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Abstract. The mean absolute error (MAE) and root mean squared error (RMSE
::::::
RMSE)

::::
and

:::::
mean

:::::::
absolute

::::
error

::::::
(MAE) are

widely used metrics for evaluating models. Yet, there remains enduring confusion over their use, such that a standard practice

is to present both, leaving it to the reader to decide. Some of this confusion arises from a recent debate between
::
In

:
a
::::::
recent

:::::
reprise

:::
to

:::
the

::::::::::::::
two-century-long

::::::
debate

::::
over

::::
their

::::
use, Willmott and Matsuura (2005) and Chai and Draxler (2014) , in which

either side presents their arguments for one metric over
:::
give

:::::::::
arguments

:::
for

:::::::
favoring

::::
one

:::::
metric

:::
or the other. Neither side was5

completely correct; however, because neither
:::
But

:::
this

::::::::::
comparison

:::
can

:::::::
present

:
a
::::
false

::::::::::
dichotomy.

:::::::
Neither metric is inherently

better: MAE
:::::
RMSE

:
is optimal for Laplacian

::::::
normal

:::::::::
(Gaussian)

:
errors, and RMSE

::::
MAE

:
is optimal for normal (Gaussian)

::::::::
Laplacian errors. When errors deviate from these distributions, other metrics are superior.

1 Introduction

The mean absolute error (MAE) and root mean squared error (RMSE
::::::
RMSE)

::::
and

::::
mean

::::::::
absolute

::::
error

:::::
(MAE) are two standard10

metrics used in model evaluation. For a sample of n observations y (yi, i= 1,2, . . . ,n), and n corresponding model predictions

ŷ the MAE and RMSE are

RMSE
:::::

=

√√√√ 1

n

n∑
i=1

(yi− ŷi)2

::::::::::::::::

(1)

MAE =
1

n

n∑
i=1

|yi− ŷi|RMSE=

√√√√ 1

n

n∑
i=1

(yi− ŷi)2. (2)

(3)15

As its name implies, the RMSE is the square root of the mean squared error (MSE). Taking the root does not affect the relative

ranks of models, but it yields a metric with the same units as y, which conveniently represents the typical or “standard” error

for normally distributed errors. The MAE and MSE
::::
MSE

::::
and

:::::
MAE

:
are averaged forms of the L1-norm and L2-norm

:::
and

:::::::
L1-norm, which are more common forms in math and statistics

::
the

::::::::
Euclidean

::::
and

:::::::::
Manhattan

:::::::
distance,

:::::::::::
respectively.
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In what have become two classic papers in the geoscientific modeling literature, Willmott and Matsuura (2005, MAE)20

and Chai and Draxler (2014, RMSE) debate whether MAE or RMSE
::::::
discuss

:::::::
whether

::::::
RMSE

::
or

:::::
MAE

:
is superior. In their

introduction, Chai and Draxler (2014) state:

The RMSE has been used as a standard statistical metric to measure model performance in meteorology, air quality,

and climate research studies. The MAE is another useful measure widely used in model evaluation. While they

have both been used to assess model performance for many years, there is no consensus on the most appropriate25

metric for models errors.

That statement may have accurately characterized the geosciences but not statistics. Among statisticians, the answer was

common knowledge, at least to the extent that there can be no consensus. Different types of models have different error

distributions and so necessitate different error metrics. In fact, the debate over squared versus absolute error terms had emerged,

was subsequently forgotten, and reemerged over the preceding two centuries (Boscovich, 1757; Gauss, 1816; Laplace, 1818;30

Eddington, 1914; Fisher, 1920), with history given by (Stigler, 1973, 1984), making it one of the oldest questions in statistics.

It is unclear exactly when this “no-solution solution” became common knowledge, in part, because contemporary authors

rarely cite these
::
its

:
sources. While reviewing the literature, I found proofs in several reference works, including the venerable

Press et al. (1992, p. 701), but no references to primary literature.

