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Abstract. Precise estimation of aerosol pH in chemical transport models (CTMs) is critical to aerosol modeling and thus 15 

influencing policy development. We reported WRF-Chem simulated PM2.5 pH over China during a period with heavy haze 

episodes in Beijing, and explored the sensitivity of the modeled aerosol pH to factors including emissions of nonvolatile cations 

(NVCs) and NH3, aerosol phase state assumption and heterogeneous production of sulfate. We found default WRF-Chem 

could predict spatial patterns of PM2.5 pH over China similar to other CTMs, but with generally lower pH values largely due 

to the underestimates of alkaline species (NVCs and NH3) and the difference in thermodynamic treatments between different 20 

models. Increasing NH3 emissions in the model would improve the modeled pH in comparison with offline thermodynamic 

model calculations of pH constrained by observations. In addition, we found that aerosol phase state assumption and 

heterogeneous sulfate production are important in aerosol pH predictions for regions with low relative humidity (RH) and high 

anthropogenic SO2 emissions, respectively. These factors should be better constrained in model simulations of aerosol pH in 

the future. Analysis of the modeled temporal trend of PM2.5 pH in Beijing over a haze episode revealed a clear decrease in pH 25 

from 5.21 ± 0.88 in clean period to 3.56 ± 0.49 in heavily polluted period. The increased acidity in more polluted conditions 

is largely due to the formation and accumulation of secondary species including sulfuric acid and nitric acid, even though 

being modified by alkaline species (NVCs, NH3). Our result suggests that NO2 oxidation is unlikely to be important for 

heterogeneous sulfate production in Beijing haze as the effective pH for NO2 oxidation of S(IV) is at higher pH of ~6.  

 30 
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1 Introduction 

The acidity of atmospheric particles plays an essential role in various chemical and environmental processes. Acidified 

dust particles can largely enhance the solubility of transition metals which may act as nutrients in oceanic ecosystems 

(Meskhidze et al., 2003), affecting global biogeochemical nutrient cycles (Kanakidou et al., 2018). The dissolved metals can 

also generate reactive oxygen species, causing aerosol toxicity and adverse health effects (Fang et al., 2017). Particle acidity 35 

can strongly affect gas-particle partitioning of volatile and semi-volatile species such as NH3, HNO3, HCl (Keene et al., 2004; 

Guo et al., 2017a), as well as organic acids and bases (Ahrens et al., 2012). Moreover, particle acidity is linked to aerosol 

chemical reactivity by altering aqueous-phase reaction rates which are important for secondary aerosol formation. Both 

laboratory experiments (Gao et al., 2004; Surratt et al., 2007) and field studies (Rengarajan et al., 2011) have demonstrated 

that higher acidity could facilitate  production of secondary organic aerosol (SOA) from oxidation of volatile organic 40 

compounds (VOCs) due to an acid-catalyzed mechanism. In addition, aerosol acidity also significantly affects reaction 

mechanisms and rates of heterogeneous sulfate production (Seinfeld et al., 2006). As one of the most abundant inorganic 

components in fine particles, sulfate is considered to be a key driver for the severe haze events in China (Cheng et al., 2016; 

Wang et al., 2016). Therefore, a thoughtful understanding of aerosol pH variability and its precise prediction are important to 

understand and quantify the formation rates and mechanisms of sulfate in Chinese haze using models, providing insights on 45 

the outbreak of the haze events.  

However, for nowadays, aerosol pH is poorly constrained due to difficulties in direct measurement techniques (Freedman 

et al., 2019; Keene et al., 1998). Instead, thermodynamic models, such as ISORROPIA II (Fountoukis and Nenes, 2007), 

Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) (Zaveri et al., 2008), and Extended Aerosol Inorganics 

Model (E-AIM) (Clegg et al., 2003) are commonly used to calculate aerosol pH (Pye et al., 2020). These models typically 50 

predict particle deliquescence, gas-particle mass transfer, solid-liquid phase equilibrium, activity coefficients and aerosol water 

content (AWC) (Zaveri et al., 2008; Jia et al., 2018) under observed or modeled meteorological conditions and atmospheric 

chemical compositions. Some of these thermodynamic models have also been implemented in 3D chemical transport models 

(CTMs) for representation of aerosol processes. For example, the ISORROPIA II model is incorporated in many 3D models, 

such as the Goddard Earth Observing System with Chemistry model (GEOS-Chem), the Community Multiscale Air Quality 55 

Modeling System (CMAQ) and the PM-CAMx, while MOSAIC is employed in the Weather Research and Forecasting Model 

coupled with Chemistry (WRF-Chem).  

CTMs are useful tools to understand relevant physicochemical atmospheric processes and to formulate air quality 

management strategies. The reliability of particle acidity prediction in CTMs is crucial for aerosol modeling, especially for 

modeling of secondary aerosol formations, and therefore has implications for policy development. Vasilakos et al. (2018) 60 

demonstrated that pH bias simulated by CMAQ can induce nitrate partitioning bias and thus influences the response of PM2.5 

composition to emission changes in the model. Using GEOS-Chem model with prescribed particle pH values, Shao et al. (2019) 
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investigated the impact of particle pH on heterogeneous sulfate production and found that the model predicts different relative 

contributions of sulfate formation pathways to total atmospheric sulfate burden under different pH conditions. Furthermore, a 

recent review paper (Pye et al., 2020) highlighted the critical role of particle pH in model simulations of a variety of 65 

atmospheric chemical species and/or processes, as aerosol pH directly influences the chemical composition of aerosols as well 

as the reactivities of aerosol components.    

Given the importance of aerosol acidity in secondary aerosol formation and its implications for the outbreak of Beijing 

haze, many studies have assessed the acidity of aerosols in northern China using CTMs or offline thermodynamic models 

constrained by observed gas and/or aerosol compositions (Cheng et al., 2016; Wang et al., 2016; Liu et al., 2017; Guo et al., 70 

2017b; Song et al., 2018; Tan et al., 2018; Ding et al., 2019; Xie et al., 2020; Shao et al., 2019; Pye et al., 2020; Shi et al., 

2019; Tao et al., 2020). Such models predicted a large range of aerosol pH (~3 to ~7) in northern China haze events with no 

general consensus. For example, Cheng et al. (2016) estimated high aerosol pH between 5.4 to 6.2 over the North China Plain 

(NCP) using ISORROPIA II in forward (i.e., gas plus aerosol phase measurements as inputs) and reverse mode (i.e., only 

aerosol phase measurements as inputs), and Wang et al. (2016) estimated a near neutral aerosol pH of ~7 over Beijing using 75 

the same model with a stable state assumption. These two studies proposed that the high aerosol pH was driven by the 

neutralizing effect of high levels of ammonia over northern China, and as a result, NO2 oxidation of dissolved S(IV) was 

suggested to be the dominant heterogeneous sulfate formation pathway. However, not only the conclusion on the role of NO2 

oxidation in sulfate production (e.g.,(He et al., 2018; Shao et al., 2019)), but also the predicted aerosol pH during the haze 

events was challenged by later studies (Liu et al., 2017; Ding et al., 2019; Tan et al., 2018). In particular, Liu et al. (2017) and 80 

Guo et al. (2017b) argued that increasing NH3 does not lead to ambient aerosol pH to near neutral and aerosols should be 

always acidic (pH = 4.2–4.5) over Beijing regardless the level of ammonia using ISORROPIA II with a metastable state 

assumption. Furthermore, Song et al. (2018) pointed out that the high pH values estimated by ISORROPIA II in previous 

studies were in fact caused by code errors when the stable state assumption was applied. Song et al. (2018) further calculated 

aerosol pH for winter Beijing of ~4.6 and ~4 on average using ISORROPIA II and E-AIM in forward mode, respectively, 85 

similar to the results estimated by Liu et al. (2017) and Guo et al. (2017b). Tan et al. (2018) and Ding et al. (2019) also indicated 

similar acidic aerosols with average pH values between 3 and 4.5 in Beijing using ISORROPIA II. Moreover, Shi et al. (2019) 

reported an observationally constrained aerosol pH of 3.4 ± 0.5 for Tianjin using ISORROPIA II.  Using the GEOS-Chem 

model, Shao et al. (2019) estimated the mean aerosol pH was 4.3 (ranged from 3.0 to 5.4) for autumn and winter Beijing. 

