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Abstract. Drought stress is an increasing threat for vegetation in tropical regions, especially in the context of human-induced 

increase of drought frequency and severity, as observed over South American forests. Drought stress is induced when a plant's 

water demand is not met with its water supply through root water uptake. The latter depends on root and soil properties, 10 

including soil texture (i.e. the soil clay and sand fractions) that determines the soil water availability and its hydraulic 

properties. Soil clay content was shown to be responsible for a significant fraction of the spatial variability in forest structure 

and productivity. Yet, large uncertainties remain for soil textural properties at the regional level and it is currently unclear how 

those uncertainties propagate into the outputs of Terrestrial Biosphere Models (TBMs) that are used to predict the response of 

vegetation ecosystems to future climate change scenarios. In this study, we evaluated the heterogeneity in soil textural 15 

properties from the global SoilGrids250m product, and we then assessed the sensitivity of the carbon cycle of tree TBMs 

(namely ORCHIDEEv2.2, ED2, and LPJ-GUESS) to the variability in soil textural properties at the regional level over the 

South-American tropics using model default pedotransfer functions. When the SoilGrids product was aggregated from its 

finest (250m) to a coarser spatial resolution typical of TBM simulations (0.5°), the intra-gridcell variability in soil texture 

rapidly increased to reach an order of magnitude similar to the inter-gridcell variability. All explored model outputs of each 20 

TBM, including gross primary productivity, aboveground biomass, soil carbon content and drought stress, were shown to be 

insensitive to soil texture changes, except for a limited region characterised by low water-availability in ORCHIDEEv2.2 and 

ED2. We argue that generic pedotransfer and simple drought stress functions, as currently implemented in TBMs, should be 

reconsidered to better capture the role of soil texture and its coupling to plant processes, which will be critical to properly 

account for future increasing drought stress conditions in tropical regions. 25 
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1 Introduction 

Over the last three decades, the Amazon tropical forest has been facing an increase in severity and length of drought events 30 

(Spinoni et al. 2014), a trend which is projected to continue by the end of the century (Duffy et al. 2015). Observations and 

manipulative field experiments have revealed a clear sensitivity of the Amazon forest to severe drought, potentially leading to 

large-scale increase in tree mortality and decrease in forest productivity through reduced photosynthesis (Nepstad et al. 2007; 

Phillips et al. 2009; Gatti et al. 2014; Doughty et al. 2015; Corlett 2016; Feldpausch et al. 2016). Increasing tree mortality in 

the Amazon is thought to be induced by soil moisture deficit (low water supply) combined with low air humidity and high air 35 

temperature (high water demand), which combined leads to hydraulic failure in trees (Rowland et al. 2015). An increased 

vulnerability of the Amazon forest to drought stress will have large impacts on the regional and global carbon, nutrient and 

water cycles as well as the coupled climate system, and has been proposed as one of the factors involved in the observed 

decline of the Amazon carbon sink strength (Brienen et al. 2015; Maeda et al. 2015; O’Connell, Ruan, and Silver 2018; Hubau 

et al. 2020). 40 

Soil water availability is intimately related to soil texture. By modulating the retention and accessibility of water (and nutrients) 

to the trees (Silver et al. 2000; Laurance et al. 1999), soil texture, and especially the clay fraction, shapes forest structure and 

function and its spatio-temporal dynamics. At the regional level, clay and nutrient gradients were shown to explain a substantial 

part of the variability in forest biomass, soil carbon pools and forest productivity across the Amazon basin (Laurance et al. 

1999; Aragão et al. 2009; Jiménez et al. 2014). The intensity of the dry season and the availability of nutrients (e.g. phosphorus) 45 

affect species distribution (Condit et al. 2013; Jirka et al. 2007), while soil moisture gradients have also been shown to affect 

plant traits and leaf area index (Fyllas et al. 2009; Flack-Prain et al. 2021). Furthermore, by affecting canopy conductance and 

hence carbon assimilation, soil moisture directly impacts the dynamics of water and carbon fluxes at the tree level (Harris et 

al. 2004).  

In order to study the resilience of the Amazon forest to future drought, Terrestrial Biosphere Models (TBM) are key tools that 50 

integrate eco-physiological processes at different spatio-temporal scales and the response of ecosystems to environmental 

changes. In most TBMs, water availability directly affects carbon assimilation through so-called drought stress functions that 

modulate leaf stomatal conductance. Joetzjer et al. (2014) showed that the amplitude and timing of plant response to moisture 

deficit was highly sensitive to these unconstrained functions, which prevented the accurate representation of the impact of 

drought over the Amazon rainforest. Consequently, current TBMs are unable to simulate the spatial variability of forest 55 

productivity and biomass over the Amazon (Johnson et al. 2016). Drought-stress response parameterization and sensitivity 

were also shown to affect the coupling strength between the land surface and the atmospheric boundary layer and thus the 

performance of coupled climate models (Combe et al. 2016). To better capture the drought stress effect on vegetation, 

unprecedented efforts are being made in the community to improve the representation of plant hydraulics in TBMs (e.g. 

Christoffersen et al. 2016; Xu et al. 2016; Mencuccini, Manzoni, and Christoffersen 2019). However, less effort has been spent 60 
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on enhancing the representation of the soil and its effect in TBMs, despite its key role in drought stress (Carminati and Javaux 

2020). 

In TBMs, soil moisture is determined by soil hydrology submodels which typically rely on soil textural information and 

pedotransfer functions. TBMs use a rather limited number of pedotransfer functions while soil texture inputs often resume to 

a few products with different spatial resolutions (horizontally and vertically). The main products used for regional and global 65 

simulations are the FAO/UNESCO soil map of the world (Batjes 1997), the Harmonized World Soil Database (Nachtergaele 

et al. 2008) and the more recent SoilGrids250m products (Hengl et al. 2017; Poggio et al. 2021). Those gridded soil maps are 

not independent from one another, and often aggregated at lower spatial resolution to match other model forcings (e.g. 

meteorological drivers) which results in average soil properties that neglect inter- and intra-gridcell heterogeneity. 

To date, the existing evaluations of TBMs response to soil properties mainly focused on hydrology and water fluxes. These 70 

analyses tend to show a lack of sensitivity of TBMs to soil texture and composition. For instance, Li et al. (2012) showed that 

the performance of CABLE remained insensitive to soil water dynamics parameters across three contrasting sites even after 

improving critical processes related to root functioning. In line with these results, Tafasca et al. (2020) investigated the impact 

of soil texture on soil water fluxes and storage at different scales with ORCHIDEE, as part of the Land Surface, Snow and Soil 

moisture Model Intercomparison Project (LS3MIP; van den Hurk et al. 2016). They showed that, while the model exhibits 75 

realistic behaviours at the local scale, it is weakly sensitive to the choice of soil texture maps at the global scale. The effect of 

soil representation on vegetation and carbon has been sporadically assessed in the literature. By applying the Ecosystem 

Demography model (ED2) over the Amazon rainforest, Longo et al. (2018) showed different sensitivities of the aboveground 

biomass to soil texture depending on the rainfall regimes at two contrasting sites. While this study suggests that soil hydraulic 

properties mediate the Amazon ecosystem response to rainfall regimes, the authors highlighted that the current 80 

parameterization of the model does not account for the diversity in soil structure and is limited for representing certain 

configurations such as clay-rich soils.  

Since soil is a major carbon pool and a key driver of water and nutrient availability for plants, we should expect a large model 

sensitivity to soil properties, which should propagate into the simulated vegetation and the ecosystem biogeochemical cycles. 

This assumption especially applies in a tropical region like South-America that frequently suffers from drought and is 85 

characterised by heavily weathered and poor soils. To test this assumption, we explored the sensitivity of the vegetation carbon 

dynamics to soil texture in three state-of-the-art TBMs, representative of the main classes of commonly used TBMs: LPJ-

GUESS, ED2 and ORCHIDEE v2.2. Model sensitivity to soil texture was assessed based on the inter- and intra-gridcell 

variability in clay content as quantified from the SoilGrid250m database. For each simulation, we present the sensitivity of 

soil carbon pools, gross primary productivity (GPP) and aboveground biomass resulting from the different soil configurations, 90 

for both the conditions after the model spin-up and the historical simulation spanning the 1860-2016 period. Results of the 

different simulations for the three models are compared between one another and with existing observation products to assess 
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model robustness. We finally discuss the main findings in the light of implemented mechanisms and propose future 

development to improve the representation of the soils and drought stress in TBMs.   
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2 Material and Methods 95 

In this study, we explored the sensitivity to soil texture of three state-of-the-art TBMs which occupy different positions along 

the vegetation representation abstraction continuum that varies from individually-based gap models to area-based big-leaf 

models. These TBMs, namely LPJ-GUESS, ED2, and ORCHIDEE v2.2, are briefly described in the next three subsections 

while a more detailed list of parameters, pedotransfer functions, and description of the impact of drought stress on plant 

productivity for each model can be found in supplementary section 1. 100 

2.1 Vegetation models 

2.1.1 LPJ-GUESS 

The LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) model is a process-based dynamic vegetation model 

which can simulate the global vegetation distribution with its associated carbon, nitrogen and water cycles (Smith, Prentice, 

and Sykes 2001; Smith et al. 2014). The model has three possible modes of representing vegetation. Population mode is 105 

inherited from the LPJ model (Sitch et al. 2003), while individual and cohort mode correspond to the vegetation representation 

of the GUESS model (Smith, Prentice, and Sykes 2001). For this study, the model was run in cohort mode. Cohorts represent 

the properties of the average individuals belonging to an age class of a given PFT. However, for herbaceous PFTs the LPJ-

GUESS model simulates only one average individual per patch. The coarsest spatial level in this model is the gridcell, for 

which soil texture, meteorological drivers and nitrogen deposition should be provided. Different stands will each occupy a 110 

fraction of a given gridcell, representing different land cover and management types (e.g. natural vegetation, cropland, 

managed forests, etc.). Each stand contains one (population mode) or multiple (cohort and individual mode) replicate patches. 

