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Abstract. The mean-absolute-error-(MAE)-and-root mean squared error (RMSERMSE) and mean absolute error (MAE) are

widely used metrics for evaluating models. Yet, there remains enduring confusion over their use, such that a standard practice

is to present both, leaving it to the reader to decide. In a recent
reprise to the two-century-long debate over their use, Willmott and Matsuura (2005) and Chai and Draxler (2014) -in-which
ettherside-presents-thetrargumentsforone-metric-over-give arguments for favoring one metric or the other. Neither-side-was
completely-correct-however-beeause-neither-But this comparison can present a false dichotomy. Neither metric is inherently
better: MAE-RMSE is optimal for Laplacian-normal (Gaussian) errors, and RMSE-MAE is optimal for nermal-(Gausstan)

Laplacian errors. When errors deviate from these distributions, other metrics are superior.

1 Introduction

The mean-absolute-error-(MAE)-and-root mean squared error (RMSERMSE) and mean absolute error (MAE) are two standard

metrics used in model evaluation. For a sample of n observations y (y;, ¢ = 1,2,...,n), and n corresponding model predictions
1 the MAE and RMSE are
(1
1 n
MAE = — i — Ui =
-2 lyi— :|RMSE @)
i=1
3)

As its name implies, the RMSE is the square root of the mean squared error (MSE). Taking the root does not affect the relative
ranks of models, but it yields a metric with the same units as y, which conveniently represents the typical or “standard” error
for normally distributed errors. The MAE-and-MSE-MSE and MAE are averaged forms of the Lt-norm-and-L2-norm and
L1-norm, which are mere-common-forms-in-math-and-statistiesthe Euclidean and Manhattan distance, respectively.
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In what have become two classic papers in the geoscientific modeling literature, Willmott and Matsuura (2005, MAE)
and Chai and Draxler (2014, RMSE) debate-whether MAE-or-RMSE-discuss whether RMSE or MAE is superior. In their
introduction, Chai and Draxler (2014) state:

The RMSE has been used as a standard statistical metric to measure model performance in meteorology, air quality,
and climate research studies. The MAE is another useful measure widely used in model evaluation. While they
have both been used to assess model performance for many years, there is no consensus on the most appropriate

metric for models errors.

That statement may have accurately characterized the geosciences but not statistics. Among statisticians, the answer was
common knowledge, at least to the extent that there can be no consensus. Different types of models have different error
distributions and so necessitate different error metrics. In fact, the debate over squared versus absolute error terms had emerged,
was subsequently forgotten, and reemerged over the preceding two centuries (Boscovich, 1757; Gauss, 1816; Laplace, 1818;
Eddington, 1914; Fisher, 1920), with history given by (Stigler, 1973, 1984), making it one of the oldest questions in statistics.

It is unclear exactly when this “no-solution solution” became common knowledge, in part, because contemporary authors
rarely cite these-its sources. While reviewing the literature, I found proofs in several reference works, including the venerable

Press et al. (1992, p. 701), but no references to primary literature.

term should conform with the expected probability distribution of the errors—SmalJrﬂmaa{ehes—af&ﬁequeﬂﬂyeﬁeebmfefed
in-practice-and-can-have large-consequences-on-tnferenee—; otherwise, inference will be biased. The choice among-of error

metric is, therefore, fundamental in determining what scientists learn from their observations and models. This paper reviews

the basic justification for choosing MAE-er-RMSE-between RMSE or MAE, then discusses several alternatives better suited
for the complex error distributions that are encountered in practice. The literature on this topic is vast, and I try to emphasize
classic papers and textbooks from the statistical literature. Oeeasionally,-more-conereteexamples-are-desirable;which-I-draw
To make that discussion more concrete, I include several examples from hydrology and rainfall-runoff modeling, though none

of the techniques are exclusive to that field. The discussion is primarily written for Earth scientists who use RMSE or MAE
but have little-to-no awareness of formal likelihood methods.

2 The naive (frequentist) basis

Tn-their-debate-Willmott and Matsuura (2005) and Chai and Draxler (2014) present several arguments for and against MAE
and RMSE. I will not review them here;-butinstead-foeus-, Instead, my focus is on an important flaw:neitherside-explains-that

omission in these papers: neither explains the theoretical justification for MSE and M AEare-notarbitrary-formulas—Rather;both
metries-derive-direetly-, which derives from the laws of probability, which themselves derive from the laws of logic (Jaynes,

2003); that is to say, there are logical reasons for choosing one over the other.



