
1 
 

Dear reviewers, 1 

Thank you all very much for the time you have spent on reading our manuscript, and in particular 2 

for your constructive comments, which helped to improve our manuscript. Please find a point-to-3 

point reply to each of your comments below, sorted per reviewer.  4 
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Reply to reviewer 1: 5 

 6 

Page 1, line 6: Replace "enables to estimate" by "enables the estimation of information". 7 

We have replaced this as suggested. 8 

 9 

Page 7, line 7: "free-tropospheric mixing ratios". I disagree, free tropospheric mixing ratios are not 10 

difficult to obtain by observations. There are numerous surface sites measuring greenhouse 11 

gases concentrations around the globe. 12 

Many surface sites indeed measure greenhouse gas concentrations, these measurements 13 

however often take place relatively close to the surface (e.g. measurement tower). With ‘free-14 

tropospheric’ we want to indicate the concentration in the free troposphere above the boundary 15 

layer, a quantity that determines entrainment. However, measurement towers seldomly extend 16 

beyond the boundary layer. Therefore, the free-tropospheric concentrations are not always 17 

straightforward to obtain in our view. 18 

Page 1, line 19: Add an s after exchange. 19 

Adapted 20 

Page 1, line 21; Strictly speaking, the second part of the sentence (the well known atm...) is false. 21 

The atmospheric boundary layer exists even though the daytime conditions are not sunny. 22 

Indeed, we now changed the sentence into “Surface heating under sunny daytime conditions 23 

usually leads to the growth of a relatively well-mixed layer close to the land surface, the 24 

convective boundary layer (CBL).” 25 

Page 2, line 30: Add after scalars (e.g. wind speed and temperature). 26 

We have changed the line into “relatively strong vertical gradients of scalars (e.g. specific 27 

humidity and temperature) …” 28 

Page 2, line 30: For which time scale and horizontal resolution these assumptions are valid? 29 

Regarding the time scale, the model performs best during the convective daytime period, the 30 

assumptions on advection etc. should be valid for the whole modelled period. Regarding the 31 

horizontal scale: The model performs best on fair-weather days. The absence of deep convection 32 

etc. should ideally hold on a scale large enough that it does not influence the model simulation 33 

location. In practice, days are often not ‘ideal’, e.g. a time-varying advection can be present. This 34 

does not necessarily mean the model cannot be applied to that day, but, performance is likely to 35 

be worse. 36 

We have added info about this to the introduction. 37 

Page 2, line 35: Parenthesis within parenthesis. Use "for instance at Cabaw".. 38 

We have adapted the sentence to avoid parenthesis within parenthesis 39 

Page 2, line 40: Here, you can mention the problems of equifinallity (Tang et al., 2008) and 40 

overfitting. 41 
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We have added “The estimation of parameters is further complicated by possible overfitting and 42 

the problem of parameter equifinality (Tang and Zhuang, 2008), the latter especially in case not 43 

enough types of observations are used” 44 

Page 2, line 42: Replace Inital by Initial. 45 

Thanks for spotting this typo, adapted 46 

Page 2, line 42: Replace e.g. by for instance. 47 

The sentence now reads “Some parameters can be obtained quite directly from 48 

observations (for instance initial mixed-layer humidity), but, for example, estimating free-49 

tropospheric lapse rates or certain land-surface parameters is often more challenging.” 50 

Page 3, line 66: This is also illustrated in Ziehn et al. (2012) with the assimilation of atmospheric 51 

CO2 data in BETHY LSM. 52 

Around line 66 our manuscript has the following text: “The non-linearity causes numerically-53 

calculated cost function gradients to deviate from the true analytical gradients, since the cost 54 

function can vary erratically with a changing model parameter value. This is hampering proper 55 

minimization of the cost function when using numerically calculated gradients.” 56 

The suggested reference is interesting, but we could not find the location in the paper of Ziehn et 57 

al. where these authors illustrate this point about numerical gradients.   58 

Page 3, line 62: Above all, it is the iterative process that allows to find the local miminum of the 59 

cost function in case of linearity. 60 

We have extended Figure 2 to make the iterative cycle clearer, see later in this document, as this 61 

cycle is indeed important. 62 

Page 3, line 65: The choice of using variational methods compared to other technics dealing with 63 

the non linearity (e.g. Particule filters) could be discussed here. The advantages of using an 64 

adjoint compared to a numerically computed gradient could be also added. For instance, the 65 

adjoint model is a tool that allows to obtain the sensitivities of model outputs to land surface 66 

parameters with more efficiency. The adjoint computation is also less expensive than computing 67 

the cost function gradient. 68 

We have added the following: “This approach furthermore allows to efficiently retrieve the 69 

sensitivity of model output to model parameters. Also, using an analytical gradient is generally 70 

computationally less expensive compared to using a numerical gradient (Doicu et al., 2010, p17).” 71 

 72 

It is not our intention to provide an overview of possible methods here, as a proper overview 73 

would soon become quite extensive, and the paper is already quite substantial in length. 74 

Page 4, scheme: By storage flux, do you mean tendency of the scalar (e.g dc/dt)? 75 

Yes, We have adapted ‘storage flux’ into tendency now 76 

Page 4, line 109: It would be worth defining what is Jarvis-Stewart approach compared to the a-77 

gs module. 78 

We have adapted the text as follows: “As an alternative for a-gs, a Jarvis- 79 

Stewart approach (Jarvis, 1976; Stewart, 1988) can also be used in the calculation of H2O 80 

exchange. The latter approach is more simple, herein, stomatal conductance consists of a 81 
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maximum conductance multiplied with a set of factors between 0 and 1 (Jacobs, 1994). In CLASS, 82 

there are 4 factors included, which represent limitations due to the amount of incoming light, 83 

temperature, vapour pressure deficit and soil moisture” 84 

Page 4, line 120: I disagree. Within a Bayesian framework, inverse modelling does not necessarily 85 

involve any prior information. 86 

It can indeed be done without prior info, although adding the extra prior information often 87 

improves the solution or avoids ill-defined situations. We have slightly adapted the sentence: 88 

“Inverse modelling is based on using observations and, ideally, prior information to statistically 89 

optimise a set of variables driving a physical system (Brasseur and Jacob, 2017).” 90 

Page 4, line 122: Delete others. 91 

Deleted 92 

Page 5, line 125: Does it mean that the land surface model parameter are not optimised? 93 

No. Here we wanted to make a distinction between model parameters that are optimised and 94 

those that are not optimised (but still can have an influence on the model output).  The first 95 

group are part of the state and thus vector xm. The latter group of parameters are part of vector p. 96 

At this point in the paper we do not make a choice on which parameters to optimise and which 97 

not, that depends on the specific optimisation problem one wants to use ICLASS for, and can be 98 

chosen by the user. The full list of parameters that can be optimised is quite large (given in 99 

manual), and includes land surface model parameters as well. 100 

Page 5, line 138: The reference Chevallier et al., 2010 seems to me more appropriate than 101 

Chevallier et al. 2007 here. I would justify this assumption in an other sentence using . 102 

We have changed the Chevallier et al. 2007 reference into the Chevallier et al., 2010 reference. 103 

The remark “I would justify this assumption in an other sentence using .” was not fully clear to us. 104 

Page 6, line 149: Add a coma after at this point. 105 

Added 106 

Page 6, line 150: What is the point of adding some weights instead of inflating observational 107 

errors? 108 

Indeed identical changes can be made to the cost function by adapting weights or changing the 109 

observational errors.  However, the observational error standard deviations are also used in the 110 

ensemble for estimating posterior errors (see section 5.2). When the observational errors are no 111 

longer realistic due to inflating/deflating these errors, the observations are not properly perturbed 112 

anymore. This problem is avoided when using weights. The latter can be used, for example, when 113 

you have 15 temperature observation streams, but only one CO2 observation stream. In this case 114 

adding a weight of 1/15 to the temperature observation streams can make the observation 115 

streams more balanced, while keeping a realistic error for the observations. We have added an 116 

additional sentence to the text of the paper: “In principle, the observational error variances could 117 

also be adapted for this purpose, but by using weights we can keep realistic error estimations 118 

(important for Sect. 4.2).” 119 

Page 6, line 156: Explain how si is distributed in Equation 5. 120 

We have changed the sentence below eq 5 “These errors are assumed to be independent of each 121 

other.” into “These errors are assumed to be independent of each other and normally distributed.” 122 
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Page 6, line 165: Above all, this method is adapted for minimizing a non-linear cost function. 123 

Please specify the algorithm used. For instance, Raoult et al. 2016 used the L-BGFS-B algorithm 124 

as many others (see also Bastrikov et al., 2018; Kuppel et al 2014; Bacour et al., 2015). 125 

The text now reads “The framework uses by default a truncated Newton method, the tnc 126 

algorithm (The SciPy community; Nash, 2000), for the optimisations. Truncated Newton methods 127 

are suitable for non-linear optimisation problems (Nash, 2000). The chosen algorithm allows for 128 

specifying hard bounds…” 129 

Page 7, Figure 2: The figure should be more illustrative. As such, it does not help to understand 130 

the framework. At least, add the formula in the box. The iterative process should be also 131 

illustrated. See Figure 1 for instance of Thanwerdas et al., 2021. 132 

The figure was indeed very limited. The new figure: 133 

 134 
Page 8, line 1: Specify why you optimize FracH instead of ϵeb. 135 

In our application example, ϵeb (the energy balance residual, see eq 8) is explicitly calculated 136 

from the observations, since we had radiation observations available. Optimising FracH ensures 137 

that the energy balance in the observations closes, as the difference between net radiation and 138 

the sum of all new heat fluxes becomes 0. If we would optimise ϵeb this would not be the case. 139 

We have slightly adapted the text below eq 10: “This implies that the energy balance closure 140 

residual is added partly to the sensible, partly to the latent heat flux.” is changed into “This 141 

implies that the energy balance closure residual is added partly to the sensible, partly to the 142 

latent heat flux, thereby closing the energy balance in the observations.” 143 

Page 8, line 229: It is well known that depending on prior parameters the optimisation can get 144 

stuck in a local minimum. Please cite a textbook here. See also Santaren et al., 2014 and 145 

Bastrikov et al., 2018. 146 

As we don’t readily have a clear textbook example to cite, we added some more references, the 147 

text now reads: “The highly non-linear nature of the optimisation problem can cause the 148 
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optimisation to get stuck in a local minimum of the cost function (Santaren et al., 2014; Bastrikov 149 

et al., 2018; Ziehn et al., 2012). This means that the resulting posterior state vector can depend 150 

on the prior starting point (Raoult et al., 2016), and the resulting posterior state can remain far 151 

from optimal.” 152 

Page 8, line 236: Cite Tarantola after the word approach. 153 

Adapted 154 

Page 11, line 284: Specifify that the adjoint is computed for each iteration. 155 