Using the CAMQ model, Pye et al. (2020) predicted mean aerosol pH of 4.5 ± 0.8 for February Beijing, and an annual mean 90 

pH of 3.1 ± 1.5 for Tianjin, while Tao et al. (2020) found that the mean aerosol pH was 5.4 in NCP during January of 2013 by 

using WRF-Chem coupled with ISORROPIA II, which is higher than results from the aforementioned studies except that of 

Cheng et al. (2016) and Wang et al. (2016).  

WRF-Chem configured with MOSAIC is one of the most extensively used regional air quality models, and has provided 

insights on meteorological and physicochemical processes & mechanisms regarding air pollution issues in China (Huang et 95 
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al., 2014; Chen et al., 2016; Du et al., 2020; Sha et al., 2019). Pye et al. (2020) indicated that aerosol pH predicted by WRF-

Chem with the MOSAIC thermodynamic scheme is in reasonable agreement with observationally constrained pH estimates 

over the contiguous United States. However, the performance of WRF-Chem configured with MOSAIC on aerosol pH 

prediction in China remains rarely reported and evaluated by far. In this study, we used WRF-Chem configured with MOSAIC 

to investigate aerosol pH over China during a few haze episodes (15 October 2014 to 02 November 2014, i.e., in the preceding 100 

weeks of the Asia-Pacific Economic Cooperation summit period) when extensive observational data were available. We 

explored the sensitivity of the modeled aerosol pH to aerosol cation composition, aerosol phase assumption/configuration, 

heterogeneous sulfate productions, etc., compared the modeled results with that estimated using offline ISORROPIA II 

constrained by observed and modeled gas-aerosol compositions, and discussed the spatiotemporal variability of the predicted 

aerosol pH over China during the study period. The results should provide insights into the predictability of aerosol pH using 105 

WRF-Chem and improve the understanding of aerosol pH variability in Beijing and other regions in China.   

2 Methodology 

2.1 Model configuration 

2.1.1 The WRF-Chem model 

In this study, the version (v4.0) of WRF-Chem updated by the University of Science and Technology of China (USTC 110 

version of WRF-Chem) was used. Compared to the publicly released version of WRF-Chem, the USTC version includes some 

additional capabilities such as contribution analysis of aerosol related processes and improved turbulent mixing of aerosols 

(Zhao et al., 2013a; Zhao et al., 2013b; Du et al., 2020). The model configurations used in this study were summarized in Table 

1. The Carbon Bond Mechanism version Z (CBMZ) (Zaveri and Peters, 1999) and the Model for Simulating Aerosol 

Interactions and Chemistry (MOSAIC) (Zaveri et al., 2008) with eight bins were used as gas-phase and aerosol chemistry 115 

modules, respectively. The Noah land surface model (Chen and Dudhia, 2001) and the Yonsei University (YSU) planetary 

boundary scheme (Hong et al., 2006) were used to represent land surface processes and boundary layer turbulent mixing, 

respectively. The Rapid Radiative Transfer Model for General Circulation (RRTMG) (Iacono et al., 2008) was used to calculate 

the longwave and shortwave radiations.  

2.1.2 MOSAIC 120 

MOSAIC is an aerosol model with sectional approach to represent aerosol size distribution. It includes treatments for 

simulating aerosol physical and chemical processes such as nucleation, coagulation, gas-particle partitioning and 

heterogeneous chemistry. The chemical species treated by MOSAIC include sulfate, nitrate, chloride, methanesulfonate, 
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carbonate, ammonium, sodium, calcium, black carbon, organic mass, and liquid water. Potassium and magnesium are 

represented by equivalent amounts of sodium, while other unidentified inorganic species are gathered as “other inorganic mass” 125 

(OIN). The gas-phase species comprising H2SO4, MSA, HNO3, HCl, and NH3 are capable of partitioning into the particulate 

phase. MOSAIC consists of three submodules pertinent to the calculation of size-resolved aerosol pH as described below.  

The Multicomponent Taylor Expansion Method (MTEM) is used to estimate the mean activity coefficients of various 

inorganic electrolytes in multicomponent solutions based on its values in pure binary solutions of all the individual electrolytes 

present in the solution (Zaveri et al., 2005b). Zdanovskii-Stokes-Robinson (ZSR) mixing rule (Zdanovskii, 1948; Stokes and 130 

Robinson, 1966) is applied for calculation of aerosol water content. Most of the MTEM and ZSR parameters are derived from 

the comprehensive Pitzer-Simonson-Clegg (Pitzer and Simonson, 1986; Clegg et al., 1992) model at 298.15 K for self-

consistency.  

The Multicomponent Equilibrium Solver for Aerosols (MESA) (Zaveri et al., 2005a) uses a pseudo-transient continuation 

method to solve the solid-liquid phase equilibrium reactions expressed as pseudo-transient precipitation and dissolution 135 

reactions. The equilibrium solution is determined by integrating the resulting stiff nonlinear ordinary differential equations 

until the system reaches the steady state. 

The gas-particle partitioning module ASTEM (Adaptive Step Time-split Euler Method) is coupled with the 

thermodynamic module MESA-MTEM to solve the mass transfer equations (Zaveri et al., 2008). To reduce the stiffness, it 

first separates the non-volatile from semi-volatile gases in the numerical solver. For non-volatile gases (H2SO4 and MSA), 140 

ASTEM analytically integrates the condensation for all size bins, while for semi-volatile gases (HNO3, HCl and NH3), it 

numerically integrates condensation and evaporation for all size bins. Since the gas-particle mass transfer rates are strongly 

affected by the phase state of particles, different procedures are selected in ASTEM for completely solid, completely liquid, 

and mixed-phase particles. 

In completely liquid or mixed-phase particles, the H+ ion molality (mH+) is needed for mass transfer calculations. In order 145 

to determine mH+, two domains, i.e., sulfate rich and poor domains, are defined by sulfate ratio, Xt. 

𝑋𝑡 =  
𝐶𝑁𝐻4

+ + 𝐶𝑁𝑎+ + 2𝐶𝐶𝑎2+

𝐶𝑆𝑈𝐿𝐹 + 0.5𝐶𝐶𝐻3𝑆𝑂3
−

(1) 

Where C represents specie concentration in liquid phase, and 𝐶𝑆𝑈𝐿𝐹 =  𝐶𝑆𝑂4
2−+𝐶𝐻𝑆𝑂4

− . In the sulfate-rich domain (i.e., Xt < 2), 

the liquid phase tends to absorb negligible HNO3 and HCl due to the high acidity, thereby suppressing the oscillation behavior 

of H+ concentration during numerical integration. In this case, the equilibrium mH+ is calculated by explicitly solving the 150 

partial dissociation of the bisulfate ion together with the electroneutrality equation (Zaveri et al., 2005b). In the sulfate-poor 

domain (i.e., Xt ≥ 2), the use of equilibrium mH+ will cause oscillations in the numerical solution associated with the 

condensation and/or evaporation of HNO3, HCl and NH3. Therefore, a new concept of dynamic mH+ was introduced, which 

is a function of equilibrium constants, mass transfer coefficients, and the gas and particle-phase concentrations of all the related 
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species (Zaveri et al., 2008). In this approach, the surface equilibrium equations and acid-base coupled condensation 155 

approximation are solved simultaneously to determine the dynamic mH+ in each size bin. 

