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Abstract.

Electrical resistivity tomography (ERT) is a broadly accepted geophysical method for subsurface investigations. Interpre-
tation of field ERT data usually requires the application of computationally intensive forward modeling and inversion algo-
rithms. For large-scale ERT data, the efficiency of these algorithms depends on the robustness, accuracy, and scalability on
high performance computing resources. In this regard, we present a robust and highly scalable implementation of forward
modeling and inversion algorithms for ERT data. The implementation is publicly available and developed within the frame-
work of PFLOTRAN, an open-source, state-of-the-art massively parallel subsurface flow and transport simulation code. The
forward modeling is based on a finite volume discretization of the governing differential equations, and the inversion uses a
Gauss—Newton optimization scheme. To evaluate the accuracy of the forward modeling, two examples are first presented by
considering layered (1D) and 3D earth conductivity models. The computed numerical results show good agreement with the
analytical solutions for the layered earth model and results from a well-established code for the 3D model. Inversion of ERT
data, simulated for a 3D model, is then performed to demonstrate the inversion capability by recovering the conductivity of the
model. To demonstrate the parallel performance of PFLOTRAN’s ERT process model and inversion capabilities, large-scale
scalability tests are performed by using up to 131,072 processes on a leadership class supercomputer. These tests are performed
for the two most computationally intensive steps of the ERT inversion: forward modeling and Jacobian computation. For the
forward modeling, we consider models with up to 122 million degrees of freedom (DOFs) in the resulting system of linear
equations, and demonstrate that the code exhibits almost linear scalability on up to &;+92-eeres10,000 DOFs per process.
On the other hand, the code shows perfeetly-tinear-superlinear scalability for the Jacobian computation, mainly because all

computations are fairly evenly distributed over each eere-process with no parallel communication.

1 Introduction

Direct current electrical resistivity tomography (ERT) is one of the eldestand-key geophysical methods for shallow-subsurface
investigations, having applications in areas such as groundwater (Dahlin, 2001; Johnson et al., 2012; Meyerhoff et al., 2014;
Park et al., 2016; Greggio et al., 2018; Alshehri and Abdelrahman, 2021), mineral exploration (Badmus and Olatinsu, 2009;
Bery et al., 2012; Uhlemann et al., 2018; Martinez et al., 2019), environmental monitoring and remediation (Rosales et al.,

2012; Rucker et al., 2013; Gabarrén et al., 2020; Rockhold et al., 2020; Kessouri et al., 2022), and engineering problems
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(Dahlin, 1996; Rizzo et al., 2004; Lysdahl et al., 2017). It can also be used for few-large-scale deep-subsurface investigations,
e.g., for geothermal systems, active volcano imaging, and tectonic studies (Storz et al., 2000; Caputo et al., 2003; Johnson
et al., 2010; Richards et al., 2010). Additional applications can also be found in detailed reviews by Slater (2007), Revil
et al. (2012), Loke et al. (2013), Singha et al. (2022), and the references therein. In recent years, availability of multielectrode
and multichannel instrumentations permitted acquisition of massive amounts of ERT data consisting of tens of thousands or
even hundreds of thousands of observations. Therefore-efficient-Efficient inversion and interpretation of such massive datasets
requires fast, accurate, and highly scalable forward modeling and inversion algorithms to simulate and invert ERT data in
arbitrary 3D conductivity structures. This paper presents an open-source implementation of such ERT modeling and inversion
algorithms.

ERT data simulation is performed by solving the electrostatic Poisson equation. Numerical methods are eften-needed to
solve the governing equation in arbitrary 3D conductivity structures. The most used numerical methods for 3D ERT modeling
are the finite-difference (FD) method (Dey and Morrison, 1979; Spitzer, 1995; Penz et al., 2013), finite-element (FE) method
(Coggon, 1971; Li and Spitzer, 2002; Riicker et al., 2006; Blome et al., 2009; Johnson et al., 2010; Ren et al., 2018), and integral
equation method (Lee, 1975; Schulz, 1985; Méndez-Delgado et al., 1999). Among these methods, the FD and FE methods are
the attractive choices for highly heterogeneous distributions of electrical conductivity in the subsurface. However, application
of the FD method is mostly limited to simple model geometries due to its requirement of Cartesian grids (Riicker et al., 2006)
. On the contrary, the FE method has proven to be effective in accounting for complex geometries, specifically by using
unstructured meshes (Riicker et al., 2006; Blome et al., 2009; Johnson et al., 2010; Ren et al., 2018).

TFhere-ts-another-elass-of numerical-methods;—+the-The finite-volume (FV) method ;—whieh—can also be used effectively to
account for complex geometries (Jahandari and Farquharson, 2014). The FV method is usually seen relatively close to the FD
method as it inherits the simplicity similar to the FD method in its implementation. Unlike the FD method which discretizes
the differential form of the governing equation, the FV method, however, directly discretizes its integral form. Nevertheless,
the FV method has rarely been considered for ERT simulation problems. In our literature search, we came across only Cockett
et al. (2015) which implements the method for the ERT modeling.

On the other hand, ERT data inversion is a non-linear optimization problem to minimize a cost function that represents a
measure of the difference between observed and simulated ERT data. For large-scale 3D ERT data, the inversion is often per-
formed iteratively by linearizing the optimization problem at each iteration, calculating a model update, updating a conductivity
model, and subsequently simulating ERT data for the updated model to examine the new cost function. The precessescoentinue
process continues until the cost function reduces to a predefined tolerance level. The model update is typically calculated using
a gradient-based local optimization method, e.g., the steepest-descent, conjugate gradient, or Gauss—Newton method (Park and
Van, 1991; Ellis and Oldenburg, 1994; Zhdanov and Keller, 1994; Zhang et al., 1995; Gtinther et al., 2006; Johnson et al.,
2010). The Gauss—Newton method has usually been preferred due to its high convergence rate. Indeed, the fast convergence
occurs at the cost of intensive computations because the method requires building the Jacobian (or sensitivity) and/or Hessian

matrices at each inversion iteration (Nocedal and Wright, 2006).
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For large-scale 3D ERT dataproblems with tens of millions of degrees of freedom (DOFs), forward modeling and inversion

are computationally demanding jobs and may need hours, if not days, of computing time if the underlying algorithms are not
properly implemented to scale well on high performance computing (HPC) resources or supercomputers. For such datasets, it
is computationally infeasible to use desktop based ERT data processing software without exploiting HPC resources. Recently,
a few open-source 3D ERT modeling and inversion codes have been developed to handle moderately sized ERT dataproblems
composed of up to a few million DOFs, e.g., ResIPy (Blanchy et al., 2020), SimPEG (Cockett et al., 2015), and pyGIMLI
(Riicker et al., 2017). However, these codes still lack full-scale parallel implementations to efficiently distribute computations
over supercomptitersa supercomputer. On the other hand, another open-source code, E4D, is highly scalable on HPC resources
(Johnson et al., 2010; Johnson and Wellman, 2015). It can be run on hundreds or even thousands of computing-coresef-processes
(or cores) on a supercomputer (Johnson et al., 2010). But despite this, the maximum number of eemputing-eores-processes that
it can exploit is limited to the number of electrodes in a survey.