At line 162-165 in chapter 3, the following text is present: “In the statistical optimization, we 156 

attempt to find the values of the state vector x such that the function in Eq. (6) reaches its 157 

absolute minimum. This is done starting from an initial guess (x = xA), after which the state vector 158 

is improved iteratively. The cost function and the gradient of the cost function (derivatives with 159 

respect to all parameters) are computed for different combinations of parameters in the state 160 

vector (Fig. 2).” We herein also refer to figure 2 (see higher up in this document), which we have 161 

extended, and wherein we made the iterative cycle clearer. Since line 284 belongs to a section 162 

that is more about illustrating the employed technique of adjoint coding, we prefer to not mention 163 

this in that section. The latter section is moved to the supplementary material, in response to 164 

comments of other reviewers. 165 

 166 

Page 13, line 362: Specify what are the arguments checkpointinit and model. 167 

‘model’ is a forward model object passed as argument to the function, this is just a technical 168 

Python implementation, we have removed this argument in the example for simplicity. 169 

checkpoint_init[i] contains stored forward model variables, as explained in Sect. 4.3, We have 170 

added this info to the text. Note that, in response to comments from other reviewers, Section 4 is 171 

moved to the supplementary material.   172 

Page 13, line 362: The optimized emission factor can become negative as well.. 173 

We assume this is about page 14, line 378? This is indeed true, but the emissions are not simply 174 

multiplied with a factor. Bergamaschi et al 2009 use the following formula for emissions (their eq 175 

4):  176 

 177 
The emission parameter (x) itself is unbounded, but the emissions (e) cannot become negative. 178 

To make it more clear, we have changed the text as follows: 179 

“Their solution was to make the emissions a function of an emission parameter that is being 180 

optimised, instead of optimising the emissions themselves. By their choice of function, the 181 

emissions cannot become negative, even though the emission parameter is unbounded.” 182 

Page 14, line 390, Remove one of the two "to". 183 

Removed 184 

Page 16, line 425: Specify that the chi 2 is only an indicator that can be misleading in particular 185 

when off diagonal terms are involved in the observation error matrix (Chevallier , 2007). 186 
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We have added a similar statement to the text: “Note however that the χ2r statistic can be 187 

misleading, in particular when observational errors are correlated (Chevallier, 2007)” 188 

Page 17, line 470: Remove in after reads. 189 

The text now reads “… in this file observations are loaded, the state vector defined, etc.” 190 

Page 18, line 483: "similar to Honnorat et al. , 2007". This is a standard test, please cite a 191 

textbook here or more references. 192 

The gradient test is indeed widely applied, but to our knowledge few papers give a detailed 193 

formula like Honnorat et al. (2007), that is similar to our formula. We now also refer at this place 194 

in the text to Elizondo et al. (2000). 195 

Page 18, line 490: It would be nice to show in a tabular the values of α and the associated results 196 

for the left and right sides of the equation. 197 

The paper now includes the following table: 198 

 199 
Page 19, line 523: RevealS. 200 

Adapted, thanks for spotting the typo 201 

Page 19, line 527: OSSEs are classic to test the ability of the system to properly estimate model 202 

parameters.. 203 

We have added “This type of experiments is classic to test the ability of the system to properly 204 

estimate model parameters.” 205 

Page 19, line 530, Start a new sentence after complexity and remove the coma after experiments. 206 

Adapted 207 

Page 19, line 535: ""In the cost function..true parameters". The sentence need to be explained as 208 

prior information means to avoid the parameters taking unrealistic values. 209 

This is specifically for the OSSEs. We first define ‘true’ parameters, which we use to create 210 

observations. Then, we start from a different prior state, and we want to try to find the true 211 

parameters back, using the observations we created earlier. Now, if we would include the 212 
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background part of the cost function, i.e. a penalty for deviating from the prior, this would mean 213 

that we will not be able to find back the true state. This is because the true state would give the 214 

best fit to the observations, but due to the penalty for deviating from the prior, this would 215 

normally not correspond to the minimum in the cost function. Therefore, we leave out the 216 

background part of the cost function. 217 

We have added some info to the text: “In the cost function, we do not include the background 218 

part, to make sure that it is possible to find back the "true" parameters. This is because the 219 

background part of the cost function implies a “penalty” for deviating from the prior state. This 220 

penalty implies that, when the model is run with the true parameters, the cost function would still 221 

not be zero. Next to that, the minimum of the cost function is (generally) shifted.” 222 

Page 19, line 543: Add a coma after experiment. 223 

Added 224 

Page 20, table 1: Previously, you wrote that you removed prior information. What does the prior 225 

column correspond to? 226 

The prior starting state. Even though the deviation from the prior is not included in the cost 227 

function (see our response about your comment about Page 19, line 535), the optimisation still 228 

needs a starting point. 229 

Page 21, line 566: as many iterations WERE needed. 230 

Sentence now reads “In this case, convergence is notably slower, e.g. more than six times as 231 

many iterations were needed to reduce the cost function to less than …” 232 

Page 21, line 570: Add a coma after setup. 233 

Added 234 

Page 23, line 596: Are shallow clouds represented in the forward model? 235 

In the configuration we used, the model does not take shallow (or any other) clouds into account. 236 

This can give rise to some deviation between observations and model, but we still expect the 237 

model grasps the main physics governing the boundary layer state. But see also our reply to your 238 

comment about Page 22, line 590. 239 

Page 23: Combine Figures 3 and 4 . 240 

Combined 241 

Page 26: Combine Figures 5 and 6. 242 

Combined 243 

Page 22, line 590: On Figure 5, the height and relative humidity show a less good fit to 244 

observations around noon. Is it because of the formation of shallow clouds? 245 

In radiation measurements of that day we see a reduction in incoming shortwave radiation for 246 

many data points around noon (see fig below). Earlier we wrote in the paper at line 604 about 247 

cumulus clouds. However, a colleague of us recently provided us with a satellite image of the day, 248 

the image suggests that high clouds were present instead. We have therefore adapted the text. 249 

The high clouds might play a role in the less good fit, although this issue is not easy to examine. 250 
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 251 
Page 28, line 644: "The use .. model" Please explain this sentence (this is done through the use of 252 

OSSE such as e.g. Stinecipher et al., 2022). 253 

We have added the following: “This is done through the use of observation 254 

system simulation experiments, similar to e.g. Ye et al. (2022)”. We could not find a Stinecipher 255 

2022 reference with OSSEs, therefore we used a different reference. 256 

Page 28, line 657: "It avoids..." Please explain. 257 

See also line 40-44, what we wanted to say here is that, with a framework like this, we avoid the 258 

need of manually fitting parameters of the forward model to obtain a good fit to observations 259 

(People using CLASS had to do this before this framework was built). Manually fitting parameters 260 

can be time-consuming and subjective. We have changed the sentence into “It avoids the need of 261 

manual trial-and-error in choosing parameter values for the model when fitting observations, 262 

thereby providing more objectivity.” 263 

Page 30, line 672: Give an example of small scale processes which are not represented. 264 

The text now reads “… we cannot expect a relatively simple model to capture all small-scale 265 

processes playing a role in the convective boundary layer and in land surface--atmosphere 266 

exchange (e.g. heterogeneous surface heating and evaporation, influence of individual thermals, 267 

...).” 268 

Page 30, conclusion: You could also emphasize that the inverse framework serves at determining 269 

which observations are needed through the use of OSSEs. 270 

Thanks for this suggestion, we have added the following text to the concluding discussion: 271 

“ICLASS can also help in the planning of observational campaigns, to determine in advance which 272 

observation streams are needed to better constrain model processes.” 273 

 274 

 275 
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Reply to reviewer 2 301 

 302 

General comments 303 
 304 
The introduction to the paper is off the mark. It does not explain the links between 305 
ICLASS and the efforts of other models but contains a lot of more or less technical 306 
information (e.g. on the tangent-linear and adjoint). I think that readers interested in a 307 
variational inverse modelling framework may already know about the TL and adjoint. If 308 
the aim is to teach users of CLASS what is an inversion and how they can use it, it may 309 
not be best done with a paper in GMD. 310 
To place the variational framework of this paper in comparison with other efforts in the 311 
scientific community, we now added a paragraph linking parameter estimation in land-312 
surface models in other studies with ICLASS. Here, an important point we make is that 313 
the fully coupled land-atmosphere in ICLASS helps to infer land surface characteristics 314 
from atmospheric observations, something that is often not the focus of other variational 315 
frameworks. 316 
The more technical text mentioning the adjoint in the introduction, is limited to one 317 
paragraph, discussing the challenge that non-linearity is posing.  318 
 319 
The order for presenting the variables and various definitions is not always very logical 320 
or at least, easy to follow for the reader, particularly in Section 3. The whole of Section 4 321 
and most of Section 8 are not relevant, as well as some theoretical paragraphs in 322 
Sections 3 and 5 (see Specific comments for more details). 323 
In response to this valid comment, and a similar comment from another reviewer, the 324 
content of chapter 4 has been moved to the supplementary material. See specific 325 
comments for sections 3, 5 and 8. 326 
The validation (Section 9) must deal with more relevant tests and show the 327 
uncertainties. 328 
The simple OSSEs in the paper mainly focus on retrieving parameter values, prior 329 
uncertainties were not used. We added a more sophisticated OSSE, including a test for 330 
the bias correction. See also specific comments. We use an ensemble in the new OSSE, 331 
and provide posterior uncertainties. 332 
 333 
The same remark applies to the application example (Section 10): no posterior 334 
uncertainties are shown even though ICLASS can estimate them with its Monte-Carlo 335 
scheme. 336 
Here we would like to point to table 3 and figure 9. In the last column of table 3, we 337 
show the posterior standard deviation of every parameter. In Figure 9 we picked out 2 338 
parameters and show the full posterior pdfs.  339 
Finally, some very practical information is missing, e.g. about the computation costs. 340 
We added info on the computation costs, see Section 9.2 (in the revised paper) 341 
 342 
 343 
 344 
 345 
 346 
Specific comments: 347 
 348 
Introduction 349 
 350 
The introduction should be rewritten to include more of the general context surrounding 351 
ICLASS e.g. how is it linked to the efforts around other models. Nevertheless, in case 352 
they are useful, here are some remarks on specific points: 353 
-p.2 l.31-34: what is the typical frequency of the "golden days" in a year? How are they 354 
distributed? At least in the area where the example application is located. 355 
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The model performs best during the convective daytime period, the assumptions on 356 
advection etc. should be valid for the whole modelled period. Since the model performs 357 
best on fair-weather days, the absence of deep convection etc. should ideally hold on a 358 
spatial scale large enough that it does not influence the model simulation location. In 359 
practice, days are often not ‘ideal’, e.g. a time-varying advection can be present. This 360 
does not necessarily mean the model cannot be applied to that day, but, performance is 361 
likely to be worse. We have added info about this to the introduction. Determining the 362 
frequency of ‘ideal’ days is quite complex, as then advection etc. has to be known. Even 363 
though the model does not perform well in all meteorological situations, this and similar 364 
models have been successfully applied in numerous studies, see 365 
https://classmodel.github.io/publications.html. 366 
-p.2 l.39-40: this is not true: neural networks or statistical models have no physics at all 367 
and their results can be consistent with measurements... 368 
The results of those models can indeed be consistent with a set of measurements, but 369 
the point we want to illustrate here is the following: If you tune the parameters of the 370 
(CLASS) model using e.g. only CO2 mixing ratio observations, you might easily manage 371 
to get a good fit to those observations. Several choices of parameter sets might give you 372 
similar results, as one parameter can compensate for another when only looking at one 373 
specific type of observations. But then, when keeping the same set of parameters 374 
chosen earlier, and comparing your model output also with humidity and temperature 375 
observations, likely your model will perform poorly. This means your model physics are 376 
not correct, but if you would only compare to CO2 mixing ratios, this internal problem 377 
would remain hidden. If instead you fit model parameters using a wide range of different 378 
types of observations, you are likely to end up with model physics that are more correct, 379 
i.e.: it becomes less likely that one bad parameter can compensate for another. Of 380 
course, the essential physical processes should be well represented in the model, 381 
otherwise even the best set of parameters might not lead to a good fit.  382 
In case of statistical models fitted with CO2 mixing ratio observations, there will be no 383 
model output for variables other than CO2 mixing ratio, they have no internal physics, so 384 
our statement in the paper “When model results are consistent with a diverse set of 385 