The latter allows the model to account for heterogeneity in age distribution of the vegetation, due to stochastic differences in 

population dynamics. Within each patch, the different cohorts will grow and compete for light, water and soil nitrogen. 

Soil hydrology is represented by a multi-layer bucket model, where water can percolate between the different soil layers and 115 

drains at the bottom (Gerten et al. 2004). Soil depth is hard-coded to 1.5 m and subdivided into 15 layers of 10 cm thickness 

each. Soil moisture in the top two layers (20 cm) is available for surface evaporation. Only two larger percolation layers are 

defined: excess water from the top (50 cm) layers will percolate into the bottom (100 cm) layers, where it is distributed between 

the layers depending on their water capacity. Soil hydraulic properties are derived from pedotransfer functions that require 

sand and clay contents for each gridcell (Cosby et al. 1984; I. C. Prentice et al. 1992; Haxeltine and Prentice 1996). These are 120 

assumed to remain constant over the complete soil column. Soil water content is given as a fraction (0-1) of the available water 

capacity, which is in turn defined as the difference between the volumetric water content at field capacity and wilting point. 

Plant drought stress is expressed by the ratio between water supply and atmospheric water demand. If water supply is smaller 

than water demand, the PFT will be drought-stressed and canopy conductance will be reduced. Water supply is calculated as 

the product of a PFT-specific daily maximum transpiration rate (emax), daily maximum root water uptake and a factor which 125 

https://doi.org/10.5194/gmd-2022-68
Preprint. Discussion started: 11 April 2022
c© Author(s) 2022. CC BY 4.0 License.



6 

 

represents the leaf phenological status as a fraction of the potential leaf cover. Daily maximum root water uptake is given as a 

function of the fractional root distribution and plant-available water content, summed over all soil layers. In the standard LPJ-

GUESS parameterization, this function is simply the product of both factors, further scaled by the total foliar projective cover 

in order to account for spatial overlap between cohorts. 

2.1.2 ED2 130 

ED2 (Ecosystem Demography model, version 2) is a cohort-based vegetation model that simulates the energy, water, and 

carbon cycles of terrestrial ecosystems while accounting for their horizontal and vertical heterogeneities (Medvigy et al. 2009). 

The model was designed to be compatible with multiple configurations: it can be run as a stand-alone TBM over a single 

location, over a regional grid, or coupled with an atmospheric model distributed regionally (Knox et al. 2015). In ED2, the 

terrestrial ecosystems are represented through a nested hierarchy of structures, which allows scaling up competition for above- 135 

and below-ground resources from individual plants to the overall ecosystem (Longo et al. 2019). The coarsest hierarchical 

level of ED2 is the polygon within which time-varying meteorological forcing above the canopy is assumed uniform. Each 

polygon is subdivided into one or multiple sites with the aim to represent landscape-scale variations in abiotic properties like 

soil texture. Within the simulated sites, the horizontal heterogeneities in the ecosystem are simulated through a set of patches 

that represent the aggregation of all areas with a similar disturbance history. And finally in each patch, the plant community 140 

population is tracked as a collection of plant cohorts, defined by their functional type and size. ED2 has a typical timestep of 

10 minutes for the energy and water fluxes but can simulate succession and demography over larger (i.e. century) timescales. 

In ED2, plant water availability is determined through a physically-based soil hydrology submodel, which encompasses heat, 

enthalpy, and water fluxes between different soil layers and the potentially existing temporary surface water. Water flux 

between soil layers is based on Darcy’s law (Bonan 2008), surface runoff of water is simulated using a simple extinction 145 

function while subsurface drainage depends on the bottom boundary condition (e.g. free drainage, zero-flow, saturated water 

table). In ED2, soil depth, the number of soil layers and layer thickness can be prescribed by the user but in the tropics, the 

soil is typically discretized into 16 layers along a 8 m depth soil profile with increasing layer thickness from top to bottom 

(Longo et al. 2019). Most of the soil hydraulic properties in ED2 are derived from the LEAF-3 model (Walko et al. 2000) and 

follow the parameterization by Cosby et al. (1984) which is based on the soil volumetric fraction of sand and clay. Soil water 150 

retention and hydraulic conductivity curves are respectively based on Clapp and Hornberger (1978) and Brooks and Corey 

(1964), corrected for partially or completely frozen soil water. Simulated sites are characterised by vertically uniform soil 

texture and hence hydraulic properties over the entire soil column. Drought stress negatively impacts plant productivity through 

a non-linear, soil-dependent wilting function, based on the ratio of water demand (plant transpiration) and supply (root water 

uptake). The latter is proportional to the soil water field capacity minus the soil water at the wilting point, integrated from the 155 

deepest soil layer accessible by plant roots to the soil surface. Rooting depth is related to plant height through an allometric 

relationship and root biomass is distributed over the soil layers according to their relative thickness. 
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2.1.3 ORCHIDEE v2.2 

The process-based gridded vegetation model ORCHIDEE (ORganizing Carbon and Hydrology in Dynamic EcosystEms) is 

designed to simulate the fluxes of matter and energy, as well as the vegetation dynamics at the regional level (Krinner et al. 160 

2005). ORCHIDEE v2.2 is the land component of the IPSL (Institut Pierre Simon Laplace) climate model developed for the 

Coupled Model Intercomparison Project Phase 6 (CMIP6), (Eyring et al. 2016). For given vegetation, soil type and climatic 

conditions, the model simulates physiological processes of an average ecosystem on a half-hourly time step, based on a 

combination of a dozen Plant Functional Types (PFT) representing the major biomes on Earth.  

Drought stress effect on vegetation is simulated through a physically-based soil hydrology scheme and saturation-based 165 

Richards equation. The soil is discretized into 11 layers along a 2 m depth profile with increasing layer thickness from the top 

to the bottom (de Rosnay et al. 2002). Infiltration is processed before soil moisture redistribution while unsaturated values of 

hydraulic conductivity and diffusivity follow the models of Mualem (1976) and van Genuchten (1980). Soil parameters are 

set constant for each dominant USDA soil texture class (Carsel and Parrish 1988) provided as input. In ORCHIDEE, the soil 

texture is uniform over the soil column and only the saturated hydraulic conductivity decreases exponentially with depth to 170 

account for soil compaction and bioturbation (d’Orgeval, Polcher, and de Rosnay 2008). To compute infiltration and surface 

runoff, the model also accounts for horizontal variations in soil hydraulic conductivity (Vereecken et al. 2019). Soil evaporation 

and transpiration depend on soil moisture and properties, and transpiration is limited by a stomatal resistance which increases 

when soil moisture drops from field capacity to wilting point. For each PFT, the root density decreases exponentially with 

depth up to 2 m, thus influencing the drought stress factor on transpiration. The drought stress factor will impact stomatal and 175 

mesophyll conductance at the leaf level and hence carbon assimilation. Finally, assimilated carbon is dynamically allocated to 

several vegetation pools, including the leaves. This will directly influence the seasonality in leaf area index (LAI), which has 

a feedback on the partitioning between soil evaporation and transpiration, and thus the resulting soil moisture.  

2.2 Study region and simulation protocol 

This study focuses on the South-American tropical region, ranging from 90°W to 30°W in longitude and from 15°N to 20°S 180 

in latitude. The spatial resolution of the simulations was set to 1°. For each scenario, long-term spin-up with pre-industrial 

atmospheric CO2 concentration from 1860 (287.14 ppm) were performed to each grid cell starting from near bare ground 

conditions. This was achieved by recycling the initial 10 years of the 6-hourly CRU-NCEP v7 meteorological forcing dataset 

(Viovy 2018) until soil and vegetation carbon pools reached an equilibrium. No land-use changes were applied to any 

simulation but a land cover mask representative of the current PFT distribution as derived from the ESA-CCI Land cover map 185 

(Poulter et al. 2015) is applied by default to ORCHIDEE simulations. The spin-up runs were continued with historical 

simulations from 1860 to 2016 for each model using the full CRU-NCEP forcing dataset and varying atmospheric CO2 

concentration according to Friedlingstein et al. (Friedlingstein et al. 2020). 
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2.3 Soil scenarios and model parameterization 

We performed three regional simulations with each model, using different soil texture maps. These three soil maps represent 190 

the soil texture corresponding to the average (Mean clay), minimum (Min. clay), and maximum (Max. clay) topsoil clay content 

of each 1°x1° grid cell from SoilGrids250m (Poggio et al. 2021), see Figure 1. Soil texture was assumed  vertically uniform 

for each model and simulation. For each model, both the soil depth and the number of soil layers were set up according to the 

most default model configurations (Table 1). Similarly, most default model PFT parameterizations were used for each model. 

More detail on each model’s parameter sets can be found in the aforementioned references describing the three models. In 195 

ED2, we simulated four competing PFT (grass, early-, mid-, and late-successional tropical trees) similarly to Longo et al. 

