
ICLASS 1.1, a variational Inverse modelling framework for the
Chemistry Land-surface Atmosphere Soil Slab model: description,
validation and application
Peter J.M. Bosman1 and Maarten C. Krol1,2

1Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands
2Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, the Netherlands

Correspondence: Peter Bosman (peter.bosman.publicaddress@gmail.com)

Abstract. This paper provides a description of ICLASS 1.1: a variational Inverse modelling framework for the Chemistry

Land-surface Atmosphere Soil Slab model. This framework can be used to study the atmospheric boundary layer, surface layer

or the exchange of gases, moisture, heat and momentum between the land surface and the lower atmosphere. The general

aim of the framework is to allow to assimilate various streams of observations (fluxes, mixing ratios at multiple heights, ...)

to estimate model parameters, thereby obtaining a physical model that is consistent with a diverse set of observations. The5

framework allows to retrieve parameters in an objective manner, and enables the estimation of information that is difficult to

obtain directly by observations, for example free-tropospheric mixing ratios or stomatal conductances. Furthermore it allows

to estimate possible biases in observations. Modelling the carbon cycle at ecosystem level is one of the main intended fields of

application. The physical model around which the framework is constructed is relatively simple, yet contains the core physics

to simulate the essentials of a well-mixed boundary layer and of land–atmosphere exchange. The model includes an explicit10

description of the atmospheric surface layer, a region where scalars show relatively large gradients with height. An important

challenge is the strong non-linearity of the model, which complicates the estimation of best parameter values. The constructed

adjoint of the tangent linear model can be used to mitigate this challenge. The adjoint allows for an analytical gradient of

the objective cost function, used for minimisation of this function. An implemented Monte-Carlo way of running ICLASS

can further help to handle non-linearity, and provides posterior statistics on the estimated parameters. The paper provides a15

technical description of the framework, includes a validation of the adjoint code, as well as tests for the full inverse modelling

framework and a successful example application for a grassland in the Netherlands.

1 Introduction

Exchanges of heat, mass and momentum between the land surface and the atmosphere play an essential role for weather, cli-

mate, air quality and biogeochemical cycles. Surface heating under sunny daytime conditions usually leads to the growth of20

a relatively well-mixed layer close to the land surface, the convective boundary layer (CBL). This layer is directly impacted

by exchange processes with the land surface and is also a layer where humans live in. Modelling the composition and thermo-

dynamic state of the CBL in its interaction with the land surface is the target of the Chemistry Land-surface Atmosphere Soil
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Slab model (CLASS; Vilà-Guerau De Arellano et al., 2015). This and similar models have been applied frequently, e.g. for un-

derstanding the daily cycle of evapotranspiration (van Heerwaarden et al., 2010), studying the effects of aerosols on boundary25

layer dynamics (Barbaro et al., 2014), studying the effects of elevated CO2 on boundary layer clouds (Vilà-Guerau De Arellano

et al., 2012) or for studying the ammonia budget (Schulte et al., 2021). Next to a representation of the CBL, the CLASS model

includes a simple representation for the exchange of gases, heat, moisture and momentum between the land surface and the

lower atmosphere. The model explicitly accounts for the surface layer, which is, under sunny daytime conditions, a layer within

the CBL close to the surface with relatively strong vertical gradients of scalars (e.g. specific humidity and temperature) and30

momentum (Stull, 1988). The best model performance is during the convective daytime period. Since the CBL-model physics

are relatively simple and only include the essential boundary layer processes, the model performs best on what might be called

"golden days". Those are days in which advection is either absent or uniform in time and space, deep convection and precip-

itation are absent, and sufficient incoming shortwave radiation heats the surface allowing for the formation of a prototypical

convective boundary layer. When these assumptions are met, the evolution of the budgets of heat, moisture, and gases is to a35

large extent determined by local land–atmosphere interactions. The aforementioned assumptions should ideally be valid for

the whole modelled period. They should ideally hold on a spatial scale large enough that violations of the assumptions in the

region do not influence the model simulation location. In practice, days are often not "ideal", e.g. a time-varying advection can

be present. This does not necessarily mean the model cannot be applied to that day, but, performance is likely to be worse.

To further our understanding of land–atmosphere exchange, tall tower observational sites have been established, for instance40

at Cabauw, the Netherlands (Bosveld et al., 2020; Vermeulen et al., 2011); Hyytiälä, Finland (Vesala et al., 2005); and Har-

vard Forest, USA (Commane et al., 2015). These observational sites provide time series of different types of measurements

(observation streams). Even so, many studies only use a (small) fraction of the different streams of observations available for

a specific day and location (e.g. Vilà-Guerau De Arellano et al., 2012). A model like CLASS, containing both a mixed-layer

and land-surface part, can be used to fit an extensive set of observation streams simultaneously. When model results are con-45

sistent with a diverse set of measurements, this gives more confidence that the internal physics are robust and the model has

been adequately parameterised to reliably simulate reality. However, an important difficulty in the application of a model like

CLASS concerns parameter tuning to obtain a good fit to observations. Some parameters can be obtained quite directly from

observations (for instance initial mixed-layer humidity), but, for example, estimating free-tropospheric lapse rates or certain

land-surface parameters is often more challenging. When many parameters need to be determined, the feasible parameter space50

becomes vast. If this vast parameter space is not properly explored, the obtained parameters can be subjective and sub-optimal.

The estimation of parameters is further complicated by possible overfitting and the problem of parameter equifinality (Tang

and Zhuang, 2008), the latter especially in case not enough types of observations are used. Next to that, some of the available

ecosystem/CBL-level observations may suffer from biases. An example is the closure of the surface energy balance, where the

available energy is often larger than the sum of the latent and sensible turbulent heat fluxes (Foken, 2008). This energy balance55

closure problem is a known issue with eddy-covariance observations (Foken, 2008; Oncley et al., 2007; Renner et al., 2019),

and various explanations have been suggested (Foken, 2008).

2



The above text illustrates the need for an objective optimisation framework, capable of correcting observations for biases.

We therefore present here a description of ICLASS, an inverse modelling framework built around the CLASS model, including

a bias-correction scheme for specific bias patterns. This framework can estimate model parameters, by minimising an objective60

cost function using a variational (Chevallier et al., 2005) framework. ICLASS uses a Bayesian approach, in the sense that it

combines information, both from observations and from prior knowledge about the parameters, to come to a solution with a

reduced uncertainty in the optimised parameters. A major strength of this framework is that it allows to incorporate several

streams of observations, for instance, chemical fluxes, mixing ratios, temperatures at multiple heights, and radiosonde obser-

vations of the boundary-layer height. By optimising a number of predefined key parameters of the model, we aim to obtain a65

diurnal simulation that is consistent with a diverse set of measurements. Additionally, error statistics that are estimated provide

information about the constraints the measurements place on the model parameters. Modelling the carbon cycle at ecosystem

level is one of the main intended fields of application. As an example, with some extensions to the framework, ICLASS could

be applied to ecosystem observations of the coupled exchange of CO2 and carbonyl sulfide (a tracer for obtaining stomatal

conductance, Whelan et al., 2018).70

Besides ICLASS, there have been extensive earlier efforts in literature to estimate parameters in land-atmosphere exchange

models. For example, Bastrikov et al. (2018) and Mäkelä et al. (2019) optimised parameters of the land-surface models OR-

CHIDEE and JSBACH respectively. These models have more complex physics not included in the CLASS model, which can

be advantageous in accurately simulating land-atmosphere exchange. However, a distinct advantage of the CLASS model is

the coupling of a land-surface model to a mixed-layer model. This facilitates the inclusion of atmospheric observations such75

as mixing ratios in the optimisation of land-atmosphere exchange parameters. Next to that, simple models like CLASS have

the advantage of requiring less computation time, and the output might be more easily understood. Kaminski et al. (2012)

and Schürmann et al. (2016) also assimilate both land-surface-related and atmosphere-related observations. In those studies a

land-surface model is coupled to an atmospheric transport model. Meteorology is not simulated in those studies. In ICLASS,

meteorology adds an additional set of observation streams, that can be used to optimise land-surface-related parameters that80

are linked both to gas fluxes and meteorology.

An important challenge for the optimisation framework is the strong non-linearity of the model. As an example, the change

in mixed-layer specific humidity (q) with time is a function of q itself: a stronger evapotranspiration flux leads to an increased

specific humidity in the mixed layer, which in turn reduces the evapotranspiration flux again (van Heerwaarden et al., 2009).

The non-linearity causes numerically calculated cost function gradients to deviate from the true analytical gradients, since the85

cost function can vary irregularly with a changing model parameter value. This is hampering proper minimisation of the cost

function when using numerically calculated gradients. An adjoint has been used in the past to optimise parameters, e.g. for

land-surface models (Raoult et al., 2016; Ziehn et al., 2012). Constructing the adjoint of the tangent linear model is a way to

obtain more accurate gradient calculations, as the adjoint provides a locally exact analytical gradient of the cost function at the

locations where the function is differentiable. This approach furthermore allows to efficiently retrieve the sensitivity of model90

output to model parameters. Also, using an analytical gradient is generally computationally less expensive compared to using

a numerical gradient (Doicu et al., 2010, p17). Margulis and Entekhabi (2001a) constructed an adjoint model framework of a
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coupled land-surface boundary-layer model, which they used to study differences in daytime sensitivity of surface turbulent

fluxes for the same model in coupled and uncoupled modes (Margulis and Entekhabi, 2001b). However, their CBL model did

not include carbon dioxide nor does it allow to model scalars at specific heights in the surface layer. We expect these to be95

important for our framework that aims to make optimal use of several information streams. For doing gradient calculations

within the ICLASS framework, we constructed the adjoint of CLASS.

The paper is structured as follows: First we give some information on the (slightly adapted) forward model CLASS (Sect.

2). The inverse modelling framework built around CLASS is described in Sect. 3. Information on how error statistics are

employed and produced follows in Sect. 4, after which we provide a description of the model output (Sect. 5) and technical100

details of the code (Sect. 6). Afterwards we present the adjoint and gradient tests that serve as validation for the constructed

adjoint model (Sect. 7). Further information about the adjoint model is available in the supplementary material. In Sect. 8

we perform observation system simulation experiments that validate the full inverse modelling framework. In the last section

before the concluding discussion we present an example application, for a grassland site in the Netherlands (Cabauw), where

a very comprehensive meteorological dataset is complemented with detailed measurements of CO2 mixing ratios and surface105

fluxes.

2 Forward model

The employed forward model in our inverse modelling framework is the (slightly adapted) Chemistry Land-surface Atmo-

sphere Soil Slab model (CLASS; Vilà-Guerau De Arellano et al., 2015). The model code is freely available on GitHub

(https://classmodel.github.io/). We made use of the Python version of CLASS to construct our inverse modelling framework.110

We will shortly describe the essentials of the model which are relevant for the inverse modelling framework.