measurements, this gives more confidence that the internal physics are robust and the model has 386 

been adequately parameterised to reliably simulate reality” cannot be applied to those 387 

models. 388 
 389 
-p.2 l.49 "capable of correcting observations for biases": this is a bit misleading as to 390 
what is done by ICLASS. Any inversion set-up can "correct observations for biases" if a 391 
control variable is created for it. The issue is whether the resulting corrections have any 392 
physical meaning. 393 

The text reads “The above text illustrates the need for an objective optimisation framework, 394 

capable of correcting observations for biases. We therefore present here a description of ICLASS, 395 

an inverse modelling framework built around the CLASS model, including 396 

a bias-correction scheme.” 397 

It is indeed true that more complex bias patterns cannot be handled. There is however a 398 
capacity to physically correct observations for biases, and we would like to point to 399 
Figure 7 for this. The surface heat flux observations, which are often assumed to be 400 
prone to underestimation (see e.g. Foken 2008), are adapted in the direction one would 401 
expect. 402 
We changed the text into “The above text illustrates the need for an objective optimisation 403 

framework, capable of correcting observations for biases.  We therefore present here a 404 

description of ICLASS, an inverse modelling framework built around the CLASS model, including a 405 

bias-correction scheme for specific bias patterns.” 406 

  407 
-p.3 l.64-65: beware, non-linear is not random (which I assume to be the meaning of 408 
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"erratically" here). 409 

“The non-linearity causes numerically-calculated cost function gradients to deviate 410 

from the true analytical gradients, since the cost function can vary erratically with a changing 411 

model parameter value.” 412 

What we wanted to say here is that in this case the cost function can (theoretically) 413 
change in a very non-linear way with a change in parameter value, e.g. increases and 414 
decreases of the cost function can alter with very small changes in the parameter, the 415 
shape of the cost function can be very irregular. We have changed erratically into 416 
irregularly. 417 

Forward model 418 

Please check which pieces of information are actually relevant for the inversion 419 
framework. If an option is not used in the tests or example application, it may not be 420 
explained here. 421 
-p.4 l.96: how is the cloud mass flux included? Or is it not relevant here? 422 
In the beginning and the end of the section we refer to Vilà-Guerau De Arellano et al 423 
(2015), where these details can be found. We do not include the cloud mass flux in the 424 
example, we shortly mentioned it here for completeness. Also, for readers who want to 425 
perform a study with a bigger focus on cumulus clouds, using ICLASS, it might be good 426 
to know it can be included. 427 
-p.4 l.98: how are cloud effects on the BLH accounted for? Or is it not relevant here? 428 
Idem to comment above 429 
-p.4 l.101: do you use the option for the Monin-Obukhov similarity? 430 
Yes, we consider this layer very important for correctly interpreting observations. We 431 
have now explicitly added ‘we activated the surface layer option in the model’ to the 432 
section of the application example. Also for the OSSEs we now made clear that the 433 
surface layer was turned on. 434 
-p.4 l.102-105: this very long sentence is not clear, please rephrase. 435 

The two original sentences were “In the original CLASS surface layer, scalars, the zonal 436 

wind speed and the meridional wind speed are evaluated at 2 m height.  For some scalars, we 437 

have extended this to multiple user-specified heights, as this allows to compare model output to 438 

observations of chemical mixing ratios and temperatures at different heights (e.g. along tower).” 439 

We changed it into “In the original CLASS surface layer, scalars such as temperature are 440 

evaluated at 2 m height.  For some scalars, we have extended this to multiple user-specified 441 

heights. This allows to compare observations of chemical mixing ratios and temperatures at 442 

different heights (e.g. along a tower) to model output.”  443 

-p.4 l.107: do you use this option? 444 
Yes, both in the OSSEs and in the application example. 445 
-p.4 l.107-108: "a-gs" module and big-leaf method are not defined/referenced 446 
anywhere. 447 
Is it supposed to be commonly known methods? 448 
Within the carbon community, these are relatively well known, but it is good to provide 449 
references for both. For a-gs we refer to (Jacobs, 1994; Ronda et al., 2001), for big-leaf 450 
approach we added a reference to Friend (2001). 451 
-p.4 l.111: from which data does the model dynamically compute the long and short 452 
wave radiations? 453 
We have added the following sentence: “In this module, shortwave radiation is 454 
calculated using the date and time, cloud cover and albedo. For longwave radiation, 455 
surface temperature and the temperature at the top of the surface layer are used.” 456 
 457 
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We turned this feature on in both the OSSEs and application example. 458 
-p.4 l.114: where do the surface temperatures come from? 459 

The model calculates the surface temperature from solving the energy balance, the use 460 
of outgoing longwave radiation from the previous timestep makes this more simple 461 
(outgoing longwave radiation is a 4th power function of surface temperature).  462 

We have adapted the referred sentence into: “The soil heat flux to the atmosphere is 463 
calculated based on the gradient between soil and surface temperature, the latter is 464 
obtained from a simplified energy balance calculation.” 465 

Inverse modelling framework 466 

-p.4 l.122-123: please clearly list the inputs and/or put them in Fig.1 467 
We assume figure 2 was meant here (since figure 1 is about the forward model)? We 468 
have reworked figure 2 (also based on comments of another reviewer) into the 469 
following: 470 

 471 
The prior input vectors xb and xm are shown in the figure. In case the reviewer meant 472 
Figure 1, the model has more than 50 parameters that could be optimised, more than 473 
can be properly shown in a figure. 474 
 475 
-p.4 l.123: "[y]our bias correction scheme" has not yet been described. Moreover, the 476 
remaining parts of this subsection deals only with xm: please try to make the layout 477 
easier to follow for the reader. 478 
Bias correction is elaborated in section 3.2 (which comes after), but it is already 479 
introduced in the introduction. In response to this comment we now refer forward to 480 
section 3.2. 481 
-p.5 l.125-126: what are the "model parameters that are not part of the state"? If they 482 
don't, why are they in the model at all? 483 
The model has more than 50 parameters that can be optimised. Usually, the user will 484 
only want to optimise a subset of all these parameters, to reduce the complexity of the 485 
optimisation problem. Thus, only a subset of all model parameters is in the state. The 486 
other parameters, even though they are kept constant, still have an influence on the 487 
model output and thus the cost function. If they were given other constant values, the 488 
model output might be different. Those parameters, that are not part of the state vector, 489 
but still have an influence on the model output, we place in a vector p. Brasseur and 490 
Jacob (2017) also use a vector p in their notation (see their eq 11.1). 491 
-p.5 l.126seq: your notations are not conventional - at least, not from the atmospheric 492 
inversion conventions. We use R and B for the covariance matrices, for example. 493 
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Different communities prefer different notation. We based our notation on Brasseur and 494 
Jacob (2017), and their notation is to a large extent based on Rodgers (2000). 495 
-p.5 l.132-p.6 l.148: all this is part of the general theory of the inversion, it is not 496 
particular to ICLASS so I think it must be omitted. Only the information that the 497 
observation errors are uncorrelated is relevant. 498 
We understand the point of view of the reviewer, who wants to make this section more 499 
concise. We argue however that some of this information, like the splitting up of the 500 
observational error variance in different parts, is relevant for the ICLASS user, who has 501 
to provide values of σI and optionally σM and σR. Next to that, some of the potential 502 
users of ICLASS are not very experienced with inverse modelling, this extra information 503 
might be very helpful to them. 504 
In response to this comment, we have moved the equation of the a-priori error 505 
covariance matrix and the accompanying text to the supplementary material, as this is 506 
common knowledge. 507 
-p.6 l.154: how can these factors be optimised? 508 
They can be optimised similarly to the other parameters, by iteratively calculating the 509 
gradient of the cost function (eq 13 gives the derivative with respect to a scaling factor) 510 
and the cost function itself for various values of the scaling factor. They are also part of 511 
the state when included in the optimisation. 512 
-p.6 l.158-165: this is again part of the general theory of the inversion. 513 
We consider Equation 7 non-standard since it contains an observation scaling factor 514 
-p.7 3.2: put the definitions of xm before l.125. Maybe xb also. 515 
Both are shortly introduced at lines 120-125. Moving the explanation from lines 175-180 516 
to a location before line 125 is very difficult, since the observation scaling factors are not 517 
yet defined at that point. 518 
-p.7 l.179: where do FracH appear in J? This is only indicated in Eq.11. 519 
FracH influences part of vector y (see eq 9 and eq 10), which appears in J (eq 4). In 520 
principle we could write y in eq 4 as y(FracH). FracH is however not yet introduced at the 521 
moment the cost function is defined, and y is only a function of FracH if the user decides 522 
to include the energy balance closure bias-correction.  523 
-p.7 l.180: "this is the topic of the next section": this is not a valid transition between 524 
sections. It is useless or may indicate that the sectionning and order of the sections is 525 
not logical enough. 526 
The transition is altered, the text now reads “The second possible method of bias 527 
correcting (Sect. 3.3) is implemented specifically for the energy balance closure problem 528 
(Foken, 2008; Oncley et al., 2007; Renner et al., 2019), it involves a parameter "FracH" 529 
(-) that can be optimised.” 530 
 531 
Note that in this section we want to give an overview on what sorts of parameters can 532 
be optimised, the bias correction for energy balance closure is explained in the section 533 
that follows. We however include this one parameter from the next section, to be 534 
complete. 535 
-p.7 l.186-197: why may the user desire to specify their own observational energy 536 
balance closure residual? 537 
All the measurements appearing in Eq. 8 might not always be available for all studies 538 
-p.8 l.193: can you conclude on the advantages and limitations of this bias correction? 539 
We have added the following: 540 
“Limitations of this approach are that we assume the radiation and soil heat flux 541 
measurements to be bias-free, and the FracH parameter constant.”  542 
Regarding the advantages, we changed the following sentence “This implies that the 543 
energy balance closure residual is added partly to the sensible, partly to the latent heat 544 
flux” into   545 
“This implies that the energy balance closure residual is added partly to the sensible, 546 
partly to the latent heat flux, thereby closing the energy balance in the observations.” 547 
-p.8 l.195-211: this is the general theory of the adjoint, it is not particular to ICLASS. 548 
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Equation 13 is the derivative to the observation scaling factor, which we think is not a 549 
standard equation. Eq 12 defines the forcing vector, which is used in eq 13 and 14 that 550 
deal with the bias correction.  551 
-p.8 l.214: what are "forcing vectors"? 552 
These are defined in eq 12, they contain the model-data mismatch, and are used as 553 
forcing for the adjoint (eq 11). See also Brasseur and Jacob (2017). 554 
-p.8 l.215-217: this is not clear: what is the link between FracH, FH, the observation 555 
scaling factors? Please clarify the vocabulary. 556 
It becomes indeed quite confusing with so many variables playing a role. FracH is 557 
specific for the energy balance closure problem, and explained in section 3.3. FH is a 558 
forcing vector for the H (sensible heat flux) observations, the definition of a forcing 559 
vector is given in eq 12. FH is used in the derivative of the cost function to the FracH 560 
parameter (eq 14). The observation scaling factors are introduced in eq 6, they are 561 
unrelated to FracH. Note that we have now added a table in the appendix describing 562 
many inverse modelling variables from section 3. 563 
-p.9 l.226: what are the advantages and limitations of the numerical derivative 564 
compared to the analytical gradient? 565 
An analytical gradient is generally computationally less expensive compared to using 566 
a numerical gradient (Doicu et al., 2010, p17). In the case of ICLASS, we are not aware 567 
of any advantage of using the numerical derivative. Comparing the numerical and 568 
analytical derivative however can provide an extra check on the analytical derivative, 569 
and it can be interesting to see at which step size the differences become big. Also, in 570 
the OSSEs we use the numerical derivative at one point (line 565) to compare with our 571 
adjoint, so it might be useful to keep the employed formula in the paper 572 
-p.9 l.228-230: general theory, remove. 573 
This is indeed well-known within the inverse modelling community. It however serves 574 
here as the introduction of the section on convergence challenges, and as an argument 575 
on why the Monte-Carlo ensemble is useful. 576 
-p.9 l.230-232: if the forward model crashes, aren't there any other issues than the 577 
inversion? 578 
The forward model is very non-linear, certain combinations of input parameters lead to 579 
unphysical situations or numerical instabilities. Since CLASS is a simple model, it does 580 
not have advanced systems to prevent or deal with this kind of issues. Still, this and 581 
similar models have been successfully applied in numerous studies, see 582 
https://classmodel.github.io/publications.html.  583 
-p.9 l.233: "on which state vectors are tested": a missing word? 584 
Indeed a confusing sentence, now it reads “After starting from a user-specified prior 585 
state vector, the tnc algorithm autonomously decides which parameter values are tested 586 
during the rest of the optimisation.” 587 
-p.9 l.236-239: general explanation on the Monte-Carlo principle, not particular to this 588 
work. 589 