(2019) for Amazon regional runs. To facilitate inter-model comparisons, we chose to run multiple ED2 simulations for each 

polygon rather than simulating multiple sites per polygon. For the LPJ-GUESS model we activated all PFTs as for global 

simulations (Sitch et al. 2003; Ahlström et al. 2012), but due to bioclimatic limits only tropical broadleaf evergreen and 

raingreen trees as well as C4 grasses emerged from the simulation with nonzero biomass. 200 

2.4 Analyses 

To assess the relative importance of the intra-gridcell variability, we aggregated the topsoil clay fraction in SoilGrids from its 

finest (250m) to a much coarser (5°) resolution with the R package ‘raster’. For each resolution, we compared the grid-level 

average of the clay fraction standard deviation within each gridcell (i.e. the intra-gridcell variability) with the grid-level 

standard deviation of the average clay fraction of each gridcell (i.e. the inter-gridcell variability). 205 

All the results from the vegetation model simulations presented below are averages of the ten last years of either the spin-up 

or the historical period (2006-2016) or of the very end of the historical period (2016). We particularly focused on the inter-

model and inter-scenario comparison of GPP at the ecosystem- and the PFT levels, as well as the resulting plant above-ground 

biomass. For each simulation of each model, we also computed from the model outputs the normalised soil drought stress 

index (SDI) whose definition is model-specific (see supplementary section 1) but always normalised between 0 (full stress) 210 

and 1 (no stress) . We related SDI to the ecosystem GPP through quantile regression analyses using the R package ‘quantreg’. 

The soil textures across the three scenarios were also classified according to the 12 major soil texture categories defined by 

the United States Department of Agriculture (Soil Survey Manual, 2017), using the ‘soiltexture’ R package (Moeys, 2018), 

which allowed us to quantify soil class frequencies for each soil scenario and to define transition matrix when switching from 

one soil textural map to another. All analyses and plots were performed in R version 3.6.3. The corresponding code to generate 215 

the results and reproduce the figures below is available on Github (https://github.com/femeunier/SoilSensitivity) with an 

archived version on Zenodo (10.5281/zenodo.6226622) corresponding to tag v1.  
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2.5 Evaluation datasets 

We used three different datasets to assess the model robustness and performance under the three soil scenarios. First, we 

compared the spatial distribution of aboveground biomass as simulated by the models with the integrated biomass map of 220 

Avitabile et al. (2016) over the study region. This biomass map is one of the reference products used by the International 

Model Benchmarking system (ILAMB; Collier et al. 2018) to evaluate TBMs, as for example in the global carbon budget 

exercise (Friedlingstein et al. 2020). Secondly, we contrasted the model outputs of ecosystem GPP with a moderate resolution 

dataset of vegetation gross primary production for the years 2006-2016 driven by satellite data from MODIS (MOD17A2), 

see Running et al. (2015). Finally, we differentiated the soil organic carbon stocks produced by each vegetation model and 225 

derived from local observations upscaled to the globe in SoilGrids. 
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3 Results 

3.1 Intra- and inter-gridcell variability in topsoil clay content 

With the native spatial resolution of the SoilGrids product (250m), we observed a wide distribution in clay content over the 230 

South-American tropics ranging from nearly 0% to 74%, with a median around 28% and a standard deviation of 7% (Figure 

1A). Such extreme clay content values can also be found within gridcells when using the spatial resolution typically applied 

in TBMs: in the magnified 1° gridcell (~111 km at the equator) of Figure 1A, clay fraction varied between 0 and 58% with a 

median and a standard deviation of 23% and 7%, respectively. When SoilGrids was aggregated from its finest to coarser spatial 

resolutions, we observed a rapidly increasing intra-gridcell variability in soil texture: over the whole region, the average intra-235 

gridcell variability (i.e. the mean standard deviation) in clay content strongly raised by 4% from 250m to 1°, and kept increasing 

up to 6% at 5°. At 1° resolution and coarser, the variability within and between gridcells reached similar order of magnitudes 

(Figure 1B). The three soil scenarios were built on this intra-gridcell variability in soil texture: we generated three soil maps 

at 1° resolution based on the maximum, average and minimum clay fraction within each gridcell. A clear shift from sandy/silty 

soils toward more clayey soils can be observed when moving from the Min. Clay to the Max. Clay scenario (Figure 1C and 240 

supplementary Figure S1A). The resulting changes in sand fraction density distributions were less marked, except for the Min. 

clay scenario (supplementary Figure S1B). 

3.2 Models performance in default configuration 

In their most default configuration, all three models showed poor performances in capturing the spatial variability in 

aboveground biomass (Figure 2), GPP (Figure 3) and soil carbon content (supplementary Figure S1) as estimated from 245 

independent products, regardless of the soil scenarios. 

The reference aboveground biomass map from Avitabile et al. (2016) shows a bimodal distribution in biomass over the South-

American tropics as a reflection of the distribution in forest (12.5 ± 2.7 kgC m-2) vs non-forest biomes (2.4 ± 2.3 kgC m-2, see 

Figure 2). Both the ORCHIDEE v2.2 and ED2 models reproduced this bimodal distribution (non forest peak at 3.1 ± 2.3 kgC 

m-2 and 0.7 ± 1.5 kgC m-2; forest peak at 12.3 ± 1.8 kgC m-2 and 17.5 ± 2.4 kgC m-2, respectively), but also overestimated the 250 

overall aboveground biomass on average (8.0 and 11.4 kgC m-2 for both models respectively while data average is 6.7 kgC m-

2). On the contrary, LPJ-GUESS simulated a unimodal biomass distribution with an overestimated average biomass of 12.0 ± 

5.5 kgC m-2. When compared to remote sensing estimates over the 2006-2016 period, ORCHIDEE v2.2 and ED2 overestimated 

the gross primary productivity with simulated average values of 2.4 ± 1.0 kgC m-2 yr-1 and 3.3 ± 1.5 kgC m-2 yr-1, respectively, 

compared to reference values of 2.2 ± 0.3 kgC m-2 yr-1. Only LPJ-GUESS simulated similar average values of 2.2 ± 0.6 kgC m-255 

2 yr-1. Finally, all three models overestimated soil C content compared to the information from the SoilGrid database with LPJ-

GUESS, ED2 and ORCHIDEE v2.2 respectively simulating mean values of 14.8 ± 6.3 kgC m-2 10.6 ± 8.2 kgC m-2, and 7.6 ± 

2.9 kgC m-2 for a reference value of 4.3 ± 1.7kgC m-2. Also the simulated spatial distributions of the soil C content were 
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drastically different from the reference one (Figure S2), regardless of the soil scenario. The relative better performance of the 

ORCHIDEE model in capturing the spatial variability in vegetation and soil carbon stocks can be partly explained by the use 260 

of a land cover map to constrain vegetation type distribution compared to ED2 and LPJ-GUESS for which the PFT distribution 

is an emergent property of the models.  

3.3 Model sensitivity to clay content variability 

Large differences existed between models for the same soil scenario. However, the performance of each model was almost 

independent of the soil scenario for all investigated products (AGB, GPP, soil C). All three models exhibited a strong 265 

correlation between the soil drought stress index (SDI) and the overall ecosystem productivity (Figure 3). Across the three 

scenarios, we observed that increasing clay content (mean clay fraction of 17%, 28%, and 34% in the Min. clay, Mean clay, 

and the Max. clay scenario, respectively) slightly increased drought stress (i.e. decreased SDI) by 2.6, 0.7 and 1.5% (change 

of the drought stress index from the Min. clay to the Max. clay scenario) for ORCHIDEE, ED2 and LPJ-GUESS, respectively. 

This increase in simulated drought stress was accompanied by a decrease in productivity for all three models, respectively by 270 

2.7, 1.9 and 3.2%. 

Nonetheless, we observed substantial changes in PFT-level GPP simulated for the three scenarios for some gridcells (Figure 

4) especially for the ORCHIDEE model, which indicates some shifts in the simulated PFT composition. This situation occurred 

in about 3% of the gridcells for ED2, 6% of the gridcells for LPJ-GUESS, and 7% for ORCHIDEE when switching from the 

Mean clay scenario to the Min. clay or the Max. clay scenario. Yet, these PFT-level shifts in GPP compensate for each other 275 

when aggregated at the ecosystem level, resulting in similar total GPP and spatial distributions that remain almost unaffected 

by shifts in soil composition (Figure 3). Not only the simulated Soil Moisture Index and GPP did not change substantially, but 

we also observed very limited shifts in soil C content (supplementary Figure S2) and aboveground biomass in response to 

changes in soil clay content (Figure 2). Between the Min Clay and Max Clay scenarios, we observed a 3.0%, 0.7% and 4.2% 

increase in the average simulated aboveground biomass, and a -11.9%, 10.1% and 7.6% change in soil C content, as simulated 280 

by ORCHIDEE, ED2 and LPJ-GUESS. All the aforementioned observations also apply to state conditions resulting from the 

spin-up phase (as exemplified for the AGB spatial distribution at the end of the spin-up for all three models and all three 

scenarios, see supplementary Figure S3). 

We observed some significant impacts of the scenario on the ecosystem GPP (up to a 100% change of ecosystem GPP) for 

some of the soil textural class transitions (which represent the frequency of soil class changes when moving from one soil 285 

textural map to another), but those transitions were rather rare events and hence limited to a small area of the simulated region 

(Figure 5). The most frequent transitions were within the same soil class (the diagonal of the soil transition matrix of Figure 

5A): those represented 32% of all transitions between the Mean clay and the Min. clay scenarios, and 43% of all transitions 

between the Mean clay and the Max. clay scenarios) and were almost unaffected by the soil clay content (relative change of 

ecosystem GPP between -0.6% and 2.1% for all models and scenarios). For both ED2 and ORCHIDEEv2.2, most important 290 

https://doi.org/10.5194/gmd-2022-68
Preprint. Discussion started: 11 April 2022
c© Author(s) 2022. CC BY 4.0 License.