In this paper, we present an epen-seuree-implementation of massively parallel 3D ERT modeling and inversion algorithms.
The forward modeling is based on the FV method and inversion employs the Gauss—Newton method. The cemputations-are

allelized so-that-all-available HPC resources can-be exploited. provided-theyare beneficial- The algorithms are imple-

www.pflotran.org), an open
source, massively parallel code that leverages parallel data structures and solvers within PETSc (Portable, Extensible Toolkit for
Scientific Computation) (Balay et al., 2021) to simulate subsurface flow and transport processes on supercomputers (Hammond

etal., 2012, 2014). Although we are presenting only the-ERT modeling and inversion capabilities here, the main motivation of
implementing these capabilities in PFELOTRAN is to perform coupled modeling and inversion of ERT, flow, and/or transport
problems in the future.

The paper is structured as follows: we first outline a detailed background theory on the ERT forward modeling including
the governing Poisson equation and FV method to solve it numerically. We then describe the ERT inversion by defining it as
a nonlinear optimization problem, and the Gauss—Newton method to find a minimizer of the problem along with details on
computing the Jacobian matrix. Thereafter, we discuss the parallel implementations of the modeling and inversion algorithms.
We subsequently benchmark numerical results computed using PFLOTRAN against analytical solutions for a layered (1D)
earth model and numerical solutions for a 3D earth model. Next, a 3D inversion result is presented to illustrate the inversion
capability. Scalability tests are then performed to demonstrate the parallel performance of the PELOTRAN ERT process model,
before discussing the results and drawing our final concluding remarks.

2 Forward ERT modeling

Forward modeling is a way of simulating ERT data for any given 1D, 2D, or 3D electrical conductivity models of the earth.
For 1D conductivity models, the electrical potentials generated by an induced point current source can be obtained by using

analytical or semi-analytical methods (Das, 1995; Pervago et al., 2006). However, for multi-dimensional heterogeneous con-
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ductivity models with complex geometries, one must use numerical methods to compute the electrical potential. This section
describes the numerical computations of the electrical potentials in a 3D medium and their superposition to produce simulated

ERT data.
2.1 Poisson’s equation

The ERT forward modeling is governed by the following electrostatic Poisson equation
V. o(r)Vo(r)=—I6(r —ry), (1)

where ¢ is the electrical potential at position r for a given conductivity o (r) due to a current I injected through a point located
at rg; and ¢ is the Dirac delta function. For brevity, hereinafter, the dependencies on r will be omitted except where necessary
to show.

If side and bottom boundaries OI" of the 3D computational domain I are located at sufficiently far from the current injection
location ry, the potential and the normal component of the current density U%Z asymptotically approach zero. On the top or
surface boundary OI's, the normal current density ag—g is zero as no current flows through the earth surface along the outward

normal vector. Consequently, we can impose zero Dirichlet or Neumann boundary conditions at the side boundaries and zero

Neumann boundary at the surface boundary

0 0
¢|8F:O or 672‘81“:0, and £|8FS:0' )

To simulate ¢ in arbitrary 3D conductivity structures, Eq. (1) needs to be solved using numerical methods subject to the

boundary conditions in Eq. (2).
2.2 Finite volume method

The FV method is implemented to compute ¢ by solving Eq. (1). The 3D computational domain is first discretized into a set
of control volumes knows as cells (Fig. 1). These cells can be of arbitrary shape and size, but they must be bounded by planar
surfaces for our implementation. The bounding discrete surfaces are known as cell faces.

Let us consider the governing Poisson equation (Eq. 1) and integrate it over the i*" cell of the domain I'. This gives

/V-UV¢dV:—/Ié(r—rs)dV, 3)
Vi

Vi
where V; is the volume of the it" cell.

By applying the Gauss divergence theorem in Eq. (3) and using the translation property of the Dirac delta function, we get

/O‘V¢-flds = —[‘r:rs, @
Si
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Face area: Sf
Face conductivity: o¢

Figure 1. Two adjacent FV cells 4, and ¢2 having conductivity o;, and o;,, respectively. The distances of the common face f from the center

of cells 71 and 71, respectively, are d;;, and d;,.

where S; is the surface area of the bounding faces of i*" cell, and dS is a differential area on the bounding surface with a
unit surface normal i pointing outward.

If the i*" cell is bounded by Ny faces, Eq. (4) can be replaced by an equivalent discrete form

Nf,i Nf,i
Z/avqs-ﬁdszZaf(w)f.ﬁfsf:—I|r:rs, )
legf f=1

where f represents faces and Sy is the area of the bounding face f.
Using a two-point flux approximation for each face term in Eq. (5) by considering two adjacent cells 71 and i shown in Fig.

1, we get

Nei

> 05 (V8) s Sng=—Tle=r, ©6)
f=1

where S,, ¢ is the area of the common face f projected onto the plane normal to the vector connecting centers of cells ¢; and

1.
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The conductivity at the face, o, can be obtained by averaging the conductivity of cells 4; and 7. We use the following

harmonic distance weighted scheme to calculate o ¢

) 7
O'ildi2 +O'i2dz‘1 (N

of

where o;, and o;, are the conductivities of cells ¢; and is, and d;, and d;, are the distances of the projected face from the
center of cells ¢; and i;, respectively (Fig. 1).

The value of the flux at the face f, i.e., (V¢)y, is obtained by using the approximation

Giy — Pi
v B - T £ 8
(Vo) s 0 T di, ®)
Substituting Egs. (7) and (8) in Eq. (6), and assuming that the computational domain I" is subdivided into N,,, FV cells, i.e.,

[ = UN= T where TV C R? is the i* cell domain, we have

Nm
D Ak =si, ©)
=1

where A; . is the local coefficient matrix and s; is the source vector for the ith cell.
The assembly of the local coefficient matrix into a global system, upon carrying out the summation in Eq. (9), results into

the system of linear equations

A® =5, (10)

where A € R¥mXNm jg the symmetric system matrix resulting from the FV discretization of Eq. (1), ® € R¥= is a vector
containing the unknown electric potential for all cells, and s € R™V= is the source vector resulting from the right-hand side of
Eq. (1). To solve this linear system, we utilize various options of iterative solvers available from PETSc{Portable; Extensible
Toolkitfor-Seientifie- Computation)-(Balay-et-al-2021). Each electrode in an ERT survey results in a different vector s. Thus,
for N, electrodes, we need to solve Eq. (10) for N, times with a different right-hand side. The solutions provide electrical
potential at each cell center of the discrete computational domain and for each current injection location. Finally, the potential
distribution for any combination of source/sink electrodes can be obtained by subtracting the potential associated with the sink

electrodes from the source electrodes potential (Johnson et al., 2010).