The model consists of several parts, namely the mixed layer, the surface layer, and the land surface, including the soil (Fig.

1). It is a conceptual model that uses a relatively small set of differential equations (Wouters et al., 2019). The core of the model

is a box-model representation of an atmospheric mixed layer. Therefore an essential assumption of the model is that during

daytime turbulence is strong enough to maintain well-mixed conditions in this layer (Ouwersloot et al., 2012). The mixed-layer115

tendency equation for any scalar (e.g. CO2, heat) is:

tendency =
(surface flux + entrainment flux)

mixed layer height
+ advection (1)

The surface flux is the exchange flux with the land surface (including vegetation and soil). The entrainment flux is the exchange

flux between the mixed layer and the overlying free troposphere. For moisture and chemical species, a cloud mass flux can

also be included in the equation. The mixed layer height is dynamic during the day and evolves under the driving force of120

the surface heat fluxes and large scale subsidence. Cloud effects on the boundary-layer height and growth due to mechanical

turbulence can also be accounted for.

Above the mixed layer a discontinuity occurs in the scalar quantities, representing an infinitely small inversion layer. Above

the inversion, the scalars are assumed to follow a linear profile with height in the free troposphere (Fig. 1). The entrainment
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fluxes are calculated as follows: First, the buoyancy entrainment flux is taken as a fixed fraction of the surface flux of this125

quantity (Stull, 1988, p 478), to which entrainment driven by shear can optionally be added. From this virtual heat entrainment

flux, an entrainment velocity is calculated. The entrainment flux for a specific scalar (e.g. CO2) is then obtained by multiplying

the entrainment velocity with the value of the (inversion-layer) discontinuity for the respective scalar.

The surface layer is defined in the model as the lowest 10% of the boundary layer. In this (optional) layer, Monin-Obukhov

similarity theory (Monin and Obukhov, 1954; Stull, 1988) is employed. In the original CLASS surface layer, scalars such as130

temperature are evaluated at 2 m height. For some scalars, we have extended this to multiple user-specified heights. This allows

to compare observations of chemical mixing ratios and temperatures at different heights (e.g. along a tower) to model output.

Since the steepness of vertical profiles depends on wind speed and roughness of the surface, these gradients reflect information

about these quantities.

The (optional) land surface includes a simple soil representation as well as an a-gs module. This a-gs module (Jacobs,135

1994; Ronda et al., 2001) is a big-leaf method (Friend, 2001) for calculating the exchange of CO2 between atmosphere and

biosphere, and the stomatal resistance. The latter is used for calculating H2O exchange. As an alternative for a-gs, a Jarvis-

Stewart approach (Jarvis, 1976; Stewart, 1988) can also be used in the calculation of H2O exchange. The latter approach is

more simple, herein, stomatal conductance consists of a maximum conductance multiplied with a set of factors between 0 and

1 (Jacobs, 1994). In CLASS, there are 4 factors included, which represent limitations due to the amount of incoming light,140

temperature, vapour pressure deficit and soil moisture. The land-surface part is responsible for calculating the exchange fluxes

of sensible heat, latent heat and CO2 between the mixed layer and the land surface. The model has a module for calculating

long- and shortwave radiation dynamically. In this module, shortwave radiation is calculated using the date and time, cloud

cover and albedo. For longwave radiation, surface temperature and the temperature at the top of the surface layer are used. The

resulting net radiation is used implicitly in the calculation of the heat fluxes, thereby obtaining a closed energy balance in the145

model (simplified calculation). Soil temperature and moisture are also simulated, based on a force-restore model. The soil heat

flux to the atmosphere is calculated based on the gradient between soil and surface temperature, the latter is obtained from a

simplified energy balance calculation.

More details on the equations in the model can be found in Vilà-Guerau De Arellano et al. (2015). Note that some relatively

small changes with respect to the original CLASS model have been implemented, as documented in the ICLASS manual,150

which is part of the material that can be downloaded via the Zenodo link in the "Code and data availability" section.

3 Inverse modelling framework

3.1 General

Inverse modelling is based on using observations and, ideally, prior information to statistically optimise a set of variables

driving a physical system (Brasseur and Jacob, 2017). The n variables to be optimised are contained in a state vector x. In our155

framework, this vector can be subdivided in two vectors. Those are xm, containing state variables belonging to the input of

CLASS (e.g. CO2 advection, albedo,..), and xb, containing state variables belonging to our bias-correction scheme (see Sect.
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entrainment

soil

land surface

advection

Figure 1. Sketch of the employed forward model: the (slightly adapted) CLASS model. The blue dots in the surface layer represent user-

specified heights where the model calculates scalars, e.g. the CO2 mixing ratio. The mixed layer is represented by a single bulk value in

the model (blue dot in mixed layer). At the top of the mixed layer, a discontinuity (jump) occurs in the profiles. The free troposphere is not

explicitly modelled, but is taken into account for the exchange with the mixed layer (entrainment). The slope of the free troposphere line is

the free troposheric lapse rate. A constant advection can be taken into account as a source/sink.

3.2). The forward-model H (CLASS) projects vector xm to provide model output that can be compared to observations, e.g.

temperatures at different heights (full list in ICLASS manual). This output does not only depend on xm, but also on model

parameters that are not part of the state. Those are contained in a vector p. The result is contained in vector H(xm,p). Note160

that an overview of all inverse-modelling variables defined in this section is given in Table B1, including dimensions and units.

We initially define a cost function J (−) as (Brasseur and Jacob, 2017):

J(x) = (x−xA)TSA
−1(x−xA) + (y−H(xm,p))TSO

−1(y−H(xm,p)) (2)

where xA represents the a-priori estimate of the state vector, y is the vector of observations used within the modelled time

window, and H(xm,p) is the vector of model results at the times of the observations. The latter vector is the model equivalent165

of the observation vector y. The superscript T means transpose, SA represents the a-priori error covariance matrix (defined

in supplementary material) and SO represents the matrix of observational error covariances. This cost function quantifies two

aspects, namely the fit between model output and observations as well as how well the posterior state matches with prior

information about the state. Regarding the observational error covariance matrix SO (fully defined in Brasseur and Jacob,

2017), we assume for simplicity the observational errors to be uncorrelated (as in e.g. McNorton et al., 2018; Chevallier et al.,170

2010; Ma et al., 2021). This simplifies the matrix SO to a diagonal matrix, with observational error variances as diagonal

elements. This way Eq. (2) simplifies to:

J(x) = (x−xA)TSA
−1(x−xA) +

m∑
i=1

(H(xm,p)i− yi)2

σ2
O,i

(3)
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Here, σ2
O,i is the ith diagonal element of SO, m is the number of observations. It is customary to refer to the first term of this

cost function as the background part and to the second part of this function as the data part. Note that if also the a-priori errors175

are uncorrelated, the first term in the equation can be simplified in a similar way as the second term. The observational error

variance linked to the ith observation (σ2
O,i) can be further split up as follows:

σ2
O,i = σ2

I,i +σ2
M,i +σ2

R,i (4)

where σ2
I,i is the instrument (measurement) error variance, σ2

M,i the model error variance and σ2
R,i the representation error

variance (see Brasseur and Jacob, 2017). These errors are assumed to be independent of each other and normally distributed.180

At this point, we introduce two extra features to the cost function. Firstly we allow the user to specify a weight for each

individual observation, in case some observations are deemed less important than others. In principle, the observational error

variances could also be adapted for this purpose, but by using weights we can keep realistic error estimations (important for

Sect. 4.2). Those weights can also be used to manipulate the relative importance of the background term and the data term.

This is similar to the "regularisation factor" explained in Brasseur and Jacob (2017). Secondly, we introduce part of our bias-185

correction scheme in the data part of the cost function, namely scaling factors for observations. These factors can also be

optimised. With the additions mentioned above, the cost function as given in Eq. (3) modifies to:

J(x) = (x−xA)TSA
−1(x−xA) +

m∑
i=1

wi
(H(xm,p)i− si yi)2

σ2
O,i

(5)

where wi (−) is a weight for each individual observation in the cost function. si (−) is a scaling factor for observation yi,

identical for each timestep, but allowed to differ between each observation stream. The background term in the cost function190

can be left out if the user desires so. The introduction of the scaling factors means we need to adapt the observational error

variances as well, the ith observational error variance is now given by:

σ2
O,i = var(s{t}i yi−H(x{t}

m ,p)i) (6)

where x{t}
m is the unknown vector of "true" values of the model parameters in the state vector, and s{t}i is the "true" value of

the scaling factor for the ith observation. The decomposition from Eq. (4) remains valid.195

In the statistical optimisation, we attempt to find the values of the state vector x such that the function in Eq. (5) reaches its

absolute minimum. This is done starting from an initial guess (x = xA), after which the state vector is improved iteratively. The

cost function and the gradient of the cost function (derivatives with respect to all parameters) are computed for different combi-

nations of parameters in the state vector (Fig. 2). The framework uses by default a truncated Newton method, the tnc algorithm

(The SciPy community; Nash, 2000), for the optimisations. Truncated Newton methods are suitable for non-linear optimisation200

problems (Nash, 2000). The chosen algorithm allows for specifying hard bounds on the state vector parameters, preventing

unphysical parameter values for individual parameters in the state vector. Raoult et al. (2016) used similar constraints in their

inverse modelling system, Bastrikov et al. (2018) used bound constraints as well. The analytical cost-function-gradient calcu-

lations are described in Sect. 3.4, a basic numerical derivative option (Sect. 3.5) is available as well, although we expect this in

general to be outperformed by the analytical derivative.205
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Model param 𝒙𝒎,
prior estimate

Model output 𝑯(𝒙𝒎, 𝒑)

Model param 𝒙𝒎,
new estimate

Modified
observations

Cost function 𝐽

Model adjoint

Gradient of 
cost function to 

model param 
𝑑𝐽

𝑑𝒙𝒎

Bias param 𝒙𝒃,
prior estimate

Iterative cycle

Gradient of 
cost function to 

bias param 
𝑑𝐽

𝑑𝒙𝒃

Bias param 𝒙𝒃,
new estimate

Model simulation

Forcing 𝑭

Converged?
STOP

Model param 𝒙𝒎,
best estimate

Bias param 𝒙𝒃,
best estimate

State 𝒙,
optimised

Figure 2. Slightly simplified sketch of the workflow of the inverse modelling framework, when using the adjoint model for the derivatives

with respect to model parameters. Note that, for clarity of the figure, direct arrows between the parameters and the cost function and its

gradients are not drawn. These arrows arise via the background part of the cost function (see equations in text). Everything within the shaded

rectangle is part of the iterative cycle of optimisation. Model parameters that are not optimised are in vector p, this vector is used together

with xm in every model simulation. In case ICLASS is run in Monte-Carlo mode (Sect. 3.6 and Sect. 4.2), this figure applies to the individual

ensemble members.