With the growth of machine learning, probability theory is experiencing a renaissance among the broader scientific community.35

That recent shift may explain why Willmott and Matsuura (2005) and Chai and Draxler (2014) were unaware of the historical

justification for MAE and RMSE; neither were they the first to overlook it. As this review will show, the choice of error

term should conform with the expected probability distribution of the errors. Small mismatches are frequently encountered

in practice and can have large consequences on inference ;
:::::::::
otherwise,

::::::::
inference

::::
will

:::
be

::::::
biased. The choice among

::
of

:
error

metric is, therefore, fundamental in determining what scientists learn from their observations
:::
and

::::::
models. This paper reviews40

the basic justification for choosing MAE or RMSE
::::::
between

::::::
RMSE

:::
or

:::::
MAE, then discusses several alternatives better suited

for
::
the

:
complex error distributions that are encountered in practice. The literature on this topic is vast, and I try to emphasize

classic papers and textbooks from the statistical literature. Occasionally, more concreteexamples are desirable, which I draw

::
To

:::::
make

:::
that

:::::::::
discussion

:::::
more

::::::::
concrete,

:
I
::::::
include

::::::
several

::::::::
examples

:
from hydrology and rainfall-runoff modeling, though none

of the techniques are exclusive to that field.
:::
The

:::::::::
discussion

::
is

::::::::
primarily

::::::
written

:::
for

:::::
Earth

::::::::
scientists

::::
who

:::
use

::::::
RMSE

:::
or

:::::
MAE45

:::
but

::::
have

:::::::::
little-to-no

::::::::
awareness

:::
of

:::::
formal

:::::::::
likelihood

::::::::
methods.

2 The naive (frequentist) basis

In their debate, Willmott and Matsuura (2005) and Chai and Draxler (2014) present several arguments for and against MAE

and RMSE. I will not review them here, but instead focus
:
.
::::::
Instead,

:::
my

:::::
focus

::
is on an important flaw: neither side explains that

:::::::
omission

::
in

:::::
these

::::::
papers:

::::::
neither

:::::::
explains

:::
the

:::::::::
theoretical

:::::::::
justification

:::
for

:
MSE and MAEare not arbitrary formulas. Rather, both50

metrics derive directly ,
::::::
which

::::::
derives

:
from the laws of probability, which themselves derive from the laws

::
of

:
logic (Jaynes,

2003); that is to say, there are logical reasons for choosing one over the other.
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Like all inference problems, the justification begins with Bayes’ theorem,

posterior︷ ︸︸ ︷
p(θ|y) =

likelihood︷ ︸︸ ︷
p(y|θ)

prior︷︸︸︷
p(θ)

p(y)
(4)

where y is some set of observations, θ are the model parameters, and p(θ|y) is the probability of θ given y. In words, Bayes’55

theorem represents the logical way of using observations to update our understanding of the world. The numerator of the right-

hand side contains two terms: the prior, representing our state of knowledge before observing y; and the likelihood, representing

what was learned by observing y. The left-hand side, known as the posterior, represents our updated state of knowledge after

the observation. Given a set of observations y, the denominator of the right-hand side is constant, so, for convenience, Bayes’

theorem is often rewritten as the proportion between the posterior and the product of the likelihood with the prior,60

p(θ|y)∝ p(y|θ)p(θ). (5)

In the absence of any prior information the prior distribution p(θ) is “flat” or constant, such that the posterior is simply

proportional to the likelihood,

p(θ|y)∝ p(y|θ). (6)

Despite its simplicity, the previous equation
:::
This

:::::::
relation

:
provides the basis for “frequentist” statistics, first recognized by65

Bernoulli (1713) and later popularized by Karl Pearson, Ronald Fisher, and others. Criticisms of frequentism aside (see Clayton,

2021, for summary), the recognition that without strong prior information the simpler problem of deduction (using a model

to predict data) could be substituted for the harder problem of induction (using data to predict a model) would determine the

course of 20th-century science. The substitution is expressed formally as

L(θ|y) = p(y|θ), (7)70

where L is used to represent the likelihood so that it is not confused with the posterior probability distribution p(θ|y). Absent

any strong prior information, one can apply this substitution to infer the most likely model parameters θ given some data y.

