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Abstract. The root mean squared error (RMSE) and mean absolute error (MAE) are widely used metrics for evaluating models.

Yet, there remains enduring confusion over their use, such that a standard practice is to present both, leaving it to the reader

to decide
:::::
which

::
is

:::::
more

:::::::
relevant. In a recent reprise to the two-century-long debate over their use, Willmott and Matsuura

(2005) and Chai and Draxler (2014) give arguments for favoring one metric or the other. But this comparison can present a

false dichotomy. Neither metric is inherently better: RMSE is optimal for normal (Gaussian) errors, and MAE is optimal for5

Laplacian errors. When errors deviate from these distributions, other metrics are superior.

1 Introduction

The root mean squared error (RMSE) and mean absolute error (MAE) are two standard metrics used in model evaluation. For

a sample of n observations y (yi, i= 1,2, . . . ,n), and n corresponding model predictions ŷ the MAE and RMSE are

RMSE =

√√√√ 1

n

n∑
i=1

(yi− ŷi)2 (1)10

MAE =
1

n

n∑
i=1

|yi− ŷi|. (2)

As its name implies, the RMSE is the square root of the mean squared error (MSE). Taking the root does not affect the relative

ranks of models, but it yields a metric with the same units as y, which conveniently represents the typical or “standard” error

for normally distributed errors. The MSE and MAE are averaged forms of the L2-norm and L1-norm, which are the Euclidean

and Manhattan distance, respectively.15

In what have become two classic papers in the geoscientific modeling literature, Willmott and Matsuura (2005, MAE) and

Chai and Draxler (2014, RMSE) discuss whether RMSE or MAE is superior. In their introduction, Chai and Draxler (2014)

state:

:
“The RMSE has been used as a standard statistical metric to measure model performance in meteorology, air qual-

ity, and climate research studies. The MAE is another useful measure widely used in model evaluation. While they20

have both been used to assess model performance for many years, there is no consensus on the most appropriate

metric for models errors.
:
”
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That
:::
The

:
statement may have accurately characterized the

:::::::::
application

::
in geosciences but not

::
in

:
statistics. Among statisticians,

the answer was common knowledge, at least to the extent that there can be no consensus. Different types of models have

different error distributions and so necessitate different error metrics. In fact, the debate over squared versus absolute error25

terms had emerged, was subsequently forgotten, and reemerged over the preceding two centuries (Boscovich, 1757; Gauss,

1816; Laplace, 1818; Eddington, 1914; Fisher, 1920), with history given by (Stigler, 1973, 1984), making it one of the oldest

questions in statistics.

It is unclear exactly when this “no-solution solution” became common knowledge, in part, because contemporary authors

rarely cite its sources. While reviewing the literature, I found proofs in several reference works, including the venerable Press30

et al. (1992, p. 701), but no references to
::
the

:
primary literature.

As this review will show, the choice of error term
:::::
metric

:
should conform with the expected probability distribution of the

errors; otherwise,
:::
any

:
inference will be biased. The choice of error metric is, therefore, fundamental in determining what

scientists learn from their observations and models. This paper reviews the basic justification for choosing between RMSE

or MAE, then discusses several alternatives better suited for the complex error distributions that are encountered in practice.35

The literature on this topic is vast, and I try to emphasize classic papers and textbooks from the statistical literature. To make

that discussion more concrete, I include several examples from hydrology and rainfall-runoff modeling, though none of the

techniques are exclusive to that field. The discussion is primarily written for Earth scientists who use RMSE or MAE but have

little-to-no awareness of formal likelihood methods.

2 The naive (frequentist) basis40

Willmott and Matsuura (2005) and Chai and Draxler (2014) present several arguments
::::
both for and against MAE and RMSE

:::::
RMSE

::::
and

:::::
MAE. I will not review them here. Instead, my focus is on an important omission in these papers: neither explains

:
;
::::::
instead

:
I
::::
will

:::::::
describe

:
the theoretical justification for MSE and MAE , which derives

::::
either

:::::::
metric.