12 

 

changes occurred over (very) low water-availability regions (Mean Annual Precipitation or MAP < 1000 mm for ED2, MAP 

< 2000 mm for ORCHIDEE) while the sensitivity to soil texture was independent of the water availability in LPJ-GUESS 

(Figure 6). Yet, only a small fraction of the water-limited area was concerned by changes of simulated state variables: 20% of 

the gridcells with MAP < 1000 showed a relative change of the ecosystem GPP larger than 10% in both ED2 and 

ORCHIDEEv2.2. Moreover, positive and negative shifts balanced one another and hence had a very limited impact on the 295 

regional ecosystem productivity (Figures 3 and 6). 

Finally, we note that the LPJ-GUESS model crashed for some specific soil textures. Those soil textures occur naturally in the 

field and were relatively frequent in our simulations, especially in the Min. clay scenario (5.4% of the gridcells). The problem 

occurred for silty soils with low fractions of both sand (< 12%) and clay (25%). The default pedotransfer functions applied to 

those specific soil textures led to volumetric water content at field capacity larger than the water content at saturation (see 300 

supplementary Figure S4), which caused the model to crash during model initialization for those particular gridcells.  
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4 Discussion 

By selecting the dominant soil texture class, a significant fraction of the soil spatial heterogeneity is omitted in TBMs running 

at coarse spatial resolution (Figure 1), an effect that has already been documented in Tafasca et al. (2020) who suggested that 

spatial aggregation statistically enhances medium textures, leading to excessive evapotranspiration and insufficient total 305 

runoff. Accounting for subgrid variability in soil texture and moisture through systematic sensitivity analysis, or directly 

representing this effect in TBMs with models (Qu et al. 2015) could alleviate these uncertainties and improve model 

performance. Intra-gridcell variability in soil texture might have large impacts on simulating vegetation dynamics, especially 

in demographic models for which plant competition and access to resources drive ecosystem composition and dynamics (i.e. 

growth/mortality) (Rowland et al. 2015; Johnson et al. 2016). In addition to the aggregation bias, we also expect substantial 310 

biases in simulated ecosystem properties resulting from intrinsic uncertainties from soil products. SoilGrids maps of soil 

properties are generated using machine learning methods that account for direct soil observations and environmental variables 

describing vegetation, climate, topography, geology and hydrology. However, the number of soil observations available over 

the Amazon tropics remains very low (10 or fewer soil textural observations for gridcell of 70,000 km² for many gridcells in 

the studied area), potentially leading to high uncertainties in regional soil properties at fine resolution (Poggio et al. 2021, see 315 

in particular supplementary Figure S6).  

Regardless of the underlying uncertainties in global soil products, we found that the soil carbon content, the aboveground 

biomass and the gross primary productivity simulated by all TBMs considered in this study were mostly insensitive to soil 

texture, except for some limited areas with low water availability in ED2 and ORCHIDEEv2.2. In TBMs, plant functions and 

soils are coupled by a drought stress function which depends on soil moisture. We suggest that the overall lack of sensitivity 320 

that we observed originates from the combination of two main limitations in the current implementation of the hydrology 

submodel in TBMs: 1) the shifts in soil texture resulting from the spatial variability in soil clay content does not translate into 

realistic shifts in soil hydraulic properties (see Supplementary Figure S5) and 2) the implemented drought stress functions do 

not properly capture the effect of changes in soil hydraulic properties on vegetation. Both limitations should be rapidly tackled 

in order to improve TBM performance (Fisher and Koven 2020) and are briefly discussed below. 325 

Current TBMs are using a limited number of generic, widespread pedotransfer functions, which can be class-based or 

continuous. However, most of these functions were developed and calibrated decades ago (1984 and 1988, see Table 1) with 

fewer and less geographically spread calibration data than what is available today. On top of the limited size of the training 

data (especially for the tropical regions), the main drawback of these pedotransfer functions resides in their inability to capture 

the variability and non-linearity of many parameters for given soil textural classes. For example in their review, Van Looy et 330 

al. (2017) highlighted large differences in saturated hydraulic conductivity within each soil class derived from different data 

sources and location. As a result, by using generic and global functions, soil parameters in TBMs are substantially different 

from region-specific observations (Kishné et al. 2017; Van Looy et al. 2017). Such generic, global functions could therefore 
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lead to inaccurate characterisation of the soil properties, as illustrated by the LPJ-GUESS crashes with realistic soil 

compositions (Supplementary Figure S4). Since no generic functions are able to properly capture soil properties at the global 335 

scale (Patil and Singh 2016), intermediate solutions should be implemented in TBMs for a better representation and scaling of 

soil properties. For example, region-specific pedotransfer functions, regional calibration, ensemble simulations using multiple 

pedotransfer models or also the combination of regional pedotransfer functions could be used to estimate the uncertainties that 

soil properties are responsible for (Hodnett and Tomasella 2002; Barros and de Jong van Lier 2014; Medeiros et al. 2014).  

Soils have a direct, strong role in the response of plants to drought (Carminati and Javaux 2020). All three vegetation models 340 

used in our study apply simple drought stress functions that depend on the available water and the water demand (Table 1, and 

Supplementary section 1). We observed that shifting soil properties from low to high clay content barely affected the simulated 

soil drought stress despite substantial changes in soil texture and classification (Figures 1, 3 and supplementary Figure S1). 

Even if the sensitivity to soil texture might be increasing with drought stress (Figure 6) and hence under future climate change 

scenarios, it confirms that generic drought stress functions are not suitable to capture the impact of changes in plant water 345 

availability on plant processes, as suggested from previous studies (Joetzjer et al. 2014; Combe et al. 2016) and argues for a 

better representation of root-soil coupling in TBMs. To reproduce the annual pattern of net ecosystem exchange of carbon over 

the Amazon with the Simple Biosphere Model (SiB3), Baker et al. (2008) demonstrated the importance of combining multiple 

mechanisms, not only related to soil water distribution but also on root dynamic schemes. Indeed, the Amazon forest was 

shown to have high GPP during the dry season (Green et al. 2020; Negrón Juárez et al. 2007), and the role of water uptake 350 

with deep roots is currently not properly simulated in TBMs, e.g. because of the shallow soils (and hence root systems) that 

are simulated (Table 1), (Verbeeck et al. 2011). Recent developments in the TBM community have focused on improved plant 

hydraulics but to a lesser extent to the root-soil interactions (Xu et al. 2016). Recent studies have demonstrated the need for a 

better representation of root water uptake in drying soils to simulate plant response to drought stress and its impact on biomass. 

For instance, the new dynamic root scheme (Joetzjer et al., under review) coupled to explicit plant hydraulic processes in 355 

ORCHIDEE managed to reproduce observed water and carbon dynamics at the Caxiuanã throughfall exclusion field 

experiment in eastern Amazonia (Yao et al. 2021). Although they better capture biomass and flux dynamics at the site level, 

the new implementations of plant hydraulics is empirical and complex, and leads to an increased number of model parameters 

and hence to a larger required size of field observational data to calibrate it. Such data are not readily available for a large 

number of sites or a larger area and/or might be difficult to measure, especially in complex ecosystems like tropical forests. 360 

The process of model complexification might also result in over-fitted simulations at the site level, mainly focusing on climate 

factors (e.g. drought) while overlooking the unconstrained soil and root properties. Better estimate of water demands based on 

eco-evolutive optimality theories (Prentice et al. 2014), root biomass (Franklin et al. 2012) and soil-root interactions (Lu et al. 

2020; Vanderborght et al. 2021) could help bridge the gap between complex and over-parameterized models on the one hand 

and simple unrealistic model-specific functions on the other.  365 
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Finally, soil texture and clay content have a direct, strong impact on the distribution and mineralization of carbon and nutrients 

in soils (e.g. Hassink 1992; Telles et al. 2003; Plante et al. 2006; Zinn et al. 2007). In our simulations, the three TBM could 

not reproduce SoilGrid soil carbon distribution and showed very low sensitivity to changes in clay content (Supplementary 

Figure S2) despite long-term spin-up during which we expected large differences between equilibrium states induced by 

different soil composition. This further highlights the poor representation of soil processes in TBMs and their coupling to 370 

vegetation dynamics. As for the relationship between soil hydraulic properties and texture, we argue that current development 

focusing on soil processes in TBMs (e.g. nutrient mineralization, soil organic carbon, etc.) should systematically assess model 

sensitivity to soil properties and texture spatial variability.  
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5 Conclusion 375 

TBMs are keystones of global carbon and water budgets assessments and past developments strongly focused on representing 

plant processes and their response to climate. Despite their importance and recent efforts from the TBM community, 

belowground processes remain overlooked. Here, we showed that 1) subgrid soil heterogeneity in texture is high at the spatial 

resolution of typical TBM simulations and 2) carbon related processes in TBM are insensitive to soil texture over the South 

American tropics. These two results suggest a poor representation of the soil-vegetation coupling in TBMs, mainly because of 380 

inadequate pedotransfer and soil drought stress functions. To date, the use of generic pedotransfer and drought stress functions 

is common in TBMs used for carbon and water budget assessments, as well as future projections, which leads to large errors 

in the model predictions. Appropriately representing soil spatial heterogeneity and soil-plant coupling, such as the non-linearity 

of soil-root resistance, is a major challenge that needs to be urgently addressed in TBMs to better represent the effect of drought 

stress on vegetation and reduce carbon budget uncertainties, especially in complex and heterogeneous ecosystems such as 385 

tropical forests.  
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https://rda.ucar.edu/datasets/ds314.3/. The code used to generate the results, soil scenario and to reproduce the figures of this 390 

manuscript is available on Github (https://github.com/femeunier/SoilSensitivity) with an archived version on Zenodo 