Because probability theory conforms with logic, the logical choice is to select, or at least prefer whatever model maximizes the

likelihood function. This basic argument provides the basis for maximum likelihood estimation (MLE, Fisher, 1922), which

are a class of methods for selecting the model θ having the greatest likelihood of having generated the data; formally,75

θ̂MLE = argmaxθ(L(θ|y)), (8)

where θ̂MLE represents the MLE estimate of θ. The justification of MLE leads directly to the justification of MAE and MSE,

because under certain conditions the MAE and MSE are inversely proportional to the likelihood. That is to say, the model

that minimizes the appropriate metric is also the most likely, but understanding exactly why
:::
this

::
is

::
so

:
requires a bit more

explanation.80
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3 The normal case

First, the case of normally distributed (Gaussian) errors. Consider a normally distributed variable y and some corresponding set

of normally distributed model predictions ŷ. The model error is, therefore, the difference between two normal distributions. If y

and ŷ are independent, the error distribution is guaranteed to be a normal. Such a model provides no information, however, and

for a model to be useful, ŷ and y should be dependent. Although the difference between two dependent normal distributions85

is not guaranteed to be normal, it will often be so (Kale, 1970). Thus, we say that normally distributed variables will tend

to produce normally distributed errors. As a starting point, assume the prediction errors are normal and independent and

identically distributed (iid). Subsequent sections will introduce ways
::::
Ways

:
of relaxing these assumptions

::
are

:::::::::
introduced

:::
in

::
the

::::
next

:::::::
sections, but they provide a strong foundation, evident by the popularity of ordinary least squares. Our goal, then, is

to identify the model f() with normal iid errors that is most likely given the data, where f() has inputs x and parameters θ,90

written as f(x,θ). The output of f(x,θ) is the model prediction ŷ, which represents the conditional mean of y given θ and x,

To find the most likely model, we begin with the likelihood given by the normal distribution,

L(µ,σ|y) = 1√
2πσ2

n∏
i=1

exp

[
− (yi−µ)2

2σ2

]
, (9)

where µ is the population mean and σ is the standard deviation. Next, f(θ,x) is substituted for µ, replacing the population

mean with the conditional mean,95

L(θ,σ|y,x) = 1√
2πσ2

n∏
i=1

exp

[
− (yi− f(θ,xi)2

2σ2

(yi− f(θ,xi))2

2σ2
:::::::::::::

]
. (10)

A standard mathematical trick
::::::::
convenient

:::::::
practice

:
is to take the logarithm of the likelihood,

::::::
thereby

:
converting the products to

sums

logL=−n logσ− n

2
log(2π)− 1

2σ2

n∑
i=1

(yi− f(θ,xi))2, (11)

logging does not change the location of maximum, so it does not change the MLE estimate. From equation 11, it can be seen100

that maximizing the log-likelihood for the parameters θ is equivalent to minimizing the sum
n∑
i=1

(y− f(θ,xi))2, (12)

which is the L2-norm. Dividing by n also has no effect the location of the maximum of the log-likelihood and yields the MSE.

Thus, for normal iid errors, the model that minimizes the MSE (or the L2-norm) is the most likely model, all other things being

equal. Although beyond our scope, information criteria, Bayesian methods, and cross validation are all techniques for dealing105

with situations where all other things are not equal and are closely related to topics discussed in this review.

4 The Laplace case

Now consider an exponentially distributed random variable; a concrete example being daily precipitation, which is
::::
often

approximately exponential in distribution. If both model predictions and observations are iid exponential random variables,
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then the model error will have a Laplace distribution (sometimes called a double exponential distribution). Like the normal110

case, such a model is not useful, so instead we focus on models for which predictions and observations are dependent. Such a

model is not guaranteed to have Laplacian errors; nevertheless, its errors will tend to exhibit strong positive kurtosis, so we say

it tends toward Laplacian-like error.

Assuming the Laplace distribution better represents the error than the normal, than we should prefer the model maximizing

the Laplacian likelihood function,115

L(θ,b|y,x) = 1

2b
exp

[
−|y− f(θ,xi)|

b

]
, (13)

where b is a parameter of the distribution. Here we use the same substitution as in equation 10 to convert from the standard

Laplace distribution to a Laplacian-error distribution. The log-likelihood is then

logL=−n log(2b)− 1

b

n∑
i=1

|yi− f(θ,xi)|, (14)

and repeating the argument from the normal case, maximizing the log-likelihood for θ is equivalent to minimizing the sum120

n∑
i=1

|y− f(θ,xi)|, (15)

which is the L1-norm. Dividing the L1-norm by n yields the MAE. Thus, for Laplacian errors, the model that minimizes the

MAE (or the L1-norm) also maximizes the likelihood.