::::
Both

::::::
RMSE

::::
and

:::::
MAE

::
are

:::::::
derived from the laws of probability, which themselves derive

:::
are

::::::
derived

:
from the laws of logic (Jaynes, 2003); that is to

say
:::
thus, there are logical reasons for choosing one

:::::
metric over the other.45

Like all inference problems, the justification begins with Bayes’ theorem,

posterior︷ ︸︸ ︷
p(θ|y) =

likelihood︷ ︸︸ ︷
p(y|θ)

prior︷︸︸︷
p(θ)

p(y)
(3)

where y is some set of observations, θ are the model parameters, and p(θ|y) is the probability of θ given y. In words, Bayes’

theorem represents the logical way of using observations to update our understanding of the world. The numerator of the right-

hand side contains two terms: the prior, representing our state of knowledge before observing y; and the likelihood, representing50

what was learned by observing y. The left-hand side, known as the posterior, represents our updated state of knowledge after

the observation. Given a set of observations y, the denominator of the right-hand side is constant, so, for convenience, Bayes’
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theorem is often rewritten as the proportion between the posterior and the product of the likelihood with the prior,

p(θ|y)∝ p(y|θ)p(θ). (4)

In the absence of any prior information the prior distribution p(θ) is “flat” or constant, such that the posterior is simply55

proportional to the likelihood,

p(θ|y)∝ p(y|θ). (5)

This relation provides the basis for “frequentist” statistics, first recognized by Bernoulli (1713) and later popularized by Karl

Pearson, Ronald Fisher, and others. Criticisms of frequentism aside (see Clayton, 2021, for summary), the recognition that

without strong prior information the simpler problem of deduction (using a model to predict data) could be substituted for60

the harder problem of induction (using data to predict a model) would determine the course of 20th-century science. The

substitution is expressed formally as

L(θ|y) = p(y|θ), (6)

where L is used to represent the likelihood so that it is not confused with the posterior probability distribution p(θ|y). Absent

any strong prior information, one can apply this substitution to infer the most likely model parameters θ given some data y.65

Because probability theory conforms with logic, the logical choice is to select, or at least prefer whatever model maximizes the

likelihood function. This basic argument provides the basis for maximum likelihood estimation (MLE, Fisher, 1922), which

are a class of methods for selecting the model θ having the greatest likelihood of having generated the data; formally,

θ̂MLE = argmaxθ(L(θ|y)), (7)

where θ̂MLE represents the MLE estimate of θ. The justification of MLE leads directly to the justification of MAE and70

MSE
::::::
RMSE

:::
and

:::::
MAE, because under certain conditions the MAE and MSE

::::
MSE

:::
and

:::::
MAE

:
are inversely proportional to the

:::
log likelihood. That is to say, the model that minimizes the appropriate metric is also the most

::::
more

:
likely, but understanding

exactly why this is so requires a bit more explanation.

3 The normal case

First, the case of normally distributed (Gaussian) errors. Consider a normally distributed variable y and some corresponding set75

of normally distributed model predictions ŷ. The model error is, therefore, the difference between two normal distributions. If

y and ŷ are independent, the error distribution is guaranteed to be normal. Such a model provides no information, however, and

for a model to be useful, ŷ and y should be dependent. Although the difference between two dependent normal distributions

is not guaranteed to be normal, it will often be so (Kale, 1970). Thus, we say that normally distributed variables will tend

to produce normally distributed errors. As a starting point, assume the prediction errors are normal and independent and80

identically distributed (iid). Ways of relaxing these assumptions are introduced in the next sections, but they provide a strong
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foundation, evident by the popularity of ordinary least squares. Our goal, then, is to identify the model f() with normal iid

errors that is most likely given the data
::
y, where f() has inputs x and parameters θ, written as f(x,θ). The output of f(x,θ) is

the model prediction ŷ, which represents the conditional mean of y given θ and x,