2.2 pH calculation 

The pH is defined as the negative logarithm of the hydrogen ion activity in an aqueous solution, following the 

recommendation by the International Union of Pure and Applied Chemistry (IUPAC).  

pH = −𝑙𝑜𝑔10𝑎𝐻+ = −𝑙𝑜𝑔10𝛾𝐻+𝐻𝑎𝑞
+ (2) 160 

 

where 𝑎𝐻+is the activity of hydrogen ion in aqueous solution on a molality basis, 𝛾𝐻+ is the hydrogen ion activity coefficient 

(in this study assumed to be unity) and 𝐻𝑎𝑞
+  is the hydrogen ion molality in particle liquid water (mole kg-1, moles of H+ ions 

per kg of solvent). As MOSAIC outputs size-resolved hydrogen ion molality, the pH of PM2.5 in the model was calculated 

using the following equation: 165 

𝑝𝐻𝑝𝑚2.5 =  
∑ 𝑚𝐻𝑖

+
𝑖 × 𝑊𝑖

∑ 𝑊𝑖𝑖

(3) 

where 𝑚𝐻𝑖
+ (mole kg-1) is the hydrogen ion molality in size bin i, and 𝑊𝑖 (kg m-3) is the aerosol water content in that particular 

size bin. There are 6 size bins for PM2.5. 

2.3 Experimental design 

In this study, simulations were performed at 36 km horizontal resolution with 139 (west-east) × 148 (south-north) grid 170 

cells covering the entire China as shown in Fig. S1. The simulation period was from 15 October 2014 to 02 November 2014 

with the first 3 days used as model spin-up. This period was chosen because severe haze events occurred in Beijing and 

extensive observational data were available to constrain the model and evaluate the results. Initial and lateral boundary 

conditions for meteorological variables were derived from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) reanalysis data with a 0.703° × ~0.702° horizontal resolution that are updated every 6 h (ERA-Interim dataset). 175 

The chemical initial and boundary conditions were provided by a quasi-global WRF-Chem simulation configured as described 

in Zhao et al. (2013a). Anthropogenic emissions were obtained from the Multi-resolution Emission Inventory for China (MEIC) 

at a 0.1° × 0.1° horizontal resolution for the year 2015 (Li et al., 2017a; Li et al., 2017b). For emissions outside of China, the 

Hemispheric Transport of Air Pollution version-2 (HTAPv2) at 0.1° × 0.1° resolution for the year 2010 was used (Janssens-

Maenhout et al., 2015). 180 

All experiments conducted were listed in Table 2. In addition to a default WRF-Chem simulation (named as the ORIG 

scenario), we also conducted simulations to investigate the sensitivities of the modeled pH to variables including aerosol 

concentrations of nonvolatile cations (NVCs, such as Na+, K+, Ca2+, Mg2+), semi-volatile species (e.g., ammonia and chloride), 

https://doi.org/10.5194/gmd-2022-62
Preprint. Discussion started: 21 March 2022
c© Author(s) 2022. CC BY 4.0 License.



7 

 

as well as aerosol phase state assumptions and heterogeneous sulfate production. These sensitivity experiments were named 

as CTL1, CTL2, CTL3, CTL3meta, CTL3het_NoIs, and CTL3het_Is, respectively. 185 

NVCs can strongly modulate aerosol acidity (Vasilakos et al., 2018; Kakavas et al., 2021). However, the default WRF-

Chem significantly underestimated NVCs concentrations as compared with observations (Fig. S3a and Fig. S3b). The CTL1 

experiment was thus conducted with modified cation speciation profiles constrained by observations. To better match the 

observed NVCs concentrations, we set the mass of Ca2+ was 7.5% of dust and 10% of OIN, Mg2+ was 0.8% of dust, and Na+ 

and K+ from OIN were 13% and 5%, respectively. Note that K+ and Mg2+ were converted to charge-equivalent Na+ amounts 190 

since MOSAIC does not explicitly treat K+ and Mg2+.  

Ammonia is one of the most important atmospheric alkaline species, and considered as a dominant factor causing higher 

aerosol pH in China than in the United States (Guo et al., 2017b; Ding et al., 2019). Previous studies indicated that NH3 may 

be underestimated in current bottom-up emission inventories and using the MEIC inventory underestimated NH3 emissions by 

about 40% for the north China (Zhang et al., 2018; Wang et al., 2018; Kong et al., 2019). In experiment CTL2, the NH3 195 

emissions were multiplied by 2 and the others were the same as CTL1. On top of CTL2 simulation, we also conducted a 

chloride sensitivity simulation (i.e., CTL3) by increasing chloride emissions to improve the model prediction of aerosol 

chloride concentrations compared with observations.  

Ambient aerosol phase state is uncertain and difficult to constrain experimentally or theoretically due to difficulties in 

obtaining the efflorescence relative humidity (RH) for multicomponent salts. In general, aerosol can be treated as in metastable 200 

or stable state, where metastable means the aerosol solution is supersaturated and stable means crystallization of salts could 

occur once the solution reaches saturation. In MOSAIC, a flag called “hysteresis water content” (Whyst) is transported to 

determine whether the particles at a grid point are on the stable or the metastable branch of the hysteresis curve. This is the 

default phase state determination method in WRE-Chem. To explore the effect of phase state determinations on the predicted 

aerosol pH, on top of CTL3 we performed CTL3meta simulation in which the aerosol phase was fixed as metastable. 205 

The last, aerosol pH can also be influenced by heterogeneous sulfate production as which is the main acid component of 

aerosol (Tilgner et al., 2021). We incorporated heterogeneous S(IV) oxidations in aerosol water into MOSAIC chemical 

mechanism using the same reaction parameterizations in Shao et al. (2019). The incorporated heterogeneous reactions include 

reactions of dissolved S(IV) with H2O2, O3, NO2 and O2 catalyzed by transition metal ions (Table S1). Under this circumstance, 

we also tested the effects of ionic strength on aerosol pH prediction as it influences heterogeneous sulfate production (Cheng 210 

et al., 2016; Liu et al., 2020). These two additional simulations on top of CTL3 were named as CTL3het_NoIs and CTL3het_Is, 

with the latter explicitly involved the effects of ionic strength on H2O2 and TMI-catalyzed S(IV) oxidations. In particular, for 

heterogeneous S(IV) oxidations, the first-order rate constant (k, s-1) for the loss of gaseous species on aerosols was calculated 

by as follows (Jacob, 2000): 

k = (
𝑅𝑝

𝐷𝑔

+
4

𝜈𝛾
)

−1

𝑆𝑝 (4) 215 
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where 𝑅𝑝 is the radius of aerosol (cm), 𝐷𝑔 is the gas-phase molecular diffusion coefficient (cm2 s-1), ν is the mean molecular 

speed (cm s-1), γ is the uptake coefficient of SO2 on aerosols (dimensionless), and 𝑆𝑝 is the aerosol surface area per unit volume 

of air (cm2 cm-3). The parameter γ is obtained for each heterogeneous pathways using a similar method as Shao et al. (2019): 

γ = [
1

𝛼
+

𝜈

4𝐾∗𝑅𝑇√𝐷𝑎𝐾𝑐ℎ𝑒𝑚

∙
1

𝑓(𝑞)
]

−1

(5) 

where α is the mass accommodation coefficient (dimensionless), 𝐾∗ is the effective Henry's law constant (M atm-1), R is the 220 

universal gas constant (L atm mol-1 K-1), T is air temperature (K), 𝐷𝑎 is the aqueous phase molecular diffusion coefficient (cm2 

s-1),  𝐾𝑐ℎ𝑒𝑚 is the first-order chemical loss rate constant in the liquid phase (s-1), and 𝑓(𝑞) is given by: 

𝑓(𝑞) = coth 𝑞 −
1

𝑞
(6) 

𝑞 =  𝑅𝑝 (
𝑘𝑐ℎ𝑒𝑚

𝐷𝑎

)

1
2

(7) 

2.4 Observations 225 

The ground observations of inorganic components of PM2.5 (SO4
2-, NO3

-, NH4
+, Ca2+, K+, Na+, Mg2+, Cl-) as well as the 

observed RH data were obtained from the HOPE-J3A (Haze Observation Project Especially for Jing–Jin–Ji Area) field 

campaign located at the campus of the University of the Chinese Academy of Sciences (40.41° N, 116.68° E, around 20 m 

from the ground) which is around 60 km northeast of downtown Beijing (He et al., 2018; Yang et al., 2018; Chen et al., 2015; 

Zhang et al., 2017). The aerosol composition data were used to evaluate the model’s prediction on NVCs, and these data along 230 

with the observed RH were further used as inputs to calculate PM2.5 pH using the ISORROPIA II model (in the forward and 

metastable mode). The ISORROPIA II model results were treated as observational constrained PM2.5 pH and compared with 

that from the WRF-Chem simulations.                  

