF and (b) 

LPFGM, averaged over February-April with RAOB and 1100-km localization scale. Panel (c) shows the difference between 

LETKF and LPFGM. Warm (cold) color indicates that the LPFGM is better (worse) than the LETKF. Black dashed rectangles 

show the region (120°W˗60°W and 70°S˗30°S) where difference between LETKF and LPFGM are investigated in Figure 14. 

コメントの追加 [s79]: RC2’s Specific Comment (48) 
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 815 

Figure 13: Spatial distributions of the background (a, b) Kullback–Leibler divergence and (c, d) ensemble spread for T (K), 

at the fourth model level (~500 hPa) averaged over February-April with RAOB and 1100-km localization scale. (a, c) and (b, 

d) show the LETKF and LPFGM, respectively. Black dashed rectangles show the region (120°W˗60°W and 70°S˗30°S) where 

difference between LETKF and LPFGM are investigated in Figure 14. 
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Figure 14: Time series of 3-day-mean (a) RMSE (K), (b) ensemble spread (K), (c) Kullback–Leibler divergence, and (d) 

effective particle size 𝑁௘௙௙ at fourth model level temperature T, averaged over the region indicated by rectangles in Figs. 12 

and 13 (120°W˗60°W and 70°S˗30°S). Black line represents the LETKF. Green and purple lines are the LPFGM whose 825 

resampling frequencies 𝑁଴ are 2 and 0, respectively. Vertical red lines represent the cases  when the LETKF show large RMSE 

greater than 0.8 K. In (d), the effective particle size is also computed for the LETKF using the first-guess ensemble. 

コメントの追加 [s80]: RC2’s General Comment (2) 
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Figure 15: Time-mean background RMSEs for T (K) at the fourth model level (~500 hPa) as a function of RTPS parameter 

α averaged over three months of the third year (February-April). (a) shows REG2 with 600-km localization scale, and (b) 830 

shows RAOB with 1100-km localization scale. Red, blue, and green lines are LPFGM experiments with being γ=2.5, 1.5, and 

0.5, respectively. Black dashed lines represent RMSE of LETKF (0.1257 K) with adaptive multiplicative inflation instead of 

RTPS. Other parameters are set to be the best performing parameters: 𝑁଴ = 2 and τ = 1.0.   コメントの追加 [小槻81]: RC2’s Specific Comment (46) 
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Figure B1: Absolute errors of the transform matrix of MC resampling as a function of the number of samples (𝑁ெ஼) verified 835 

against the transform matrix with 10,000 samples. Absolute errors are computed for 1,000 independent cases that have different 

weights generated by uniform random numbers. Black bold lines show the average of 1,000 cases, and gray shades represent 

minimum and maximum errors of the 1,000 cases. Panels (a-d) show experiments with 10, 20, 40, and 80 ensembles, 

respectively. Dashed line shows the 10 % of initial error at 𝑁ெ஼ ൌ 1.  

コメントの追加 [s82]: RC2’s Specific Comment (22) 