To find the most likely model, we begin with the likelihood given by the normal distribution,85

L(µ,σ|y) =
1√

2πσ2

n∏
i=1

exp

[
− (yi−µ)2

2σ2

]
, (8)

where
::
Π

::
is

:::
the

::::::
product

:::
of

:::
the

:::::
terms,

:
µ is the population mean and σ is the standard deviation. Next, f(θ,x) is substituted for

µ, replacing the population mean with the conditional mean,

L(θ,σ|y,x) =
1√

2πσ2

n∏
i=1

exp

[
− (yi− f(θ,xi))

2

2σ2

]
. (9)

A convenient practice is to take the logarithm of the likelihood, thereby converting the products to sums90

logL=−n logσ− n

2
log(2π)− 1

2σ2

n∑
i=1

(yi− f(θ,xi))
2, (10)

logging does not change the location of maximum, so it does not change the MLE estimate. From equation 10, it can be seen

that maximizing the log-likelihood for the parameters θ is equivalent to minimizing the sum

n∑
i=1

(y− f(θ,xi))
2, (11)

which is the L2-norm. Dividing by n also has no effect
::
on the location of the maximum of the log-likelihood and yields the95

MSE. Thus, for normal iid errors, the model that minimizes the MSE (or the L2-norm) is the most likely model, all other things

being equal. Although beyond our scope, information criteria, Bayesian methods, and cross validation are all techniques for

dealing with situations where all other things are not equal and are closely related to topics discussed in this review.

4 The Laplace case

Now consider an exponentially distributed random variable; a concrete example being daily precipitation, which is often100

approximately exponential in distribution. If both model predictions and observations are iid exponential random variables,

then the model error will have a Laplace distribution (sometimes called a double exponential distribution). Like the normal

case, such a model is not useful, so instead we focus on models for which predictions and observations are dependent. Such a

model is not guaranteed to have Laplacian errors; nevertheless, its errors will tend to exhibit strong positive kurtosis, so we say

it tends toward Laplacian-like error.105

Assuming the Laplace distribution better represents the error than the normal, than we should prefer the model maximizing

the Laplacian likelihood function,

L(θ,b|y,x) =
1

2b
exp

[
−|y− f(θ,xi)|

b

]
, (12)
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where b is a parameter of the distribution. Here we use the same substitution as in equation 9 to convert from the standard

Laplace distribution to a Laplacian-error distribution. The log-likelihood is then110

logL=−n log(2b)− 1

b

n∑
i=1

|yi− f(θ,xi)|, (13)

and repeating the argument from the normal case, maximizing the log-likelihood for θ is equivalent to minimizing the sum

n∑
i=1

|y− f(θ,xi)|, (14)

which is the L1-norm. Dividing the L1-norm by n yields the MAE. Thus, for Laplacian errors, the model that minimizes the

MAE (or the L1-norm) also maximizes the likelihood.115

5 Other options

To summarize the previous two sections: for normal errors, minimizing either MSE or RMSE yields the most likely model;

whereas for Laplacian errors, minimizing MAE yields the most likely model. Normally distributed variables tend to produce

normally distributed errors, and exponentially distributed variables tend to produce Laplacian-like errors, so RMSE and MAE

are reasonable first choices for each case, respectively. Technically both also assume the errors are iid, and, for many interesting120

problems, errors are neither perfectly normal, nor Laplacian, nor iid. In these cases, there are essentially four options, all

somewhat interrelated and often used in conjunction.