3 Results 

3.1 Spatial variability of simulated PM2.5 pH  235 

Figure 1 shows the spatial distribution of the WRF-Chem predicted surface PM2.5 pH over China averaged from 18 

October 2014 to 02 November 2014 under default WRF-Chem configuration and a set of sensitivity experiments as listed in 

Table 2. The PM2.5 pH was calculated by using weighted average aerosol water content as described in Sect. 2.2. The whole 

area of China was divided into six sub-regions (Fig. 1a) including the Taklimakan Desert (TD), the Gobi Desert (GD), the 

Northeast Plain (NEP), the North China Plain (NCP), the Yangtze River plain (YR) and Southern China (SC) to review the 240 

spatial variability of the modeled pH.  
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In ORIG simulation (Fig. 1b), WRF-Chem predicted PM2.5 pH with distinct spatial patterns, spanning ~0–7 pH units over 

China. The highest mean PM2.5 pH is predicted over the GD (~4.18 ± 2.23) and TD (~5.71 ± 1.44), where nonvolatile cations  

(e.g., Ca2+) from mineral dust is abundant, and the predicted pH is consistent with CMAQ and GEOS-Chem simulations of 

fine-mode aerosol pH (approximately 4–6) downwind of the deserts (Pye et al., 2020). Notably, the PM2.5 pH shows a declined 245 

trend from the north towards the south, with mean pH values over NEP, NCP, YR and SC are 2.95 ± 0.78, 2.29 ± 0.39, 1.74 ± 

0.38 and 1.66 ± 0.29, respectively. Though the spatial features of PM2.5 pH predicted by the default WRF-Chem model are 

similar with those from other chemical transport models (e.g., (Shao et al., 2019; Pye et al., 2020)), WRF-Chem generally 

tended to predict lower aerosol pH (0.8–3.6) over most regions of southern and Central China compared to other studies (1.3–

5). For example, WRF-Chem predicted an averaged PM2.5 pH of (2.3 ± 1.3) for Beijing during the modeling period, which is 250 

1–2 pH units lower than those reported by other studies using offline ISORROPIA II model constrained by observed aerosol 

and/or gas compositions (~3–4.5) for fall and winter Beijing (Tan et al., 2018; Song et al., 2018; He et al., 2018), and ~2 units 

lower than the GEOS-Chem predictions within the same period (Shao et al., 2019). The WRF-Chem model predicted PM2.5 

pH of ~2.2 in Tianjing is also lower than the values reported by Shi et al. (2019) who estimated the pH of PM2.5 in Tianjing is 

~3.4 using ISORROPIA II and ~3.1 using CMAQ. For a southern city, Guangzhou, WRF-Chem predicted the pH of PM2.5 is 255 

~1.2 ± 1.0, lower than the estimate from Jia et al. (2018) (~2.5–2.8) but who reported values for July and used different models 

(ISORROPIA II, E-AIM IV and AIOMFAC).  

To show the effects of the above-mentioned influencing factors on the predicted PM2.5 pH, the differences in PM2.5 pH 

between sensitivity runs were also displayed in Fig. 2. Compared to the ORIG run, the modeled PM2.5 pH in the CTL1 run 

shows a ubiquitous increase all over China owing to the increased concentrations of NVCs in PM2.5 (Fig. 2a). In particular, the 260 

PM2.5 pH changes were more prominent over the NEP and NCP regions, where PM2.5 pH increased by more than 0.9 pH units 

on average (Fig. S2). For regions near the deserts, i.e., GD and TD, PM2.5 pH were increased by 0.8 and 0.7 pH units, 

respectively. In comparison, relatively small increases (~0.65 and ~0.47) in PM2.5 pH were noted over YR and SC where 

aerosol was relatively acidic in the ORIG run (Fig. S2).  

When NH3 emissions were doubled (CTL2 scenario), the predicted PM2.5 pH displayed diverse degrees of elevation (Fig. 265 

2b), increased by 0.2–0.8 for most areas of China except for TD and GD where pH stayed nearly constant (Fig. 2b and Fig. 

S2). The rise in mean PM2.5 pH was comparable (0.3–0.4) among NEP, NCP, YR and SC. In addition, minimal values of PM2.5 

pH showed slight increases (0.2–0.6) while the maximum values remained almost unchanged. 

For the CTL3 scenario that included extra chloride emissions, the predicted PM2.5 pH indicated negligible decreases 

compared to CTL2 (Fig. 2c), similar to the findings of Tao et al. (2020). Due to the low sensitivity of simulated aerosol pH to 270 

Cl- concentration, the result of CTL3 scenario and the potential effect of Cl- is not further discussed. However, it is noteworthy 

that WRF-Chem underestimated Cl- concentrations compared to the observations. In addition, Cl- is the precursor of reactive 

chloride species (e.g., Cl, ClNO2, HOCl) that are important in atmospheric oxidation capacity (Wang et al., 2019; Wang et al., 
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2020b). Therefore, future research should be devoted to the development of anthropogenic and natural chloride emissions to 

improve the prediction.  275 

With regard to CTL3meta scenario which specified the aerosol to be in metastable state indiscriminately, significant 

decreases (~1.2–1.8) in PM2.5 pH compared to CTL3 were predicted over northwestern China and Tibet while the changes 

were smaller elsewhere (Fig. 2d). In particular,  PM2.5 pH decreased by ~1.87 for TD and ~1.13 for GD, causing pH down to 

4.8 and 4, respectively, whereas the metastable state assumption had little impacts on the predicted PM2.5 pH in the NCP, YR 

and SC regions.  280 

In the CTL3het_NoIs scenario, additional sulfate production (on top of CTL3) resulted in noticeable decrease of PM2.5 

pH over eastern and central China (Fig. 3a) where gas precursors (e.g., SO2) from anthropogenic emissions are high. The 

largest decrease in the predicted mean PM2.5 pH occurred in the NCP, by about 0.9 pH unit, compared with that of 0.7 pH unit 

in YR, 0.25 pH unit in SC and 0.17 pH unit in NEP (Fig. S2). However, PM2.5 pH changes became negligible in TD and GD, 

which may be attributed to their low SO2 emissions and low abundance of AWC that limit local heterogeneous production of 285 

sulfate. PM2.5 pH changes in CTL3het_Is scenario displayed spatial patterns similar to that of CTL3het_NoIs scenario but with 

smaller degree of decreases in PM2.5 pH (Fig. 3b).  

3.2 Temporal variation of PM2.5 pH in haze events 

During the study period, several haze episodes occurred over Beijing and there were several complete evolution cycles 

of pollution level from very clean to severely polluted conditions. Over this period, time slots were referred to as “clean”, 290 

“light pollution”, “moderate pollution” and “heavy pollution” days according to different levels of PM2.5 mass concentrations 

of 0–75, 75–115, 115–150, and >150 μg m-3, respectively. To further investigate the evolution of PM2.5 pH during a haze cycle, 

time series of the predicted PM2.5 pH values over Beijing during the study period were shown in Fig. 4. The average values 

and ranges of PM2.5 pH during the entire period, as well as the pollution levels were also listed in Table S2. 