55

60

65

70

75

80

Like all inference problems, the justification begins with Bayes’ theorem,

likelihood prior

posterior ,J? /9\
P = 2020 @

p(y)

where y is some set of observations, § are the model parameters, and p(f|y) is the probability of ¢ given y. In words, Bayes’
theorem represents the logical way of using observations to update our understanding of the world. The numerator of the right-
hand side contains two terms: the prior, representing our state of knowledge before observing y; and the likelihood, representing
what was learned by observing y. The left-hand side, known as the posterior, represents our updated state of knowledge after
the observation. Given a set of observations y, the denominator of the right-hand side is constant, so, for convenience, Bayes’

theorem is often rewritten as the proportion between the posterior and the product of the likelihood with the prior,

p(0ly) o< p(y|0)p(0). 6)

In the absence of any prior information the prior distribution p(#) is “flat” or constant, such that the posterior is simply

proportional to the likelihood,

p(0ly) o< p(y0). (6)

This relation provides the basis for “frequentist” statistics, first recognized by
Bernoulli (1713) and later popularized by Karl Pearson, Ronald Fisher, and others. Criticisms of frequentism aside (see Clayton,
2021, for summary), the recognition that without strong prior information the simpler problem of deduction (using a model
to predict data) could be substituted for the harder problem of induction (using data to predict a model) would determine the

course of 20th-century science. The substitution is expressed formally as

L(0y) = p(yl0), (7)

where L is used to represent the likelihood so that it is not confused with the posterior probability distribution p(6|y). Absent
any strong prior information, one can apply this substitution to infer the most likely model parameters 6 given some data y.
Because probability theory conforms with logic, the logical choice is to select, or at least prefer whatever model maximizes the
likelihood function. This basic argument provides the basis for maximum likelihood estimation (MLE, Fisher, 1922), which

are a class of methods for selecting the model 6 having the greatest likelihood of having generated the data; formally,
Ovre = argmax, (L(6]y)). ®)

where 0,1 represents the MLE estimate of 6. The justification of MLE leads directly to the justification of MAE and MSE,
because under certain conditions the MAE and MSE are inversely proportional to the likelihood. That is to say, the model
that minimizes the appropriate metric is also the most likely, but understanding exactly why this is so requires a bit more

explanation.
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3 The normal case

First, the case of normally distributed (Gaussian) errors. Consider a normally distributed variable y and some corresponding set
of normally distributed model predictions ¢. The model error is, therefore, the difference between two normal distributions. If y
and ¢ are independent, the error distribution is guaranteed to be a-normal. Such a model provides no information, however, and
for a model to be useful, §j and y should be dependent. Although the difference between two dependent normal distributions
is not guaranteed to be normal, it will often be so (Kale, 1970). Thus, we say that normally distributed variables will tend
to produce normally distributed errors. As a starting point, assume the prediction errors are normal and independent and
identically distributed (iid). Subsequent-sections-will-introduce-ways-Ways of relaxing these assumptions are introduced in
the next sections, but they provide a strong foundation, evident by the popularity of ordinary least squares. Our goal, then, is
to identify the model f() with normal iid errors that is most likely given the data, where f() has inputs z and parameters 6,
written as f(z,6). The output of f(x,6) is the model prediction §, which represents the conditional mean of y given 6 and z,

To find the most likely model, we begin with the likelihood given by the normal distribution,

2
L(p,oly) = Hexp [ oy 1 } : ©)

where 1 is the population mean and o is the standard deviation. Next, f(,x) is substituted for y, replacing the population

mean with the conditional mean,

l — (0.2 (v = /0.2 10)

L(0,0ly,r)

o2 202

A s%aﬁdafdﬂﬂa%hemaﬁed%—tﬂele%@gms to take the logarithm of the likelihood, thereby converting the products to

sums
n

log L = —nlogo — flog (2m) — Z f(0,z:))%, (1n)

logging does not change the location of maximum, so it does not change the MLE estimate. From equation 11, it can be seen

that maximizing the log-likelihood for the parameters 6 is equivalent to minimizing the sum

n

> (- f(0.2:))% (12)

i=1
which is the L2-norm. Dividing by n also has no effect the location of the maximum of the log-likelihood and yields the MSE.
Thus, for normal iid errors, the model that minimizes the MSE (or the L2-norm) is the most likely model, all other things being
equal. Although beyond our scope, information criteria, Bayesian methods, and cross validation are all techniques for dealing

with situations where all other things are not equal and are closely related to topics discussed in this review.