3.2 State-vector parameters

As mentioned before, the state vector can be decomposed into a vector xm and a vector xb. Vector xm contains state variables

related to the input of CLASS, such as initial conditions (e.g. initial mixed-layer potential temperature), boundary conditions

(e.g. CO2 advection), and uncertain model constants (e.g. roughness length for heat). The full list of model parameters that can

be optimised is given in the ICLASS manual.210

Vector xb contains parameters belonging to our bias-correction scheme in the data part of the cost function. There are two

ways of bias-correcting, the first one is by using observation scaling factors for observation streams. These scaling factors (si)

have been introduced in Eq. (5). As an example, in the state vector to be optimised, one can include a single scaling factor for

all CO2 surface flux observations. The second possible method of bias correcting (Sect. 3.3) is implemented specifically for

the energy balance closure problem (Foken, 2008; Oncley et al., 2007; Renner et al., 2019), it involves a parameter "FracH"215

(−) that can be optimised.
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3.3 Bias correction for energy balance closure

We first define an observational energy balance closure residual (Foken, 2008):

εeb = Rn− (Horig +LEorig +G) (7)

where Rn is the time series of net radiation measurements, Horig and LEorig are the measured sensible and latent heat fluxes220

and G is the measured soil heat flux. The difference between measured net radiation and the sum of measured heat fluxes is

calculated for every time step and this represents the energy balance closure residual. If desired, the user can easily specify an

expression of their own for εeb. Subsequently, the observations for the sensible and latent heat flux are adapted as follows:

yH = Horig + FracH εeb (8)

yLE = LEorig + (1−FracH)εeb (9)225

This implies that the energy balance closure residual is added partly to the sensible, partly to the latent heat flux, thereby

closing the energy balance in the observations. This partitioning is determined by parameter FracH , which is taken to be

constant during the modelled period. This approach of closing the energy balance is similar to Renner et al. (2019), but we

optimise a parameter, instead of using the evaporative fraction, for partitioning εeb. Limitations of this approach are that we

assume the radiation and soil heat flux measurements to be bias-free, and the FracH parameter constant.230

3.4 Analytical derivative

For the optimisations, we do not only compute a cost function, but we also use the gradient of the cost function with respect to

the state vector elements. This informs us on the direction in which the cost function lowers. How the gradient with respect to

an individual element is calculated depends on which state vector element is considered. In case the ith state vector element is

a model-input parameter, the gradient with respect to this element is computed as (similar to Brasseur and Jacob, 2017, their235

Eq. 11.105):

∂J

∂xi
= 2(SA

−1(x−xA))i + 2((∇xmH(xm,p))TF )i−l (10)

Where ∇xmH(xm,p) is the local Jacobian matrix of H , l is the number of non-model-input parameters in the state x

occurring before xi, and F is the forcing vector, with elements Fk defined as:

Fk = wk
(H(xm,p)k − sk yk)

σ2
O,k

(11)240

There is one forcing element in the vector for every observation that is used, Fk is the forcing related to the observation yk.

For calculating the model-input part of the analytical derivative we constructed the adjoint of the model, (∇xmH(xm,p))T ,

which is used to obtain a locally exact analytical gradient (in specific cases not exact, see section "If-statements" in supple-

mentary material). More information on the adjoint is given in the supplementary material.
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In case the ith state vector element is an observation scaling factor (Eq. 5) for observation stream j, the gradient of the cost245

function with respect to the ith state vector element is computed as:

∂J

∂xi
= 2(SA

−1(x−xA))i +

mj∑
k=1

−2Fk yj,k (12)

where mj is the number of observations of the type (stream) where the observation scaling factor is applied to, e.g. if the

observation scale is a scaling factor for surface CO2 flux observations, mj is the number of surface CO2 flux observations. yj,k

is the kth observation of this observation stream. Fk is the forcing related to the observation yj,k.250

Finally, if the ith state vector element is FracH , the gradient is calculated as

∂J

∂xi
= 2(SA

−1(x−xA))i− 2

(
FH ·

dyH

dFracH
+FLE ·

dyLE

dFracH

)
(13)

Where FH and FLE are the forcing vectors for the sensible and latent heat flux respectively, yH and yLE are the observation

vectors for the sensible and latent heat flux respectively and "·" is the Euclidian inner product. Note that when the FracH

parameter is included in the state, the observation scaling factors for sensible and latent heat flux observations will be set equal255

to 1, and are not allowed to be included in the state. The terms dyH

dFracH
and dyLE

dFracH
represent respectively the derivatives of the

sensible and latent heat flux observations to the FracH parameter, which follow from equations 8 and 9 as follows:

dyH

dFracH
= εeb (14)

dyLE

dFracH
=−εeb (15)

Note that equations 10, 12 and 13 all have the same first term that originates from the background part of the cost function.260

3.5 Numerical derivative

A simple numerical derivative is available as alternative to the analytical gradient. The derivative of the cost function to the ith

state element is numerically calculated as

∂J

∂xi
=
J(xi +α)− J(xi−α)

2α
(16)

where α is a very small perturbation to state parameter xi, with a default value of 10−6, and has the units of xi.265

3.6 Handling convergence challenges

The highly non-linear nature of the optimisation problem can cause the optimisation to get stuck in a local minimum of the

cost function (Santaren et al., 2014; Bastrikov et al., 2018; Ziehn et al., 2012). This means that the resulting posterior state

vector can depend on the prior starting point (Raoult et al., 2016), and the resulting posterior state can remain far from optimal.

In the worst case, the non-linearity of the model can even lead to a crash of the forward model. This happens with certain270

combinations of input parameters, that lead to unphysical situations or undesired numerical behaviour. After starting from a
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user-specified prior state vector, the tnc algorithm autonomously decides which parameter values are tested during the rest of

the optimisation. It is possible to place hard bounds on individual parameters when using the tnc algorithm, but this does not

always prevent all possible problematic combinations of parameters from being evaluated.

To obtain information about the uncertainty of the posterior solution, and to deal with the challenges described above, the275

framework also allows a Monte-Carlo approach (Tarantola, 2005). This entails that the framework does not start at a single

state vector with prior estimates, but instead uses an ensemble of prior state vectors xA, leading to an ensemble of posterior

parameter estimates. The ensemble of optimisations can be executed in parallel on multiple processors, thereby reducing the

time it takes to perform the total optimisation. More details on the Monte-Carlo mode of ICLASS are given in the Sect. 4.2.

As an additional way to improve the posterior solution, we have implemented a "restart" algorithm. If the optimisation280

results in a cost function that is higher than a user-specified number, the framework will restart the optimisation from the best

state reached so far. This "fresh start" of the tnc algorithm, whereby the algorithm’s memory is cleared, often leads to a further

lowering of the cost function. The maximum number of restarts (>=0) is specified by the user. If an ensemble is used, every

individual member with a too high posterior cost function will be restarted.

4 Error statistics285

4.1 Prior and observations

From a Bayesian point of view, ICLASS can combine information, both from observations and from prior knowledge about

the state vector, to come to a solution with a reduced uncertainty in the state parameters. In the derivation of Eq. (2), it is

assumed that both prior and observational errors follow a (multivariate) normal distribution (Tarantola, 2005). However, some

prior input parameters are bounded (Sect. 3.6), e.g. the albedo cannot be negative. Dealing with bounds is a known challenge290

in inverse modelling, several approaches can be followed (Miller et al., 2014). As an example, Bergamaschi et al. (2009) had

to deal with methane emissions in the state vector becoming negative. Their solution was to make the emissions a function of

an emission parameter that is being optimised, instead of optimising the emissions themselves. By their choice of function, the

emissions cannot become negative, even though the emission parameter is unbounded. In our case such an approach is more

difficult, as we have a diverse set of bounded parameters.295

Our approach is to enforce hard bounds for state values via the tnc algorithm, it however means that the normality assumption

will be violated to some extent, as the normal distribution (for which the user specifies the variance) for prior parameter values

then becomes a truncated normal distribution. For a parameter following a truncated normal prior distribution, the prior variance

used in the cost function is not (fully) equal to the variance of the actual prior distribution. The extent to which this is the case,

depends on the degree of truncation.300

Our system also allows for specifying covariances between state elements in SA. We assume observational errors to be

uncorrelated, see Sect. 3.1. Equation 4 states that the observational error variance consists of an instrument error, a model

error and a representation error variance. The instrument and representation error standard deviation are taken from user input,

the model error standard deviation can either be specified by the user or estimated from a sensitivity analysis. In the latter
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case, an ensemble of forward-model runs is performed. For each of these runs, a set of parameters, not belonging to the state305

vector, is perturbed (so parameters part of vector p, not from xm, see Sect. 3.1). These perturbed parameters are used together

with the unperturbed prior vector xm as model input. The user should specify which parameters should be perturbed, and the

distribution from which random numbers will be sampled to add to the default (prior) model parameters. For the latter, there is

the choice between a "normal", "bounded normal", "uniform" or "triangular" distribution. The model error standard deviation

for each observation stream at each observation time, is then obtained from the spread in the ensemble of model output for the310

observation stream at that time.

4.2 Ensemble mode to estimate posterior uncertainty

When ICLASS is run in Monte-Carlo (ensemble) mode, it allows for estimating the uncertainty of the posterior state. The

principle for obtaining posterior error statistics bears strong similarity to what has been done in Chevallier et al. (2007), it will

be shortly explained here. We start with the prior state specified by the user. Then, for each ensemble member and for every315

state parameter, a random number is drawn from a normal distribution with variance of the respective parameter specified

by the user, and mean 0. When also covariances are specified for the prior parameters, a multivariate normal distribution can

be used to sample from. The sampled numbers are then added to the state vector. In case any non-zero covariances are used

to perturb, then, if the new state vector falls out of bounds (if specified), it is discarded and the procedure repeated for that

ensemble member. In case no covariance structure is used, only the parameter which falls out of bounds has to be replaced. It320

has to be noted that this effectively leads to sampling from a truncated (multivariate) normal distribution.