(10.5281/zenodo.6226622) corresponding to tag v1. The code source of the ORCHIDEE v2.2 model is available at: 

https://forge.ipsl.jussieu.fr/orchidee/browser/branches/ORCHIDEE_2_2?order=name, please contact the ORCHIDEE team at 

https://orchidee.ipsl.fr/contact/ before any intended usage of the model. The code source of the ED2 model is available at: 
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Tables and Figures 415 

Tables 

Table 1: Summary of the representation of soil, roots and soil drought stress for each model in their default version 

Model Soil depth Soil texture Roots  Plant 
Hydraulics 

Drought 
stress 

Impact of 
drought 

Soil pedotransfer 
functions 

LPJ-GUESS 1.5 m Variable 
(continuous) 

Fractional 
distribution 
over each 
layer, or 
exponential 
profile with 
PFT-dependent 
decay factor 

None (under 
development) 

Non-linear 
function of 
water supply 
and demand 

Leaf stomatal 
conductance 

Cosby et al. (1984) 

ED2 Variable Variable 
(continuous) 

No vertical 
distribution 

Optional Non-linear 
function of 
water supply 
and demand 

Leaf stomatal 
conductance 

Cosby et al. (1984) 

ORCHIDEE v2.2 2 m Constant for 
each USDA class 

Exponential 
profile with a 
PFT-dependent 
decay factor  

None (under 
development) 

Linear 
function of 
wilting point 
and field 
capacity 

Leaf mesophyll 
and stomatal 
conductance 

Carsel and Parrish 
(1988) 

 

  

 420 
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Figures 

 

Figure 1: Topsoil (0-5cm) clay fraction spatial distribution as defined by the latest version of SoilGrids with a magnified example of 425 
a 1x1° gridcell (A). The Min., Mean, and Max. clay scenarios are those soil types that are characterised respectively by the minimum, 

average, and maximum clay fraction content in each gridcell, excluding those without soil textural information (for instance the 

rivers as illustrated in the magnified map). In panel A, the density plot reveals the clay fraction distribution at the regional and local 

(magnified gridcell) levels. Subplot B shows the difference between the intra-gridcell and the inter-gridcell variability as a function 

of the spatial resolution. Subplot C is the resulting soil texture distribution for each scenario, showing a clear shift toward larger 430 
clay contents in the Max. clay scenario.  
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Figure 2: Above-ground biomass spatial distribution, as generated by Avitabile et al. (2016) (A) or as predicted at the end of the 

historical period (average over the 2006-2016 period) by the three terrestrial biosphere models used in this study for the Mean clay 

scenario (B). The upper-right corners in each plot represent the above-ground biomass density distributions over the simulated 435 
region for all three scenarios (coloured lines) and the observations (black). Note that the land cover was prescribed in the 

ORCHIDEE model, while it was an emergent property of the ED2 and LPJ-GUESS models.   
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Figure 3: Ecosystem GPP as a function of the soil drought stress index (SDI) as predicted at the end of the historical period (2016) 440 
by each terrestrial biosphere model used in this study. The SDI values range between 0 and 1, with no stress represented by SDI = 

1, full stress conditions represented by SDI = 0 representing full stress. The boxplots represent the distributions of the stress index 

for each scenario and the coloured lines are the 95% quantile regression per scenario (with the same color legend). Each dot is a 

gridcell (1° resolution).  
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 445 
Figure 4: Scenario (Max. clay: top row, and Min. clay: bottom row) vs reference (Mean clay scenario) GPP for each TBM used in 

this study. Each dot is the PFT-level GPP over a specific gridcell (1° resolution) at the end of the historical period (2016).  
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Figure 5: Soil transition matrix representing the frequencies of moving from one soil class to another when changing the soil textural 

map (A) and the relative change of ecosystem gross primary production (GPP) for each category of transition and terrestrial 450 
biosphere model (B) as predicted by each TBM at the end of the historical period. In A, the colour intensity represents the frequency 

of each transition. The grey cells are transitions that did not occur in the simulated scenarios.  
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Figure 6: Relative change of the annual ecosystem GPP at the end of the historical simulation with the mean annual precipitation 

(MAP) for both scenarios (shapes) and all three TBMs considered in this study, across the entire simulated region (each point is a 455 
gridcell). The MAP is the annual average over the last ten years of the CRU-NCEP dataset forcing. 

 

  

https://doi.org/10.5194/gmd-2022-68
Preprint. Discussion started: 11 April 2022
c© Author(s) 2022. CC BY 4.0 License.



26 

 

References 

Ahlström, A., G. Schurgers, A. Arneth, and B. Smith. 2012. “Robustness and Uncertainty in Terrestrial Ecosystem 460 

Carbon Response to CMIP5 Climate Change Projections.” Environmental Research Letters 7 (4): 044008. 

https://doi.org/10.1088/1748-9326/7/4/044008. 

Aragão, L. E. O. C., Y. Malhi, D. B. Metcalfe, J. E. Silva-Espejo, E. Jiménez, D. Navarrete, S. Almeida, et al. 2009. 

“Above- and below-Ground Net Primary Productivity across Ten Amazonian Forests on Contrasting Soils.” 

Biogeosciences 6 (12): 2759–78. https://doi.org/10.5194/bg-6-2759-2009. 465 

Avitabile, Valerio, Martin Herold, Gerard B. M. Heuvelink, Simon L. Lewis, Oliver L. Phillips, Gregory P. Asner, 

John Armston, et al. 2016. “An Integrated Pan-Tropical Biomass Map Using Multiple Reference Datasets.” Global 

Change Biology 22 (4): 1406–20. https://doi.org/10.1111/gcb.13139. 

Baker, I. T., L. Prihodko, A. S. Denning, M. Goulden, S. Miller, and H. R. da Rocha. 2008. “Seasonal Drought 

Stress in the Amazon: Reconciling Models and Observations.” Journal of Geophysical Research 113 (G1): 470 

G00B01. https://doi.org/10.1029/2007JG000644. 

Barros, Alexandre Hugo Cezar, and Quirijn de Jong van Lier. 2014. “Pedotransfer Functions for Brazilian Soils.” In 

Application of Soil Physics in Environmental Analyses: Measuring, Modelling and Data Integration, edited by 

Wenceslau Geraldes Teixeira, Marcos Bacis Ceddia, Marta Vasconcelos Ottoni, and Guilheme Kangussu 

Donnagema, 131–62. Progress in Soil Science. Cham: Springer International Publishing. 475 

https://doi.org/10.1007/978-3-319-06013-2_6. 

Batjes, N. H. 1997. “A World Dataset of Derived Soil Properties by FAO–UNESCO Soil Unit for Global 

Modelling.” Soil Use and Management 13 (1): 9–16. https://doi.org/10.1111/j.1475-2743.1997.tb00550.x. 

Bonan, Gordon B. 2008. “Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests.” 

Science 320 (5882): 1444–49. 480 

Brienen, R J W, O L Phillips, T R Feldpausch, E Gloor, T R Baker, J Lloyd, G Lopez-Gonzalez, et al. 2015. “Long-

Term Decline of the Amazon Carbon Sink.” Nature 519 (7543): 344–48. https://doi.org/10.1038/nature14283. 

Brooks, Royal Harvard, and Arthur Thomas Corey. 1964. Hydraulic Properties of Porous Media. Colorado State 

University. 

Buckingham, Edgar, United States, Department of Agriculture, United States, and Bureau of Soils. 1907. Studies on 485 

the Movement of Soil Moisture. Washington,: Govt. Print. Off. 

Carminati, Andrea, and Mathieu Javaux. 2020. “Soil Rather Than Xylem Vulnerability Controls Stomatal Response 

to Drought.” Trends in Plant Science 25 (9): 868–80. https://doi.org/10.1016/j.tplants.2020.04.003. 

Carsel, Robert F., and Rudolph S. Parrish. 1988. “Developing Joint Probability Distributions of Soil Water 

Retention Characteristics.” Water Resources Research 24 (5): 755–69. https://doi.org/10.1029/WR024i005p00755. 490 

Christoffersen, B. O., M. Gloor, S. Fauset, N. M. Fyllas, D. R. Galbraith, T. R. Baker, B. Kruijt, et al. 2016. 

“Linking Hydraulic Traits to Tropical Forest Function in a Size-Structured and Trait-Driven Model (TFS v.1-

Hydro).” Geosci. Model Dev. 9 (11): 4227–55. https://doi.org/10.5194/gmd-9-4227-2016. 

Clapp, R., and G. Hornberger. 1978. “Empirical Equations for Some Soil Hydraulic Properties.” 

https://doi.org/10.1029/WR014I004P00601. 495 

Collier, Nathan, Forrest M. Hoffman, David M. Lawrence, Gretchen Keppel-Aleks, Charles D. Koven, William J. 

Riley, Mingquan Mu, and James T. Randerson. 2018. “The International Land Model Benchmarking (ILAMB) 

System: Design, Theory, and Implementation.” Journal of Advances in Modeling Earth Systems 10 (11): 2731–54. 

https://doi.org/10.1029/2018MS001354. 