5.1 Refine the model structure

The first option is to refine the structure of the model; in other words, make the model more physically realistic. While

this option is the most important for the advancement of science, it is not relevant to the choice of error metric, so I will125

not discuss it further, other than to note that likelihoods can also be used to evaluate model structure: first, determine the

maximum likelihood for each candidate model structure, then select (or prefer) the most likely among these candidates

(Burnham and Anderson, 2001, e.g.,)
:::::::::::::::::::::::::::::
(e.g., Burnham and Anderson, 2001). The preceding derivations were formulated in terms

of maximizing the likelihood by way of adjusting the model parameters θ, but more generally, the likelihood can be used to

refine the entire model—both its parameters and structure.130

5.2 Transformation

The second option is to transform the data to a Laplace or, more commonly, normal distribution, then minimizing the MAE

or RMSE
::::::
RMSE

::
or

:::::
MAE

:
of the transformed data will yield the most likely model. For example, the streamflow distribution

of a perennial stream is approximately lognormal. Logging a lognormal variable yields a normal one, so in log space, the

error is the difference between two normal distributions, which will also tend to be normal. If the errors can be made normal135

by transformation, then minimizing the MSE of the transformed variable will yield the most likely model. Many statistical
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methods assume normality, and the general name for transforming a non-normal variable into a normal one is known as a

Box-Cox transformation (Box and Cox, 1964). Transformations can make results harder to interpret, but this is usually an

acceptable trade-off for better inference.

5.3 Robust inference140

The third option is to use “robust” methods of inference. The term “robust” signifies that a technique is less sensitive to

violations of its assumptions; typically, meaning they are less sensitive to extreme outliers. To achieve this, robust techniques

replace the Gaussian likelihood with one with thicker-tails, such as the Laplace or the Student’s-t, which reintroduces the

choice between RMSE and MAE, as MAE corresponds to the Laplace likelihood.

While Fisher (1920) demonstrated that minimizing the squared error was theoretically optimal for normal errors, he permit-145

ted Eddington to add a footnote that in practice, better results were often achieved by minimizing the absolute error, because in

practice, observations include some outliers that deviate from the normal distribution (Stigler, 1973). For this reason, minimiz-

ing the MAE has come to be known as a “robust” form of MLE, as in “robust regression” (e.g., Murphy, 2012, section 7.4).

Tukey, in particular, was seminal in developing and exploring robust methods, such as in Tukey (1960) and his contributions

to the field are documented by Huber (2002).150

In their debate
:::
this

::::::::
discourse, Willmott et al. (2009) recognize robustness as an important advantage of MAE, though Chai

and Draxler (2014) never directly acknowledge this point and instead advocate for “throwing out” outliers. Neither option is

ideal. Either can yield reasonable results for minor deviations from the normal, but their performance degrades as the deviation

grows.

Since Tukey’s work, more robust alternatives have emerged, including the median absolute deviation or MAD,155

MAD = b medianni=1|ŷi−median(y)|, (15)

where typically b= 1.483 to reproduce the standard deviation in the case of the normal distribution (denoted as MADσ). Al-

though MAD is less theoretically grounded, empirical evidence indicates it is more robust than MAE. MAD was first promoted

by Hampel (1974), who attributed it to Gauss, and later by Huber (1981), and more recently by Gelman et al. (2020). One

drawback is its relatively
::::::
relative inefficiency for normal distributions (Rousseeuw and Croux, 1993), but advocates of MAD160

counter that RMSE is as inefficient (or more) for error distributions that deviate from the normal, so MAD remains a popular

choice.

In addition to being “robust,” MAD and MAE also preserve scale, unlike the formal likelihood-based approach discussed

next. Unless combined with a transformation, scale-preserving error metrics have the same units as the data, such that their

magnitude roughly corresponds to the magnitude of the typical error. While MAD and MAE are easy to interpret and im-165

plement, they are somewhat limited in scope in that they are only appropriate for “contaminated” distributions— mixtures of

normal or Laplace distributions with a common midpoint, which, by implication, are also symmetric.

More complicated error distributions are frequently encountered in practice. For example, errors in rainfall-runoff models

are typically heteroscedastic. Log transforming the data can correct this for positive streamflows values, but the log is undefined
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when streamflow is zero or negative. Simple work arounds, such as setting zeros to a small positive value, may be satisfactory170

when zero and near-zero values are relatively rare but blow up as those values become more frequent. Recall that in log space,

errors are proportional, so the difference between 0.001 and 1 is the same as that between 1 and 1000.