This section is about what we have done to handle convergence challenges. The short 590 
explanation (4 lines) might indeed be quite general, but important to understand what is 591 
done. Furthermore, what is specific (not unique) to ICLASS is that we use the variational 592 
approach (our minimisation procedure) within the Monte Carlo approach (ensemble). 593 

We would like readers to more or less understand how ICLASS works, without having to 594 
read other papers. We would like to keep this (in our opinion) important information in 595 
the paper. 596 

Figure 1: please indicate also the inputs and outputs. 597 

We assume this is about figure 2, we have reworked this figure (see higher up in this 598 
document). 599 

Adjoint model 600 



17 
 

I appreciate the very pedagogical drive regarding the adjoint but I think that this section 601 
must be removed altogether since I don't think the reader of such a paper expects a 602 
lecture on the adjoint. 603 

This section is moved to the supplementary material 604 

Error statistics 605 

-p.14 l.381-383: does it invalidate the approach not to keep in the normality 606 
assumption? 607 
Why? 608 
In the derivation of the commonly used general cost function equation, it is assumed 609 
that both prior and observational errors follow a (multivariate) normal distribution 610 
(Tarantola 2005). We however cannot keep the normality assumption, because we use 611 
hard bounds for state values via the tnc algorithm. This induces a certain inconsistency, 612 
and the degree of error will depend on the degree of truncation etc. However, there are 613 
more studies that apply hard bounds, e.g. Raoult et al. (2016). Even though the 614 
normality assumption is violated, we think the results can still be useful. We added a 615 
sentence: “For a parameter following a truncated normal prior distribution, the prior 616 
variance used in the cost function is not (fully) equal to the variance of the actual prior 617 
distribution. The extent to which this is the case, depends on the degree of truncation.” 618 
-p.14 l.384-392: make a graph? Also please check that you don't need to repeat 619 
information already given previously or to anticipate. 620 
There is some repetition of earlier info at the beginning of this paragraph. One example: 621 
before the sentence “The instrument and representation error are taken from user input, 622 
the model error can either be specified by the user or estimated from a sensitivity 623 
analysis.” we say  624 
“Equation 5 states that the observational error consists of an instrument error, a model 625 
error and a representation error.” This is intended to make the paper more readable, 626 
given the large amount of information in the paper, the reader might not remember 627 
everything from earlier sections. Moreover, this repetition does not take a lot of space. 628 
 629 
It is not clear to us how a graph would clarify this portion of the text. 630 
 631 
-p.14 l.395-p.15 l.419: "it will be shortly explained here": not necessary if it is the same 632 
as Chevallier et al. (2007), only detail the differences if any. 633 

We understand the view of the reviewer, who wants to make the paper more concise. 634 
However, we would like readers to more or less understand how ICLASS works, without 635 
having to read other papers. This paper will also serve as a reference paper to which 636 
future studies using ICLASS can refer. We therefore would like to keep this crucial 637 
information in the paper. 638 

Output 639 

-p.15 l.422: "in ICLASS": what is the difference with the general definition of the 640 
chisquare? 641 
The denominator differs depending on the situation, see Michalak et al. (2005). There is 642 
also difference between Χ² and Χ²r, e.g. compare Meirink et al. (2008) with Michalak et 643 
al. (2005). Our variable is Χ²r, we have adapted this. 644 
-p.15 l.426: what does "default" mean? That the user can choose otherwise? 645 
Yes, as is done in our OSSE example, in this case the cost function is only determined by 646 
the model observation fit 647 
-p.16 l.412-452: a lot of this is generally known and used. Please keep to what is 648 
particular to ICLASS. Maybe also use tables. 649 
We have now added a table in appendix with the output variables defined in this section. 650 
However, as the text also includes the employed formula and explanation, we cannot 651 
simply replace the text with this table. 652 
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 653 
-p.16 l.453- p.17 l.464: please use a graph or a list of a table. 654 

Although this is in itself a good suggestion, there is a sequence here, with accompanying 655 
text in between. It is not clear to us how a graph, list or table would clarify and shorten 656 
this portion of the text.  657 
Technical details of the code 658 

-p.17 l.467seq: here again, please use a graph or a list or a table 659 
In response to this comment, we have now used a list. 660 
-p.17 l.477: "can easily be adapted": wouldn't netcdf be easier to use than pickle? 661 

Thanks for this suggestion. In my (Peter) own experience netcdf is very useful for 662 
storing arrays with several dimensions (e.g. latitude, longitude,time). What we do with 663 
pickle here is merely to store the full Python objects so they can be loaded again later. 664 
Those objects are diverse, I think it might be more work to read/store these using 665 
netcdf. 666 

Adjoint model validation 667 

-p.17 l.480 - p.18 l.506: this is the general theory and must be removed. 668 
See reply to next comment 669 
-p.18 l.509 - p.19 l.519: same remark. 670 
These sections seem important to us, as it provides a validation of the extensive adjoint 671 
code, with an example. The adjoint test and gradient tests are indeed common tests, yet 672 
the exact formula for the gradient test used here is, to our knowledge, not occurring in 673 
many places in literature. One other reviewer suggested us to extend this chapter with a 674 
table showing results of the gradient test. Presenting the results of the gradient test 675 
without including the formula of the test and a little explanation might not be the best 676 
solution. Given that this paper also serves as the reference paper for ICLASS, we think it 677 
can be useful to include the information on how the adjoint code was validated.  678 
-p.19 l.522: how many is "the vast majority"? What about those that don't pass? What 679 
does "executed in this file" mean? How could you deal with numerical noise? 680 

The file we talk about is a Python script, when running the file, a lot of tests are 681 
‘executed’. There is a default configuration of this file, but the user can adapt which sets 682 
of tests to run, as well as the model configuration and the number of time steps tested. 683 
The tests also involve random numbers used in formula 30, therefore the resulting 684 
output of the adjoint tests is slightly varying as well. Last time we ran the adjoint and 685 
gradient tests over multiple timesteps, we had two failing tests (on a total of more than 686 
600 tests), one adjoint test that fails and one gradient test. The adjoint test resulted in a 687 
value in equation 30 of 3x10-12. The part of the code tested involves a while loop, which 688 
might introduce extra numerical noise. The failing gradient test results in a value of -689 
2.148466824970594e-97 using the tangent linear (LHS Eq. 28), while it results in a 690 
value of 0 using finite differences (RHS Eq. 28) with alpha=1e-5 or 1e-6 or 1e-7 or 1e-9 691 
or 1e-12. Although this is labelled as a failure by our code, numerical noise is a likely 692 
explanation. 693 

Additionally, besides the gradient and adjoint tests over multiple timesteps, we have 694 
tests for every separate module of CLASS, where we test more of the code. Some of 695 
these tests result in a reported failure when ran, they however require closer inspection. 696 
Looking at the following example output for testing a variable called ‘fxdif_part1’: 697 

dfxdif_part1 : 698 

7.847354016599084e-09 (finite difference output for first value of alpha) 699 

7.844627725184239e-09 (finite difference output for second value of alpha) 700 
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7.845113447757512e-09 (…) 701 