5 Other options

To summarize the previous two sections: for normal errors, minimizing (R)MSE
:::::
either

:::::
MSE

::
or

::::::
RMSE yields the most likely125

model; whereas for Laplacian errors, minimizing MAE yields the most likely model. Normally distributed variables tend to

produce normally distributed errors, and exponentially distributed variables tend to produce Laplacian-like errors, so RMSE

and MAE are reasonable first choices for each case, respectively. Technically both also assume the errors are iid, and, for

many interesting problems, errors are neither perfectly normal, nor Laplacian, nor iid. In these cases, there are essentially four

options, all somewhat interrelated and often used in conjunction.130

5.1 Refine the model structure

The first option is to refine the structure of the model; in other words, make the model more physically realistic. While this

option is the most important for the advancement of science, it is not relevant to the choice of error metric, so I will not discuss

it further, other than to note that likelihood functions can
:::::::::
likelihoods

:::
can

::::
also

:
be used to inform incorporate decisions about

model structure(Burnham and Anderson, 2001)
::::::
evaluate

::::::
model

::::::::
structure:

:::::
first,

::::::::
determine

::::
the

::::::::
maximum

:::::::::
likelihood

:::
for

:::::
each135

::::::::
candidate

:::::
model

::::::::
structure,

::::
then

:::::
select

:::
(or

::::::
prefer)

:::
the

::::
most

:::::
likely

::::::
among

:::::
these

::::::::
candidates

:::::::::::::::::::::::::::::::
(Burnham and Anderson, 2001, e.g.,)

:
. The preceding derivations were all posed

:::::::::
formulated in terms of maximizing the likelihood by way of adjusting the model
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parameters θ, but more generally, θ can broadened to mean the entire model (structure and parameters )
::
the

:::::::::
likelihood

:::
can

:::
be

::::
used

::
to

:::::
refine

:::
the

:::::
entire

:::::::::::
model—both

::
its

:::::::::
parameters

::::
and

:::::::
structure.

5.2 Transformation140

The second option is to transform the data to a Laplace or, more commonly, normal distribution, then minimizing the MAE

or RMSE of the transformed data will yield the most likely model. For example, the distribution of streamflow at a particular

location
:::::::::
streamflow

::::::::::
distribution

::
of

::
a
::::::::
perennial

::::::
stream

:
is approximately lognormal. Logging a lognormal

:::::::
variable yields a

normal distribution, so
:::
one,

::
so

:::
in

:::
log

:::::
space,

:::
the

:::::
error

:
is
:::
the

:::::::::
difference

:::::::
between

::::
two

::::::
normal

:::::::::::
distributions,

:::::
which

::::
will

::::
also

::::
tend

::
to

::
be

:::::::
normal.

::
If

:::
the

:::::
errors

:::
can

:::
be

:::::
made

::::::
normal

:::
by

::::::::::::
transformation,

::::
then

:
minimizing the MSE of the log-transformed variable145

yields
:::::::::
transformed

:::::::
variable

::::
will

:::::
yield

:
the most likely model. Many statistical methods assume normality, and the general

name for transforming a non-normal variable into a normal one is known as a Box-Cox transformation (Box and Cox, 1964).

Transformations can make results harder to interpret, but this is usually an acceptable trade-off for better inference.

5.3 Robust inference

The third option is to use “robust” methods of inference. The term “robust” signifies that a technique is less sensitive to150

violations of its assumptions; typically, meaning they are less sensitive to extreme outliers. To achieve this, robust techniques

replace the Gaussian likelihood with one with thicker-tails, such as the Laplace or the Student-t
::::::::
Student’s-t, which reintroduces

the choice between RMSE and MAE, as MAE corresponds to the Laplace likelihood.

While Fisher (1920) demonstrated that minimizing the squared error was theoretically optimal for normal errors, he permit-

ted Eddington to add a footnote that in practice, better results were often achieved by minimizing the absolute error, because155

in practice, observations include some outliers that violate the normal condition
:::::
deviate

:::::
from

:::
the

::::::
normal

::::::::::
distribution (Stigler,

1973). For this reason, minimizing the MAE has come to be known as a “robust” form of MLE, as in “robust regression” (e.g.,

Murphy, 2012, section 7.4). Tukey, in particular, was seminal in developing and exploring robust methods, such as in Tukey

(1960) and his contributions to the field are documented by Huber (2002).