Similarly, for every ensemble member a random number drawn from a normal distribution (without bounds) is added to the

(scaled) observations. This modifies the cost function of an individual ensemble member (Eq. 5) as follows:

J(x) =
(
x−x

{p}
A

)T
SA
−1
(
x−x

{p}
A

)
+

m∑
i=1

wi
(H(xm,p)i− si yi + εi)

2

σ2
O,i

(17)

x
{p}
A is the perturbed prior state vector. The random numbers εi in the data part of the cost function are sampled from normal325

distributions with mean 0 and standard deviation σO,i. This can be seen as either a perturbation of the scaled observations or

a perturbation of the model-data mismatch. As a consequence of the change in the cost function equation, the equation for the

forcing vector (Eq. 11) is updated as well:

Fk = wk
(H(xm,p)k − sk yk + εk)

σ2
O,k

(18)

Furthermore, in equations 10, 12 and 13, for perturbed ensemble members, x{p}
A is used instead of xA. The vector εeb (Eq. 7) is330

not perturbed and kept identical for all members. For every ensemble member an optimisation is performed. Each optimisation

is classified as either successful or not successful. Here, successful is defined as having a final reduced chi-squared (see Sect. 5,

Eq. 19) smaller or equal than a user-specified number. The posterior state parameters for the successful members are considered

a sample of the posterior state space, and are saved in a matrix. Those parameters can be used to estimate the true posterior

pdfs. A covariance and a correlation matrix is then constructed using the matrix of posterior state parameters. These covariance335
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and correlation matrices are used as an estimate of the true posterior state covariance and correlation matrices, respectively. If

the user prefers so, also parameters not belonging to the state can be perturbed in the ensemble, in a similar way as outlined in

Sect. 4.1.

Note that, next to the ensemble, there will also be a run with an unperturbed prior, just as is the case when no ensemble

is used. We refer to this run as member 0. This member is however not included in the calculation of ensemble-based error340

statistics (e.g. correlation matrix), as the choice of prior values is not random for this member.

5 Output

ICLASS can write several output files. The output includes the obtained parameters, as well as the posterior reduced chi-squared

statistic and the posterior and prior cost function. The reduced chi-squared goodness-of-fit statistic is defined in ICLASS as:

χ2
r =

J∑m
i=1(wi) +n

(19)345

In this equation, m is the number of observations and n the number of state parameters (see Sect. 3 for the other symbols).

Note that if all the weights are set to 1, the denominator simplifies to m+n. The n will only be included in the denominator

when the user chooses to include a background part in the cost function (default). In a simple case where the prior errors are

uncorrelated, this χ2
r statistic for the posterior solution should be around 1 when the optimisation converges well and priors and

errors are properly specified (e.g. Michalak et al., 2005). In a case where all weights are 1, this can be understood as follows:350

The average value of the ith posterior observation residual squared, (H(xm,post,p)i− si yi)2, should be close to σ2
O,i, and the

average value of the ith posterior data residual squared, (xpost,i−xA,i)
2, should be close to the ith diagonal element of the a-priori

error covariance matrix when the optimisation converges well and errors and prior parameters are properly specified. We have

m observation residuals, and n data residuals (if background part included). In this example with a diagonal SA matrix, the

residuals are assumed to be independent of each other. Each squared residual contributes on average a value of approximately 1355

to the cost function, summing to approximately m+n, and thus χ2
r ≈ 1. Note however that the χ2

r statistic can be misleading, in

particular when observational errors are correlated (Chevallier, 2007). Furthermore, as mentioned in Sect. 4.1, prior parameters

can follow a truncated normal distribution, violating the normality assumption. The impact of this depends on the degree of

truncation, but also on the number of observations etc. It can lead to an ideal χ2
r value diverting from 1.

ICLASS also calculates a prior and a posterior partial cost function and a posterior χ2
r statistic for individual observation360

streams and for the correspondence to prior information (background). The partial cost function for observation stream j is

calculated as:

Jj =

mj∑
i=1

wi
(H(xm,p)i− sj yj,i + εi)

2

σ2
O,i

(20)

where mj is the number of observations of stream j, yj,i is the ith observation of stream j, and H(xm,p)i is the model output

corresponding with yj,i. In case scaled observations are perturbed in the ensemble (Sect. 4.2), εi is a random number, otherwise365
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it is 0. The χ2
r statistic for observation stream j is defined here as:

χ2
r,j =

Jj∑mj

i=1(wi)
(21)

This equation resembles Eq. (13) of Meirink et al. (2008), but note that variable χ2

ns
in their paper is similar to χ2

r,j in our paper.

The χ2
r statistic for the background part is calculated as (similar to Eq. 26 of Michalak et al., 2005):

χ2
r,b =

Jb
n

(22)370

Where Jb is the background part of the cost function, i.e. the first term from Eq. (5). The mean bias error, root mean squared

error and the ratio of model and observation variance for every observation stream is also calculated, both for the prior and

posterior state. The mean bias error for the jth observation stream is defined here as:

εbias,j =
1

mj

mj∑
i=1

(H(xm,p)j,i− sj yj,i) (23)

In this equation,mj is the number of observations of type (stream) j,H(xm,p)j,i is the model output for observation stream j375

at time index i, yj,i is an observation of stream j at time index i and sj is an observation scaling factor for obs of stream j. Note

that even when the scaled observations are perturbed, we do not include those perturbations here (compare Eq. 20). In case the

FracH parameter is used, the energy balance corrected observations (equations 8 and 9) will be used in the equation above.

For the root mean squared error and the ratio of model and observation variance, the observation scales and energy balance

corrected observations are used as well. ICLASS also calculates the normalised deviation of the posterior from the prior for380

every state parameter xi:

δnor,i =
xpost,i−xA,i

σA,i
(24)

where σA,i is the square root of the prior variance of parameter i, i.e. the square root of diagonal element i from matrix SA.

Note that, also in case of an ensemble, we use the unperturbed prior, i.e. the prior of member 0.

If run in ensemble mode, we additionally store estimates of the posterior error covariance matrix (Sect. 4), the posterior385

error correlation matrix, the posterior/prior variance ratio for each of the state parameters, the mean posterior state, and the

optimised and prior states for every single ensemble member. When non-state parameters are perturbed in the ensemble, these

parameters are part of the output, also the correlation of the posterior state parameters with these non-state parameters can

be written as output. When the model error standard deviations are estimated by ICLASS (Sect. 4.1), there is a separate file

containing statistics on the estimated error standard deviations. Finally, there are additional output files with information about390

the optimisation process. For every model simulation (and for every ensemble member) in the iterative optimisation process,

one can find the parameter values used in this simulation as well as the value of the cost function, split up into a data and a

background part. For the gradient calculations, one can find the parameter values used, as well as the the derivatives of the

cost function with respect to every state parameter. The derivatives of the background part are also provided separately. More

details on the output of ICLASS can be found in a separate section of the manual. An overview of the output variables defined395

in this section is given in Table B2.
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6 Technical details of the code

We have written the entire code in Python 3 (https://www.python.org). Using the framework requires a Python 3 installation,

including the NumPy (van der Walt et al. (2011); https://numpy.org), SciPy (https://scipy.org) and Matplotlib (Hunter (2007);

https://matplotlib.org) libraries. The code is operating-system independent and consists of three main files:400

– "forwardmodel.py", containing the adapted CLASS model.

– "inverse_modelling.py", containing most of the inverse modelling framework, such as the function to be minimised in

the optimisation and the model adjoint.

– "optimisation.py", the file to be run by the user for performing an actual optimisation, in this file observations are loaded,

the state vector defined, etc. The input paragraphs in this file should be adapted by the user to the optimisation performed.405

There are three additional files, the first is "optimisation_OSSE.py", and is similar to optimisation.py, but is meant specifically

for observation system simulation experiments (also in this file, the user should adapt the input paragraphs to the optimisation to

be performed). The second file is "testing.py", containing tests for the code as described in Sect. 7. The file "postprocessing.py"

is a script that can be run after the optimisations are finished, for post-processing output data, e.g. to plot a colored matrix of

correlations. Using the Pickle module, the optimisation can store variables on the disk near the end of the optimisation, and410

these variables can be read in again in the "postprocessing.py" script. This has the advantage that e.g. the formatting of plots

can easily be adapted without redoing the optimisation. This script should be adapted by the user to the optimisation performed

and the output desired.

7 Adjoint model validation

When using the adjoint modelling technique, an extensive testing system is required to make sure that the analytical gradient415

of the cost function computed by the adjoint model is correct. There are two tests that are essential, which are described below.

The gradient test (for the tangent linear model) is a test to determine whether the derivatives with respect to the model

input parameters in the tangent linear model are constructed correctly. The construction of the adjoint is based on the tangent

linear model, so errors in the tangent linear propagate to the adjoint model. In the gradient test, model input state variables are

perturbed, which leads to a change in model output. The change in model output when employing the tangent linear model is420

compared to the change in model output when a numerical finite difference approximation is employed. Mathematically, the

test for the ith model output element can be written as (similar to Honnorat et al., 2007; Elizondo et al., 2000):

dH(xm,p)i
dxm

·∆xm ≈
H(xm +α∆xm,p)i−H(xm,p)i

α
(25)

where ∆xm is a vector of ones, with the same length as vector xm. α is a small positive number, H represents the forward-

model operator, H(xm,p)i is the ith model output element, xm is the vector of model input variables to be tested (model-425

parameters part of state), "·" is the Euclidian inner product, and vector p is the set of non-state parameters used by the model.
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Table 1. A simple gradient test example involving the derivative of the 2 m temperature with respect to the roughness length for heat (z0h).

The right column gives, for different values of perturbation α (m), the result of 1 - RHS/LHS, whereby RHS is the right hand side of Eq. 25,

and LHS the left hand side of the same equation. Note that only the RHS of the equation is influenced by α. In this example we have only

perturbed parameter z0h, but multiple parameters can be perturbed within one test.

α(m) 1 - ratio RHS and LHS (−)

0.5 4.7× 10−1

0.2 3.2× 10−1

0.1 2.2× 10−1

1× 10−2 3.4× 10−2

1× 10−3 3.6× 10−3

1× 10−4 3.7× 10−4

1× 10−5 3.7× 10−5

1× 10−6 4.2× 10−6

1× 10−7 2.6× 10−6

1× 10−8 −8.2× 10−6

1× 10−9 5.9× 10−4

1× 10−12 −8.2× 10−2

Several increasingly smaller values are tested for α. When the tangent linear model is correct, the right-hand side of the

equation will converge to the left-hand side when α gets progressively smaller, although for too small α numerical errors start

to arise (Elizondo et al., 2000). Instead of using the full tangent linear model, individual model statements can also be checked.

In this case xm and H(xm,p)i can contain intermediate (not part of model input or output) model variables. The gradient430

test is considered successful if the ratio of the left- and right-hand sides of the equation lies in the interval [0.999 - 1.001]. The

results of a simple example of a gradient test, involving the derivative of the 2 m temperature with respect to the roughness

length for heat (z0h), is shown in Table 1.