Combe, Marie, Jordi Vilà-Guerau de Arellano, Huug G. Ouwersloot, and Wouter Peters. 2016. “Plant Water-Stress 500 

Parameterization Determines the Strength of Land–Atmosphere Coupling.” Agricultural and Forest Meteorology 

217 (February): 61–73. https://doi.org/10.1016/j.agrformet.2015.11.006. 

Condit, Richard, Bettina M. J. Engelbrecht, Delicia Pino, Rolando Pérez, and Benjamin L. Turner. 2013. “Species 

Distributions in Response to Individual Soil Nutrients and Seasonal Drought across a Community of Tropical 

Trees.” Proceedings of the National Academy of Sciences 110 (13): 5064–68. 505 

https://doi.org/10.1073/pnas.1218042110. 

Corlett, Richard T. 2016. “The Impacts of Droughts in Tropical Forests.” Trends in Plant Science 21 (7): 584–93. 

https://doi.org/10.5194/gmd-2022-68
Preprint. Discussion started: 11 April 2022
c© Author(s) 2022. CC BY 4.0 License.



27 

 

https://doi.org/10.1016/j.tplants.2016.02.003. 

Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn. 1984. “A Statistical Exploration of the Relationships 

of Soil Moisture Characteristics to the Physical Properties of Soils.” Water Resources Research 20 (6): 682–90. 510 

https://doi.org/10.1029/WR020i006p00682. 

Darcy, Henry (1803-1858). n.d. “Les fontaines publiques de la ville de Dijon : exposition et application des 

principes à suivre et des formules à employer dans les questions de distribution d’eau... / par Henry Darcy,...,” 659. 

Doughty, Christopher E., D. B. Metcalfe, C. a. J. Girardin, F. Farfán Amézquita, D. Galiano Cabrera, W. Huaraca 

Huasco, J. E. Silva-Espejo, et al. 2015. “Drought Impact on Forest Carbon Dynamics and Fluxes in Amazonia.” 515 

Nature 519 (7541): 78–82. https://doi.org/10.1038/nature14213. 

Duffy, Philip B., Paulo Brando, Gregory P. Asner, and Christopher B. Field. 2015. “Projections of Future 

Meteorological Drought and Wet Periods in the Amazon.” Proceedings of the National Academy of Sciences 112 

(43): 13172–77. https://doi.org/10.1073/pnas.1421010112. 

Eyring, Veronika, Sandrine Bony, Gerald A. Meehl, Catherine A. Senior, Bjorn Stevens, Ronald J. Stouffer, and 520 

Karl E. Taylor. 2016. “Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental 

Design and Organization.” Geoscientific Model Development 9 (5): 1937–58. https://doi.org/10.5194/gmd-9-1937-

2016. 

Feldpausch, T. R., O. L. Phillips, R. J. W. Brienen, E. Gloor, J. Lloyd, G. Lopez-Gonzalez, A. Monteagudo-

Mendoza, et al. 2016. “Amazon Forest Response to Repeated Droughts.” Global Biogeochemical Cycles 30 (7): 525 

964–82. https://doi.org/10.1002/2015GB005133. 

Fisher, Rosie A., and Charles D. Koven. 2020. “Perspectives on the Future of Land Surface Models and the 

Challenges of Representing Complex Terrestrial Systems.” Journal of Advances in Modeling Earth Systems 12 (4): 

e2018MS001453. https://doi.org/10.1029/2018MS001453. 

Flack-Prain, Sophie, Patrick Meir, Yadvinder Malhi, Thomas L. Smallman, and Mathew Williams. 2021. “Does 530 

Economic Optimisation Explain LAI and Leaf Trait Distributions across an Amazon Soil Moisture Gradient?” 

Global Change Biology 27 (3): 587–605. https://doi.org/10.1111/gcb.15368. 

Franklin, Oskar, Jacob Johansson, Roderick C. Dewar, Ulf Dieckmann, Ross E. McMurtrie, Åke Brännström, and 

Ray Dybzinski. 2012. “Modeling Carbon Allocation in Trees: A Search for Principles.” Tree Physiology 32 (6): 

648–66. https://doi.org/10.1093/treephys/tpr138. 535 

Friedlingstein, Pierre, Michael O’Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen 

P. Peters, et al. 2020. “Global Carbon Budget 2020.” Earth System Science Data 12 (4): 3269–3340. 

https://doi.org/10.5194/essd-12-3269-2020. 

Fyllas, N. M., S. Patiño, T. R. Baker, G. Bielefeld Nardoto, L. A. Martinelli, C. A. Quesada, R. Paiva, et al. 2009. 

“Basin-Wide Variations in Foliar Properties of Amazonian Forest: Phylogeny, Soils and Climate.” Biogeosciences 6 540 

(11): 2677–2708. https://doi.org/10.5194/bg-6-2677-2009. 

Gatti, L. V., M. Gloor, J. B. Miller, C. E. Doughty, Y. Malhi, L. G. Domingues, L. S. Basso, et al. 2014. “Drought 

Sensitivity of Amazonian Carbon Balance Revealed by Atmospheric Measurements.” Nature 506 (7486): 76–80. 

https://doi.org/10.1038/nature12957. 

Genuchten, M. Th. van. 1980. “A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated 545 

Soils1.” Soil Science Society of America Journal 44 (5): 892. 

https://doi.org/10.2136/sssaj1980.03615995004400050002x. 

Gerten, Dieter, Sibyll Schaphoff, Uwe Haberlandt, Wolfgang Lucht, and Stephen Sitch. 2004. “Terrestrial 

Vegetation and Water Balance—Hydrological Evaluation of a Dynamic Global Vegetation Model.” Journal of 

Hydrology 286 (1): 249–70. https://doi.org/10.1016/j.jhydrol.2003.09.029. 550 

Green, J. K., J. Berry, P. Ciais, Y. Zhang, and P. Gentine. 2020. “Amazon Rainforest Photosynthesis Increases in 

Response to Atmospheric Dryness.” Science Advances 6 (47): eabb7232. https://doi.org/10.1126/sciadv.abb7232. 

Harris, Philip P., Chris Huntingford, Peter M. Cox, John H. C. Gash, and Yadvinder Malhi. 2004. “Effect of Soil 

Moisture on Canopy Conductance of Amazonian Rainforest.” Agricultural and Forest Meteorology 3–4 (122): 

215–27. https://doi.org/10.1016/j.agrformet.2003.09.006. 555 

Hassink, J. 1992. “Effects of Soil Texture and Structure on Carbon and Nitrogen Mineralization in Grassland 

Soils.” Biology and Fertility of Soils 14 (2): 126–34. https://doi.org/10.1007/BF00336262. 

https://doi.org/10.5194/gmd-2022-68
Preprint. Discussion started: 11 April 2022
c© Author(s) 2022. CC BY 4.0 License.



28 

 

Haxeltine, A., and I. C. Prentice. 1996. “A General Model for the Light-Use Efficiency of Primary Production.” 

Functional Ecology 10 (5): 551–61. https://doi.org/10.2307/2390165. 

Hengl, Tomislav, Jorge Mendes de Jesus, Gerard B. M. Heuvelink, Maria Ruiperez Gonzalez, Milan Kilibarda, 560 

Aleksandar Blagotić, Wei Shangguan, et al. 2017. “SoilGrids250m: Global Gridded Soil Information Based on 

Machine Learning.” PLOS ONE 12 (2): e0169748. https://doi.org/10.1371/journal.pone.0169748. 

Hodnett, Martin, and Javier Tomasella. 2002. “Marked Differences between van Genuchten Soil Water-Retention 

Parameters for Temperate and Tropical Soils: A New Water-Retention Pedo-Transfer Functions Developed for 

Tropical Soils.” Geoderma 108 (August): 155–80. https://doi.org/10.1016/S0016-7061(02)00105-2. 565 

Hubau, Wannes, Simon L. Lewis, Oliver L. Phillips, Kofi Affum-Baffoe, Hans Beeckman, Aida Cuní-Sanchez, 

Armandu K. Daniels, et al. 2020. “Asynchronous Carbon Sink Saturation in African and Amazonian Tropical 

Forests.” Nature 579 (7797): 80–87. https://doi.org/10.1038/s41586-020-2035-0. 

Hurk, Bart van den, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé 

Douville, et al. 2016. “LS3MIP (v1.0) Contribution to CMIP6: The Land Surface, Snow and Soil Moisture Model 570 

Intercomparison Project – Aims, Setup and Expected Outcome.” Geoscientific Model Development 9 (8): 2809–32. 

https://doi.org/10.5194/gmd-9-2809-2016. 

Jackson, R. B., J. Canadell, J. R. Ehleringer, H. A. Mooney, O. E. Sala, and E. D. Schulze. 1996. “A Global 

Analysis of Root Distributions for Terrestrial Biomes.” Oecologia 108 (3): 389–411. 

https://doi.org/10.1007/BF00333714. 575 

Jiménez, Eliana M., María Cristina Peñuela-Mora, Carlos A. Sierra, Jon Lloyd, Oliver L. Phillips, Flavio H. 

Moreno, Diego Navarrete, et al. 2014. “Edaphic Controls on Ecosystem-Level Carbon Allocation in Two 

Contrasting Amazon Forests.” Journal of Geophysical Research: Biogeosciences 119 (9): 1820–30. 

https://doi.org/10.1002/2014JG002653. 

Jirka, S, A J McDonald, M S Johnson, T R Feldpausch, E G Couto, and S J Riha. 2007. “Relationships between 580 

Soil Hydrology and Forest Structure and Composition in the Southern Brazilian Amazon.” Journal of Vegetation 

Science 18 (2): 183–94. https://doi.org/10.1111/j.1654-1103.2007.tb02529.x. 