 All the simulation results exhibit large but similar temporal variations in PM2.5 pH during the study period, typically 295 

covering extreme acidic (<2) to alkaline (>7) pH levels (Fig. 4). As shown in Table S2, the largest pH range (0.64–7.63) was 

predicted by the CTL3het_NoIs scenario, and the smallest pH range fluctuating between 2.09 and 7.54 was found in the CTL2 

scenario. The simulated pH from other scenarios varied by approximately 6 pH units. The large variations of PM2.5 pH during 

haze episodes are consistent with the results from other studies. For example, He et al. (2018) utilized ISORROPIA II to 

estimate PM2.5 pH during Beijing winter haze and found a similarly large pH range of 3.4–7.6 when assuming metastable 300 

aerosol state. Gao et al. (2020) calculated aerosol pH in Tianjin using ISORROPIA II and reported that PM2.5 pH ranged from 

−0.08 to 13.75, in which pH varied more severely.           
On the other hand, similar temporal patterns of PM2.5 pH were found in all scenarios, i.e., aerosols became more acidic at 

higher PM2.5 levels (Fig. 4 and Table S2). During clean period, PM2.5 pH spanned a wide range, with maximum pH values 

above 7 and minimum pH values below 2 (for ORIG, CTL1, CTL3het_NoIs) and below 2.5 (but above 2, for CTL2, CTL3, 305 
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CTL3meta, CTL3het_Is). For light pollution period, PM2.5 pH exhibited a similar range as in the clean period, but with a lower 

mean value. However, under moderate and heavy pollution conditions, PM2.5 pH was concentrated in a narrow range, varying 

within 1.5 pH units and with the most acidic aerosols (with mean pH values mostly between 1.5 and 3). These findings are 

consistent with those of Ding et al. (2019), who employed ISORROPIA II to calculate PM2.5 pH in Beijing for four seasons 

and found that the highest PM2.5 pH appeared on clean days ranging from 2 to 7, followed by polluted and heavily polluted 310 

days for all seasons except winter. Analysis in Gao et al. (2020) also showed that the range of pH was more confined with 

aggravation of air pollution.  

In Fig. 4, we also plotted the offline model results of PM2.5 pH (termed as pH-obs) from ISORROPIA II (forward mode 

and metastable state) constrained by observed PM2.5 compositions and RH. As gaseous NH3 observations were not available, 

so we estimated the values using an empirical equation following He et al. (2018). The observed PM2.5 compositions were in 315 

coarse resolution (12 or 24 hours), so that the pH-obs results were also 12 or 24 hour averages. As shown in Fig. 4, pH-obs in 

general varied similarly to those predicted by WRF-Chem, but with higher absolute values. The default WRF-Chem (ORIG 

scenario) showed the maximum deviation (up to 2.22 pH units on average) from pH-obs. With the modifications of NVCs and 

NH3 emissions, CTL2 scenario efficiently improved the discrepancies between WRF-Chem predictions and pH-obs (the mean 

bias was reduced from 2.2 pH unit to 0.62).  Similar discrepancies (~0.8 pH units) were found under CTL3meta and 320 

CTL3het_Is scenarios. The differences between other scenarios (i.e., CTL3 and CTL3het_NoIs) and pH-obs were larger than 

1.2 pH units. 

In addition, the responses of the predicted PM2.5 pH to varying influencing factors under different pollution levels differed. 

The average pH of Beijing PM2.5 was increased by 0.9 in CTL1 run compared to ORIG run, with the largest increase (~1.4) 

found in clean period and smaller increases (~0.6) occurring in all other pollution periods. In contrast, the predicted pH increase 325 

(~0.36) was the smallest for the clean periods when NH3 emissions were doubled (the CTL2 scenario), followed by light 

pollution (~0.92), moderate pollution (~1.11) and heavy pollution (~1.22) periods. Both increasing Cl- emission (CTL3 

scenario) and changing phase state assumption (CTL3meta scenario) led to negligible impact on pH in Beijing among all 

periods. For the two additional scenarios that incorporated heterogeneous S(IV) reactions, when considering ionic strength 

effects (CTL3het_Is scenario) little changes in the predicted PM2.5 pH were seen, but more pronounced changes were seen 330 

when ionic strength effects were not taken into account (CTL3het_NoIs scenario). The latter case led to the decreases in pH 

by 0.7 and 1.3 units for moderate and heavy pollution periods, respectively, and increases by 0.3 units for clean period.  

4 Discussion 

        Overall, the modeled PM2.5 pH over China by all experiments displayed a clear spatial pattern, being more acidic in 

Southern China while neutral in northwestern China. This spatial pattern is mainly controlled by dust emissions from the desert 335 

regions in northwestern China. In addition, the PM2.5 pH appeared to be the most sensitive to the abundance of alkaline species 
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(i.e., NVCs and NH3). In addition, for NCP where experienced severe and frequent haze events, PM2.5 pH was also very 

sensitive to the magnitude of heterogeneous sulfate production; while for the TD and GD regions, the phase state assumption 

appeared to be important. In the discussions as follows, we analyzed the sensitivity of PM2.5 pH to influencing factors, as well 

as the evolution of PM2.5 pH in a haze development cycle in Beijing. 340 

4.1 Sensitivity of the PM2.5 pH spatial variability to influencing factors 

4.1.1 The influence of NVCs  

Aerosol composition (e.g., shifting in the relative fractions of anions versus cations) is known to influence its pH (Tao 

and Murphy, 2019; Lawal et al., 2018; Ding et al., 2019). NVCs are the alkaline components of aerosol which can neutralize 

sulfuric acid irreversibly and impact aerosol water amount through its effects on aerosol composition, thereby influence aerosol 345 

pH both directly and indirectly (Guo et al., 2018a; Vasilakos et al., 2018; Kakavas et al., 2021). 

In the ORIG simulation, the model significantly underestimated the observed Ca2+ and Na+ concentrations in Beijing (Fig. 

S3a and S3b). Note Mg2+ and K+ are not included in the model but regarded as charge-equivalent Na+, therefore the simulated 

Na+ was compared to the observed sum of Na+, K+ and Mg2+, while simulated Ca2+ was directly compared with observed Ca2+. 

As seen in Fig. S3a and S3b, Ca2+ and Na+ were significantly underestimated in the ORIG simulation by ~96.8% and ~97.6%, 350 

respectively, suggesting missing cation emission sources in model, which could lead to an underestimation in pH. To improve 

the model’s performance in NVCs prediction, in the CTL1 run we modified the cation emission profile as described in Sect.  

2.3. As a result, the simulated NVCs became more consistent with the observations, with a normalized mean bias (NMB) ≤ ± 

5%.  

Compared to the ORIG simulation, CTL1 predicted higher PM2.5 pH almost everywhere with varying degrees as 355 

illustrated in Sect. 3.1. This is mainly due to the increased aerosol NVCs. In Fig. 5a, we plotted the changes in PM2.5 pH in 

response to the changed aerosol NVCs as a function of the pH values from the ORIG simulation. The data were categorized 

in six sub-regions as indicate in Fig. 1a. As shown in Fig. 5a, the response of PM2.5 pH to elevated NVCs displays a saddle-

shaped curve. In all, for regions (e.g., NEP) with moderate acidic aerosol (i.e., pH = ~3–4) predicted by ORIG, their pH 

increased the most in response to elevated NVCs, indicating a large sensitivity of the aerosol pH to NVCs. While for regions 360 

with very acidic (e.g., in SC, pH  ~1) or nearly neutral (e.g., in the central part of GD) aerosol pH, the response to elevated 

NVCs were minimum. This saddle-shaped curve response can be explained as follows. For aerosols with nearly neutral pH, 

they already contained high abundance of alkaline species (i.e., NVCs and/or ammonium), and addition of NVCs won’t change 

their NVCs significantly. What is more, addition of NVCs may facilitate NH3 partitioning to the gas-phase, lowering pH. As 

a result, little to no changes in pH should be expected. On the other hand, for very acidic aerosols with PM2.5 pH < 2, the 365 

amounts of NVCs increase cannot reduce H+ effectively due to excessive acids which may partition more to the aerosol phase 

to neutralize NVCs, and thus only exerted a small influence on aerosol pH. While for aerosols in intermediate pH ranges, there 
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were neither sufficient acidic species to neutralize the elevated alkaline NVCs, nor enough NVCs to buffer the added amount, 

so that the response was large. This effect was the largest for aerosols with pH around 3.  