7.820133429703446e-09 702 

4.163336342344337e-09 703 

tl :7.844681884985882e-09 (this is the tangent linear output) 704 

GRADIENT TEST FAILURE!! dfxdif_part1 705 

Several increasingly smaller values for alpha (eq 28) are tested here consecutively. 706 
However, looking at this output it seems that it is merely numerical noise, since only for 707 
the smallest tested value of alpha (1e-8) the tangent linear output strongly diverts from 708 
the finite difference output.  709 

Testing several values of alpha in the gradient tests (as we do) can be seen as a 710 
strategy to deal with numerical noise. Adjoint tests can also be ran multiple times with 711 
different random numbers. 712 

Invese modelling validation: OSSE 713 
 714 
The tests described in this section are useful but they are only very basic tests since, for 715 
example, I understand that four out of five are set-up without any perturbations of the 716 
observations. The error statistics are not described: are they the "true" ones or are they 717 
mis-specified in some tests? The convergence criteria are not discussed, which makes it 718 
difficult to compare the tests. Moreover, without the posterior uncertainties, the results 719 
are not complete nor comparable. 720 
The tests are indeed basic, they were intended to show the capacity to fit observations 721 
and find good parameter values, not to test the statistics. Note that the posterior 722 
uncertainties are only estimated when performing an ensemble of optimisations (Monte 723 
Carlo approach). Given the focus of these basic OSSEs, we did not use an ensemble. We 724 
added an OSSE that focuses more on statistics and the bias correction. This OSSE has 725 
mis-specified error statistics. We also added a table that quantifies the fit for the OSSE 726 
with the perturbed obs, and lists the employed measurement error standard deviations. 727 
 728 
The procedure for those simple OSSEs is described in the beginning of the section: “We 729 
first run the model with chosen values of a set of parameters we want to optimise. A set 730 
of model output data from this simulation then serve as the observations, while the 731 
parameters used to create these observations are referred to as the "true" parameters. 732 
Then we perform an optimisation using these observations, starting from a perturbed 733 
prior state vector.”. 734 
 735 
There is indeed only one experiment with perturbed obs, in this experiment we perturb 736 
the obs using the specified measurement error standard deviation, see line 540. The 737 
model and representation errors are set to 0 in all experiments. (we added this info to 738 
the paper now) 739 
-p.19 l.527: what does "constructed adjoint" mean? 740 
The adjoint they have constructed (coded). We left the word out now to avoid confusion. 741 
-p.19 l.530: 5 experiments is a bit too small a number for actual validation of a code. 742 
True, we added another OSSE, focusing on statistics and bias correction. But note 743 
validation of the adjoint code is also done in chapter 8. 744 
-p.19 l.535-536: keeping out the background makes them very basic tests. 745 
Indeed, but in these first four tests, the goal is to test the capacity to find back the true 746 
parameters. We have added some info to the text: “In the cost function, we do not 747 
include the background part, to make sure that it is possible to find back the "true" 748 
parameters. This is because the background part of the cost function implies a “penalty” 749 
for deviating from the prior state. This penalty implies that, when the model is run with 750 
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the true parameters, the cost function would still not be zero. Next to that, the minimum 751 
of the cost function is (generally) shifted.” 752 
In the new, more complex OSSE, the background part is included 753 
-p.19 l.547-548: you can quantify the influence of a state parameter with the adjoint. 754 
Indeed, but given that the OSSEs are simple and do not require a lot of computation 755 
time there was no need to test this in advance  756 
-p.20 l.549: what is "a very good fit"? How can it be defined without the uncertainties? 757 
The basic OSSEs were intended to show the capacity to fit observations and find good 758 
parameter values, not to test the statistics (we added an additional OSSE where the fit is 759 
quantified). When looking at figure 3 it is clear that the model matches the observations 760 
very well, the difference between observations and model output is very hard to see by 761 
eye. For the prior this is by far not the case. Even though we are not quantitatively 762 
describing the fit, one can call this “a very good fit” in our opinion. Adding a quantitative 763 
measure of fit such as the root mean square error does not add much here in our 764 
opinion, neither does the cost function (partly determined by observational error 765 
standard deviations that are simply chosen by us). For the OSSE with perturbed 766 
observations, we have added a table showing the prior and posterior RMSE. 767 
-p.20 l.552: "a more complex problem": the problem is not well defined but is it 768 
complex? 769 
What we mean here is more complex relative to the tests described before, because of 770 
an increased number of state parameters (all state parameters have a prior value 771 
different from the ‘true’ value). 772 
-p.20 l.553-554: if the parameters have no influence on the cost function (which can be 773 
checked with the adjoint), then the inversion is useless. 774 
Indeed, but given that the OSSEs are simple and do not require a lot of computation 775 
time there was no need to test this in advance. From the result of the OSSE in table 1, 776 
we can see that the optimised parameters are all different from the prior parameters, 777 
which indicates that the cost function is sensitive to all parameters, proving our 778 
hypothesis.  779 
 780 
-p.20 l.554-55: the parameter interdependency issues are not the only ones which may 781 
arise in this case. 782 
Since we can give a clear example of the interdependency issue that arises, we choose 783 
to mention that. But this might indeed not be the only possible issue that could have 784 
arisen. 785 
-p.21 l.567-568: why does the analytical gradient perform better than the numerical 786 
calculation? 787 
It is a very non-linear model, having exact gradient calculations seems to improve 788 
performance. 789 
-p.21 l.573: the framework finds a minimum, not the minimum of the cost function. 790 
The exact true parameter values would give a cost function of 0 (because of the set-up 791 
of the discussed OSSEs), since the framework approaches the true parameter values 792 
very well, the framework approaches the global minimum (in these simple OSSEs).  793 
-p.21 l.575: what is "a good fit"? 794 
Qualitatively, the fit is not as good as in Figure 3, since the observations are now 795 
perturbed and impossible to exactly reproduce with the model. We agree that some 796 
more quantitative info can be useful here, we therefore added a table that shows that 797 
the root mean squared error lies close to the prescribed measurement error standard 798 
deviation. Given that these measurement error standard deviations were used to create 799 
the random perturbations for the observations, this confirms the good fit quantitatively.  800 
Figure 3: what about the uncertainties? 801 

In this figure we did not include the specified observational error standard deviations. 802 
The first four simple OSSEs are about finding back the true parameters, in our opinion, 803 
the (artificial) observational error did not seem very important to include. In Figure 4 804 
however, where observations are perturbed, we do include error bars. 805 



21 
 

Application example 806 

-p.21 l.584-586: this is strangely put: observations are "derived" from other 807 
observations 808 
What we want to say here is that we compute certain observation variables from other 809 
variables in the dataset. For instance, specific humidity is obtained using dew point 810 
temperature etc. This happens before assimilating the observations. 811 
- it looks like you use the same word for actual observations i.e physical variables that 812 
are measured and "observations" in the modelling framework i.e. variables of which the 813 
model computes an equivalent for comparison. 814 
Throughout the paper, we intended to use ‘observations’ for physical variables that are 815 
measured, irrespective of whether they are assimilated or not. The variables computed 816 
by the model, to be compared with observations, are in vector H(x), we never intended 817 
to indicate the contents of this vector as observations. If we have done so otherwise by 818 
mistake, please let us know the line number so we can adapt it. 819 
-p.21 l.587: what are the "non-state parameters"? Put them in the table? 820 
The CLASS model has over 50 parameters, putting them all in a table will take a lot of 821 
space. The user decides on which parameters to include in the state and which ones not. 822 
-p.22 l.589: "the detailed settings on chosen model errors, etc" are crucial information, I 823 
think they should be put in the main text or at least in an appendix. 824 
We added the error specifications to either the tables in main text (prior), or to the 825 
supplementary material (instrument error st. dev. and time-dependent model error st. 826 
devs.). The cost-function weights are also in the supplementary material. 827 
-p.22 l.591: 591-592: what about the uncertainties of the prior and posterior? Without 828 
them, "a much better fit" cannot be defined. Moreover, fitting the observations is not the 829 
reason why inversions are run. The aim is to reduce the uncertainty on the optimised 830 
parameters, which is not shown in the figures. 831 
For the prior, we had not included the uncertainty in Table 3, we added this now. For the 832 
posterior uncertainty, we would like to point to table 3 and figure 9. In the last column of 833 
table 3, we show the posterior standard deviation of every parameter. In Figure 9 we 834 
picked out 2 parameters and show the full posterior pdfs. In figures 5 and 6, we included 835 
the observational error standard deviations of the shown subset of observations. 836 
-p.22 l.594: what could be done about the non-optimal error specifications? Lacking 837 
information on the computing cost of the inversions, it is not possible to assess whether 838 
a number of error set-ups could be tested. 839 
Here, we mention non-optimal error specifications as a possible reason why chi-squared 840 
is slightly low. As common in inverse modelling, exactly estimating all uncertainties is a 841 
difficult task. Testing different error set-ups is possible on an HPC-cluster (the 842 
application example uses an ensemble of 174 perturbed members), but is not the focus 843 
of this application example. 844 
-p.22 l.595 - p.23 l.597: why are some observation streams different from the others 845 
with respects to the variance? 846 
This is about the ratio of model and observation variance. There are some observation 847 
streams were this ratio is far from 1, and the model thus does not reproduce the 848 
variance well (this is also not always desired, the observations are influenced by 849 
measurement errors). There is no reason why this ratio would always be the same 850 
among observation streams, the model can have more difficulties reproducing one 851 
observation stream then another. Further analysis would be needed to determine why 852 
some observation streams are fitted better than others, but this section is just an 853 
application example. 854 
-p.23 l.599-600: I don't understand the link between "the model also has a closed 855 
energy balance" and the "good fit". 856 
This is indeed not very clear, our reasoning is as follows:  857 
The energy balance equation is given by Eq 8 in the paper: residual = Rn – (H + LE + G) 858 
From figure 7 it is clear that (generally) the model, both prior and posterior, has a higher 859 
sum of H+LE than what the uncorrected observations show.  860 
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The correction on the H and LE observations is based on measured net radiation (see eq 861 
8, 9 and 10). The sum of H+LE in the model is also based on net radiation, which the 862 
model calculates. Thus, if we assume that the difference between measured and 863 
modelled soil heat flux (G) will be small in absolute numbers, and we assume measured 864 
and modelled net radiation to be comparable, it would mean that the sum of H+LE in the 865 
model would correspond to the sum of H+LE in the corrected observations quite well 866 
(although there is usually also a small linearisation error in the model fluxes, making 867 
energy balance closure imperfect). This explains the link between the closed energy 868 
balance and the good fit. 869 
 870 
We now adapted the text to improve the clarity. 871 
-p.23 l.601-602: this sentence is not clear. 872 
We want to say here that the error in the energy balance in the measurements is 873 
relatively large,  by comparing the errors (LHS equation 8) to the measured sensible 874 
heat flux. The term ‘measured sensible heat flux’ is however slightly ambiguous because 875 
we ‘correct’ observations, so we added between brackets ‘without applying Eq. 9’. 876 
-p.23 l.603 - p.24 l.604: aren't there any data available to check the cumulus clouds or 877 
the drop in net radiation? 878 
We have adapted the text here, a colleague provided us with a MODIS satellite image, 879 
showing that high clouds are a more likely explanation. We also see a drop in incoming 880 
shortwave radiation around noon of that day: 881 