In their debate, Willmott et al. (2009) recognize robustness as an important advantage of MAE, though Chai and Draxler160

(2014) never directly acknowledge this point and instead advocate for “throwing out” outliers. Neither option is ideal. Either

can yield reasonable results for minor deviations from the normal, but their performance degrades as the deviation grows.

Since Tukey’s work, a better alternative has emerged, known as
::::
more

:::::
robust

::::::::::
alternatives

::::
have

::::::::
emerged,

::::::::
including the median

absolute deviation or MAD,

MAD = b medianni=1|ŷi−median(y)|, (16)165

where typically b= 1.483 to reproduce the standard deviation in the case of the normal distribution (denoted as MADσ). Al-

though MAD is less theoretically grounded, empirical evidence indicates it is more robust than MAE. MAD was first promoted

by Hampel (1974), who attributed it to Gauss, and later by Huber (1981), and more recently by ?
::::::::::::::::
Gelman et al. (2020). One

drawback is its relatively inefficiency for normal distributions (Rousseeuw and Croux, 1993), though
:::
but advocates of MAD
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counter that RMSE is as or more inefficient
::::::::
inefficient

:::
(or

:::::
more) for error distributions that deviate from the normal. Lacking170

a better alternative, ,
:::
so MAD remains a popular choice.

In addition to being “robust,” MAD and MAE also preserve scale, unlike the formal likelihood-based approach discussed

next. Unless combined with a transformation, scale-preserving error metrics have the same units as the data, such that their

magnitude roughly corresponds to the magnitude of the typical error. While MAD and MAE are easy to interpret and im-

plement, they are somewhat limited in scope in that they are only appropriate for “contaminated” distributions— mixtures of175

normal or Laplace distributions with a common midpoint, which, by implication, are also symmetric.

More complicated error distributions are frequently encountered in practice. For example, errors in rainfall-runoff models

are typically heteroscedastic. Log tranforming
::::::::::
transforming

:
the data can correct this for positive streamflows values, but the

log is undefined when streamflow is zero or negative. Pragmatic
::::::
Simple work arounds, such as setting zero

::::
zeros

:
to a small

positive value, can yield reasonable results
:::
may

:::
be

:::::::::
satisfactory

:
when zero and near-zero values are relatively rare but blow up180

as those values become more frequent. Recall that in log space, errors are proportional, so the difference between 0.001 and 1

is equivalent to the difference
:::
the

::::
same

::
as

::::
that between 1 and 1000.

5.4 Likelihood-based inference

The final option, likelihood-based inference, is the most versatile and subsumes the others in that each can be incorporated

within its framework. Its main drawback is interpretative. The absolute value of the likelihood is meaningless, neither does it185

measure of
:::::
unlike

::::::
RMSE

:::
or

:::::
MAE,

:::::
which

::::::::
measure the typical errorlike RMSE or MAE. Their relative values are meaningful,

however, in that they represent the
::
the

:::::::::
likelihood

::::
ratio

::::::::
represents

:::
the

:
evidence for one model relative to another. Log-likelihood

is equivalent to the concept of entropy from information theory, so likelihood-based approaches are naturally combined with

information-theory based ones. For an accessible introduction to likelihood-based model selection, the reader is referred to

Edwards (1992) and Burnham and Anderson (2001).190

Metrics like RMSE and MAE are sometimes referred to as “informal” likelihoods because, in certain circumstances, they

yield results equivalent to those obtained by the “formal” likelihood (e.g., Smith et al., 2008). Recall from equation that

the model that minimizes the RMSE also maximizes the likelihood, if the errors are normal and iid
:::
(12). Informal likeli-

hoods share some of the flexibility of formal ones, while preserving scale (commonly as real or percentage error). How-

ever, they have two notable drawbacks. Formal likelihoods are necessary when combining different distributions into one195

likelihood or when comparing among different error distributions (e.g., normal versus Laplace Burnham and Anderson, 2001)

::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., normal versus Laplace; Burnham and Anderson, 2001). Furthermore, because informal likelihoods obscure their proba-

bilistic origins, practitioners are frequently unaware of them and, as a consequence, use them incorrectly.