It is also noteworthy that, in this study the modified NVCs emission profiles were only constrained by observations in 370 

Beijing (located in the center of NCP) for the purpose of sensitivity test. This may be one of the reasons why the responses of 

PM2.5 pH to elevated NVCs were the most in NCP and NEP which are closely located and influenced by the same dust emission 

sources. Nevertheless a more accurate NVCs emission inventory needs to be addressed in future model developments given 

the sensitivity of the modeled pH to the abundance of aerosol NVCs.   

4.1.2 Sensitivity to NH3 emissions 375 

        In addition to Ca2+ and Na+ (i.e., the NVCs) abundances, NH3 is also an important alkaline component and plays essential 

role in aerosol pH by neutralizing acidic components (H2SO4 and HNO3) to form particulate sulfate and nitrate and thus driving 

NH3 towards to the particle phase (Wang et al., 2020a; Zheng et al., 2020; Zhang et al., 2021). But the NH3 emission inventory 

used in WRF-Chem (MEIC) was suggested to be underestimated in China (Kong et al., 2019; Li et al., 2021). Therefore, CTL2 

was performed to investigate the sensitivity of the modeled PM2.5 pH to NH3 emissions. After doubling NH3 emissions, the 380 

response in PM2.5 pH was not as large as that to NVCs. This is somewhat expected as in comparison with NH3, NVCs can also 

neutralize acidic components but with a greater preference due to their low volatility. As a result, in regions close to the dust 

sources (i.e., in the northwest) or affected by dust outflows, the relatively high pH and sufficient NVCs tend to prevent the 

partitioning of NH3 to aerosols, leading to limited response in PM2.5 pH to NH3 variation. As shown in Fig. 2b, in TD and GD, 

PM2.5 pH were increased negligibly and even somewhat decreased. While for regions with relatively low aerosol pH, more 385 

NH3 can be partitioned to the aerosol phase to consume H+, increasing pH. This is clearly seen in Fig. 5b where increases in 

PM2.5 pH due to elevated NH3 emissions were larger for more acidic aerosols. These results agree well with previous studies 

which have shown that pH responds nonlinearly to the changes in NH3 emissions (Wang et al., 2020a; Ding et al., 2019; Liu 

et al., 2017) . 

4.1.3 Sensitivity to aerosol phase state assumption 390 

In chemical transport models, the history of the phase state of atmospheric aerosols cannot be easily tracked as aerosols 

move and mix quickly between different grid points due to turbulent transport (Zaveri et al., 2008). For this reason, it is 

challenging for models to determine whether the mixed aerosols follow the efflorescence branch (i.e., metastable state) or the 

deliquesced branch (i.e., stable state). When aerosols with different hydration histories and phase states mix together, the 

resulting particles in a given size bin must all be placed either on the stable or the metastable branch of the hysteresis curve as 395 

the aerosol size distribution at a grid point is represented by a single set of size bins.  In MOSAIC, the phase state of particles 

in different size bins can be different as the model determines whether the particles in a given size bin are on the stable or the 
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metastable branch using the Whyst parameter (Zaveri et al., 2008). In comparison, many previous studies investigated aerosol 

pH during Beijing haze events by assuming the aerosols are in metastable states, which is regarded as a reasonable assumption 

for high RH (> 50%) conditions (Liu et al., 2017; Guo et al., 2017b; Guo et al., 2018b; Ding et al., 2019). ISORROPIA II 400 

adopted in some CTMs (e.g., GEOS-Chem, CMAQ) also applies the metastable state assumption (Shao et al., 2019).  

As shown in Fig. 2d, after fixing aerosol phase to metastable, the response (decrease) of the modeled PM2.5 pH was larger 

for regions with aerosols that were less acidic, especially for GD, TD, and central Tibet. These regions were also in general 

with low RH (Fig. S4). RH is known to affect AWC and thus the phase state of aerosols. Karydis et al. (2021) reported similar 

findings in their modeling study, that the metastable assumption caused a pH decrease (~2 pH unit on average) over the regions 405 

with low RH and high crustal species. To explore the effects of the phase states on the predicted PM2.5 pH, we plotted the pH 

of aerosols in each size bin (bin 01–bin 06 with increasing particle diameters from 0.039 to 2.5 μm) from CTL3 and CTL3meta 

runs in Fig. S5. The first impression from reviewing Fig. S5 is that the modeled decreases in PM2.5 pH in CTL3meta were 

mainly caused by changes in the first four size bins. Notably, in the CTL3 run, aerosols in these bins (01–04) in GD, TD and 

central Tibet were determined to be mostly solid (i.e., no liquid water thus no pH exists) due to low RH. But in the CTL3meta 410 

run when metastable state was assumed, these aerosols were calculated to have a very small amount of water (Fig. S6) and 

thus the pH were very low. Further analyses on the components of aerosols in these size bins (Table S3) in TD indicated that 

they were high in sulfate but low in NVCs, suggesting “sulfate rich” particles that are in general highly acidic (Zaveri et al., 

2008).  

For regions with RH > 70%, little to no changes in PM2.5 pH were predicted when fixing aerosol phase to metastable. 415 

This is because that when RH > 70%, aerosols in all size bin may be already determined to be in metastable state by Whyst in 

the default MOSAIC scheme. In addition, since both states predict a liquid aerosol at ambient RH > 70% which reaches the 

deliquescence RH for most mixed-salt aerosols, changes in pH between stable and metastable states at higher RH should be 

insignificant as modeled.  Our modeled results are also consistent with that from previous box model and chemical transport 

modeling studies which found a similarly small effect of phase assumption on pH at high RH condition (Song et al., 2018; Tao 420 

et al., 2020). In all, these results demonstrate that metastable assumption might be inappropriate at low RH conditions and 

would lead to unrealistic pH predictions. This in turn suggests the rationality and advances of MOSAIC scheme in phase state 

determination in WRF-Chem.    

4.1.4 Sensitivity to heterogeneous sulfate production 

  Sulfate is the main acidic component of aerosols and thus largely determines aerosol pH (Weber et al., 2016; Tilgner et 425 

al., 2021). We implemented the heterogeneous sulfate formation pathways on aqueous aerosols in WRF-Chem in this study, 

and explored the effects of ionic strength on the production rates with two additional runs, i.e., CTL3het_Is and CTL3het_NoIs. 

Overall, after the addition of heterogeneous S(IV) oxidations, modeled sulfate concentrations increased largely over eastern 

and central China (Fig. 3c), and where PM2.5 pH decreased significantly as a consequence (Fig. 3a). This is as expected because 
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sulfate can release free H+. On the other hand, the effects of sulfate production on pH can be buffered by uptake of bases (e.g., 430 

ammonia) from the gas-phase (Zheng et al., 2020), which could differ by regions depending on NH3 level. AWC also changes 

in response to changes in aerosol components, which in turn affects aerosol pH. Therefore, PM2.5 pH change in response to 

additional sulfate production in the system was in fact a result of the combination of these factors. 

Notably, for the CTL3het_Is run, PM2.5 pH changes were much smaller (Fig. 3b) compared to the CTL3het_NoIs run 

because of a smaller amount of additional sulfate production (Fig. 3d). As reported by Liu et al. (2020), high ionic strength 435 

can largely inhibit the TMI-catalyzed reaction rate and slow it down by a factor of ~85 at an ionic strength of 2.8 M. Although 

high ionic strength would make the reaction of S(IV) with H2O2 faster in aerosol water (Liu et al., 2020), the modeled low 

H2O2 concentration hindered the contribution of this reaction to sulfate production despite the effects of high ionic strength. 

Therefore, when ionic strength was considered, the heterogeneous production of sulfate was inhibited and thus smaller 

decreases in pH were caused. Note the inclusion of heterogeneous sulfate production here was just used to test the sensitivity 440 

of PM2.5 pH to variations in acidic components, but not aiming to simulate atmospheric sulfate so that we did not conduct 

further analyses on the model’s ability to capture observed sulfate production. Recent experimental studies suggest that 

interfacial chemistry at aerosol surfaces may also be important for ambient sulfate formation, such as the newly proposed 

aerosol-phase acceleration for the Mn-catalyzed oxidation of S(IV) (Wang et al., 2021) and water-assisted interfacial reaction 

of NO2 with SO3
2- (Liu and Abbatt, 2021). Inclusion of these additional sulfate formation pathways would presumably increase 445 

sulfate production and lower the modeled PM2.5 pH further. However, large uncertainties still remain in atmospheric sulfate 

formation mechanisms especially for these newly proposed mechanisms, and the kinetic parameters in concentrated solutions 

(i.e., the surface of aerosols) also need to be accurately constrained by further investigations. 