The dot-product (adjoint) test checks whether the adjoint model code is correct for the given tangent linear code. It tests

whether the identity435

〈HLxm,y〉= 〈xm,H
T
Ly〉 (26)

holds (Krol et al., 2008; Meirink et al., 2008; Honnorat et al., 2007; Claerbout, 1992). The equation can also be written as

〈HLxm,y〉− 〈xm,H
T
Ly〉

〈HLxm,y〉
= 0 (27)

In this equation, HL = ∇xmH(xm,p) represents the tangent linear model operator, i.e. a matrix (the local Jacobian of H)

with the element on the ith row and jth column given by dH(xm,p)i
dxm,j

. xm is in this equation a vector with perturbations to440

the model state, HT
L represents the adjoint model operator and "〈〉" is the Euclidian inner product. A very small deviation
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from 0 is acceptable due to machine rounding errors (Claerbout, 1992). Our criterion for passing the test, when using 64-bit

floating-point calculations, is that the absolute value of the left-hand side of Eq. 27 should be <= 5× 10−13. This test can

also be applied to individual statements or a block of statements in the adjoint model code. In this case the definitions of the

variables in Eq. 27 slightly change, e.g. HT
L then represents a part of the adjoint model. The adjoint test will be illustrated by a445

(slightly simplified) example from the model code, the well-known Stefan–Boltzmann’s law for outgoing longwave radiation.

The forward-model code reads:

Lwout = bolz * Ts ** 4.

The tangent linear model code for this statement reads:

dLwout = bolz * 4 * Ts ** 3. * dTs450

And the corresponding adjoint code:

adTs += bolz * 4 * Ts ** 3. * adLwout

adLwout = 0

In this case xm corresponds to dTs, the HLxm variable is dLwout. The vector y is adLwout and HT
Ly is adTs. In the test xm

and y are assigned random numbers. When we evaluated Eq. (27) on this part of the code, the result was less than 1× 10−15455

(which corresponds to approximately 5 × machine precision), meaning that the test passes.

We have constructed a separate script that performs a vast amount of gradient tests and adjoint tests and informs the user

whenever a test fails. This file (testing.py) is included with the code files. The number of time steps we specified for testing is

small, as the computational burden increases with the amount of time steps. The model passes the vast majority of the tests that

are executed in this file. Closer inspection of the tests that fail reveals that numerical noise is a likely explanation for the small460

fraction of tests that are labelled as failing. Further validation of the inverse modelling framework follows in the next section.

8 Inverse modelling validation: Observation System Simulation Experiments

To test the ability of the system to properly estimate model parameters, we show in this chapter the results of observation

system simulation experiments with artificial data. This type of experiments is classic to test the ability of the system to

properly estimate model parameters. For example, similar tests have been performed by Henze et al. (2007), for their adjoint of465

a chemical transport model. In our experiments we simulate a growing convective boundary layer for a location at mid-latitudes

from 10–14 h, including surface layer calculations. In the chosen setup, the land surface is coupled to the boundary layer. The

land surface provides heat and moisture, and exchanges CO2 with the CBL.

8.1 Parameter estimation

We perform in this section a total of five main experiments of varying complexity. The things that differ among experiments,470

are the choice of observations and state vectors. The procedure for the first four experiments is as follows. We first run the
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model with chosen values of a set of parameters we want to optimise. A set of model output data from this simulation then

serves as the observations, while the parameters used to create these observations are referred to as the "true" parameters.

Then we perform an optimisation using these observations, starting from a perturbed prior state vector. In the cost function,

we do not include the background part, to make sure that it is possible to find back the "true" parameters. This is because the475

background part of the cost function implies a "penalty" for deviating from the prior state. This penalty implies that, when the

model is run with the true parameters, the cost function would still not be 0. Next to that, the minimum of the cost function is

(generally) shifted. When leaving out the background part, the framework should, if converging properly, be able to find back

the parameter values that were used for creating the observations, starting from any other prior state vector.

Since real-life observations usually contain noise, the last experiment follows the same procedure, except that the observa-480

tions are also perturbed. This is done by adding white Gaussian noise to the observations. For each observation yi, a random

number drawn from a normal distribution with mean 0 and standard deviation equal to a specified σI,i (Table 3), is added. The

model and representation errors are set to 0 in all experiments. All weights for the cost function were set to 1. Table 2 list for

every experiment the prior, the "true" and the optimised state variables. The complexity of the experimental setup increases

from the top to the bottom of the table.485

For the first experiment, we perturbed the initial boundary-layer height and albedo. The rest of the parameters are left

unchanged compared to the true parameters. The observation streams we used are specific humidity and boundary-layer height.

The specific humidity is expected to be influenced by the albedo, as the amount of available net radiation is relevant for

the amount of evapotranspiration, which influences the specific humidity. The boundary-layer height is relevant for specific

humidity as well, as it determines the size of the mixing volume in which evaporated water is distributed. The state parameters490

are thus expected to have a profound influence on the cost function.

The optimised model shows a very good fit to the observations (Fig. 3), and the original parameter values are found back

with a precision of at least five decimal places (Table 2, no five decimal places shown). This result indicates the optimisations

work in such simple situations.

To test the system for a more complex problem, we change from two parameters in the state to five (Table 2, second block),495

while keeping the same observations. Again, based on physical reasoning, the added parameters are expected to influence the

cost function. However, one might expect that the observations might not be able to uniquely constrain the state, i.e. parameter

interdependency issues might arise for this setup (equifinality). As an example, a reduction in soil moisture might influence

the observations in a similar way as a reduction in stomatal conductance. Mathematically, this means that multiple nearly

equivalent local minima might be present in the cost function.500

Also for this more complex case, we manage to get a very good fit (Fig. 3, c and d). However, inspecting the obtained

parameter values (Table 2, second block, column "2 obs streams") we see that the optimisation does not fully converge to

the "true" state. This is likely caused by parameter interdependency, as described earlier. To solve this, extra observation

streams need to be added that allow to disentangle the effects of the different parameters in the state. We have tested this in

the third experiment, by adding the sensible and latent heat flux, the temperature at 2 m height and the surface CO2 flux to505

the observations. With this more complete set of observations, the true parameter values are found back with a precision of
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Table 2. Parameter values for the main observation system simulation experiments of Sect. 8.1. The observation streams used in the 2-obs-

streams experiments are q and h, for the 6 obs streams experiment H , LE, T2 and FCO2 are added, for the 7-obs-streams experiments

additionally CO220 is added. The value of e.g. parameter z0m (only a state element in the 10-parameter-state experiments) is in the 2-

parameter-state and 5-parameter-state experiments equal to the true value of z0m in the 10-parameter state experiments. See Table A1 for a

description of the parameters, and Table A2 for a description of the observation streams.

Parameter True Prior Optimised

2-parameter state 2 obs streams

h (m) 350.0 650.0 350.0

αrad (−) 0.200 0.450 0.200

5-parameter state 2 obs streams 6 obs streams

h (m) 350.0 650.0 350.0 350.0

αrad (−) 0.200 0.450 0.200 0.200

αsto (−) 1.00 0.50 0.96 1.00

wg (−) 0.270 0.140 0.306 0.270

γθ (K m−1) 0.0030 0.0050 0.0030 0.0030

10-parameter state 7 obs streams

no noise noise

h (m) 350.0 650.0 350.0 344.4

αrad (−) 0.200 0.450 0.200 0.207

αsto (−) 1.00 0.50 1.00 1.01

wg (−) 0.270 0.140 0.270 0.238

γθ (K m−1) 3.0× 10−3 5.0× 10−3 3.0× 10−3 3.1× 10−3

γq (kg kg−1m−1) −1.0× 10−6 −3.0× 10−6 −1.0× 10−6 −1.1× 10−6

CO2 (ppm) 422.0 380.0 422.0 423.2

advCO2 (ppm s−1) 0.0 6.0× 10−3 9.8× 10−8 −1.4× 10−4

z0m (m) 0.020 0.100 0.020 0.048

z0h (m) 0.020 0.010 0.020 0.013

at least four decimal places (column "6 obs streams" in Table 2). As a side experiment, not included in Table 2, we have run

the same experiment as before, but using the numerical derivative described in Sect. 3.5. In this case, convergence is notably

slower, e.g. more than 6 times as many iterations were needed to reduce the cost function to less than 0.1 % of its prior value.

This indicates that, at least for this more complex non-linear optimisation case, an analytical gradient outperforms our simple510

numerical gradient calculation.

In the fourth main experiment, we increase our number of state parameters to 10 (Table 2). To further constrain the param-

eters, we expand our set of observation streams with the CO2 mixing ratio measured at 20 m height. Also for this complex
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Table 3. The root mean squared error (RMSE) and the specified measurement error standard deviation (σI ) for the observation streams in

the 10-parameter-state OSSE with perturbed observations. In all our OSSEs, the measurement error standard deviations are chosen to be

constant with time. Note that the measurement error equals the observational error here, since the model and representation errors were set

to 0 for simplicity. The σI are identical for all OSSEs in Table 2, but not all observation streams are used in each OSSE.

Observation stream RMSE prior RMSE optimised σI

q (kg kg−1) 4.5× 10−4 3.6× 10−4 4.0× 10−4

h (m) 365.2 91.9 100.0

H (W m−2) 91.7 22.8 25.0

LE (W m−2) 128.6 22.7 25.0

T2 (K) 1.50 0.62 0.65

FCO2 (mg CO2 m−2s−1) 42× 10−2 3.6× 10−2 4.0× 10−2

CO220 (ppm) 30.5 1.7 2.0

setup, the framework managed to find the true values back, with a precision of one decimal place for initial boundary-layer

height, and more for the other parameters.515

These tests show that (at least for the range of tests performed) the framework is able to find the minimum of the cost function

well. Additionally, we performed another observation system simulation experiment to test the framework’s usefulness in a

more realistic situation with noise on the observations. The result can be seen in Figure 3 e–h, the framework finds a good fit

to the observations, even though it has now become impossible to fit every single (perturbed) observation. The posterior root

mean squared error is about the same size (slightly smaller) as the observational error standard deviation for all observation520

streams (Table 3). This confirms the visual good fit from Fig. 3 e–h, given that these observational error standard deviations

were used to create the random perturbations for the observations. The χ2
r statistic of the optimisation has become close to 1

(0.83), indicating no strong over- or under-fitting of the observations.