For streamflow modeling, examples of the formal likelihood-based approach include Schoups and Vrugt (2010); Smith

et al. (2010, 2015). Schoups and Vrugt (2010) create a single flexible likelihood function with several parameters that can200

be adjusted to fit a range of complex error distributions; whereas, Smith et al. (2015) show the process of building complex

likelihoods from combinations of simpler elements. Smith et al. (2015) focus on several variants of the zero-inflated normal

distribution, which, in essence, inserts a normal likelihood within a binomial one. Additional components can be added to deal
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with heteroscedasticity and serial dependence which are typical for errors in runoff modeling. For example, in the zero-inflated

lognormal, a binomial component handles zeros values, while a log transformation handles heteroscedasticity in the positive205

values.

6 Why not use both RMSE and MAE?

Chai and Draxler (2014) argue for RMSE as the optimal metric for normal errors, refuting the idea that MAE should be used

exclusively. They do not contend RMSE is inherently superior and instead advocate that a combination of metrics, including

both RMSE and MAE, should be used to evaluate model performance. Many models are multi-faceted, so there is an inherent210

need for multi-faceted evaluation, but it can be problematic if approached naively
::::::
without

:::::::::::
considerable

::::::
thought.

RMSE and MAE are not independent, so if both are presented, how should the reader
:::
we weigh their relative importance

when evaluating a model? One answer is to construct weights from their likelihood functions, the output of which represents

the support or evidence for either metric (Burnham and Anderson, 2001).
::::::::
Assuming

::
no

:::::
prior

::::::::::
information,

:::
the

::::::
logical

::::::::
approach

:
is
:::

to
:::::
weigh

:::::
them

:::
by

::::
their

::::::::::
likelihoods.

:::::::::
According

::
to
::::

the
:::
law

::
of

:::::::::::
likelihoods,

:::
the

:::::::
evidence

:::
for

::::
one

:::::::::
hypothesis

::::::
versus

:::::::
another215

::::::::::
corresponds

::
to

:::
the

::::
ratio

:::
of

::::
their

::::::::::
likelihoods

::::::::::::::::::::
(Edwards, 1992, , p. 30).

:::::::::
Extending

::::
this

::::::
further,

::::::
either

::::::
metric

:::
can

:::
be

::::::::
weighted

:::::
based

::
on

::
its

:::::::
relative

::::::::
likelihood

::::::::::::::::::::::::::
(Burnham and Anderson, 2001)

:
.

If the evidence strongly supports one over the other, presenting both metrics is unecessary
::::::::::
unnecessary

:
and potentially con-

fusing. When evaluating multiple metrics, there is also a tendancy
::
If

::::
their

:::::::
evidence

::
is
:::::::
similar,

:
it
::::
may

:::
be

:::::::::
appropriate

::
to
:::::::
present

:
a
::::::::
weighted

:::::::
average

::
or

:::::::
present

::::::
metrics

::::::
along

::::
with

::::
their

:::::::
weights

:::::::::::::::::::::::::::
(Burnham and Anderson, 2001).

::::::
When

::::::::
averaging

::::::::
informal220

:::::::::
likelihoods

::
to

:::::::
estimate

:::
the

::::::
typical

:::::
error,

::
an

:::::::::
additional

:::::::::
adjustment

:::::
must

::
be

:::::
made

:::
for

:::::::::
differences

::
in

::::
their

:::::
scale,

::
as

::::::::::::
demonstrated

::::
with

:::::
MAD.

:::::
Priors

::::
can

::
be

:::::::::::
incorporated

::
as

::::
well,

::::::
though

::::
this

::
is

:
a
:::::
more

::::::::
advanced

:::::
topic.

::::::::
Although

:::
the

:::::::::
likelihood

:::
can

:::::::
provide

::
an

::::::::
objective

::::::::
measure

::
of

::::::
model

:::::::::::
performance,

:::
we

:::
are

:::::
often

:::::::::
concerned

::::
with

::::::::
multiple

:::::
facets

::
of

:
a
::::::
model,

:::::
such

:::
that

::::
any

:::
one

:::::::::::
performance

::::::
metric

:
is
::::::::::

insufficient.
:::

A
:::::::
common

:::::::
solution

::
is

::
to

::::::
define

:::
and

::::::::
compute

::::::
several

::::::
metrics,

:::::
each

::::::
chosen

::
to

::::::::::
characterize

:
a
::::::::
different

:::::
aspect

::
of

:::
the

:::::::
model’s

:::::::::::
performance.