Joetzjer, E., C. Delire, H. Douville, P. Ciais, B. Decharme, R. Fisher, B. Christoffersen, et al. 2014. “Predicting the 

Response of the Amazon Rainforest to Persistent Drought Conditions under Current and Future Climates: A Major 

Challenge for Global Land Surface Models.” Geoscientific Model Development 7 (6): 2933–50. 585 

https://doi.org/10.5194/gmd-7-2933-2014. 

Johnson, Michelle O., David Galbraith, Manuel Gloor, Hannes De Deurwaerder, Matthieu Guimberteau, Anja 

Rammig, Kirsten Thonicke, et al. 2016. “Variation in Stem Mortality Rates Determines Patterns of Above-Ground 

Biomass in Amazonian Forests: Implications for Dynamic Global Vegetation Models.” Global Change Biology 22 

(12): 3996–4013. https://doi.org/10.1111/gcb.13315. 590 

Kishné, A., Y. Yimam, C. Morgan, and B. Dornblaser. 2017. “Evaluation and Improvement of the Default Soil 

Hydraulic Parameters for the Noah Land Surface Model.” https://doi.org/10.1016/J.GEODERMA.2016.09.022. 

Knox, R. G., M. Longo, A. L. S. Swann, K. Zhang, N. M. Levine, P. R. Moorcroft, and R. L. Bras. 2015. 

“Hydrometeorological Effects of Historical Land-Conversion in an Ecosystem-Atmosphere Model of Northern 

South America.” Hydrology and Earth System Sciences 19 (1): 241–73. https://doi.org/10.5194/hess-19-241-2015. 595 

Krinner, G., Nicolas Viovy, Nathalie de Noblet-Ducoudré, Jérôme Ogée, Jan Polcher, Pierre Friedlingstein, 

Philippe Ciais, Stephen Sitch, and I. Colin Prentice. 2005. “A Dynamic Global Vegetation Model for Studies of the 

Coupled Atmosphere-Biosphere System.” Global Biogeochemical Cycles 19 (1). 

https://doi.org/10.1029/2003GB002199. 

Laurance, William F, Philip M Fearnside, Susan G Laurance, Patricia Delamonica, Thomas E Lovejoy, Judy M 600 

Rankin-de Merona, Jeffrey Q Chambers, and Claude Gascon. 1999. “Relationship between Soils and Amazon 

Forest Biomass: A Landscape-Scale Study.” Forest Ecology and Management 118 (1): 127–38. 

https://doi.org/10.1016/S0378-1127(98)00494-0. 

Li, Longhui, Ying-Ping Wang, Qiang Yu, Bernard Pak, Derek Eamus, Junhua Yan, Eva van Gorsel, and Ian T. 

Baker. 2012. “Improving the Responses of the Australian Community Land Surface Model (CABLE) to Seasonal 605 

Drought: IMPROVING CABLE IN RESPONSE TO DROUGHT.” Journal of Geophysical Research: 

Biogeosciences 117 (G4): n/a-n/a. https://doi.org/10.1029/2012JG002038. 

https://doi.org/10.5194/gmd-2022-68
Preprint. Discussion started: 11 April 2022
c© Author(s) 2022. CC BY 4.0 License.



29 

 

Longo, Marcos, Ryan G. Knox, Naomi M. Levine, Luciana F. Alves, Damien Bonal, Plinio B. Camargo, David R. 

Fitzjarrald, et al. 2018. “Ecosystem Heterogeneity and Diversity Mitigate Amazon Forest Resilience to Frequent 

Extreme Droughts.” New Phytologist 219 (3): 914–31. https://doi.org/10.1111/nph.15185. 610 

Longo, Marcos, Ryan G. Knox, David M. Medvigy, Naomi M. Levine, Michael C. Dietze, Yeonjoo Kim, Abigail 

L. S. Swann, et al. 2019. “The Biophysics, Ecology, and Biogeochemistry of Functionally Diverse, Vertically and 

Horizontally Heterogeneous Ecosystems: The Ecosystem Demography Model, Version 2.2 – Part 1: Model 

Description.” Geoscientific Model Development 12 (10): 4309–46. https://doi.org/10.5194/gmd-12-4309-2019. 

Lu, Jianrong, Qi Zhang, Adrian D. Werner, Yunliang Li, Sanyuan Jiang, and Zhiqiang Tan. 2020. “Root-Induced 615 

Changes of Soil Hydraulic Properties – A Review.” Journal of Hydrology 589 (October): 125203. 

https://doi.org/10.1016/j.jhydrol.2020.125203. 

Maeda, Eduardo Eiji, Hyungjun Kim, Luiz E. O. C. Aragão, James S. Famiglietti, and Taikan Oki. 2015. 

“Disruption of Hydroecological Equilibrium in Southwest Amazon Mediated by Drought.” Geophysical Research 

Letters 42 (18): 7546–53. https://doi.org/10.1002/2015GL065252. 620 

Medeiros, João Carlos, Miguel Cooper, Jaqueline Dalla Rosa, Michel Grimaldi, and Yves Coquet. 2014. 

“Assessment of Pedotransfer Functions for Estimating Soil Water Retention Curves for the Amazon Region.” 

Revista Brasileira de Ciência Do Solo 38 (June): 730–43. https://doi.org/10.1590/S0100-06832014000300005. 

Medvigy, D., S. C. Wofsy, J. W. Munger, D. Y. Hollinger, and P. R. Moorcroft. 2009. “Mechanistic Scaling of 

Ecosystem Function and Dynamics in Space and Time: Ecosystem Demography Model Version 2.” Journal of 625 

Geophysical Research 114 (G1). https://doi.org/10.1029/2008JG000812. 

Mencuccini, Maurizio, Stefano Manzoni, and Bradley Christoffersen. 2019. “Modelling Water Fluxes in Plants: 

From Tissues to Biosphere.” New Phytologist 222 (3): 1207–22. https://doi.org/10.1111/nph.15681. 

Moeys, Julien. n.d. “The Soil Texture Wizard: R Functions for Plotting, Classifying, Transforming and Exploring 

Soil Texture Data,” 104. 630 

Mualem, Yechezkel. 1976. “A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous 

Media.” Water Resources Research 12 (3): 513–22. https://doi.org/10.1029/WR012i003p00513. 

Nachtergaele, F. O., H. van Velthuizen, L. Verelst, N. H. Batjes, J. A. Dijkshoorn, V. W. P. van Engelen, G. 

Fischer, et al. 2008. “Harmonized World Soil Database (Version 1.0).” 

https://research.wur.nl/en/publications/harmonized-world-soil-database-version-10. 635 

Negrón Juárez, R. I., M. G. Hodnett, R. Fu, M. L. Gouden, and C. von Randow. 2007. “Control of Dry Season 

Evapotranspiration over the Amazonian Forest as Inferred from Observation at a Southern Amazon Forest Site.” 

Journal of Climate 20 (12): 2827–39. https://doi.org/10.1175/JCLI4184.1. 

Neilson, Ronald P. 1995. “A Model for Predicting Continental-Scale Vegetation Distribution and Water Balance.” 

Ecological Applications 5 (2): 362–85. https://doi.org/10.2307/1942028. 640 

Nepstad, Daniel C., Ingrid Marisa Tohver, David Ray, Paulo Moutinho, and Georgina Cardinot. 2007. “Mortality of 

Large Trees and Lianas Following Experimental Drought in an Amazon Forest.” Ecology 88 (9): 2259–69. 

https://doi.org/10.1890/06-1046.1. 

O’Connell, Christine S., Leilei Ruan, and Whendee L. Silver. 2018. “Drought Drives Rapid Shifts in Tropical 

Rainforest Soil Biogeochemistry and Greenhouse Gas Emissions.” Nature Communications 9 (1): 1348. 645 

https://doi.org/10.1038/s41467-018-03352-3. 

Orgeval, T. d’, J. Polcher, and P. de Rosnay. 2008. “Sensitivity of the West African Hydrological Cycle in 

ORCHIDEE to Infiltration Processes.” Hydrology and Earth System Sciences 12 (6): 1387–1401. 

https://doi.org/10.5194/hess-12-1387-2008. 

Patil, Nitin Gorakh, and Surendra Kumar Singh. 2016. “Pedotransfer Functions for Estimating Soil Hydraulic 650 

Properties: A Review.” Pedosphere 26 (4): 417–30. https://doi.org/10.1016/S1002-0160(15)60054-6. 

Peylin, P., J. Ghattas, P. Cadule, F. Cheruy, A. Ducharne, B. Guenet, J. Lathière, et al. In prep. “The Global Land 

Surface Model ORCHIDEE – Tag2.0.” http://forge.ipsl.jussieu.fr/orchidee/browser/ 

tags/ORCHIDEE20/ORCHIDEE/. 

Phillips, Oliver L., Luiz E. O. C. Aragão, Simon L. Lewis, Joshua B. Fisher, Jon Lloyd, Gabriela López-González, 655 

Yadvinder Malhi, et al. 2009. “Drought Sensitivity of the Amazon Rainforest.” Science 323 (5919): 1344–47. 

https://doi.org/10.1126/science.1164033. 

https://doi.org/10.5194/gmd-2022-68
Preprint. Discussion started: 11 April 2022
c© Author(s) 2022. CC BY 4.0 License.