3 Inversion

ERT Inversion is a procedure of estimating electrical conductivity of the earth from a set of observed ERT data and/or some

imposed constraints. The ERT inverse problem is a non-linear optimization problem. For large-scale 3D ERT data, the inversion
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is often performed iteratively by linearizing the problem at each iteration. This section details our approach of performing

inversion of ERT data.
3.1 Optimization problem

We pose the inverse problem as a non-linear minimization problem of finding a conductivity model

mijyy = arganél{ld¢(m)7 (11)

where m = (my,ma,...,mn,, )7

is an unknown model parameters vector in the model set IM. Since the conductivity within
subsurface can vary over several order of magnitudes, the inversion operations are performed for logarithmic conductivity, i.e.,

we assume m = Ing. This also enforces positivity of conductivity values. The quantity v is the cost function, defined as

w(m) :wd(m)+6wm(m)a (12)

where 14 is the data cost function that represents a measure of the misfit between the observed d°® and synthetic @™
ERT data; v, is the regularization cost function representing a measure of the variation of the model parameters, and /3 is a
regularization parameter.

A least-squares method is used to minimize ¢ (Nocedal and Wright, 2006). Thus, 14 and v,,, can be expressed as

¢d _ [dObs o dsyn(m)]TWng [dobs _ dsyn(m)] , (13)

’(/}m = (m - mref)TWI’Irlwm(m - mref) 3 (14)

where vectors d°* and d*¥™ are N4 dimensional vectors containing the observed and synthetic ERT data. Wy € RVa*Na
is the data weighting matrix, usually a diagonal matrix, whose elements are estimated based on the standard deviation of
the noise; Wy, € RVN=*Nm jg the regularization matrix, and m,¢ is a [N, dimensional vector containing the logarithmic of

reference conductivity model parameters.
3.2 Gauss-Newton method

To find a minimizer my,,, of the cost function in Eq. (12), we use a Gauss-Newton minimization approach. This is an iterative
approach where after linearizing ¢)(my,) in the vicinity of a model my, for a small model perturbation §my, at the k** iteration,

we obtain a set of linear equations or the normal equation

Hpomy = —g;, (15)
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where the Gauss-Newton Hessian H;, € RVm*Nm matrix is given by

Hi = Re{TTWIWT 1} + BWI W, | (16)

and the gradient vector by

g = —Re[T | WI W {d*™ — d™"}] + W[ W, {my, — mef} . (17)

The matrix J is the Jacobian matrix also known as the sensitivity or the Fréchet derivative matrix. Following Johnson
et al. (2010), we implement a parallel conjugate-gradient least-square (CGLS) solver (Hestenes and Stiefel, 1952) to solve
the normal Eq. (15). The normal equation is first reformulated into an equivalent least-squares problem and then solved for
the model update dmy, using only the Jacobian matrix J without explicitly forming the Hessian matrix H. As Ny, > Ny
for typical ERT surveys, this approach avoids massive computational cost associated with the explicit formation of Hj. We
therefore only need to compute J, at each iteration, which is also a computationally intensive step. The effective computation
of Jt. is explained in the next subsection 3.3.

The solution of Eq. (15) gives a model update vector 6my, at the k*" iteration such that a new model

my 1 := my + admy (18)

decreases the cost function 1, i.e., ¥ (mgy1) < 1 (my). There is a common practice to find step-length « using a line search
method (Nocedal and Wright, 2006); however, from our experience, a full step-length, i.e., « = 1, works well for the ERT data
inversion.

In our implementation, the Gauss-Newton iteration usually starts with an average apparent conductivity model as an initial
model and continues until the data misfit drops below a predefined tolerance level (defined by a chi-squared data misfit x2 =
¢a/Nq < 1) or it reaches a predefined maximum number of iterations. Furthermore, a predefined input conductivity model can
also be used as an initial model in case it can be estimated from the existing geological and/or geophysical information. After

the inversion converges, it provides the minimizer m;,, which represents the inverted conductivity model 6,y = exp(myy,y ).
3.3 Jacobian computation

Calculating J at each iteration is one of the most computationally intensive steps in Gauss-Newton inversion. Therefore,
an efficient J drives the robustness of the developed inversion scheme and maximizes its scalability. The Jacobian matrix
characterizes the change in the synthetic ERT data d*¥" relative to a change in the model parameters m, and is defined as the

partial derivatives of d*¥* with respect to m = Ino, i.e.,

o™ o™

=0

Tjk

: j=12,..,Ng and k=12, .. Ny. (19)

- 8mk 8ok
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An adjoint state method is used to effectively compute the Jacobian matrix. Let A and B be the source and sink electrodes
located at r5 and rg, and M and N be the two measuring or receiving electrodes located at ry; and ry. The potential difference
between M and N can be obtained using the potential computed due to the source A at M and N, i.e., pan and ¢an, and
the sink B at M and N, i.e., ¢y and ¢pn. A simplified four-electrodes Wenner configuration is shown in Fig. 2. Note that,
contrary to this configuration, electrodes can be placed in any other configurations, e.g., Schlumberger, pole-pole, pole-dipole,

dipole-dipole, and gradient arrays, among others (Dahlin and Zhou, 2004).

O,

>
=
z
w

Earth

Figure 2. Wenner electrode configuration: four electrodes A, B, M, and N are deployed in-line with an equal spacing a between the two
neighboring electrodes. Electrodes A and B act as the source and sink electrodes where current [ is injected, while electrodes M and N act

as the receiving electrodes measuring a potential difference A¢.

Let’s-assume-that-pryrand-prx—are-two-interpolation—veetors-and-Using the expression derived in Appendix A (Eq. A9), an
element of the Jacobian matrix is obtained b

o™ 9A
L = J — — T [ —
ik = g~ (P47 28) Gy (B~ BN, 0

where ® 4 and @y are potential distributions due to the source A and sink Bsueh-that-

T ‘ T s T s T
doam =PuPa, oan=pPx®a, ¢BvM =pPy®Pr. and ¢pn =pNPB.

syn / /
d;" = dam — ¢AN — ¢BM + PBN -
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otential distributions due to pseudo source and sink, respectively, at the receiving electrodes M and N.
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Assuming &g = &, — ®p and P = ®); — Py, where Pg is the net potential due to the source and sink electrodes A and
B; and ®y, is the net potential due to source and sink assumed to be located, respectively, at the receiving electrodes M and N,

this results in

od;™ 0A
L =9l —&y. 21
amk S amk R (21)
240 Equation (21) is valid for any numbers of the source/sink electrodes and the receiving electrodes as well as any of their

combinations. One only needs to compute the net potentials due to the source/sink electrodes ®g and receiving electrodes ®g

using the superposition principle.