 882 
-p.24 l.608-609: is this assumption very limiting? 883 
We left out the sentences ‘Such a bias can be accounted for in the framework, by adding 884 
a scaling factor for the surface CO2 flux observations to the state. This however implies 885 
the assumption that the bias takes the form of a fixed fraction of the observed surface 886 
CO2 flux.’  887 
Regarding the question on whether this assumption is very limiting, this question cannot 888 
be readily answered by us, see e.g. Liu et al. (2006) and Deventer et al. (2021) for a 889 
discussion of CO2 flux biases. 890 
-p.25 l.614: "we shortly return to this later in this section": avoid this with a more 891 
explicit division in subsections? 892 
Thanks for this suggestion to improve readability. We have now divided the section 893 
about the application example into several subsections, and refer to the specific 894 
subsection. 895 
-p.26 l.627-628: this sentence calls for a discussion on the impacts of the 896 
misspecification of prior errors. 897 
This analysis is about correlations between posterior parameters. Concerning the 898 
importance of correctly specifying the prior errors: we think that this is a well-known 899 
problem in inversions. 900 
The impact of the prior in this example will be relatively modest, given that the nr of 901 
observations (multiplied with their respective weights) is about 10 times larger than the 902 
number of state parameters (although of course this also depends on the specified error 903 
variances). 904 
-p.26 l.630: what does "relatively strongly" mean? 905 
We have changed the sentence into “it can be noted that the advCO2 parameter is 906 
relatively strongly correlated with both the ΔCO2 and  907 
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γCO2 parameters (Fig. 6: corr. = -0.65 and -0.8 respectively)” 908 
-p.26 l.632: what are these differences? 909 
This is about differences in how entrainment is handled. From the paper of Casso-910 
Torralba et al (2008): “Observations of thermodynamic variables and CO2 mixing ratio 911 
as well as vertical profiles of the turbulent fluxes are used to retrieve the contribution of 912 
the budget terms in the scalar conservation equation. On the basis of the daytime 913 
evolution of turbulent fluxes, we calculate the budget terms by assuming that turbulent 914 
fluxes follow a linear profile with height” 915 
 916 
Their estimate of advection we compare with (their Figure 9), is obtained as a residual 917 
budget term. The other terms in their budget are storage and flux divergence. The latter 918 
one includes entrainment, although they do not explicitly calculate it for Figure 9. 919 
 920 
In our case, the entrainment fluxes are calculated as follows: First, the buoyancy 921 
entrainment flux is taken as a fixed fraction of the surface flux of this quantity, to which 922 
entrainment driven by shear can optionally be added. From this virtual heat entrainment 923 
flux, an entrainment velocity is calculated. The entrainment flux for a specific scalar (e.g. 924 
CO2) is than obtained by multiplying the entrainment velocity with the size of the 925 
(inversion-layer) discontinuity for the respective scalar.  926 
-p.27 l.637: is 0.05 the average? 927 
Indeed, the text states “The average absolute value of difference between the non-928 
diagonal matrix entries when using the subsample and the non-diagonal matrix 929 
entries when using the full successful perturbed ensemble amounts to 0.05” 930 
 931 
To explain the text: This is about the differences in the correlation matrix when using the 932 
full successful perturbed ensemble compared to when using a subsample. We take the 933 
absolute value before averaging, otherwise positive and negative differences can 934 
compensate each other. We only look at non-diagonal entries of the matrix, since the 935 
correlations on the diagonal are always 1.  936 
-p.27 l.638: what does "reasonably robust" mean? 937 
It is difficult to exactly pinpoint the number of members needed to get a good estimate 938 
of the correlation matrix. But we showed here that, when using only 75 of the 150 939 
successful members, the non-diagonal matrix entries change on average by only 0.05 (in 940 
abs value), which is not a lot. This gives a certain level of confidence that 150 is enough, 941 
but hard to exactly quantify how much confidence. 942 
-p.27 l.642: is there is "no clear reduction in uncertainty", then the inversion was 943 
useless. It may not have failed mathematically but its results are not interesting as such. 944 
(The fail may be interesting to ask for more observations.) 945 
We partly agree with this statement. One could say that, for the γq parameter, the 946 
inversion was useless, as the posterior is about as uncertain as the prior. This is however 947 
just one parameter, in the example 14 parameters are optimised simultaneously, e.g. 948 
the advθ parameter in Figure 9 does show a clear reduction in uncertainty.  949 
-p.27 l.642 - p.28 l.643: this is not clear to me. 950 
The sentence reads “The wide posterior pdf implies that similar results can be obtained 951 
over a relatively wide range of γq, possibly by perturbing other parameters with a similar 952 
effect”. 953 
It is important to realize here how the posterior uncertainties were obtained. This was 954 
done by running an ensemble in which both the prior and the model-data mismatch was 955 
perturbed. This results in ensemble of posterior states, from which uncertainties were 956 
derived (using only members with post chi² <=2). 957 
 958 
A wide posterior pdf means that there was quite some spread in the posterior values of 959 
γq. Each posterior ensemble member obtaining a good chi² can be seen as providing a 960 
similar result (in terms of its fit). Thus, similar results can be obtained over quite a range 961 
of γq values. Next to that, as the correlation matrix has shown us, there are correlations 962 
among parameters, also involving γq. Thus, e.g. a large value of γq can be largely 963 
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compensated by a small value of another parameter, explaining the last part of the 964 
sentence. 965 
-p.27 l.647-654: this should come sooner in the text. 966 
We now mention this earlier in the application example, in a separate subsection. 967 
Tables 1 and 3: what about the convergence criteria? What about the uncertainties (prior 968 
and posterior)? 969 
Table 1 is about the simple OSSEs. Prior uncertainties were not used here, and posterior 970 
uncertainties not calculated (we did not run an ensemble), as the focus was on the 971 
capacity to obtain good parameter estimates. 972 
We added the prior uncertainty to Table 3 (the application example), the posterior 973 
uncertainty was already included (column Post. st. dev.) 974 
 975 
Regarding convergence criteria, this is rather complex: There are multiple ways in which 976 
the optimisation can come to a stop. The SciPy algorithm optimize.fmin_tnc can consider 977 
an optimisation as converged (we use the default tolerances, see 978 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_tnc.html).  979 
The ICLASS user can however specify a desired threshold of the cost function. In case 980 
the optimize.fmin_tnc considers an optimisation as converged and the threshold is not 981 
yet reached, the optimize.fmin_tnc algorithm will then be restarted from the best state 982 
so far, the maximum number of times a restart will be performed is also given by the 983 
user.  984 
It can also happen that a maximum number of function evaluations is reached within the 985 
optimize.fmin_tnc algorithm, before an optimisation is considered as converged by the 986 
algorithm.  987 
In case an optimisation shows very little change in the cost function over a certain 988 
number of iterations, the optimize.fmin_tnc algorithm can be terminated (depending on 989 
a setting) and possibly restarted (criteria as above). 990 
A model crash can also lead to an early termination, in this case no restart is attempted. 991 
The user can control the convergence criteria of the optimization to a certain extent, 992 
through settings in the standard tnc routines and by specifying an optional desired cost 993 
function threshold and the maximum number of restarts. 994 
Table 2: how much are the sensible and latent heat flux observations corrected? 995 
Here we would like to refer to Figure 7, which shows the original and corrected 996 
observations. 997 
Figures 4,5 and 6,7: what about the uncertainties? 998 
The observational error and measurement error standard deviations are shown with 999 
error bars in these figures (for Figure 4 measurement errors equal observational errors). 1000 
For the application example we also estimate posterior uncertainties on the optimised 1001 
parameters using a Monte-Carlo approach, shown in table 3 and (for some params) in 1002 
Figure 9. The uncertainty in the state parameters leads to an uncertainty in model 1003 
output, but this is not readily available in ICLASS. In principle, one could run the model 1004 
using the obtained posterior parameter values of a successful ensemble member, and 1005 
repeat this for all successful ensemble members. From this ensemble of model output, 1006 
uncertainty estimates on the model output could be made.  1007 
Figure 9: what about the Gaussian assumption? 1008 

We only assume the prior to be a (truncated) Gaussian, we do not make any 1009 
assumptions on the shape of the posterior pdfs (nonlinear model), except that we place 1010 
hard outer bounds on some parameters. Regarding the prior, note that the prior 1011 
distribution is determined from the sample of priors in the ensemble, which has a 1012 
component of randomness. This explains why the prior pdfs do not have a perfect 1013 
(truncated) Gaussian shape. 1014 

Concluding discussion 1015 

-p.28 l.657-658: general theory of inversions. 1016 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_tnc.html
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Indeed rather general, but in our opinion it is useful to indicate these 1017 
advantages/limitations of the framework, especially for those less familiar with inverse 1018 
modelling.  1019 
-p.28 l.659: what could the more advanced error estimation methods be? 1020 
For instance, the measurement error could be more based on instrument errors 1021 
belonging to the used devices and representation error could take spatial variability in 1022 
measurements into account. For e.g. CO2 mixing ratio errors, the residual 1023 
standard deviation of flask samples around a smooth curve fit could be used (Michalak et 1024 
al., 2005). Model error variance estimations might possibly be obtained from analysing 1025 
the model behaviour compared to precise observations in specific situations, but in 1026 
practice this might prove very hard. In literature, more methods can be found; e.g. 1027 
Michalak et al., 2005. 1028 
-p.30 l.679-680: the correction of biases is a very complex topic. It is often done outside 1029 
the inversion framework. a bias correction scheme such as tested here probably cannot 1030 
be expected to deal completely with the issue. 1031 
We fully agree with this statement, the bias correction scheme is useful but cannot 1032 
correct for all possible complex bias patterns. We have added the following to the 1033 
concluding discussion: “The correction of biases is however a very complex topic. There 1034 
are limitations to the level of complexity that our bias-correction methods can handle, 1035 
ICLASS cannot be expected to deal completely with all bias issues.” 1036 
- please add information on the computation costs. 1037 

The section on the computation costs in the application example is slightly extended, it is 1038 
also turned into a separate subsection. 1039 