4.2 Driving factors of the temporal PM2.5 pH variation in Beijing haze 

       As all modeled scenarios displayed a similar temporal variation for the studied period in Beijing, here we chose the 450 

CTL3meta scenario for further discussion on the temporal evolution of PM2.5 pH and driving factors under different pollution 

levels. Figure 4 shows that the predicted PM2.5 pH values were in general lower (more acidic) at more polluted days for all 

WRF-Chem simulations as well as the ISORROPIA II results constrained by observed aerosol composition and RH. To reveal 

this trend more clearly, the corresponding pH values in Beijing under different pollution levels modeled by the CTL3meta 

scenario were illustrated in the box-and-whisker plots in Fig. 6a. In addition to the WRF-Chem predictions (Fig. 6a), the offline 455 

ISORROPIA II estimates using WRF-Chem outputs (i.e., aerosol composition and RH from CTL3meta scenario, Fig. 6b) and 

observations (Fig. 6c) were also displayed. Figure 6 illustrates that PM2.5 pH calculated by ISORROPIA II (both based on 

WRF-Chem simulated data or observational data) generally shows consistent patterns as WRF-Chem simulation, and the PM2.5 

pH was higher during relatively clean days while the lowest during heavy pollution days. The multiple model average of PM2.5 

pH in Beijing under heavy pollution (> 150 μg m-3) was 3.56 ± 0.49.  These results suggest that PM2.5 pH in Beijing under 460 

heavy haze conditions is likely moderate acidic, and thus the NO2 oxidation pathway unlikely dominates in heterogeneous 
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sulfate production. As NO2 oxidation of dissolved S(IV) only becomes effective in less acidic pH ranges (~6) (Cheng et al., 

2016). Most recently, an experimental study (Liu and Abbatt, 2021) proposed a water-assisted interfacial mechanism for SO2 

oxidation by NO2 at the aerosol surface that can maintain its atmospheric importance at a lower pH of 5. This value is 

nevertheless still higher than the predicted pH during the heavy haze period and thus implying an unlikely importance of NO2 465 

oxidation. 

In addition, we noticed that the high pH values were generally associated with high mass fractions of NVCs and low 

AWC, whereas low pH values were often accompanied by low mass fractions of NVCs and high AWC (Fig. S7). This suggests 

the important roles of AWC and aerosol compositions in determining PM2.5 pH. To explore their relationship, mass fractions 

of PM2.5 ionic species as well as AWC under different pollution levels are shown in Fig. S8. As the pollution deteriorated, 470 

AWC increased and the mean value reached 88.0 μg m-3 during the heavy pollution period (Fig. S8b). What is more, NVCs 

had a higher proportion of 0.19 in clean period, compared to 0.06 in light pollution period, 0.04 in moderate pollution period 

and 0.03 in heavy pollution period (Fig. S8a). This is consistent with changes in PM2.5 pH as NVCs tend to increase pH. These 

results are in line with some previous studies (Ding et al., 2019; Shi et al., 2017) who have demonstrated that the role of NVCs 

in aerosol acidity. But some other studies found NVCs have limited impacts on aerosol pH, which may be due to the relatively 475 

minor contribution of crustal ions to aerosol mass in their cases (Liu et al., 2017; Zheng et al., 2020; Zhang et al., 2021). In 

addition, the mass fraction of sulfate declined from clean periods (0.16) to light and moderate pollution periods (0.08) then 

slightly increased in heavy pollution periods (0.10). Nitrate had the predominant mass fraction, accounting for 0.49 during 

clean period and remaining almost constant during other periods (0.65). Sulfate and nitrate formation were apparently enhanced 

on more polluted conditions. This lead to the release of free H+ which promotes the partitioning of ammonia into the aerosol 480 

phase, neutralizing the formed acidic species and buffering the pH. This also at least in part explains why the mass fraction of 

ammonium increased steadily throughout the haze evolution with 0.10, 0.18, 0.20 and 0.21 for clean, light, moderate and heavy 

pollution periods, respectively.  

Ambient RH has also been recognized as a key factor in the evolution of winter haze events (Tie et al., 2017; Sun et al., 

2013) and aerosol acidity (Tao and Murphy, 2019; Battaglia et al., 2017; Ding et al., 2019; Jia et al., 2020). This can also be 485 

seen in Fig. 4 where RH was in general high at more polluted days. Here we analyzed the correlation of AWC and pH with 

RH. As shown in Fig. 7, AWC exponentially increases with increasing RH, with a mean value of (0.018 ± 0.006) μg m-3 at 

20% RH and (130 ± 43) μg m-3 at 100% RH. In contrast, PM2.5 pH shows a general decreasing trend with RH. These can be 

explained as follows. RH is typically low at the start-up phase of haze events, under which condition NVCs from primary 

aerosols would be rich and gas uptake as well as secondary aerosol formation are restricted due to the limited AWC, thereby 490 

leading to higher pH (clean period). As RH elevates with the deterioration of PM2.5 pollution, greater amounts of AWC are 

formed caused by the acceleration of aerosol hygroscopic growth. AWC then serves as an efficient medium for heterogeneous 

reactions on the surface of aerosols, thereby substantially enhancing secondary formation of acid species (such as sulfate and 

nitrate) and resulting in greater acidity. The latter is also facilitated by the accumulation of reactive gas precursors as the haze 

https://doi.org/10.5194/gmd-2022-62
Preprint. Discussion started: 21 March 2022
c© Author(s) 2022. CC BY 4.0 License.



17 

 

event evolves under stable boundary layer conditions. Aerosol hygroscopic growth is further enhanced by a positive feedback 495 

mechanism that the production of secondary aerosol species can in turn enhance aerosol hygroscopicity and increasing AWC 

(Wu et al., 2018). It should be noted that more AWC could also exert a dilution effect which would dilute the H+, but the acid 

effect likely prevails over the dilution effect leading to a net drop of pH. 

4.3 Comparison of PM2.5 pH predictions between MOSAIC and ISORROPIA II 

      To further explore the potential effects of different thermodynamic models on the modeled aerosol pH differences between 500 

this study and previous studies, we also compared the MOSAIC results with those obtained from ISORROPIA II. The WRF-

Chem simulated hourly chemical concentrations along with temperature and RH in Beijing from CTL3meta scenario were 

used as inputs to ISORROPIA II (forward mode, assuming metastable to be consistent with CTL3meta). Time series of aerosol 

pH (bin 01–bin 06) predicted by the two different models are given in Fig. S9. Overall, ISORROPIA II and MOSAIC predicted 

a similar temporal pH trend, but ISORROPIA II in general predicted higher absolute pH values than that of MOSAIC for all 505 

particles with the size less than 2.5 µm. What is more, a regression slope of 0.87 between the calculated PM2.5 pH by MOSAIC 

and ISORROPIA II was found (Fig. S10). These findings are comparable to the results reported by Pye et al. (2020) who found 

that with the same model inputs, a regression slope of 0.89 between the calculated pH from the box-model version of MOSAIC 

and ISORROPIA II was obtained. Comparisons of the pH values predicted by MOSAIC and ISORROPIA in Zaveri et al. 

(2008) also showed a similar phenomenon that ISORROPIA tended to predict higher values under same conditions. The 510 

discrepancy between these two models may be attributed to the higher amounts of aerosol water content predicted by 

ISORROPIA II relative to MOSAIC, as indicated in Fig. S11, despite both models use the same phase state assumption and 

RH. Difference in other fundamental thermodynamic treatments, including activity coefficients, gas-particle partitioning 

scheme and solution approach may also account for the final pH difference. Nevertheless, the exact causes of the differences 

in pH predicted by these two models remain to be explored. 515 

5 Conclusion 

In this study, the performance of WRF-Chem configured with MOSAIC in predicted PM2.5 pH over China was evaluated. 