4 Parallel Implementation within PFLOTRAN
5 ParalleHimplementation

245  The parallel implementation strategy for the ERT forward modeling and inversion capabilities follows the existing PFLO-
TRAN’s strategy for flow and transport process models, Forward ERT modeling is implemented by extending PFLOTRAN's
hierarchy of Fortran classes and data structures to create a new ERT process model that constructs and solves the linear
systems of equations described in Section 2. The implementation of inversion, as described in Section 3, is completely new.
to PFLOTRANand requires all the necessary steps (or calculations) for ERT inversion, such as the cost-function computation,

250  regularization, Jacobian computation, solution to the dense Gauss-Newton normal equation, and model update.

To execute simulations in parallel, domain decomposition is employed to distribute the discrete computational domain across

(computer) processes using a legical-decompesition-division along the three principal axes for structured grids (calculated by
PETSc or explicitly defined by the user)forstruetured-grids, or in the case of unstructured grids, the ParMETIS parallel graph

partitioner (Karypis and Schloegel, 2013) is employed to divide the domainand-maximize-load-balance—Al-interproeessor-.
255 All interprocess communication is carried out with MPI (Message Passing Interface), and PETSc’s parallel data structures
facilitate much of the MPI communication.

Efficient partitioning and the overlapping of communication with computation (e.g., calculating floating point operations
while data is being transferred between processes) helps improve parallel performance. The latter helps mask communication
costs. The goal is to maximize the time spent in computation and minimize interprocessorcommunication-interprocess communication

260  and enforce load balance, the even distribution of computation across processes employed. Efficient partitioning can be ac-

complished by dividing the domain evenly and minimizing the number and size of (MPI) messages being passed between

processes.

265
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of processesHowever, an even distribution does not necessarily guarantee load balance as certain regions of the domain with
time-consuming operations (e.g., localized physics, intense input/output or I/O) may require more computation. Thus, efficient

%@WWOWWWWHW&HPFLOTRANMMMM%& wgavllg\ﬁle /O is
through HDFS ;an

binary file format that leverages MPI-10 operations to read/write a single file using multiple (potentially thousands of) processes
(The HDF Group, 2022). PFLOTRAN writes obsery

point)-appending-the-process TD-to-the filename of ASCIL-formatted observation files (files storing ERT data at specific
locations in space) locally on the ASEH-formatted-fileprocesses owning the observation points. Thus, the writing of observation
files requires no parallel communication. For more comprehensive details on the parallel implementation strategy employed
within PRLOTRAN, interested readers are referred to Hammond et al. (2012, 2014).

5 Modeling benchmarking results

To examine the accuracy of the PFLOTRAN ERT process model, simulation results are compared against solutions obtained
using well established analytical and numerical methods. Two cases are considered for the comparison: three-layer earth and
3-D earth resistivity models. All benchmarking simulations were performed on the Deception Supercomputer-supercomputer
housed at the Pacific Northwest National Laboratory. It is composed of 96 compute nodes where each node has 64-core AMD
EPYC 7502 processors running at 2.5 GHz boost to 3.35 GHz with 256 GB of memory.

5.1 Layered earth model

Let us consider the layered earth or 1D model shown in Fig. 3. The model is composed of three layers, whose resistivity (p)
and thickness (¢) are [100 Qm, 30 m], [300 2m, 30 m], and [10 Q2m, half-space], respectively, from the top to bottom. The
dimension of the model is 400 x 400 x 100 m®. The model boundaries are extended to =3000 m in the z- and y-directions,
and 3000 m in the z-direction to accommodate zero Dirichlet boundary condition at the side and bottom boundaries. These

boundary extensions are not shown in Fig. 3. Vertical electrical sounding (VES) data are simulated at the center of the model

12
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considering a Wenner configuration. This configuration consists of four electrodes A, B, M, and N, which are deployed in-
line with an equal spacing a between the two neighboring electrodes (Fig. 2). Electrodes A and B again act as the current
source and sink electrodes, while electrodes M and N as the potential receiving electrodes. Starting with a smaller value of
a for a shallow depth investigation, the value is progressively increased to examine deeper depths. In our case, we start with
a minimum value a,,;; = 8 m and progressively increase it to a maximum a,,x = 132 m following a = ani, + ida, where

da=4mandi=0,1,2,...,31. This results in Ng = 32 VES sounding recordings using N, = 128 electrodes.

Electrodes: A, M, N, and B

A A A A A A A A A A A A A A
100 Om First layer 30m
300 Om Second layer 30m
10 Om Half-space

Figure 3. Vertical cross-section of a three-layer earth resistivity model used for benchmarking PFLOTRAN results against the analytical

solutions.

To simulate the VES data, the model is discretized using a mix of uniform and non-uniform cell sizes in the z-, y-, and
z-directions. The main computational domain is discretized with a uniform grid spacings of 2 m in the x- and y-directions
and 1 m in the z-direction. The boundary regions are discretized with severely stretched non-uniform grid spacings following
Jaysaval et al. (2014). The discretization results in a grid with 240 x 240 x 120 cells. Therefore, using the FV method to simulate
electric potentials leads to a system of linear equations with 6,912,000 DOFs. PFLOTRAN simulated the VES data using 512
processing-eores-processes on Deception. Total simulation time was 45 s.

The simulated VES results are compared against analytical solutions obtained from SimPEG (Cockett et al., 2015). Figure
4 shows the comparison of the apparent resistivity p* responses. Analytical and PFLOTRAN results are shown by the solid
black line and filled red circles, respectively. We observe that both responses agree very wellwith-each-other. To make the
comparison more quantitative, we calculate the relative difference between the two responses and show the difference in Fig.