::::
For

:::::::
example,

::
in
:::::::

rainfall
:::::
runoff

::::::::
modeling

::
a225

:::::::
modeler

:::
may

::::::::
compute

:::
the

::::
error

::
in

::::
flow

:::::::
volume

:::
(the

::::::
model

:::::
bias),

::
as

::::
well

:::
the

:::::
errors

::
at

:
a
:::::
range

::
of

::::
flow

:::::::::
quantiles.

:::::
When

::::::::
evaluating

:::::
these

:::::::
metrics,

::::
there

::
is

:
a
::::::::
tendency to combine them into an overall score, but such scores are not meaningful,

at least in a maximum-likelihood sense. A better approach is to focus on the “best” metric, then
:
a
:::::
single

::::::::
objective

:::::::
function,

::::
like

::::
MSE

:::
for

::::::::
normally

:::::::::
distributed

:::::
errors,

:::
and

:
decompose it into independent components representing specific aspects of a model’s

performance (e.g., Hodson et al., 2021).230

::::
This

::::::
review

:::
has

:::::::
focused

::::::::
primarly

::
on

::::
how

::::::::::
probability

::::::
theory

:::
can

:::::::
answer

:::
the

:::::::
question

:::::::
“which

:::::
model

::
is
::::::::

better?”,
:::::::
thereby

::::::
guiding

:::
the

::::
task

:::
of

::::::
model

::::::::
selection.

::::
But

:::
this

::::
task

:::
is

:::::::::
equivalent

::
to

::::::
asking

:::::
“how

::::::::
accurate

::
is

:::
my

::::::::
model?”,

::::
then

::::::::::
comparing

::::::::
competing

:::::::
models,

::::
and

::::::::
selecting

:::
the

:::::
most

::::::::
accurate.

::::
That

::::
first

:::::::::::::::
step—quantifying

:::
the

::::::::::
uncertainty

::
in

::
a

:::::::
model—

::
is
::::::

import
:::

in

::
its

::::
own

:::::
right,

:::::::::
especially

::
if

:::
we

::::
base

::::::::
decisions

:::
on

:::::::::
predictions

:::::
from

:::
our

:::::::
models.

::::
Just

::
as

:::
the

::::::::
Gaussian

:::::::::
likelihood

::::::::
provides

:::
the

::::::::
theoretical

:::::
basis

:::
for

:::::
using

::::::
RMSE

::
to

::::::::
quantify

:::::
model

::::::::::
uncertainty

:::::
when

:::::
errors

:::
are

::::::::
normally

::::::::::
distributed,

:::::
more

::::::::
generally,

:::::
other235

::::::::
likelihood

::::::::
functions

:::
are

::::
used

::
to

:::::::
evaluate

::::::
model

:::::::
accuracy

::::
and

:::::::::
confidence

:::::::
intervals

:::
for

:::::
other

::::
error

:::::::::::
distributions.

:

8



7 Conclusions

Probability theory provides a logical answer to the choice between RMSE and MAE. Either metric is optimal in its correct

application; though in practice, neither may be sufficient. For these cases, refining the model, transforming the data, using

robust statistics, or constructing a better likelihood can yield better results. Arguably the latter is most versatile, though there240

are pragmatic reasons for preferring the others.

Returning to the debate over MAE and RMSE. Chai and Draxler (2014) were correct that RMSE is optimal for normally

distributed errors, though wrongly suggest
:::
they

:::::
seem

:::
to

:::::::
suggest,

::::::::
wrongly, that MAE only applies to uniformly distributed

errors. Whereas, Willmott and Matsuura (2005) and Willmott et al. (2009) were correct that MAE is more robust, though there

are better alternatives. Most importantly, neither side provides the theoretical justification behind either metric, nor do they245

adequately introduce the extensive literature on this topic. Hopefully, this paper fills that gap by explaining why and when

these metrics work, while pointing to better
::::::::
exposing

::::::
readers

::
to

::::::
several alternatives for when they fail.
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