4 The Laplace case

Now consider an exponentially distributed random variable; a concrete example being daily precipitation, which is often

approximately exponential in distribution. If both model predictions and observations are iid exponential random variables,
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then the model error will have a Laplace distribution (sometimes called a double exponential distribution). Like the normal
case, such a model is not useful, so instead we focus on models for which predictions and observations are dependent. Such a
model is not guaranteed to have Laplacian errors; nevertheless, its errors will tend to exhibit strong positive kurtosis, so we say
it tends toward Laplacian-like error.

Assuming the Laplace distribution better represents the error than the normal, than we should prefer the model maximizing

the Laplacian likelihood function,

£(8.bly.z) = 1exp{ 'y_fée””)'] (13)

2b

where b is a parameter of the distribution. Here we use the same substitution as in equation 10 to convert from the standard

Laplace distribution to a Laplacian-error distribution. The log-likelihood is then

log £ = —nlog(2b) — fz lys —

(14)
and repeating the argument from the normal case, maximizing the log-likelihood for 6 is equivalent to minimizing the sum

PR ICEDIE (15)
=1

which is the L1-norm. Dividing the L1-norm by n yields the MAE. Thus, for Laplacian errors, the model that minimizes the

MAE (or the L1-norm) also maximizes the likelihood.

5 Other options

To summarize the previous two sections: for normal errors, minimizing {(RyMSE-either MSE or RMSE yields the most likely
model; whereas for Laplacian errors, minimizing MAE yields the most likely model. Normally distributed variables tend to
produce normally distributed errors, and exponentially distributed variables tend to produce Laplacian-like errors, so RMSE
and MAE are reasonable first choices for each case, respectively. Technically both also assume the errors are iid, and, for
many interesting problems, errors are neither perfectly normal, nor Laplacian, nor iid. In these cases, there are essentially four

options, all somewhat interrelated and often used in conjunction.
5.1 Refine the model structure

The first option is to refine the structure of the model; in other words, make the model more physically realistic. While this
option is the most important for the advancement of science, it is not relevant to the choice of error metric, so I will not discuss
it further, other than to note that tiketihood-funetions-ean-likelihoods can also be used to inform-incorperate-decistons-abott
modelstrueture(Burnham and-Anderson, 200H)-evaluate model structure: first, determine the maximum likelihood for each

candidate model structure, then select (or prefer) the most likely among these candidates (Burnham and Anderson, 2001, e.g.,

. The preceding derivations were all-posed-formulated in terms of maximizing the likelihood by way of adjusting the model
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parameters 6, but more generally,

used to refine the entire model—both its parameters and structure.

sthe likelihood can be

5.2 Transformation

The second option is to transform the data to a Laplace or, more commonly, normal distribution, then minimizing the MAE

or RMSE of the transformed data will yield the most likely model. For example, the

loeation-streamflow distribution of a perennial stream is approximately lognormal. Logging a lognormal variable yields a

normal distribation;—se-one, so in log space, the error is the difference between two normal distributions, which will also tend

to be normal. If the errors can be made normal by transformation, then minimizing the MSE of the leg-transfermed-variable
yields-transformed variable will yield the most likely model. Many statistical methods assume normality, and the general

name for transforming a non-normal variable into a normal one is known as a Box-Cox transformation (Box and Cox, 1964).

Transformations can make results harder to interpret, but this is usually an acceptable trade-off for better inference.
5.3 Robust inference

The third option is to use “robust” methods of inference. The term “robust” signifies that a technique is less sensitive to
violations of its assumptions; typically, meaning they are less sensitive to extreme outliers. To achieve this, robust techniques
replace the Gaussian likelihood with one with thicker-tails, such as the Laplace or the Student-tStudent’s-t, which reintroduces
the choice between RMSE and MAE, as MAE corresponds to the Laplace likelihood.