4 (blue line). The relative difference varies from 0.02% to 1.3%. We also calculate the average relative difference using

Ng

1 PLi = P3;

€= — E — = 22)
Na 3 P1i

13
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Figure 4. Apparent resistivity p* responses computed for the layered earth resistivity model in Fig. 3 (upper plot). They are calculated using
the analytical method (solid black lines) and PFLOTRAN (filled red circles). The lower plot (blue line) shows the relative difference (in
percentage) between the analytical and PFLOTRAN results.

where p* with subscripts 1 and 2, respectively, represents the apparent resistivity computed using PFLOTRAN and the
analytical method from SimPEG. The average relative difference € is 0.18%. These relatively small differences demonstrate

the high degree of accuracy of the PFLOTRAN ERT process model for the 1D model. Note that the apparent resistivity was

computed using

a0
=1 (23)

where A¢ = pam — daN — dBM + ¢BN and G is a geometric factor given as

(. - ] o)
21

TAM TAN BM BN

with distances between the source electrode A and the receiving electrodes M and N are, respectively, 7oy and 7aN,
while between the sink electrode B and the receiving electrodes M and N are, respectively, rgy and rpy. For the Wenner

configuration, ray = a, 7AN = 2a, "M = 2a, and rgN = a. Therefore, geometric factor G = 1/2mwa was used for calculating

p? using Eq. (23).

14
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5.2 3D earth model

In the previous example, PFLOTRAN accuracy for simulating ERT responses was validated for a simplistic 1D earth model.
In real world, however, the earth models are 3-D with varying degrees of heterogeneity. Therefore, it is important to validate
the accuracy of numerical results computed using PFLOTRAN against results computed using well established methods for
3D models.

Survey Profile:y =z =10

Conductivity (S/m)

Figure 5. 3D earth resistivity model composed of two anomalous blocks embedded in a homogeneous background. ERT profiling data are
simulated along a survey profile at y = 2 = 0 m from x = —16 m to x = 16 m using the Wenner configuration with increasing electrode

spacing a from 1 to 6 m.

We consider the 3D model shown in Fig. 5. The model dimension is 32 x 16 x 8 m3. It has a homogeneous background
of conductivity 0.002 Sm~! and includes two anomalous blocks: a eonduetivity-conductive block (0.2 Sm™!) and a resistive
block (0.0002 Sm~1!). Both anomalous blocks have a dimension of 2 x 2 x 2 m? and are separated by 4 m in the z-direction. As
in the previous case, the model boundaries are extended to £1000 m in the z- and y-directions, and 1000 m in the z-direction
to accommodate zero Dirichlet boundary condition at the side and bottom boundaries. ERT profiling data are simulated along a
survey profile (yellow line) at y = z = 0 m from x = —16 m to = = 16 m using the Wenner configuration with increasing elec-
trode spacing a from 1 to 6 m. Unlike the VES performed for the 1D model where data were simulated at a single observation
point at the center of the model, the ERT profiling, performed for the 3D model, records data at multiple observation points
along the survey profile. The profiling, therefore, helps in investigating lateral conductivity variations in the model along the
z-direction. In this case, it results in Ngq = 129 ERT data recording by using N, = 32 electrodes placed uniformly at every 1 m
fromx =—15.05mtozr =15.5m.

The main computational domain is discretized with a uniform grid spacing of 0.2 m in all the three directions, while the
boundary domain is again discretized with severely stretched non-uniform grid spacings. The model discretization leads to a
grid with 200 x 120 x 60 FV cells and, hence, 1,440,000 DOFs in the corresponding system of linear equations. PELOTRAN
simulated the ERT profiling data using 128 precessing-coresprocesses on Deception. Total simulation time was 9 s.

15



350

355

a)goo s P)eoo 5
500 _‘_‘_‘\\//"\’__ B 500 B 9
g 400 , 400 3 £
—— PFLOTRAN —— PFLOTRAN [a)
1o - -
~, 300 . E4D —e— Relative Diff. 300 e E4D —e— Relative Diff. o
© 2 2>
Q 200 200 =]
o}
100 /\/\/\/\\Aj\/\/\ 1 100 re
0l - - } - - —L0 0l — 0
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
600 s Moo 5
500 .\/\/W\ 4 500 /W AS
g 400 , 400 3 £
—— PFLOTRAN —— PFLOTRAN a
1o wve Dff. wve Dff.
~, 300 . E4D —e— Relative Diff. 300 . E4D —e— Relative Diff. )
© 2 2>
Q. 200 200 =1
o}
100 1 100 1e
0l - - - - - —L0 0l - - - - - —L0
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
€)go0 5 ) 600 5
500 \N/\,_,_ 4 500 \—f"\ S
g 400 5 400 5 =
—— PFLOTRAN —— PFLOTRAN [a)
1o - -
=, 300 E4D —e— Relative Diff. 300 e E4D —e— Relative Diff. o
© 2 2>
Q. 200 200 =1
o
100 1 100 10
0l - - - - - —L0 0l - - - - - —L0
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
x[m] x[m]

Figure 6. Apparent resistivity p® responses computed for the 3D earth resistivity model in Fig. 5 using the Wenner configuration with spac-
ings: (a)a=1m, (b)a=2m, (c)a=3m, (d)a=4m, (e) a=5m, and (f) a = 6 m (upper plots). They are calculated using PFLO-
TRAN (solid black lines) and E4D (filled red circles) for an ERT profiling along a survey profileaty = z = 0 fromz = —16 mto x = 16 m.
The lower plots (blue lines) show the relative difference (in percentage) between PFLOTRAN and E4D results.

Figures 6(a) — (f) (upper curves) show the apparent resistivity p* responses computed for the 3D model in Fig. 5 using the
ERT profiling with the Wenner configuration, respectively, with electrode spacings of 1, 2, 3, 4, 5, and, 6 m. The solid black
lines show the responses computed using PELOTRAN. All responses exhibit the characteristics of the conductive and resistive
anomalous blocks embedded in a homogeneous background of conductivity 0.002 Sm™! or resistivity 500 Qm; see, e.g., the
low apparent resistivity on the left and high apparent resistivity on the right sides of the plots. These responses are compared
against responses computed using E4D (Johnson et al., 2010; Johnson and Wellman, 2015). In E4D, an unstructured-mesh FE
method is implemented to perform the forward modeling. The filled red circles show the responses computed using E4D. The
relative differences between the two codes are shown by the lower blue lines, which vary from 0.02% to 2.5%. The average
relative difference ¢ computed using Eq. (22) is 0.77%. These relatively small differences imply a good agreement between

responses computed using both codes.
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6 Inversion results

To examine the efficiency of PFELOTRAN to invert ERT data, we consider a model modified from Fig. 5 by cropping the model
for || > 8 m. The modified model, therefore, has the dimension of 16 x 16 x 8 m?. The model is discretized using the same
grid spacings as in the previous 3D modeling example, which resulted in 120 x 120 x 60 = 864,000 FV cells. We computed
synthetic ERT data for three survey lines located at the ground surface at y = —5m, y =0 m, and y = 5 m from z = —8 m to
x = 8 m. Electrodes are placed uniformly with an electrode spacing of 1 m along the three survey lines from z = —7.5 m to
x =7.5m, i.e., 16 electrodes along each survey line. Using these /N, = 48 electrodes, ERT data were simulated considering
different combinations of a set of 4 electrodes, where 2 electrodes acted as the current and the remaining 2 as the potential
receiving electrodes. These electrode combinations result in Ng = 2070 simulated ERT data. PFLOTRAN simulated these ERT
data using 128 proeessing-eores-processes on Deception. Total simulation time was 6 s. In this case, ERT data were simulated in
the form of the resistance obtained using #, which basically equals to the potential difference A¢ for unit current (I =1 A).