8.2 Posterior uncertainties and bias correction

In this section, we describe two additional experiments that focus on the validation of the two bias-correction methods (Sect.525

3), and the posterior uncertainty of the optimised parameters. As a starting point, we take the 10-parameter-state experiment

with unperturbed observations from the previous section. We add two additional state parameters related to bias correction

(Table 4). We have tested that for this setup, ICLASS is able to retrieve the true parameters well (Table 4, column "Optimised

unp."), including the parameters related to bias correction (FracH and sCO2). We now perturb the "true" observations, by

adding to each observation yi a random number from a normal distribution with mean 0 and standard deviation 1.5 σO,i. The530

factor 1.5 means that we mis-specify the observational errors in the framework, as can happen in real situations as well. In this

OSSE we will not simply attempt to fit the observations as good as possible, but we want to employ both observations and

prior information. We therefore include the background part of the cost function. The prior error standard deviations are given
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in Table 4, the a-priori error covariance matrix was chosen to be diagonal. As we want an estimate of the posterior parameter

uncertainty, we ran ICLASS using an ensemble of 100 perturbed members. For simplicity, we take the total observational error535

equal to the measurement error, as for the previous OSSEs.

From the 101 members in the ensemble, the unperturbed optimisation has the lowest posterior cost function. Figure 4

indicates that the optimised solution shows a strongly improved fit with the (adapted) observations compared to the prior fit. As

expected, due to the perturbations on the observations and the background part of the cost function, the true parameters are not

found back anymore. For slightly more than half of the state parameters, the optimised parameter value is located less than 1540

posterior standard deviation away from the true value (Table 4, rightmost column). The largest relative deviation from the truth

is for wg , the posterior value is approximately 2 standard deviations away from the true value. The parameter uncertainty, as

expressed by the standard deviations of the state parameters in Table 4, is reduced for every parameter after the optimisation.

In addition, the posterior root mean squared error (RMSE) is reduced for every observation stream after optimisation (Table

5). We see that the posterior RMSE now approaches 1.5 times σO, which can be explained by the intentional mis-specification545

of errors. For the same reason, the values of the partial reduced chi-squared statistics (χ2
r,j) should be near 2.25 (1.5 squared),

for all observation streams except CO220. The latter is more complex due to the presence of the bias-correction scaling factor

(sCO2). Indeed, we find χ2
r,j values ranging between 2.09 and 2.17 for all streams except CO220 (Table 5). Note that for the

analysis of the posterior uncertainty, we have used only members with a posterior χ2
r equal or lower than 4.5, only 38 of the

100 perturbed members were therefore used. We conclude here that ICLASS performs well in all our tests with artificial data,550

we present an application with real observations in the next section (more extensive).

9 Application example: CO2 and boundary layer meteorology at a Dutch grassland

9.1 Setup

For this example of how the framework can be used, we used data obtained at Cabauw, the Netherlands from 25 September

2003. A 213 m high measurement tower is present at this location (Bosveld et al., 2020). This day is chosen here since it has555

been used in several studies before (Vilà-Guerau De Arellano et al., 2012; Casso-Torralba et al., 2008) and we consider it as a

"golden day" (Sect. 1), for which the CLASS model is expected to perform at its best.

The set of observation streams we used is given in Table 6, and a description of these streams is given in Table A2. Some

of the observations we used are not directly part of the Cabauw dataset, we have derived them from other observations in the

same dataset. The parameters we optimise (the state) are given in Table 7, and a description of these parameters can be found560

in Table A1. The model settings, prior state and non-state parameters are to a large extent based on Vilà-Guerau De Arellano

et al. (2012). The modelled period is from 9–15 UTC, and we activated the surface layer option in the model. We ran ICLASS

in ensemble mode with 175 members, an ensemble member was considered successful when having a final χ2
r <= 2.0 (Eq.

19). The prior error standard deviations are given in Table 7, the a-priori error covariance matrix was assumed to be diagonal.

The representation errors were set to 0, the chosen weights and model and measurement error standard deviations are given565
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Table 4. Parameter values for the bias-correction OSSEs. The used observation streams are q, h, H , LE, T2, FCO2 and CO220. "σA" and

"σpost" are respectively the prior and posterior standard deviation of the state parameters. The rightmost column lists the optimised parameter

value minus the true value, normalised with the posterior standard deviation of the respective parameter. Column "Optimised unp." lists

the optimised parameter values of the experiment without perturbed observations. The four columns at the right-hand side only apply to

the OSSE with perturbed observations. See Table A1 for a description of the parameters, and Table A2 for a description of the observation

streams.

Parameter True Prior Optimised unp. Optimised σA σpost
opt. - true
σpost

h (m) 350.0 650.0 350.0 379.1 200.0 53.3 0.545

αrad (−) 0.200 0.450 0.200 0.188 0.150 0.010 -1.209

αsto (−) 1.00 0.50 1.00 1.12 1.50 0.12 0.928

wg (−) 0.270 0.140 0.270 0.101 0.150 0.084 -2.006

γθ (K m−1) 3.0× 10−3 5.0× 10−3 3.0× 10−3 3.1× 10−3 3.0× 10−3 0.3× 10−3 0.198

γq (kg kg−1m−1) −1.0× 10−6 −3.0× 10−6 −1.0× 10−6 −0.8× 10−6 3.0× 10−6 0.5× 10−6 0.362

CO2 (ppm) 422.0 380.0 421.9 357.8 50.0 38.3 -1.675

advCO2 (ppm s−1) 0.0 6.0× 10−3 4.3× 10−7 0.4× 10−3 5.6× 10−3 0.2× 10−3 1.768

z0m (m) 0.020 0.100 0.020 0.081 0.100 0.074 0.821

z0h (m) 0.020 0.010 0.020 0.013 0.010 0.008 -0.947

FracH (−) 0.350 0.600 0.350 0.392 0.200 0.087 0.479

sCO2 (−) 1.400 1.000 1.400 1.179 0.300 0.132 -1.670

Table 5. The prior and posterior root mean squared error (RMSE), the specified measurement error standard deviation (σI ) and the partial

reduced chi-squared statistic (χ2
r,j) for the observation streams in the bias-correction OSSE with perturbed observations. The RMSE and χ2

r,j

values are for the member with the lowest posterior cost function, i.e. the member with unperturbed prior. Note that the measurement error

equals the observational error here, since the model and representation errors were set to 0 for simplicity. All weights for the cost function

were set to 1. We used a total of 280 individual (artificial) observations in the cost function. See Table A2 for a description of the observation

streams.

Observation stream RMSE prior RMSE optimised σI χ2
r,j

q (kg kg−1) 6.1× 10−4 5.8× 10−4 4.0× 10−4 2.11

h (m) 415.6 147.2 100.0 2.17

H (W m−2) 140.4 36.5 25.0 2.13

LE (W m−2) 101.9 36.4 25.0 2.12

T2 (K) 1.82 0.94 0.65 2.09

FCO2 (mg CO2 m−2s−1) 40.7× 10−2 5.8× 10−2 4.0× 10−2 2.12

CO220 (ppm) 127.9 3.5 2.0 3.10
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in the supplementary material, further detailed settings of the optimisation can be found via the Zenodo link in the "Code and

data availability" section.

9.2 Computational costs

To give an idea of the computational costs involved, we added a timer to an optimisation. An optimisation like the one described

in this section, but without the use of an ensemble, took in our specific case about 1000 times the time of an individual model570

simulation using the original CLASS model. However, in our test an individual simulation with this model took less than 1

second using a single CPU, so the computational cost is still relatively small. The total time it takes to perform an optimisation

is dependent on how well the optimisation converges and on the configuration. Using an ensemble increases the computational

costs, but multiple ensemble members can be run in parallel on multiprocessor computing systems. An optimisation with an

ensemble, like the one described in this section took in our specific case approximately 2 hours, using 32 cores of a high-575

performance computing cluster. The total summed CPU-time was about 45 hours.

9.3 Model fit

Figure 5 shows that the optimised run shows a much better fit than the prior run to the subset of observations present in this

figure. For temperature, a total of seven observation heights are included, but we only show three for brevity. The cost function

is reduced from 4702 to 126. The χ2
r goodness of fit statistic has a value of 0.80 for the optimised run, indicating a slight580

overfitting (or non-optimal error specifications). For all observation streams, the root mean squared error (Sect. 5, Table 6) and

the absolute value of the mean bias error (Eq. 23, not shown) are reduced after optimisation. The ratio of model and observation

variance becomes closer to 1 for the vast majority of observation streams, except for three of the specific humidity streams and

the sensible heat flux.

9.4 Bias Correction585

Let us now turn to the energy balance (Fig. 6). As described in Sect. 3.3, we forced the energy balance in the observations

to close, by partitioning the energy balance gap partly to H , and partly to LE. From Fig. 6, it is clear that in the original

observations, the sum of H and LE is generally lower than in both the prior and posterior model runs. Both the model and the

"corrected" observations take the energy balance into account. When the difference inRn−G between model and observations

is small (Eq. 7), we might normally expect the model to more easily fit the corrected observations than the original ones. Also590

in this example, the posterior fit is improved compared to the prior, especially for the sensible heat flux (Table 6). We notice

that most of the additional energy is partitioned to LE (Table 7 and Fig. 6). The energy balance closure residual (LHS Eq. 7) is

important to account for in this case, the mean value of the residuals is only 11 % smaller as the mean of the measured (without

applying Eq. 8) sensible heat flux. Note that for some of the data points around noon, the energy-balance correction tends to

decrease the heat fluxes (Fig. 6). Inspection of a satellite image of that day revealed that this is likely caused by the presence of595
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high clouds, causing a fast drop in net radiation. The measured heat fluxes tend to react slower however, leading to a negative

value for εeb in Eq. (7).

As is the case for the surface energy balance closure problem, there can also be biases in the CO2 flux eddy-covariance

observations (Liu et al., 2006). Here we have neglected this for simplicity.

9.5 Optimised parameters600

The optimised state is shown in Table 7. Advection of heat remains relatively close to 0 after optimisation (– 0.13 ± 0.06

K h−1, where 0.06 is σpost). This is slightly outside the range of 0.1–0.3 K h−1 found by Casso-Torralba et al. (2008), who

analysed the same day (using a longer time period). The result can be considered in agreement with Bosveld et al. (2004),

who concluded large scale heat advection to be negligible for this day. For CO2 however, we find an advection of 5.8 ± 1.9

ppm h−1, which is higher than what was found by Casso-Torralba et al. (2008, their Fig. 9). We shortly return to this in Sect.605

9.6. The two parameters that deviate the most from their prior values (normalised with the prior standard deviation, Table 7)

are γCO2 and R10. Both parameters are linked to the CO2 budget, γCO2 influences the amount of entrained CO2 from the free

troposphere, while R10 influences the amount of CO2 entering the mixed layer via respiration. From Fig. 5c, it is clear that the

prior run has a way too strong net surface CO2 flux compared to the observations, which explains whyR10 is strongly increased

in the optimised state. Two main pathways in which the CO2 flux can decrease (in magnitude) is either by increasing R10 or610

by decreasing the conductance (via αsto). However, the latter also impacts the model fit of the latent heat flux. Unfortunately,

separate measurements of GPP and respiration (e.g. derived from carbonyl sulfide observations, Whelan et al., 2018) are

not available in our dataset. These could help to further constrain the CO2-related parameters. In a more detailed study, the

parameter estimates might still be improved by e.g. better estimating vector p and the observational errors.