5.4 Likelihood-based inference

The final option, likelihood-based inference, is the most versatile and subsumes the others in that each can be incorporated

within its framework. Its main drawback is interpretative. The absolute value of the likelihood is meaningless, unlike RMSE175

or MAE, which measure the typical error. Their relative values are meaningful, however, in that the likelihood ratio represents

the evidence for one model relative to another. For an accessible introduction to likelihood-based model selection, the reader

is referred to Edwards (1992) and Burnham and Anderson (2001).

Metrics like RMSE and MAE are sometimes referred to as “informal” likelihoods because, in certain circumstances, they

yield results equivalent to those obtained by the “formal” likelihood (e.g., Smith et al., 2008). Recall that the model that180

minimizes the RMSE also maximizes the likelihood, if the errors are normal and iid (11). Informal likelihoods share some of

the flexibility of formal ones, while preserving scale (commonly as real or percentage error). However, they have two notable

drawbacks. Formal likelihoods are necessary when combining different distributions into one likelihood or when comparing

among different error distributions (e.g., normal versus Laplace; Burnham and Anderson, 2001). Furthermore, because informal

likelihoods obscure their probabilistic origins, practitioners are frequently unaware of them and, as a consequence, use them185

incorrectly.

For streamflow
:::::::::::
rainfall-runoff

:
modeling, examples of the formal likelihood-based approach include Schoups and Vrugt

(2010); Smith et al. (2010, 2015). Schoups and Vrugt (2010) create a single flexible likelihood function with several parameters

that can be adjusted to fit a range of complex error distributions; whereas, Smith et al. (2015) show the process of building

complex likelihoods from combinations of simpler elements. Smith et al. (2015) focus on several variants of the zero-inflated190

normal distribution, which, in essence, inserts a normal likelihood within a binomial one. Additional components can be added

to deal with heteroscedasticity and serial dependence
:
of

::::::
errors, which are typical for errors in runoff modeling

::
in

::::::::::::
rainfall-runoff

::::::
models. For example, in the zero-inflated lognormal, a binomial component handles zeros values, while a log transformation

handles heteroscedasticity in the positive values.

6 Why not use both RMSE and MAE?195

Chai and Draxler (2014) argue for RMSE as the optimal metric for normal errors, refuting the idea that MAE should be used

exclusively. They do not contend RMSE is inherently superior and instead advocate that a combination of metrics, including

both RMSE and MAE, should be used to evaluate model performance. Many models are multi-faceted, so there is an inherent

need for multi-faceted evaluation, but it can be problematic if approached without considerable thought.

RMSE and MAE are not independent, so if both are presented, how should we weigh their relative importance when evaluat-200

ing a model? Assuming no prior information, the logical approach is to weigh them by their likelihoods. According to the law of
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likelihoods, the evidence for one hypothesis versus another corresponds to the ratio of their likelihoods (Edwards, 1992, , p. 30)

::::::::::::::::::
(Edwards, 1992, p. 30). Extending this further, either metric can be weighted based on its relative likelihood (Burnham and An-

derson, 2001).

If the evidence strongly supports one over the other, presenting both metrics is unnecessary and potentially confusing. If205

their evidence is similar, it may be appropriate to present a weighted average or present
:::
both

:
metrics along with their weights

(Burnham and Anderson, 2001). When averaging informal likelihoods to estimate the typical error, an additional adjustment

must be made for differences in their scale, as demonstrated with MAD. Priors can be incorporated as well, though this is a

more advanced topic.

Although the likelihood can provide an objective measure of model performance, we are often concerned with multiple210

facets of a model, such that any one performance metric is insufficient. A common solution is to define and compute several

metrics, each chosen to characterize a different aspect of the model’s performance. For example, in rainfall runoff
::::::::::::
rainfall-runoff

modeling a modeler may compute the error in flow volume (the model bias), as well the errors at a range of flow quantiles.