The simulated ERT data were then inverted using PFLOTRAN starting with a model having a half-space conductivity of
0.0022 Sm~1!. The starting model conductivity was obtained by averaging the apparent conductivity computed from the given
ERT data. The previously described modeling grid also acted as the inversion grid, i.e., each cell in the model was used as an
inversion parameter. Therefore, we needed to invert for /V,,, = 864,000 model parameters. PELOTRAN inverted the ERT data

using 512 proeessing-cores-processes on Deception. Total inversion time was 74 s.

Conductivity (S/m)

Figure 7. Inversion result of the simulated ERT data for a model modified from Fig. 5 by cropping the model for |z| > 8 m.

Figure 7 shows the inverted conductivity model. The inverted model agrees well with the true model: the inversion recovered

the conductive and resistive anomalies in the model. The inverted resistivity, however, varies smoothly in the model because
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Figure 8. A measure of data misfit as the inversion progresses: x? versus Number of Iteration.

a smooth regularization constraint is applied by minimizing the difference of the cell conductivity and the conductivity of its
neighboring cells. Further discussion on the implementation of our regularization schemes is beyond the scope of the current
paper.

The initial chi-squared data misfit x? was 14.8. As the inversion progressed, x? decreased as shown in Fig. 8. The inversion
took 11 iterations to satisfy the convergence criteria defined by x2 < 0.9. To further examine the efficiency of PFLOTRAN
to fit the individual ERT data, a histogram of data-fit error is also shown in Fig. 9. The data-fit error is defined as ratio of the
residual resistance (difference of the observed and predicted resistances) and observed resistance expressed as a percentage.

The histogram implies that the ERT data were fitted comparatively well.

7 Scalability tests

Scalability tests demonstrate parallel performance or how efficiently a simulator utilizes additional processes to either speed
up a simulation of fixed problem size (strong scaling) or maintain speed as the problem size and number of processes increase
proportionally (weak scaling). For ideal strong scaling, the speedup is proportional to the increase in the number of processes
(e.g:, doubling the number of processes cuts the run time in half). while ideal weak scaling results in an unaltered or constant

run time. In either (ideal) case, the additional computing capacit is often termed

linear speedup, whereas superlinear speedup is better than ideal (e.g., doubling the number of processes reduces the run time to

is efficiently utilized. Ideal strong scalin
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Figure 9. Histogram of data-fit error, which is defined as ratio of the residual resistance (difference of the observed and predicted resistances)

and observed resistance expressed as a percentage.

less than half). Superlinear performance is not uncommon, as access to increased cache (efficient, high performance memo
on the processor core) can generate superlinear speedup.

As discussed earlier, there are mainty-two computationally intensive steps to invert ERT data: forward modeling and Jacobian
computation. To demonstrate the parallel performance of PFLOTRAN for these two steps, large-scale sealability—tests—are
performed-strong scaling tests are reported in this section by using up to 1,024 eeres-processes on the Deception Supercomptiter
supercomputer or up to 131,072 eeres-procsses on the Theta Supercomputersupercomputer. Configuration details for Deception

were previously given in the Modeling Banchmarking Results section (5). On the other hand, Theta is a leadership-class

supercomputer, ranked within the top 100 fastest computers in the world and housed at the Argonne Leadership Computing
Facility (ALCF) at Argonne National Laboratory (www.alcf.anl.gov/alcf-resources/theta). With a peak performance of 11.7

PFLOPs, it is composed of 4,392 compute nodes connected through the-a Cray Aries networkintereonneet. Each node has
64-core Intel Xeon Phi 7230 processors running at 1.3 GHz with 192 GB of memory. Therefore, there are 281,088 eomputing
eeres-processes available on Theta.

To-optimize—the—performanee; PETSe—and-The PFLOTRAN compilations on Deception and Theta were linked to the
Intelntel’s Math Kernel Library (MKL)fer Basie Linear Algebra-Subprograms{(BEAS) Linear AlgebraPackage (EAPACK);

and-Sealable LAPACK-Meoreover;-the-analysis-is-ecarried-out-only-for-the-. The code leverages solely the distributed-memory
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Table 1. Test matrices obtained by rediscretizing the three-layer earth model in Fig. 3 using different cell sizes dz, dy, and dz in the z-, y-,
and z-directions. N, Ny, and N are respectively the number of FV cells in the x-, y-, and z-directions. Note that the cell sizes are given

only for the main computational domain; the boundary domain is discretized using severely stretched non-uniform cell sizes.

Matrix Discretization DOFs
Name o dy(m) d:(m) N.=N, N.
M2 4.0 1.00 140 120 2,352,000
M7 2.0 1.00 240 120 6,912,000
M19 1.6 0.50 290 220 18,502,000
M35 1.6 0.25 290 420 35,322,000
Me64 0.8 0.50 540 220 64,152,000
M122 0.8 0.25 540 420 122,472,000

arallel capability on the machines and not the shared-memory architectures-wasnotexploitedfor-thescalability-analysismulti-threading.

7.1 Forward modeling scalability

The three-layer earth model in Fig. 3 is first rediscretized to generate several test matrices for the analysis —TFable-l-sammarizes
410 by considering different cell sizes in the x-, y-, and z-directions. These test matrices result in six different modeling scenarios
from coarser to finer grids. Table 1 completely specifies details of the test matrices M2, M7, M19, M35, M64, and M122
along with the number of DOFs in the governing matrix equations that ranges between 2 and 122 million. The naming of these
matrices is based on the number of DOFs they represent, e.g., M19 represents a matrix equation with about 19 million DOFs.

To the best of our knowledge, the modeling with 122 million DOFs stands as the largest ERT modeling reported in the geophys-

415 ical literature. The next largest 3D ERT modeling problem reported in the literature was composed of about 10 million DOFs
(Ren et al., 2018), while most others were often composed of less than a million DOFs (Gunther et al., 2006; Ricker et al., 2006; Johnson e
. Having capability to solve for hundreds-of-millions- DOFs-efficiently-up to a hundred million DOFs efficiently in parallel is a
crucial requirement for next-generation-industry-seale-large-scale ERT modeling and inversion problems in the future if model
dimensions are significantly increased and/or finer grids are employed.