30 

 

Plante, Alain F., Richard T. Conant, Catherine E. Stewart, Keith Paustian, and Johan Six. 2006. “Impact of Soil 

Texture on the Distribution of Soil Organic Matter in Physical and Chemical Fractions.” Soil Science Society of 

America Journal 70 (1): 287–96. https://doi.org/10.2136/sssaj2004.0363. 660 

Poggio, Laura, Luis M. de Sousa, Niels H. Batjes, Gerard B. M. Heuvelink, Bas Kempen, Eloi Ribeiro, and David 

Rossiter. 2021. “SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty.” 

SOIL 7 (1): 217–40. https://doi.org/10.5194/soil-7-217-2021. 

Poulter, B., N. MacBean, A. Hartley, I. Khlystova, O. Arino, R. Betts, S. Bontemps, et al. 2015. “Plant Functional 

Type Classification for Earth System Models: Results from the European Space Agency’s Land Cover Climate 665 

Change Initiative.” Geoscientific Model Development 8 (7): 2315–28. https://doi.org/10.5194/gmd-8-2315-2015. 

Prentice, I. C., W. Cramer, S. P. Harrison, R. Leemans, R. A. Monserud, and A. M. Solomon. 1992. “A Global 

Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate.” Journal of Biogeography 

19 (2): 117–34. 

Prentice, I. Colin, Ning Dong, Sean M. Gleason, Vincent Maire, and Ian J. Wright. 2014. “Balancing the Costs of 670 

Carbon Gain and Water Transport: Testing a New Theoretical Framework for Plant Functional Ecology.” Ecology 

Letters 17 (1): 82–91. https://doi.org/10.1111/ele.12211. 

Qu, W., H. R. Bogena, J. A. Huisman, J. Vanderborght, M. Schuh, E. Priesack, and H. Vereecken. 2015. 

“Predicting Subgrid Variability of Soil Water Content from Basic Soil Information.” Geophysical Research Letters 

42 (3): 789–96. https://doi.org/10.1002/2014GL062496. 675 

Romano, Nunzio, and Alessandro Santini. 2002. “Water Retention and Storage: Field.” In , 721–38. 

Rosnay, P. de, and J. Polcher. 1998. “Modelling Root Water Uptake in a Complex Land Surface Scheme Coupled 

to a GCM.” Hydrology and Earth System Sciences 2 (2/3): 239–55. https://doi.org/10.5194/hess-2-239-1998. 

Rosnay, P. de, J. Polcher, M. Bruen, and K. Laval. 2002. “Impact of a Physically Based Soil Water Flow and Soil-

Plant Interaction Representation for Modeling Large-Scale Land Surface Processes.” Journal of Geophysical 680 

Research (Atmospheres) 107 (June): 4118. https://doi.org/10.1029/2001JD000634. 

Rowland, L., A. C. L. da Costa, D. R. Galbraith, R. S. Oliveira, O. J. Binks, A. a. R. Oliveira, A. M. Pullen, et al. 

2015. “Death from Drought in Tropical Forests Is Triggered by Hydraulics Not Carbon Starvation.” Nature 528 

(7580): 119–22. https://doi.org/10.1038/nature15539. 

Running,  Steve, Mu,  Qiaozhen, and Zhao,  Maosheng. 2015. “MOD17A2H MODIS/Terra Gross Primary 685 

Productivity 8-Day L4 Global 500m SIN Grid V006.” NASA EOSDIS Land Processes DAAC. 

https://doi.org/10.5067/MODIS/MOD17A2H.006. 

Silver, Whendee L., Jason Neff, Megan McGroddy, Ed Veldkamp, Michael Keller, and Raimundo Cosme. 2000. 

“Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest 

Ecosystem.” Ecosystems 3 (2): 193–209. https://doi.org/10.1007/s100210000019. 690 

Sitch, S., B. Smith, I. C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J. O. Kaplan, et al. 2003. “Evaluation of 

Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the LPJ Dynamic Global Vegetation 

Model.” Global Change Biology 9 (2): 161–85. https://doi.org/10.1046/j.1365-2486.2003.00569.x. 

Smith, B., D. Wårlind, A. Arneth, T. Hickler, P. Leadley, J. Siltberg, and S. Zaehle. 2014. “Implications of 

Incorporating N Cycling and N Limitations on Primary Production in an Individual-Based Dynamic Vegetation 695 

Model.” Biogeosciences 11 (7): 2027–54. https://doi.org/10.5194/bg-11-2027-2014. 

Smith, Benjamin, I. Colin Prentice, and Martin T. Sykes. 2001. “Representation of Vegetation Dynamics in the 

Modelling of Terrestrial Ecosystems: Comparing Two Contrasting Approaches within European Climate Space.” 

Global Ecology and Biogeography 10 (6): 621–37. https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x. 

“Soil Survey Manual (SSM) | NRCS Soils.” n.d. Accessed February 22, 2022. 700 

https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/ref/?cid=nrcs142p2_054262. 

Spinoni, Jonathan, Gustavo Naumann, Hugo Carrao, Paulo Barbosa, and Jürgen Vogt. 2014. “World Drought 

Frequency, Duration, and Severity for 1951–2010.” International Journal of Climatology 34 (8): 2792–2804. 

https://doi.org/10.1002/joc.3875. 

Tafasca, Salma, Agnès Ducharne, and Christian Valentin. 2020. “Weak Sensitivity of the Terrestrial Water Budget 705 

to Global Soil Texture Maps in the ORCHIDEE Land Surface Model.” Hydrology and Earth System Sciences 24 

(7): 3753–74. https://doi.org/10.5194/hess-24-3753-2020. 

https://doi.org/10.5194/gmd-2022-68
Preprint. Discussion started: 11 April 2022
c© Author(s) 2022. CC BY 4.0 License.



31 

 

Telles, Everaldo de Carvalho Conceição, Plínio Barbosa de Camargo, Luiz A. Martinelli, Susan E. Trumbore, Enir 

Salazar da Costa, Joaquim Santos, Niro Higuchi, and Raimundo Cosme Oliveira Jr. 2003. “Influence of Soil 

Texture on Carbon Dynamics and Storage Potential in Tropical Forest Soils of Amazonia.” Global Biogeochemical 710 

Cycles 17 (2). https://doi.org/10.1029/2002GB001953. 

Van Looy, Kris, Johan Bouma, Michael Herbst, John Koestel, Budiman Minasny, Umakant Mishra, Carsten 

Montzka, et al. 2017. “Pedotransfer Functions in Earth System Science: Challenges and Perspectives.” Reviews of 

Geophysics 55 (4): 1199–1256. https://doi.org/10.1002/2017RG000581. 

Vanderborght, Jan, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and 715 

Mathieu Javaux. 2021. “From Hydraulic Root Architecture Models to Macroscopic Representations of Root 

Hydraulics in Soil Water Flow and Land Surface Models.” Hydrology and Earth System Sciences 25 (9): 4835–60. 

https://doi.org/10.5194/hess-25-4835-2021. 

Verbeeck, Hans, Philippe Peylin, Cédric Bacour, Damien Bonal, Kathy Steppe, and Philippe Ciais. 2011. “Seasonal 

Patterns of CO 2 Fluxes in Amazon Forests: Fusion of Eddy Covariance Data and the ORCHIDEE Model.” Journal 720 

of Geophysical Research 116 (G2). https://doi.org/10.1029/2010jg001544. 

Vereecken, Harry, Yakov Pachepsky, Heye Bogena, and Carsten Montzka. 2019. “Upscaling Issues in 

Ecohydrological Observations.” In Observation and Measurement of Ecohydrological Processes, edited by Xin Li 

and Harry Vereecken, 435–54. Ecohydrology. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-

48297-1_14. 725 

Viovy, Nicolas. 2018. “CRUNCEP Version 7 - Atmospheric Forcing Data for the Community Land Model.” 

UCAR/NCAR - Research Data Archive. https://doi.org/10.5065/PZ8F-F017. 

Walko, Robert L., Larry E. Band, Jill Baron, Timothy G. F. Kittel, Richard Lammers, Tsengdar J. Lee, Dennis 

Ojima, et al. 2000. “Coupled Atmosphere–Biophysics–Hydrology Models for Environmental Modeling.” Journal of 

Applied Meteorology 39 (6): 931–44. https://doi.org/10.1175/1520-0450(2000)039<0931:CABHMF>2.0.CO;2. 730 

Xu, Xiangtao, David Medvigy, Jennifer S. Powers, Justin M. Becknell, and Kaiyu Guan. 2016. “Diversity in Plant 

Hydraulic Traits Explains Seasonal and Inter-Annual Variations of Vegetation Dynamics in Seasonally Dry 

Tropical Forests.” New Phytologist 212 (1): 80–95. https://doi.org/10.1111/nph.14009. 

Yao, Yitong, Emilie Joetzjer, Philippe Ciais, Nicolas Viovy, Fabio Cresto Aleina, Jerome Chave, Lawren Sack, et 

al. 2021. “Forest Fluxes and Mortality Response to Drought: Model Description (ORCHIDEE-CAN-NHA, R7236) 735 

and Evaluation at the Caxiuan&atilde; Drought Experiment.” Geoscientific Model Development Discussions, 

December, 1–38. https://doi.org/10.5194/gmd-2021-362. 

Zinn, Yuri L., Rattan Lal, Jerry M. Bigham, and Dimas V. S. Resck. 2007. “Edaphic Controls on Soil Organic 

Carbon Retention in the Brazilian Cerrado: Texture and Mineralogy.” Soil Science Society of America Journal 71 

(4): 1204–14. https://doi.org/10.2136/sssaj2006.0014. 740 
 

https://doi.org/10.5194/gmd-2022-68
Preprint. Discussion started: 11 April 2022
c© Author(s) 2022. CC BY 4.0 License.