Technical comments: 1040 

-p.3 l.76 and others: why is the term "adjoint" in italics? 1041 
We removed the italics at line 76, we now only keep the very first occurrence of adjoint 1042 
in the introduction in italics, for emphasis. 1043 
-p.6 l.156: what are the (-)? Also found elsewhere. 1044 
Between brackets we indicate the units of the variable, in this case the variable is 1045 
dimensionless. In the latex source code we wrote (\unit{-}) 1046 
-p.16 l.436: "similar to" instead of "similar as"? 1047 
We have adapted the sentence 1048 
 1049 

 1050 

 1051 

 1052 
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Reply to reviewer 3 1108 

 1109 

Introduction and bibliography 1110 

The introduction is not well-balanced and lacks pieces of bibliography. The reader would expect 1111 

an extensive "review" of what has been done in parameter estimation in land-atmosphere 1112 

exchanges, and not only with simple models. For instance, there 1113 

has been some work on parameter estimations with full-physics models, such as ORCHIDEE or 1114 

JS-BACH. The advantages vs drawbacks of simple models such as CLASS, compared to full-1115 

physics models should be more thoroughly presented. The scientific "ecosystem" of the present 1116 

study should be better presented. There is a full field of studies using data assimilation, 1117 

machine learning, etc. 1118 

To place the variational framework of this paper in comparison with other efforts in the scientific 1119 

community, we now added a paragraph linking parameter estimation in land-surface models in 1120 

other studies with ICLASS. We briefly discuss advantages/disadvantages of CLASS vs models 1121 

with more complex physics. An important point we make is that the fully coupled land-1122 

atmosphere in ICLASS helps to infer land surface characteristics from atmospheric observations, 1123 

something that is often not the focus of other variational frameworks.  1124 

The balance between giving only hints or extensive details is also clumpsy. For instance, in 1125 

paragraph p.2 l. 34-48, the authors start giving information on the model itself compared to other 1126 

models, but without going to the details. What is an "extensive set of observations"? What 1127 

observations are better used than other models? 1128 

About this example: CLASS has both a land-surface representation and a mixed-layer 1129 

representation, which is an advantage compared to other uncoupled models. This also means 1130 

that it can use information from a variety of observation types, as CLASS models both fluxes and 1131 

mixing ratios. We cannot list all possible obs types here, but think of temperatures at multiple 1132 

heights, humidity at multiple heights, CO2 mixing ratios, heat fluxes and CO2 fluxes, … We have 1133 

changed the text into “A model like CLASS, containing both a mixed-layer and land-surface part, 1134 

can be used to fit an extensive set of observation streams simultaneously.” We are not claiming 1135 

that CLASS uses observations in a better way than other models would do, but we indicate that 1136 

many studies only use a small part of the available observations. The example study we refer to 1137 

applies CLASS without an inverse modelling framework, which makes it difficult to include a lot of 1138 

observation types. 1139 

 1140 

 1141 

Energy balance and conditions of applicability of CLASS 1142 

The CLASS model is a simplified model with all its benefits and drawbacks. In particular, what are 1143 

the conditions of applicability of CLASS? The authors mention "golden days" several times in the 1144 

text. What are these? How frequent are they? If there is only a few such days per year, the model 1145 

is not really suitable for purpose... 1146 
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About the energy balance and further assumptions, it is not fully clear what is the domain of 1147 

applicability of such assumptions. In particular, the advection and entrainment in the model are 1148 

extremely simplified. What values and variables are used to constrain the processes? 1149 

At line 32 we define golden days: “Those are days in which advection is either absent or uniform in 1150 
time and space, deep convection is absent, and sufficient incoming shortwave radiation heats the 1151 
surface allowing for the formation of a prototypical convective boundary layer.” 1152 
 1153 
We understand that this raises questions about the frequency of these days etc. We therefore added 1154 
the following: “The model performs best during the convective daytime period, the assumptions on 1155 
advection etc. should be valid for the whole modelled period. Since the model performs best on fair-1156 
weather days, the absence of deep convection etc. should ideally hold on a spatial scale large 1157 
enough that it does not influence the model simulation location. In practice, days are often not “ideal”, 1158 
e.g. a time-varying advection can be present. This does not necessarily mean the model cannot be 1159 
applied to that day, but, performance is likely to be worse.”  1160 
 1161 
We want to stress also that it is not our intention to provide a complete detailed description of the 1162 
CLASS model itself, we already included about 1 page of info on CLASS itself in the paper. CLASS is 1163 
an existing model, successfully used in several studies. For details about the model, we refer to Vilà-1164 
Guerau De Arellano et al. (2015). In the introduction, we also include the following text “This and 1165 
similar models have been applied frequently, e.g. for understanding the daily cycle of 1166 
evapotranspiration (van Heerwaarden et al., 2010), studying the effects of aerosols on boundary layer 1167 
dynamics (Barbaro et al., 2014), studying the effects of elevated CO2 on boundary layer clouds (Vilà-1168 
Guerau De Arellano et al., 2012) or for studying the ammonia budget (Schulte et al., 2021).”.  1169 
 1170 
See also https://classmodel.github.io/publications.html. There has also been a 2019 GMD paper 1171 
employing (an adapted version of) CLASS: (Wouters et al., 2019, https://doi.org/10.5194/gmd-12-1172 
2139-2019) 1173 
 1174 

Regarding the question “In particular, the advection and entrainment in the model are extremely 1175 

simplified. What values and variables are used to constrain the processes?”: 1176 

 1177 
Advection is indeed represented in the model in a simple way. Advection of e.g. temperature is given 1178 
by a single parameter. To constrain this parameter, traditionally the model is tuned by hand to 1179 
available observations such as temperature and possibly mixed layer height. This is where ICLASS  1180 
offers a great improvement, as it allows to more objectively use all the available observations to 1181 
optimise this parameter.  1182 
 1183 
Regarding entrainment, there was a mistake in the text, we now write:  1184 
“Above the mixed layer a discontinuity occurs in the scalar quantities, representing an infinitely small 1185 
inversion layer. Above the inversion, the scalars are assumed to follow a linear profile with height in 1186 
the free troposphere (Fig. 1). The entrainment fluxes are calculated as follows: First, the buoyancy 1187 
entrainment flux is taken as a fixed fraction of the surface flux of this quantity (Stull, 1988, p 478), to 1188 
which entrainment driven by shear can optionally be added. From this virtual heat entrainment 1189 
flux, an entrainment velocity is calculated. The entrainment flux for a specific scalar (e.g. CO2) is then 1190 
obtained by multiplying the entrainment velocity with the value of the (inversion-layer) discontinuity for 1191 
the respective scalar.” 1192 
 1193 

 1194 

Section 3.1 and mathematical notations 1195 

Please make your mathematical notations consistent with the rest of the community. 1196 

https://classmodel.github.io/publications.html
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 1197 
Different communities prefer different notation. We based our notation on Brasseur and 1198 
Jacob (2017), and their notation is to a large extent based on Rodgers (2000). 1199 
 1200 
The components of the state vector are described in section 3.2, there is also a table 1201 
added now describing many inverse-modelling variables included in chapter 3, including 1202 
those relating to the state vector. There are more than 50 parameters that can be 1203 
optimised, we cannot list them all in the paper, this is done in the manual. Choosing 1204 
which parameter to optimise and which ones to keep fixed (and thus what is in the 1205 
state) is eventually up to the user, this varies with the study to be performed with 1206 
ICLASS. 1207 
 1208 

Overall, Section 3.1 is very hard to understand. It is not clear at all what is optimized or not.  1209 

In section 3.2 we give an overview of the types of parameters that can be optimised in ICLASS, 1210 

thereby splitting the state vector into a bias-correction part and a model parameter part. There 1211 

are more than 50 parameters that can be optimised, we cannot list them all in the paper, this is 1212 

done in the manual. Choosing which parameter to optimise and which ones to keep fixed is 1213 

eventually up to the user, this varies with the study to be performed with ICLASS. 1214 

The section gives some general information about the inversion framework, but does not go to 1215 

the necessary level of details about what exactly is in each mentioned vectors and operators. The 1216 

dimension and content of all operators and matrices should be detailed. 1217 

We now added a long table in the appendix that list the dimensions, units and a short description 1218 

of most variables of this chapter. We try to describe the vectors in the main text as well where 1219 

they are introduced. 1220 

The weights on observations or "regularization factors" are clumsy and not justified. If one 1221 

observation is less worthy than another, then the uncertainty should just be scaled up, with no 1222 

need for an extra complicated parameter. 1223 

Indeed identical changes can be made to the cost function by adapting weights or changing the 1224 

observational error variances.  However, the observational error standard deviations are also used 1225 

in the ensemble for estimating posterior errors (see section 5.2). When the observational errors 1226 

are no longer realistic due to inflating/deflating these errors, the observations are not properly 1227 

perturbed anymore. This problem is avoided when using weights. The latter can be used, for 1228 

example, when you have 15 temperature observation streams, but only one CO2 observation 1229 

stream. In this case adding a weight of 1/15 to the temperature observation streams can make 1230 

the observation streams more balanced, while keeping a realistic error for the observations. We 1231 

have added an additional sentence to the text of the paper: “In principle, the observational error 1232 

variances could also be adapted for this purpose, but by using weights we can keep realistic error 1233 

estimations (important for Sect. 4.2).” 1234 
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Equation (6) is too implicit. The author should fully detail the "background" term, including what 1235 

they optimize or not. 1236 

Equation 6 gives the cost function as used in ICLASS. The first term of this equation is the 1237 

background term, wherein vector x is the state, containing the variables to be optimised (and xA is 1238 

the prior state). In section 3.2 we give an overview of the types of parameters that can be 1239 

optimised in ICLASS, thereby splitting the state vector into a bias-correction part and a model 1240 

parameter part. There are more than 50 parameters that can be optimised, we cannot list them all 1241 

in the paper, this is done in the manual. Choosing which parameter to optimise and which ones to 1242 

keep fixed is eventually up to the user, this varies with the study to be performed with ICLASS. 1243 

Similarly, for the a-priori error covariance matrix SA, the user chooses the variances/covariances, 1244 

and the size of this matrix varies with the chosen state vector size.  1245 

 1246 

Uncertainties and OSSEs 1247 

Please provide extensive details on the uncertainties you specify for the inputs and parameters 1248 

and some justification for the corresponding uncertainties. In particular, for parameters, the 1249 

normal distributions are not necessary the most obvious choice. This should be justified and 1250 

detailed. 1251 

The tests are indeed basic, they were intended to show the capacity to fit observations and find 1252 

good parameter values, not to test the statistics. The prior information is not used in these simple 1253 

OSSEs, thus the prior uncertainty is irrelevant in these simple tests. We added an OSSE focusing 1254 

more on statistics, were we provided the uncertainties. The employed observational error 1255 

standard deviations for the OSSE with perturbed observations (that already existed) is shown in 1256 