In particular, using the model, we assessed the evolution of PM2.5 pH over a few haze episodes in Beijing from 18 October 

2014 to 02 November. The results indicate default WRF-Chem could predict similar spatial gradient of PM2.5 pH across China 

compared to other CTMs as reported by previous studies. However, WRF-Chem in general yielded low pH (0.8–3.6) over 520 

most regions compared to other models (1.3–5). This is mainly due to the model underestimations of NVCs concentrations, 

with additional contributions from low model NH3 emissions as well as inherent differences in thermodynamic representations. 

The latter was further assessed by comparing against the corresponding pH predictions from offline ISORROPIA II using 
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WRF-Chem modeled aerosol composition and RH as inputs. Compared to ISORROPIA II values, pH calculated by MOSAIC 

is consistently lower by 0.6 units on average, despite the pH variation trend matched quite well. 525 

Further, six experiments were conducted to investigate the response in modeled PM2.5 pH to varying NVCs, NH3, phase 

state assumption and sulfate production over China. The model results show that pH sensitivity have substantial spatial 

heterogeneity. Elevated NVCs emissions caused ubiquitous increases in PM2.5 pH with higher effects in NEP and NCP regions 

where original pH is in the moderate acidic range. For regions with high or low original pH, the effects from NVCs are minor. 

Doubling NH3 emission also led to an increase in PM2.5 pH over most areas of China except for TD and GD where are 530 

characterized by high aerosol pH and sufficient NVCs. The effects of phase state assumption on pH were found to be minor at 

high RH conditions but large decrease in PM2.5 pH can be induced at low RH conditions due to an unrealistic metastable phase 

state assumption. Additional formed sulfate in aerosol water tended to effectively decrease PM2.5 pH over eastern and central 

China in a complex manner, due to the buffering effect of semi-volatile ammonia and the accompanied AWC change.  

In addition, PM2.5 pH evolution during haze cycles in Beijing was investigated. The results indicate that aerosols became 535 

more acidic as haze pollution accumulated, from 5.21 ± 0.88 in clean period to 3.56 ± 0.49 in heavily polluted period, due to 

both changes in aerosol components and meteorological conditions. Large mass fraction of NVCs was found to be responsible 

for the high aerosol pH during clean periods. The elevated AWC with increasing RH during polluted periods accelerated 

secondary aerosol formation (e.g., sulfate and nitrate), enhanced water uptake and further lowered pH. 

In all, our study suggests that NVCs and NH3 influence the predicted PM2.5 pH the most at least in the WRF-Chem model, 540 

but currently the model cannot predict the abundance and variations of these species especially for Ca2+ and Na+. Future 

research efforts need to be undertaken to better constrain NVCs and NH3 emissions in model to improve aerosol pH predictions. 

A priori assumption that aerosols are at either stable or metastable state in model simulations (e.g., in GEOS-Chem) maybe 

less accurate compared to WRF-Chem which applies a more rigorous and computationally expensive phase state determination 

approach, especially for aerosol pH prediction for regions with low RH. Follow-up studies to including more accurate and up-545 

to-date heterogeneous sulfate formation pathways in model would also be necessary. The last, more high resolution observation 

datasets at different locations may be necessary to further evaluate MOSAIC predictions of aerosol pH. 

Code and data availability 

The release version of WRF-Chem can be downloaded from http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. 

The modified version of WRF-Chem used in this study is archived on Zenodo at https://doi.org/10.5281/zenodo.6359417. The 550 

ERA-Interim reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) for initial and 

boundary conditions can be downloaded from https://rda.ucar.edu/datasets/ds627.0/. 
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Table 1. Summary of model configurations. 

Description Selection 

Horizontal grid spacing 36 km 

Grid dimensions 149 × 138 

Aerosol scheme MOSAIC 8 bin 

Gas-phase chemistry CBM-Z 

Long wave Radiation RRTMG 

Short wave Radiation RRTMG 

Cloud Microphysics Morrison 2-moment 

Cumulus Cloud Grell-Devenyi 

Planetary boundary layer YSU 

Land surface Noah land-surface model 

 795 

 

Table 2. Numerical experiments conducted in this study. 

Name Cation 
NH3 

emission 
Cl emission Phase state Sulfate production 

ORIG default default default defaulta default 

CTL1 modify default default default default 

CTL2 modify ×2 default default default 

CTL3 modify ×2 modify default default 

CTL3meta modify ×2 modify metastable default 

CTL3het_NoIs modify ×2 modify default Add het (No Is effect) 

CTL3het_Is modify ×2 modify default 
Add het (consider Is 

effect) 

aBy default, in MOSAIC a flag called “hysteresis water content” (Whyst) is transported to determine whether the particles are 

on the stable or the metastable branch. 
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Figure 1. (a) Six sub-regions. (b-h) Spatial distributions of mean surface PM2.5 pH (LWC-weighted average pH) during the 

study period of 15 October 2014 - 02 November 2014 predicted by (b) ORIG (c) CTL1 (d) CTL2 (e) CTL3 (f) CTL3meta (g) 

CTL3het_NoIs (h) CTL3het_Is. “I” in (a) represents the Taklimakan Desert (TD), “II” represents the Gobi Desert (GD), “III” 805 

represents the Northeast Plain (NEP), “IV” represents the North China Plain (NCP), “V” represents the middle and lower 

reaches of Yangtze River plain (YR), and “VI” represents Southern China (SC). 
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 810 

 

Figure 2. Spatial distributions of the difference in mean surface PM2.5 pH during the study period of 15 October 2014 - 02 

November 2014 between (a) CLT1 and ORIG scenarios, (b) CTL2 and CTL1 scenarios, (c) CTL3 and CTL2 scenarios, (d) 

CTL3meta and CTL3 scenarios.  
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Figure 3. Spatial distributions of the difference in mean surface (a,b) PM2.5 pH and (c,d) PM2.5 sulfate (μg m-3) between 825 

CTL3het_NoIs and CTL3 scenarios (top panels), and CTL3het_Is and CTL3 scenarios (bottom panels) during the study period 

of 15 October 2014 - 02 November 2014. Different scales are used. 

 

 

 830 

 

 

 

 

 835 

 

 

https://doi.org/10.5194/gmd-2022-62
Preprint. Discussion started: 21 March 2022
c© Author(s) 2022. CC BY 4.0 License.



 31 

 

Figure 4. Time series of (top panel) surface PM2.5 pH, and (bottom panel) PM2.5 water contents (μg m-3) (left y-axis) predicted 

by all WRF-Chem scenarios at Beijing site during the study period of 15 October 2014 - 02 November 2014 and Relative 840 

humidity (%) (RH, right y-axis) are given from ORIG scenario. ISORROPIA II-calculated pH values constrained by 

observations as well as the observed RH are shown as black star markers, with each value corresponding to a PM2.5 sample 

(12h or 24h). Shaded areas represent four different pollution levels (green-clean; bule-light; orange-moderate; grey-heavy).    
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Figure 5. Scatterplots of the surface PM2.5 pH differences between (a) CLT1 and ORIG scenarios, (b) CTL2 and CTL1 scenarios 

vs. the corresponding original pH, separated by regions. 855 
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Figure 6. The box-and-whisker plots of surface PM2.5 pH in each haze stage in Beijing from (a) WRF-Chem CTL3meta scenario, 

(b) ISORROPIA predictions with WRF-Chem (CTL3meta) relevant outputs as inputs, and (c) ISORROPIA predictions with 

observations as inputs. The boxes represent, from top to bottom, the 75th, 50th, and 25th percentiles of statistical data. The 

whiskers represent, from top to bottom, the minimum and the maximum, and the solid circles represent the mean values. 875 
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Figure 7. AWC (μg m-3) (a) and PM2.5 pH (b) predicted by CTL3meta scenario as a function of RH for data at Beijing site 895 

during the study period of 15 October 2014 - 02 November 2014. Data are grouped in RH bins (10% increment). The error 

bars represent the standard deviations. 
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