While Fisher (1920) demonstrated that minimizing the squared error was theoretically optimal for normal errors, he permit-
ted Eddington to add a footnote that in practice, better results were often achieved by minimizing the absolute error, because
in practice, observations include some outliers that violate-the-nermal-condition-deviate from the normal distribution (Stigler,
1973). For this reason, minimizing the MAE has come to be known as a “robust” form of MLE, as in “robust regression” (e.g.,
Murphy, 2012, section 7.4). Tukey, in particular, was seminal in developing and exploring robust methods, such as in Tukey
(1960) and his contributions to the field are documented by Huber (2002).

In their debate, Willmott et al. (2009) recognize robustness as an important advantage of MAE, though Chai and Draxler
(2014) never directly acknowledge this point and instead advocate for “throwing out” outliers. Neither option is ideal. Either
can yield reasonable results for minor deviations from the normal, but their performance degrades as the deviation grows.

Since Tukey’s work, a-better-alternative-has-emerged; known-as-more robust alternatives have emerged, including the median

absolute deviation or MAD,
MAD = b median;__, |§j; — median(y)|, (16)

where typically b = 1.483 to reproduce the standard deviation in the case of the normal distribution (denoted as MAD,,;). Al-
though MAD is less theoretically grounded, empirical evidence indicates it is more robust than MAE. MAD was first promoted
by Hampel (1974), who attributed it to Gauss, and later by Huber (1981), and more recently by ?Gelman et al. (2020). One
drawback is its relatively inefficiency for normal distributions (Rousseeuw and Croux, 1993), theugh-but advocates of MAD
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counter that RMSE is as er-mere-ineffieient-inefficient (or more) for error distributions that deviate from the normal—t-acking
a-better-alternative:, so MAD remains a popular choice.

In addition to being “robust,” MAD and MAE also preserve scale, unlike the formal likelihood-based approach discussed
next. Unless combined with a transformation, scale-preserving error metrics have the same units as the data, such that their
magnitude roughly corresponds to the magnitude of the typical error. While MAD and MAE are easy to interpret and im-
plement, they are somewhat limited in scope in that they are only appropriate for “contaminated” distributions— mixtures of
normal or Laplace distributions with a common midpoint, which, by implication, are also symmetric.

More complicated error distributions are frequently encountered in practice. For example, errors in rainfall-runoff models
are typically heteroscedastic. Log tranferming-transforming the data can correct this for positive streamflows values, but the
log is undefined when streamflow is zero or negative. Pragmatie-Simple work arounds, such as setting zero-zeros to a small

positive value, ean-yieldreasonableresults-may be satisfactory when zero and near-zero values are relatively rare but blow up

as those values become more frequent. Recall that in log space, errors are proportional, so the difference between 0.001 and 1

is equivalentto-the-difference-the same as that between 1 and 1000.

5.4 Likelihood-based inference

The final option, likelihood-based inference, is the most versatile and subsumes the others in that each can be incorporated
within its framework. Its main drawback is interpretative. The absolute value of the likelihood is meaningless, neither-dees-it

measture-of-unlike RMSE or MAE, which measure the typical errorlike RMSE-or-MAE. Their relative values are meaningful,
however, in that they-representthe-the likelihood ratio represents the evidence for one model relative to another. Leg-likelthood

information-theory-based-enes—For an accessible introduction to likelihood-based model selection, the reader is referred to
Edwards (1992) and Burnham and Anderson (2001).

Metrics like RMSE and MAE are sometimes referred to as “informal” likelihoods because, in certain circumstances, they
yield results equivalent to those obtained by the “formal” likelihood (e.g., Smith et al., 2008). Recall from-equation-that
the model that minimizes the RMSE also maximizes the likelihood, if the errors are normal and iid (12). Informal likeli-
hoods share some of the flexibility of formal ones, while preserving scale (commonly as real or percentage error). How-

ever, they have two notable drawbacks. Formal likelihoods are necessary when combining different distributions into one
likelihood or when comparing among different error distributions {e-g-nermal-versusaplace Burnham-and-Andersen; 2001
e.g., normal versus Laplace; Burnham and Anderson, 2001). Furthermore, because informal likelihoods obscure their proba-

bilistic origins, practitioners are frequently unaware of them and, as a consequence, use them incorrectly.