9.6 Posterior uncertainty and correlations615

The discussion above illustrates that not all of the parameters in the state may be assumed to be fully independent. To analyse the

posterior correlations, we have constructed a correlation matrix (Sect. 4.2), shown in Fig. 7. From the 174 perturbed ensemble

members, 150 were successful, and were used for the calculation of statistics. As expected, the correlation between αsto and

R10 is very strongly positive (0.94) and this can likely be explained by their opposite effects on the CO2 flux, as explained in

the previous paragraph. Some of the correlations between parameters can be relatively complex, e.g. a correlation between two620

posterior parameters might involve a third parameter that correlates with both.

Coming back to the discrepancy in CO2 advection between our analysis and what was found by Casso-Torralba et al. (2008),

it can be noted that the advCO2 parameter is relatively strongly correlated with both the ∆CO2 and γCO2 parameters (Fig. 7:

corr. = –0.65 and –0.80 respectively). This can indicate that entrainment from the free troposphere is hard to disentangle from

advection in shaping the CO2 budget, with the current set of observations we incorporate. Differences in how entrainment is625

handled by Casso-Torralba et al. (2008) might explain part of the difference in estimated CO2 advection.

To check to what extent the obtained correlations are robust and independent of the selected number of ensemble members,

we reconstructed the correlation matrix using only half of the successful perturbed members (75 of the 150). The average
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absolute value of difference between the non-diagonal matrix entries when using the subsample and the non-diagonal matrix

entries when using the full successful perturbed ensemble amounts to 0.05, with a maximum of 0.23 for one entry. This suggests630

that using 150 members in the correlation analysis leads to a reasonably robust estimate of the posterior correlations.

Another option we explore is to analyse the posterior probability density functions (pdfs) for the successful perturbed mem-

bers in the ensemble. As an example, we show the pdfs for two parameters, advθ and γq (Fig. 8). For advθ, the posterior

uncertainty is clearly reduced compared to the prior, as the posterior pdf is markedly narrower. For γq (the free-tropospheric

specific-humidity lapse rate) however, there is no clear reduction in uncertainty. The wide posterior pdf implies that similar635

results can be obtained over a relatively wide range of γq , possibly by perturbing other parameters with a similar effect. To

further constrain this parameter, more specific observation streams would need to be added, possibly from radiosondes. The

use of ICLASS in e.g. the planning of observational campaigns can therefore help to determine beforehand what type of ob-

servations are needed to better constrain the processes represented in the model. This is done through the use of observation

system simulation experiments, similar to e.g. Ye et al. (2022).640

10 Concluding discussion

We have presented here a description of ICLASS, a variational Inverse modelling framework for the Chemistry Land-surface

Atmosphere Soil Slab model. This framework serves as a tool to study the atmospheric boundary layer and/or land–atmosphere

exchange. It avoids the need of manual trial-and-error in choosing parameter values for the model when fitting observations,

thereby providing more objectivity. Some extent of subjectivity however remains, as the proper specification of errors is not645

always simple (e.g. Rödenbeck et al., 2003). The use of more advanced error estimation methods can mitigate this. The very

non-linear model around which the framework is built, makes the optimisation challenging. In ICLASS, two main ways in

which this challenge is tackled are:

– The use of an analytical gradient of the cost function, involving the model adjoint, allowing for more precise gradient

calculations650

– The possibility of running ICLASS in a Monte-Carlo way. This involves perturbing the prior state vector and the (scaled)

observations. When a single optimisation does not converge, the use of an ensemble can provide a solution.

The latter way of running ICLASS also has the advantage that posterior error statistics can be obtained, which is of paramount

importance in inverse modelling.

The model is relatively simple, yet contains the physics to model the essentials of the convective boundary layer and of land655

surface–atmosphere exchange. Its simplicity however means that the model does not perform well in every situation, the best

performance can be expected for days when the boundary layer resembles a prototypical convective boundary layer. We have

shown the usefulness of ICLASS by applying it to a "golden day" at a Dutch grassland site where extensive data is available.

The fit to several streams of observations simultaneously was greatly improved in the posterior compared to the prior. We have

to keep in mind, however, that we cannot expect a relatively simple model to capture all small-scale processes playing a role in660
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the convective boundary layer and in land surface–atmosphere exchange (e.g. heterogeneous surface heating and evaporation,

influence of individual thermals, ...).

Key strengths of this framework are that observations from several information streams can be used simultaneously, and

surface layer profiles can be taken into account. The framework allows to integrate knowledge from ecosystem-level studies

(fluxes) and global studies (mixing ratios). It can be seen as a tool that maximises the use of available observational data665

at CBL/ecosystem level (e.g. along tall towers like the Cabauw tower). Observation system simulation experiments using

ICLASS can also help in the planning of observational campaigns, to determine in advance which observation streams are

needed to better constrain model processes. Another feature of the framework is the capacity of correcting observations for

biases. A specific bias-correction system for the energy balance closure problem is implemented. The energy balance residual

was shown to be substantial at the Dutch grassland site in our application example. Correcting for biases is critical in inverse670

modelling, to prevent bias errors to propagate in parameter estimates. The correction of biases is however a very complex topic.

There are limitations to the level of complexity that our bias-correction methods can handle, ICLASS cannot be expected to

deal completely with all bias issues.

ICLASS is computationally relatively cheap to run and can be extended in the future by e.g. incorporating a more detailed

representation of the vegetation. This extension can further improve the capabilities to fit sets of observations at locations with675

a more complex vegetation structure.

Code and data availability. The code is hosted at GitHub, the current version of ICLASS is available from https://github.com/PBosmanatm/ICLASS

under a GNU General Public License, v3.0 or later. The adapted forward model is also included via the GitHub link, as well as the ICLASS

manual. The GitHub repository is linked to Zenodo, which provides DOIs for released software. The release on which this reference paper is

based can be found at https://doi.org/10.5281/zenodo.7239147 (Bosman and Krol, 2022) (GNU General Public License, v3.0 or later). The680

code and the data used for creating the plots with optimisation results in this paper, as well as for the contents of the tables, are part of the

downloadable material. The data used in this paper can somewhat differ from the most recent version of these data. Boundary layer height

data were provided by Henk Klein Baltink (KNMI). This data (and all other used data) can be found via the Zenodo link. The newest version

of the Cabauw data (except boundary-layer heights) can be found at the following locations: The CO2 mixing ratios can be found at the ICOS

(https://www.icos-cp.eu/data-products/ERE9-9D85) and ObsPack (https://gml.noaa.gov/ccgg/obspack/) websites. Temperature, heat fluxes685

etc. can be found at https://dataplatform.knmi.nl/dataset/?tags=Insitu&tags=CESAR.

Appendix A: Description of used parameters and observation streams
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Figure 3. Model output from three observation system simulation experiments from Sect. 8.1: 2-parameter state experiment with albedo

and initial boundary-layer height (top row), 5-parameter state experiment with two observation streams (second row) and experiment with

perturbed observations (third and fourth rows). "post" means posterior, i.e. the optimised simulation. Even though the posterior lines look

very similar for the first and second rows, the model parameters are not identical. The specific humidity is from the mixed layer. The error

bars show the observational error standard deviations σO , here equal to σI .
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Figure 4. Model output and observations for the bias-correction OSSE with perturbed observations. The full red line shows the optimised

model ("post" meaning posterior), the dashed yellow line is the prior model. The (uncorrected) observations are shown by a black star, the

error bars show the measurement error standard deviation σI (here equal to σO) on the observations. In (b), the red-filled circles are the scaled

observations, i.e. sCO2 ×y. In (c) and (d), the black stars are the original (although perturbed) observations, the red dots the observations

after applying Eq. 8 and 9.
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Table 6. Observation fit statistics for the Cabauw optimisation. The left columns show the root mean squared error (RMSE) for the prior and

posterior state. The two right columns show the ratio between model and observation variance for the prior and posterior state. Only model

data points for times at which we have an observation available are taken into account. We used a total of 670 individual observations in

the cost function. The chosen cost-function weights and model and measurement error standard deviations are given in the supplementary

material. The sensible and latent heat flux observations used are corrected for the energy balance gap, see Eq. (8) and Eq. (9). The observation

streams are described in Table A2.

Observation stream RMSE prior RMSE post. Var. ratio prior Var. ratio post.

T200 (K) 0.828 0.286 1.456 0.763

T140 (K) 0.868 0.296 1.449 0.759

T80 (K) 0.751 0.259 1.422 0.753

T40 (K) 0.741 0.242 1.426 0.773

T20 (K) 0.827 0.294 1.440 0.786

T10 (K) 0.781 0.282 1.434 0.789

T2
1 (K) 0.815 0.307 1.505 0.842

q200 (kg kg−1) 9.22×10−4 1.24×10−4 0.353 0.753

q140 (kg kg−1) 9.59×10−4 1.24×10−4 0.332 0.708

q80 (kg kg−1) 9.49×10−4 1.33×10−4 0.328 0.623

q40 (kg kg−1) 8.70×10−4 1.71×10−4 0.351 0.488

q20 (kg kg−1) 8.87×10−4 1.74×10−4 0.434 0.406

q10 (kg kg−1) 9.16×10−4 1.67×10−4 0.523 0.383

q2
1 (kg kg−1) 8.90×10−4 2.55×10−4 0.514 0.219

CO2207 (ppm) 19.693 0.712 5.728 0.866

CO2127 (ppm) 21.528 2.778 3.754 0.568

CO267 (ppm) 20.774 2.088 3.840 0.578

CO227 (ppm) 19.506 1.342 4.548 0.660

h (m) 270.5 131.5 0.524 1.107

LE (W m−2) 22.28 18.47 0.691 0.986

H (W m−2) 33.41 13.05 0.997 1.316

FCO2 (mg CO2 m−2 s−1) 0.494 0.102 0.342 0.514

Sout (W m−2) 18.83 10.21 2.507 2.095

1The 2 m temperature and 2 m dewpoint observations (the latter used for deriving q2) were

actually taken at 1.5 m. We make our calculations as if the observations were taken at 2 m.