420 Considering the six test matrices above, we performed the forward modeling scalability test on Theta for simulating ERT data
for N, = 128 electrodes, the same number of electrodes as in the three-layer benchmarking example. Figure 10 illustrates the
PFLOTRAN ERT process model strong scaling for each test case (wall-clock time versus the number of processes employed
for a fixed problem size). The wall-clock time is shown on the vertical axis, while the horizontal axis shows the number of
computing-eoresprocesses; both axes are shown in logarithmic base 2 scale. For-all-the-matriees;-The line labeled "M19 Ideal"
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Figure 10. PELOTRAN scalability for simulating ERT data for the model in Fig. 3 for N, = 128 electrodes. The test is performed on the
Theta Supereomputer-supercomputer considering six test matrices M2, M7, M 19, M 35, M 64, and M 122 with the respective number of
DOFs of about 2, 7, 19, 35, 64, and 122 million (see Table 1 for details).

is the plot of ideal performance based on the 64 process run time for the M19 simulation:
Tea x 64
T — 647’

n

(25)
n
where T, is the time on n processes and T is the time on 64 processes.

For all problem sizes, the wall-clock times flatten at higher numbers of processes. This phenomenon is expected as the
amount of work per process (DOFs per process) decreases at higher process counts and the cost of communication between
processes begins to dominate. The M 19 performance begins to deviate from ideal at ~~ 2048 processes, which equates to ~ 9000
DOFs per process. Similar behavior is observed for many of the other problem sizes. Hammond et al. (2014) demonstrates that
for groundwater flow and reactive transport simulation PFLOTR ANexhibits-almosttinearsealability-on—up-to-8;192-eores:
Beyond-this-runs most efficiently when at least 10,we-notice-a-departure-from-the-linear-scaling—As-diseussed-in-Seetion-27;

a_aynlain N ha datario no h A ha ne A o ad—to—<o atha gavarning ne am

These results show that this 10,000 DOF threshold also applies for PFLOTRANERT simulations. That is, PELOTRAN’s
scalability on the supercomputer should be more ideal when the number of DOFs per process is greater than 10,000.

Another factor limiting parallel performance is the limited scalability of linear Krylov solvers at high process counts.
Mills et al. (2009) demonstrates that the vector inner products performed within Krylov solvers become increasingly expensive
as tens of thousands of processes are employed to solve a problem. These inner products (or MPI global reduction op-
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-) require repeated global synchronization across
all processes involved. As more processes are employed to solve the problems (requiring communication across a growing
network of compute nodes), the transfer of information for each vector inner product is more expensive time-wise (i.€..
increased number of hops within the high-speed network, longer distance traveled). Figure 10 reveals similar phenomenon.

7.2 Jacobian computation scalability

To test the scalability of PELOTRAN for the Jacobian computation, we consider a Jacobian matrix computed for inverting the
ERT data in the Inversion Result Section 6. Recalling that Nq = 2070 ERT data and N, = 864,000 model parameters for the
inversion example, the dimension of the Jacobian matrix J is therefore 2070 x 864, 000. The Jacobian matrix is computed at

each inversion iteration after the forward modeling run and used in the normal equation (Eq. 15) to get a model update dm.

1,024.00 r
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256.00 ------ Perfect scaling
128.00 4
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Figure 11. PFLOTRAN strong scaling for computing the Jacobian for the ERT inversion example in Fig. 7. The dimension of the Jacobian
matrix J is 2070 x 864,000 and is distributed uniformly over each computing eereprocess. PFLOTRANexhibits superlinear performance

for larger numbers of processes.

The Jacobian scalability test is performed on the Deception Supercomputersupercomputer. Figure 11 illustrates the strong
sealing-scalability of PELOTRAN wall-clock time for computing J . It shows that PFLOTRAN exhibits linear (and sometimes

superlinear) scalability for computing J with increasing numbers of esresprocesses. Consequently, the total wall-clock time for
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455 computing J using 1,024 eores-processes reduces to 0.5 s compared to 887 s when using a single eere-process on Deception.

rsThis ideal performance in computing
J_is most likely due to even load balance across processes and the lack of MPI communication in its construction. Moreover,
as noted before, the superlinear performance is most likely due to access to increased cache with an increasing number of
460  processes.
For industry-seale-large-scale ERT inversion problems, the perfeetly-linear scaling for computing J can be exploited to
reduce the overall inversion wall-clock time even if PELOTRAN exhibits deteriorating scalability for the forward modeling on
a very large number of eores—However;one-processes. For example, for an ERT inversion problem where the (7 calculation time
is much higher than the forward modeling time, increasing the number of processes to reduce the overall inversion wall-clock
465  time is recommended, even when forward modeling exhibits significant departure from the linear scalability. One has to find
anrappropriate-trade-off between-forward-modeling a balance between the two, and the most time consuming operation should
govern.

8 Discussions

In the past 20 years, a few open-source 3D ERT modeling and inversion codes were developed to handle moderate-scale ERT
470 problems (e.g., ResIPy, SImPEG, pyGIMLL and E4D). Although some of these codes can practically tackle most present
ERT modeling and inversion problems having less than 10 million DOFs, they still lack full-scale parallel implementations
to efficiently distribute numerical computations over massive supercomputers. The limitation can also lead to computational
challenges for large-scale ERT problems with 100 million or more DOFs, which may not be solved efficiently with the existing.
codes. The 3D ERT modeling and inversion capability developed within PFLOTRANremoves this limitation. To examine the
475 accuracy of the forward modeling capability, numerical results from PFLOTRANwere compared against analytical solutions
for a layered earth model and numerical results obtained from E4D for a 3D earth model. The average relative differences
stayed within a percent, which demonstrated the high degree of accuracy of the PFLOTRANmodeling capability. Furthermore,
large-scale strong scalability tests, using up to 131,072 processes, were performed on a leadership class supercomputer to
demonstrate efficient distribution of computational workloads over massive supercomputers. The scalability tests demonstrate
480  that computational times for the Jacobian computation scale linearly with increasing number of processes. For the forward
modeling, PFLOTRANshowed a linear to near-linear scaling behaviour up to 10,000 DOFs per process, beyond which performance
tends to degrade
Due to the efficient parallel performance of PELOTRANobserved above, a large-scale ERT simulation problem with 122 million
DOFs and 122 electrodes could be solved in about 2 minutes by using 32, 768 processes as compared to taking about an hour
485 with 512 processes. Combining this forward modeling scalability along with the ideal scaling of Jacobian computation, we
can aim for inverting moderate-scale ERT problems within minutes and large-scale problems within hours with the access to
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massive supercomputers. The moderate-scale inversion example of Section 6 demonstrated that inversion of Ny = 2070 data
and Ny, = 864,000 model parameters could be performed in about a minute by using 512 processes.
Finally, there were two key motivations for implementing ERT capabilities in PFLOTRAN, The first motivation was to

490  utilize the massive parallel infrastructure implemented within PFLOTRANTfor the flow and transport simulations as illustrated
by Hammond et al. (2012, 2014) for simulating subsurface problems composed of billions of DOFs utilizing hundreds of
thousands of computing processors. This infrastructure made PFLOTRANa natural fit to achieve our goal of massive parallel
implementation for the ERT forward modeling and inversion capabilities. Researchers familiar with PFLOTRANcan now have
immediate access to the added geophysical ERT capabilities with minimal learning efforts.