When evaluating these metrics, there is a tendency to combine them into an overall score, but such scores are not
::::::::
inherently

meaningful, at least in a maximum-likelihood sense. A better,
:::

or
::
at

::::
least

:::::
safer,

:
approach is to focus on a single objective215

function, like MSE for normally distributed errors, and decompose it .
:::
For

:::
the

::::::
normal

:::::
case,

:::::::::
minimizing

:::
the

:::::
MSE

:::
(or

::::::
normal

:::
log

:::::::::
likelihood)

::
is

:::::::
optimal,

:::::::
because

::
it

::::::::
minimizes

:::
the

::::::::::
information

::::
loss

:::
(as

::::::::::
information

::::
and

:::::::
negative

:::
log

:::::::::
likelihood

:::
are

::::::::::
equivalent).

::::::::
Typically

:::
we

::::
want

:::
to

:::::
know

:::::
more

:::::
about

::
a

:::::
model

:::::
than

::
its

:::::::
general

:::::::::::
performance,

::::::::
however,

:::::
such

::
as

::::
how

:::::
well

:
it
::::::::

performs
:::

at

::::::
specific

:::::
tasks.

:::
For

::::
that

::::::
reason,

:::
we

::::
may

::::::
choose

::
to

::::::::
compute

:::::::
ancillary

:::::::
metrics,

:::
or,

::::
more

::::::::
formally,

::::::::::
decompose

::
the

:::::::::
likelihood

:
into

components representing specific aspects of a model’s performance (e.g., Hodson et al., 2021).
:
It
::
is
::::
also

:::::::
possible

::
to

::::::::
combine220

::::::
several

::::::
metrics

::::
into

::
a
::::
valid

::::::::::
likelihood,

::::::
known

::
as

::
a
:::::::
mixture

::::::::::
distribution,

::::
like

:::
the

:::::::::::
zero-inflated

::::::::::
lognormal.

::
In

::::
that

:::::
case,

:::
the

::::::::
compound

::::::
metric

::
is

:::::
valid,

:::::::
because

::
the

:::::::::::
components

::
are

::::::::::
normalized

::
to

:::
the

::::
same

:::::
scale

:::
and

:::
do

:::
not

::::::
contain

::::::::
duplicate

::::::::::
information.

:

This review has focused primarly on how probability theory can answer the question “which model is better?”, thereby

guiding the task of model selection. But this task is equivalent to asking “how accurate is my model?”, then comparing com-

peting models, and selecting the most accurate. That first step—quantifying the uncertainty in a model— is import
::::::::
important225

in its own right, especially if we base decisions on predictions from our models. Just as the Gaussian likelihood provides the

theoretical basis for using RMSE to quantify model uncertainty when errors are normally distributed, more generally, other

likelihood functions are used to evaluate model accuracy and confidence intervals for other error distributions.

7 Conclusions

Probability theory provides a logical answer to the choice between RMSE and MAE. Either metric is optimal in its correct230

application; though in practice, neither may be sufficient. For these cases, refining the model, transforming the data, using

robust statistics, or constructing a better likelihood can yield better results. Arguably the latter is most versatile, though there

are pragmatic reasons for preferring the others.
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Returning to the debate
:::::::
discourse

:
over MAE and RMSE. Chai and Draxler (2014) were correct that RMSE is optimal for

normally distributed errors, though they seem to suggest, wrongly, that MAE only applies to uniformly distributed errors.235

Whereas,
::::::
Though

:
Willmott and Matsuura (2005) and Willmott et al. (2009) were correct that MAE is more robust, though

there are better alternatives. Most importantly, neither side provides the theoretical justification behind either metric, nor do

they adequately introduce the extensive literature on this topic. Hopefully, this paper fills that gap by explaining why and when

these metrics work, while
:::
and exposing readers to several alternatives for when they fail

:::::
when

::::
they

::::
don’t.
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