For streamflow modeling, examples of the formal likelihood-based approach include Schoups and Vrugt (2010); Smith
et al. (2010, 2015). Schoups and Vrugt (2010) create a single flexible likelihood function with several parameters that can
be adjusted to fit a range of complex error distributions; whereas, Smith et al. (2015) show the process of building complex
likelihoods from combinations of simpler elements. Smith et al. (2015) focus on several variants of the zero-inflated normal

distribution, which, in essence, inserts a normal likelihood within a binomial one. Additional components can be added to deal
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with heteroscedasticity and serial dependence which are typical for errors in runoff modeling. For example, in the zero-inflated
lognormal, a binomial component handles zeros values, while a log transformation handles heteroscedasticity in the positive

values.

6 Why not use both RMSE and MAE?

Chai and Draxler (2014) argue for RMSE as the optimal metric for normal errors, refuting the idea that MAE should be used
exclusively. They do not contend RMSE is inherently superior and instead advocate that a combination of metrics, including
both RMSE and MAE, should be used to evaluate model performance. Many models are multi-faceted, so there is an inherent
need for multi-faceted evaluation, but it can be problematic if approached naivelywithout considerable thought.

RMSE and MAE are not independent, so if both are presented, how should thereader-we weigh their relative importance

when evaluating a model?

—Assuming no prior information, the logical approach
is to weigh them by their likelihoods. According to the law of likelihoods, the evidence for one hypothesis versus another

corresponds to the ratio of their likelihoods (Edwards, 1992 . 30). Extending this further, either metric can be weighted

based on its relative likelihood (Burnham and Anderson, 2001).

If the evidence strongly supports one over the other, presenting both metrics is uneeessary-unnecessary and potentially con-
fusing. When-evaluating-multiple-metries-there-is-alse-atendaney-If their evidence is similar, it may be appropriate to present

a weighted average or present metrics along with their weights (Burnham and Anderson, 2001). When averaging informal
likelihoods to estimate the typical error, an additional adjustment must be made for differences in their scale, as demonstrated
with MAD. Priors can be incorporated as well, though this is a more advanced topic.

Although the likelihood can provide an objective measure of model performance, we are often concerned with multiple
facets of a model, such that any one performance metric is insufficient. A common solution is to define and compute several
metrics, each chosen to characterize a different aspect of the model’s performance. For example, in rainfall runoff modeling a

modeler may compute the error in flow volume (the model bias), as well the errors at a range of flow quantiles.
When evaluating these metrics, there is a tendency to combine them into an overall score, but such scores are not meaningful,

at least in a maximum-likelihood sense. A better approach is to focus on the-“best™metrie;-then-a single objective function, like
MSE for normally distributed errors, and decompose it into independent-components representing specific aspects of a model’s
performance (e.g., Hodson et al., 2021).

This review has focused primarly on how probability theory can answer the question “which model is better?”, thereby
guiding the task of model selection. But this task is equivalent to asking “how accurate is my model?”, then comparing
competing models, and selecting the most accurate. That first step—quantifying the uncertainty in a model— is import in
its own right, especially if we base decisions on predictions from our models. Just as the Gaussian likelihood provides the
theoretical basis for using RMSE to quantify model uncertainty when errors are normally distributed, more generally, other
likelihood functions are used to evaluate model accuracy and confidence intervals for other error distributions.
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7 Conclusions

Probability theory provides a logical answer to the choice between RMSE and MAE. Either metric is optimal in its correct
application; though in practice, neither may be sufficient. For these cases, refining the model, transforming the data, using
robust statistics, or constructing a better likelihood can yield better results. Arguably the latter is most versatile, though there
are pragmatic reasons for preferring the others.

Returning to the debate over MAE and RMSE. Chai and Draxler (2014) were correct that RMSE is optimal for normally
distributed errors, though wrengly—suggestthey seem to suggest, wrongly, that MAE only applies to uniformly distributed
errors. Whereas, Willmott and Matsuura (2005) and Willmott et al. (2009) were correct that MAE is more robust, though there
are better alternatives. Most importantly, neither side provides the theoretical justification behind either metric, nor do they

adequately introduce the extensive literature on this topic. Hopefully, this paper fills that gap by explaining why and when
these metrics work, while pointing-to-better-exposing readers to several alternatives for when they fail.
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