This rounding might have introduced some bias to the T2 and q2 observations. We tested the

impact of this by performing a corrected optimisation (without ensemble). The state parameters

resulting from this optimisation were all within the 2 standard deviation posterior uncertainty

range of the uncorrected optimisation (x± 2σpost), and 9 out of 14 parameters where within

the 1 standard deviation uncertainty range (x±σpost).
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Table 7. State parameters for the Cabauw optimisation. δnor is the normalised deviation, i.e. the posterior minus the prior, normalised with the

square root of the prior variance (Eq. 24). "σA" and "σpost" are respectively the prior and posterior standard deviation of the state parameters.

Parameter Prior Posterior δnor σA σpost

advθ (K s−1) 0.000 −3.684× 10−5 −6.632× 10−2 5.556× 10−4 1.731× 10−5

advq (kg kg−1s−1) 0.000 1.086× 10−8 1.955× 10−2 5.556× 10−7 4.415× 10−8

advCO2 (ppm s−1) 0.000 1.602× 10−3 0.3845 4.167× 10−3 5.204× 10−4

∆θ (K) 4.200 3.121 -0.7191 1.500 0.486

γθ (K m−1) 3.600× 10−3 2.849× 10−3 -0.2502 3.00× 10−3 6.10× 10−4

∆q (kg kg−1) −8.000× 10−4 −2.138× 10−3 -0.6692 2.00× 10−3 5.59× 10−4

γq (kg kg−1 m−1) −1.200× 10−6 −1.207× 10−7 0.5397 2.0000× 10−6 1.8409× 10−6

∆CO2 (ppm) -44.00 -22.42 0.8632 25.00 7.00

γCO2 (ppm m−1) 0.000 −6.389× 10−2 -2.130 3.000× 10−2 2.040× 10−2

αsto (−) 1.000 0.8990 -0.4038 0.2500 0.0640

αrad (−) 0.2500 0.2285 -0.2146 0.1000 0.0014

FracH (−) 0.6000 0.3474 -0.8420 0.3000 0.0391

wg (−) 0.4800 0.5153 0.2355 0.1500 0.0667

R10 (mg CO2 m−2 s−1) 0.2300 0.6393 1.364 0.3000 0.0346
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Figure 5. Optimisation for the Cabauw data. The full red line shows the optimised model ("post" meaning posterior), the dotted yellow line

is the prior model. The observations are shown by a black star, the error bars show the measurement error standard deviation σI and total

error standard deviation σO on the observations.
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Figure 6. Energy balance data (left: sensible heat flux, right: latent heat flux) for the Cabauw case. The black stars are the original obser-

vations, the red dots the observations after forced closure of the energy balance. The error bars indicate the measurement error standard

deviation σI and the total observational error standard deviation σO . The full red line shows the optimised model ("post" meaning posterior),

the dashed yellow line is the prior model.

32



a
d
v θ

a
d
v q

a
d
v C

O
2

∆
θ

γ
θ

∆
q

γ
q

∆
C
O
2

γ
C
O
2

α
st
o

α
ra
d

F
ra
c H w
g

R
10

advθ

advq

advCO2

∆θ

γθ

∆q

γq

∆CO2

γCO2

αsto

αrad

FracH

wg

R10

�

����
 �

����� ���� �

����
 ���� ��	� �

���� ��	� ����
 ����
 �

���� ����	 ���		 ����� ���� �

��� ����	 ���	 ��	 ���
� ���� �

��
� ����� ����� ����	 ���
 ���
 ����� �

����� ����	 ���� ���� ����� ����
 ��� ���� �

���	 ���
 ����
 ����
 ����� ����� ����
 ���� ���	 �

���
 ��� ���� ����
 ���� ���
 ����
 ���
 ����� ���� �

���	� ���
 ���� ���� ���
 ����� � ����� ����
 ����
 ���� �

���� ����
 ����� ����� ����� ���� ���� ���� ���� ���
� ����	 ����� �

���� ���� ����� ����� ����
 ����
 ����� ���� ���� ���
 ���� ����	 ���
� � ����

����

���


����

���

���

��


���

���

���

�
��

��
��

���
��

���
Figure 7. Correlation matrix for the optimised state parameters for the Cabauw case. The shown correlations are marginal correlations, not

partial correlations.
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Figure 8. Probability density functions for the advθ (left) and γq (right) parameters, the red full line is for the posterior and the yellow dashed

line for the prior distribution. The vertical lines represent the mean of the distributions. 15 bins were used. Note that the prior distribution is

determined from the sample of priors, which has a component of randomness.

Table A1. Used parameters in this paper.

Name Name in code Description Units

advCO2 advCO2 Advection of CO2 ppm s−1

advq advq Advection of moisture kg kg−1s−1

advθ advtheta Advection of heat K s−1

αsto sca_sto Scaling factor for stomatal conductance −

αrad alpha Surface albedo −

∆CO2 deltaCO2 Initial CO2 jump at h ppm

∆q deltaq Initial specific humidity jump at h kg kg−1

∆θ deltatheta Initial temperature jump at h K

FracH FracH Fraction of energy balance gap partitioned to H obs −

γCO2 gammaCO2 Free atmosphere CO2 lapse rate ppm m−1

γq gammaq Free atmosphere specific humidity lapse rate kg kg−1 m−1

γθ gammatheta Free atmosphere potential temperature lapse rate K m−1

h h Initial atmospheric boundary-layer height m

R10 R10 Respiration at 10 °C mg CO2 m−2 s−1

wg wg Volumetric water content top soil layer −

CO2 CO2 Mixed-layer CO2 ppm

z0m z0m Roughness length for momentum m

z0h z0h Roughness length for scalars m

sCO2 obs_sca_cf_CO2mh Scaling factor for CO220 observations (Sect. 8) −
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Table A2. Used observation streams in this paper. Note that variables such as T200 and T140 are called "Tmh" and "Tmh2" respectively in

the model code for Sect. 9, which represents temperatures at the user-specified temperature measuring heights 1 and 2 respectively. For the

CO2 mixing ratio, we do not make a distinction in this paper between moist-air and dry-air mixing ratio.

Name Name in code Description Units

T200 Tmh (Sect. 9) Temperature measured at 200 m height K

T140 Tmh2 (Sect. 9) Temperature measured at 140 m height K

...

T2 Tmh7 (Sect. 9), Temperature measured at 2 m height K

Tmh (Sect. 8)

q200 qmh (Sect. 9) Specific humidity measured at 200 m height kg kg−1

q140 qmh2 (Sect. 9) Specific humidity measured at 140 m height kg kg−1

...

q2 qmh7 (Sect. 9) Specific humidity measured at 2 m height kg kg−1

q q Mixed-layer specific humidity kg kg−1

CO2207 CO2mh (Sect. 9) CO2 mixing ratio measured at 207 m height ppm

...

CO227 CO2mh4 (Sect. 9) CO2 mixing ratio measured at 27 m height ppm

CO220 CO2mh (Sect. 8) CO2 mixing ratio measured at 20 m height ppm

h h Boundary-layer height m

H H Surface sensible heat flux W m−2

LE LE Surface latent heat flux W m−2

FCO2 wCO2 Surface CO2 flux mg CO2 m−2 s−1

Sout Swout Outgoing shortwave radiation W m−2
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Appendix B: Inverse-modelling variables

Table B1. Description, dimensions and units (of content) of inverse-modelling variables used in Sect. 3.1 and 3.4 of this paper.

Variable Description Dimensions Units (of content)

J Cost function Scalar −

n Number of state variables Scalar −

x State vector (ith element indi-

cated by xi)

Vector, length = n Units of the respective state variables

xb Bias-parameters part of state

vector

Vector, length = number of state vari-

ables belonging to bias correction

Units of the respective state variables:

dimensionless

xm Model-parameters part of state

vector

Vector, length = number of state vari-

ables that are model parameters

Units of the respective state variables

x
{t}
m Model-parameters part of state

vector with "true" parameter

values

Vector, length = number of state vari-

ables that are model parameters

Units of the respective state variables

xA A-priori estimate of the state

vector

Vector, length = n Units of the respective state variables

m Number of observations in-

cluded in cost function

Scalar −

mj Number of observations from

observation stream j included

in cost function

Scalar −

y Vector of observations included

in cost function (J)

Vector, length = m Units of the respective observations

yH Vector of sensible heat flux ob-

servations included in J

Vector, length = number of sensible heat

flux observations in y

Units of each element: W m−2

yLE Vector of latent heat flux obser-

vations included in J

Vector, length = number of latent heat

flux observations in y

Units of each element: W m−2

p Vector of model parameters that

are not optimised

Vector, length = number of model pa-

rameters not included in state

Units of the respective parameters

H(xm,p) Vector of model output to be

compared with observations

Same as vector y Same units as vector y

(∇xmH(xm,p))
T Adjoint of model Matrix, size = length of vector xm×

length of vector y

Units of element on row i and column

j: units of j th element of y divided by

units of ith element of xm
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Table B1. (continued)

SA A-priori error covariance ma-

trix

Matrix with size n×n Units of element on row i and column

j: units of ith state variable multiplied

with units of j th state variable

SO Observational error covariance

matrix

Matrix with size m×m (diagonal ma-

trix)

Units of ith diagonal element: units of

ith observation squared, other elements

are 0

σO,i Observational error standard

deviation belonging to ith obser-

vation

Scalar Unit of respective observation

σI,i Instrument (measurement) er-

ror standard deviation belong-

ing to ith observation

Scalar Unit of respective observation

σM,i Model error standard deviation

for model output corresponding

to ith observation

Scalar Unit of respective observation

σR,i Representation error standard

deviation for model output cor-

responding to ith observation

Scalar Unit of respective observation

si Scaling factor for ith observa-

tion (constant within each ob-

servation stream)

Scalar Dimensionless

s
{t}
i "True" scaling factor for ith ob-

servation (constant within each

observation stream)

Scalar Dimensionless

wi Weight for ith observation Scalar Dimensionless

F Forcing vector Vector, length = length of vector y Units of ith element: (units of ith

observation)−1

FH Forcing vector for the sensible

heat flux observations

Vector, length = length of vector yH Units of each element: m2W−1

FLE Forcing vector for the latent

heat flux observations

Vector, length = length of vector yLE Units of each element: m2W−1

εeb Energy balance closure residual Vector, length = length of yH or yLE ,

depending on equation

Units of each element: W m−2

FracH Fraction of energy balance clo-

sure residual added to the sensi-

ble heat flux

Scalar −
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Table B2. Output variables defined in Sect. 5.

Variable Description Unit

χ2
r Reduced chi-squared statistic −

χ2
r,j Reduced chi-squared statistic for observation stream j −

χ2
r,b Reduced chi-squared statistic for background part cost function −

Jj Partial cost function observation stream j −

εbias,j Mean bias error j th observation stream Units of respective observation stream

δnor,i normalised deviation of the posterior from the prior for ith state parameter −
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