Figure 4, and we added these now in a table as well. Note that the form of the cost function does 1257 

not allow for using e.g. uniform priors. However, as is mentioned in section 5.1, it is possible to 1258 

perturb parameters that are not part of the state, using a "normal", "bounded normal", "uniform" 1259 

or "triangular" distribution. 1260 

The OSSEs are rather simple and do not fully allow to validate the model. More OSSEs should be 1261 

made more systematically to show what is the influence of a given parameter in a given set-up. 1262 

The author can perturb a parameter but not optimize it, etc. 1263 

Since the forward model CLASS is an existing model, successfully used in other studies, we do 1264 

not intend to validate the CLASS model itself, or test its sensitivities to parameter values. The 1265 

OSSEs are rather intended to focus on the parameter optimisation framework. But the OSSEs are 1266 

indeed rather basic, and we added a more involved OSSE, taking also posterior uncertainties and 1267 

bias correction into account. 1268 

Besides, I may have missed the information, but I have the impression that the bias correction is 1269 

not evaluated in the OSSEs. This should be added. 1270 

The bias correction was indeed missing (although the bias-correction was to some extent tested 1271 

in the application example), we added an OSSE that tests the bias correction. 1272 

Regarding the posterior uncertainties, having truncated Normal distributions means that the 1273 

minimum of the cost function is the node of the posterior distribution, which is not the mean or 1274 
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median, contrary to full normal distributions. Therefore, the authors should give further details on 1275 

how the compute and analyze posterior distributions. 1276 

We only assume the prior to be a (truncated) Gaussian, we do not make any assumptions on the 1277 

shape of the posterior pdfs (nonlinear model), except that we place hard outer bounds on some 1278 

parameters. We use a Monte Carlo technique to sample the posterior pdfs, see section 5.2 and 1279 

Fig. 9. We have slightly adapted section 5.2 to make this more clear. 1280 

Details on the model 1281 

There is critical information missing about the CLASS and iCLASS models. Some of this 1282 

information is given in the documentation of iCLASS, but not comprehensively. The reader cannot 1283 

be expected to read the non-reviewed documentation to understand the article and how the 1284 

adjoint is built. In particular, there should be full details on the inputs and parameters of the 1285 

CLASS models. What are the resolutions of each inputs? Where do they come from? Are they 1286 

given by in-situ measurements? Meteorological forcing fields? 1287 

Similarly, what are the exact outputs of the model? How the output is compared to observations. 1288 

Finally, what is computed by the model? And what is given as inputs? 1289 

We understand that, without background knowledge on CLASS, these questions arise. However, as 1290 
mentioned earlier in this document, CLASS is an existing model, successfully used in several studies, 1291 
although we made some changes to the model (listed in the manual). We give about 1 page of 1292 
information on the model itself in the paper, for details about the model itself, we refer to Vilà-Guerau 1293 
De Arellano et al. (2015). In the introduction, we also include the following text “This and similar 1294 
models have been applied frequently, e.g. for understanding the daily cycle of evapotranspiration (van 1295 
Heerwaarden et al., 2010), studying the effects of aerosols on boundary layer dynamics (Barbaro et 1296 
al., 2014), studying the effects of elevated CO2 on boundary layer clouds (Vilà-Guerau De Arellano et 1297 
al., 2012) or for studying the ammonia budget (Schulte et al., 2021).”.  1298 
 1299 
CLASS requires a set of input parameters to be chosen, e.g. free-tropospheric lapse rates of 1300 
temperature, specific humidity, initial CO2 mixing ratio in mixed layer, but also land-surface-model 1301 
parameters such as roughness length for momentum, leaf area index, and initial soil moisture 1302 
content of top layer. Where the user obtains these inputs from is up to the user, this does not 1303 
matter for ICLASS itself. The inputs can come from in-situ measurements, but e.g. reanalysis data 1304 
might also be used. Note that the model is a slab model, it has no horizontal resolution, this 1305 
simplifies the required inputs. The full list of input variables that can be included in the state is given 1306 
in the ICLASS manual, the list is too long to include in the main text. We give a few examples of input 1307 
parameters in section 3.1 and section 3.2. 1308 
 1309 
We do not transform any model output into observation space, we directly compare the model 1310 
output to observations. With the in-situ observations we used in the application example this was 1311 
well possible, in case the user uses different observation types, he/she should take care to perhaps 1312 
make the observations suitable for comparison to the model output. 1313 
Model output includes time-series of mixed-layer potential temperature, specific humidity, CO2 1314 
mixing ratio,…, but also heat fluxes, CO2 fluxes, Inversion strength,… The full list of output variables 1315 
that can be compared to observations is given in the manual, it is too long to give in the main text. 1316 
We give one example in section 3.1. 1317 

 1318 

 1319 
6 Superfluous sections and elements 1320 

The text is made hard to follow by numerous superfluous details. 1321 

For instance, section 4 is mainly made of a technical lecture on how to code an adjoint. This can 1322 

be removed altogether. 1323 
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In response to this valid comment, and a similar comment from another reviewer, section 4 is 1324 

moved to the supplementary material. 1325 

 1326 

Technical comments 1327 

1. p.1 l.9: replace "the core physics to model" by "the core physics to simulate" 1328 

Adapted 1329 

2. p.3 l.63: The example is rather a negative feedback but not an obvious non-linearity. There are 1330 

probably better examples. 1331 

The example itself is indeed a negative feedback. A negative feedback can only occur in a non-1332 

linear model, proving the non-linearity.  We tried to make the non-linearity more clear now in the 1333 

text: “An important challenge for the optimisation framework is the strong non-linearity of the 1334 

model. As an example, the change in mixed-layer specific humidity (q) with time is a function of q 1335 

itself: a stronger evapotranspiration flux leads to an increased specific humidity in the mixed 1336 

layer, which in turn reduces the evapotranspiration flux again (van Heerwaarden et al., 2009).”  1337 

Another example we could think of is e.g. CO2 uptake being a non-linear function of incoming 1338 

radiation. 1339 

3. p.3 l.66: "Analytical" is ill-chosen and refers to analytical inversions in the inversion framework. 1340 

The adjoint is simply needed to compute explicitly and efficiently the gradient of the cost 1341 

function, without relying on, e.g., finite-element estimations 1342 

We understand the confusion with ‘analytical inversions’, we however talk about an analytical 1343 

gradient of the cost function, not an analytical solution to the minimisation problem. The adjoint 1344 

is a tool that helps us obtain an analytical gradient of the cost function. In our view, the two 1345 

classes of methods for computing a gradient of any function is either ‘analytically’ or 1346 

‘numerically’, i.e. involving finite differences. The term ‘analytical gradient’ is also used in Raoult 1347 

et al. (2016), see also Doicu et al. (2010).  1348 

4. Section 8: the validation of the adjoint using the gradient test and the test of the adjoint is 1349 

really appreciated! The results of the test of the adjoint is generally reported as a N times the 1350 

machine epsilon (1016 in present machines) 1351 

We have updated the sentence: “When we evaluated Eq. (27) on this part of the code, the result 1352 

was less than 1 × 10−15 (which corresponds to approximately 5 × machine precision), meaning that 1353 

the test passes” 1354 

5. p.15 eq.20: xA is modified in the Monte Carlo. 1355 

Thanks for spotting this, we had not indicated this in the equation. We replaced xA now with  1356 

, the p indicating perturbed. 1357 

6. p.15 eq.22:  formula is wrong for two reasons. First the chi-square diagnostics can be applied 1358 

only with normal distributions. Truncated-Gaussians break the diagnostics; but for not so 1359 

truncated Gaussians, it may still be valid. 1360 

We indeed allow truncated Gaussians distributions for the prior parameters. In some cases this 1361 

might indeed have a significant impact on the validity of the calculated Χ²r, we have added the 1362 

following text to the paper: “Furthermore, as mentioned in Sect. 4.1, prior parameters can follow a 1363 
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truncated normal distribution, violating the normality assumption. The impact of this depends on 1364 

the degree of truncation, but also on the number of observations etc. It can lead to an ideal χ2r 1365 

value diverting from 1.” 1366 

Note that we call the variable the reduced chi-squared statistic now. 1367 

Second, the authors mixed two versions of the chi-square diagnostics: one from, e.g., from 1368 

Michalak et al. 2005 (doi:10.1029/2005JD005970), the other from, e.g., Zupanski et al. 2006 1369 

(https://doi.org/10.1175/MWR3125.1). In one version the chi-square has a mean of n (nb obs) 1370 

and in the other n+m (nb obs + parameters). As written in eq.22, the expected mean is n, or the 1371 

authors compute the other version, but should explain more clearly what is done. 1372 

It is optional to include a background part of the cost function, usually the background part is 1373 

included, but e.g. in the simple OSSEs it was not. When the background part is included in the 1374 

cost function and the prior errors are uncorrelated, we expect a posterior cost function of size 1375 

(approximately) n+m (see **), if the background part is not included we expect a posterior cost 1376 

function of size (approximately) m. Therefore, as in both cases we want an optimal value of 1 for 1377 

Χ²r, the denominator in eq 22 is taken as n+m when the background part is included, and m if it is 1378 

not included, as mentioned in the paper. 1379 

The expected value of m+n for a cost function with background part included and the prior errors 1380 

uncorrelated corresponds to the case described in paragraph 20 of Michalak et al (2005).: “the 1381 

residuals are expected to follow the statistical distributions specified in the covariance matrices R 1382 

and Q.”  1383 

 1384 

**Our reasoning is given here. In a simple case where all weights are 1 and the prior errors are 1385 

uncorrelated, the posterior cost function of size n+m can be understood as follows: The average 1386 

value of the ith posterior observation residual squared, (H(xm,post,p)i - si yi)², should be close to σ²O,I, 1387 

and the average value of the ith posterior data residual squared, (xpost,i - xA,i)², should be close to 1388 

the ith diagonal element of the a-priori error covariance matrix when the optimisation converges 1389 

well and errors and prior parameters are properly specified. We have m observation residuals, and 1390 

n data residuals (if background part included). In this example with a diagonal SA matrix, the 1391 

residuals are assumed to be independent of each other. Each squared residual contributes on 1392 

average a value of approximately 1 to the cost function, summing to approximately m+n, and thus 1393 

Χ²r ≈ 1. If e.g. we have 15 uncorrelated parameters and all posterior parameters would deviate a 1394 

lot more then σA from the prior, the prior parameters and/or errors are very likely not properly 1395 

specified. This can be understood from the following: The prior distribution specifies that the true 1396 

value of a parameter xi  (which is approximated by the posterior value) should in approx. 68% of 1397 

the cases be located at xA,i +/- σA,i (normal distribution, although truncated normal distributions 1398 

might deviate from this), if e.g. all 15 parameters are outside this range, there is a very unlikely 1399 

situation. 1400 

We have added more explanation to the text in the paper. 1401 

 1402 

 1403 

 1404 
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