495  The second motivation was to have a native implementation of ERT modeling and inversion capabilities along with flow
and transport simulations. The new capabilities will allow us to perform fully coupled hydro-geophysical simulations and
inversion. The idea behind the joint hydro-geophysical simulation is to use known flow and transport parameters, such as
porosity and intrinsic permeability, and simulate for hydrological variables, e.g.. liquid saturation and solute concentration.

Usin

etrophysical relationships (e.g., Archie’s law or its modifications; Slater, 2007), these parameters and variables can be

500 mapped into electrical conductivity, which subsequently can be used for simulating ERT responses. In our previous work,
a joint hydro-geophysical simulation capability was developed by combining the capabilities of PFLOTRAN and Jacobian
eomputation-wall-elock-times—E4D (Johnson et al., 2017). However, it was not straightforward to use PFLOTRAN:-E4D for
joint hydro-geophysical simulations. This is because the implementation was based on obtaining flow and transport parameters
and variables from PFLOTRANusing a structured mesh, which then needed to be interpolated on an unstructured tetrahedral

505 mesh for ERT simulations by E4D. The process was cumbersome and had the potential for errors. PFLOTRAN's native
implementation of ERT avoids employing any kind of interpolation because both flow and transport and ERT simulations use
the same modeling grid.

Furthermore, there are growing interests in joint hydro-geophysical inversion, i.e., estimating the distribution of subsurface

., Mboh et al. (2012); Camporese et al. (2015); Riicker et al. (2017

510 . The inclusion of the ERT simulation capability in PFLOTRANfulfills the requirement of the forward modeling necessary for
native implementation of hydro-geophysical inversion. Fully coupled hydro-geophysical simulation and inversion capabilities
are currently under development within PFLOTRANand will be a focus of our forthcoming papers.

flow and transport parameters, from time-lapse ERT data, see €.

9 Conclusions

Two new capabilities — forward modeling and inversion of geophysical ERT data — are developed within PFLOTRAN, a
515 massively parallel open-source, state-of-the-art, multi-phase, multi-component subsurface flow and transport simulation code.
The capabilities are accurate, robust, and highly scalable on HPC platforms. Accuracy of the forward modeling capability was
demonstrated for layered earth and 3D earth conductivity models by comparing our numerical results against well-established
analytical and numerical results. The average relative differences stayed within a percent, demonstrating the high degree of

accuracy of the PFLOTRAN ERT process model. The inversion capability was demonstrated for a 3D synthetic case by
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recovering the conductivity of the model. Large-scale scalability tests illustrated that the forward modeling for models with
hundreds—of-milliens—a _hundred million DOFs can be performed in a few minutes, e.g., ERT modeling for a model with
122 million DOFs and 122 electrodes was performed in 128s by using 32,768 eores-of-processes on a supercomputer. The
Jacobian computation, a key ingredient for the inversion, exhibited perfeetty-ideal or linear scaling, and as a result a Jacobian
of 2070 x 864,000 dimension was computed in 0.5s using 1,024 eores-processes compared to 887s using a single eoreprocess.
Moreover, integration of geophysical ERT capabilities within PFLOTRAN opens door to perform coupled hydro-geophysical

modeling and inversion, which is the-a focus of our future research.

Code and data availability. The source code, input file, and results presented in this manuscript are based on PFLOTRAN version v4.0.
It can be downloaded from its Git repository at https://bitbucket.org/pflotran/pflotran and compiled after checking out the v4.0 tag (git
checkout maint/v4.0) following the instructions provided at https://pflotran.org/documentation. A snapshot of PFLOTRAN v4.0 is also
uploaded to Zenodo repository at https://doi.org/10.5281/zenodo.6191926 (Jaysaval et al., 2022). The corresponding version of PETSc is
v3.16.4 and was configured with Intel C/C++ 2020u4 using the following configuration script: ./configure -CFLAGS="-03" —-CXXFLAGS="-
03’ -FFLAGS="-03’ —with-debugging=no —download-mpich=yes —download-hdf5=yes —download-fblaslapack=yes —download-metis=yes
—download-parmetis=yes —download-hdf5-fortran-bindings=yes. The modeling and inversion results presented in the paper are also avail-
able at the above Zenodo repository in paper-examples folder. Each subfolder within it contains a README file with brief instructions to

reproduce the results.

Appendix A: Jacobian computation

Let’s assume that py; and are two interpolation vectors and ® » and ® are potential distributions due to the source A and
sink B (Fig, 2) such that

oam =Pu®a;  San =Pn®a, dnm=pu®s, and dpy=pi®s. (AD

Therefore, the i simulated potential difference between the receiving electrodes M and N can be obtained as

d;"™" = ¢am — pAN — dBM + PBN - (A2)

Using Eq. (A1) in Eq. (A2), we get_

&)™ =pii(®@a — ) — P (®a — ). (A3)
Taking derivative of Eq. (A3) with respect to conductivity m;, of k" cell yields
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— — Ti —
o (®A —Pp) — Py o (®p —Pp). (A4)

Furthermore, taking derivative of Eq. (10) with respect to my, yields

8A(I)+A8<I> o, (A5)
Omy Ok

where we used 0s/9m;. = 0 as the source does not depend on the conductivity.
If A is invertible, rearranging Eq. (A5) gives

oP 0A
A b i 3 A
G " ome e

Using Eq. (A6) in Eq. (A4), we get

o> OA 0A
J _ T —1 o T —1 o
g DA gy, (AT BB TENA T (B Bn). (A7

As 9d" /Omy, is a scalar quantity, using the property x”y = y” x for two vectors x and y, Eg. (A7) yields_

o™
8mk.

0A
= _(‘I’A—‘I’B)TTW(A_lpM—A_le)7 (A8)

where AT = A is used due to its symmetry.
If the same interpolation scheme is used for placing the current electrodes within the discretized cells and recording the

otential at electrodes from the cell potentials, we will have A ~! = _—Pyand A! = —®y. Therefore
M7 @y 2 A @y ) (A9)
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