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Abstract. Aerosol pH is a fundamental property of aerosols in terms of atmospheric chemistry and its impact on air quality, 15 

climate and health. Precise estimation of aerosol pH in chemical transport models (CTMs) is critical forto aerosol modeling 

and thus influencing policy development that partially relies on results from model simulations. We reported WRF-Chem 

simulated PM2.5 pH over China during a period with heavy haze episodes in Beijing, and exploreed the sensitivity of the 

modeled aerosol pH to factors including emissions of nonvolatile cations (NVCs) and NH3, aerosol phase state assumption, 

and heterogeneous production of sulfate. We findfound default WRF-Chem could predict spatial patterns of PM2.5 pH over 20 

China similar to other CTMs, but with generally lower pH values largely due to the underestimates of alkaline species (NVCs 

and NH3) and the difference in thermodynamic treatments between different models. Increasing NH3 emissions in the model 

would improve the modeled pH in comparison with offline thermodynamic model calculations of pH constrained by 

observations. In addition, we findfound that aerosol phase state assumption and heterogeneous sulfate production are important 

in aerosol pH predictions for regions with low relative humidity (RH) and high anthropogenic SO2 emissions, respectively. 25 

These factors should be better constrained in model simulations of aerosol pH in the future. Analysis of the modeled temporal 

trend of PM2.5 pH in Beijing over a haze episode revealsed a clear decrease in pH from 5.21 ± 0.988 in clean period to 3.656 

± 0.549 in heavily polluted period. The increased acidity in more polluted conditions is largely due to the formation and 

accumulation of secondary species including sulfuric acid and nitric acid, even though being modified by alkaline species 

(NVCs, NH3). Our result suggests that NO2 oxidation is unlikely to be important for heterogeneous sulfate production in 30 

Beijing haze as the effective pH for NO2 oxidation of S(IV) is at higher pH of ~6.  
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1 Introduction 

The acidity of atmospheric particles plays an essential role in various chemical and environmental processes. Acidified 

dust particles can largely enhance the solubility of transition metals which may act as nutrients in oceanic ecosystems 35 

(Meskhidze et al., 2003), affecting global biogeochemical nutrient cycles (Kanakidou et al., 2018). The dissolved metals can 

also generate reactive oxygen species, causing aerosol toxicity and adverse health effects (Fang et al., 2017). Particle acidity 

can strongly affect gas-particle partitioning of volatile and semi-volatile species such as NH3, HNO3, HCl (Keene et al., 2004; 

Guo et al., 2017a), as well as organic acids and bases (Ahrens et al., 2012). Moreover, particle acidity is linked to aerosol 

chemical reactivity by altering aqueous-phase reaction rates which are important for secondary aerosol formation. Both 40 

laboratory experiments (Gao et al., 2004; Surratt et al., 2007) and field studies (Rengarajan et al., 2011) have demonstrated 

that higher acidity could facilitate  production of secondary organic aerosol (SOA) from oxidation of volatile organic 

compounds (VOCs) due to an acid-catalyzed mechanism. In addition, aerosol acidity also significantly affects reaction 

mechanisms and rates of heterogeneous sulfate production (Seinfeld et al., 2006). As one of the most abundant inorganic 

components in fine particles, sulfate is considered to be a key driver for the severe haze events in China (Cheng et al., 2016; 45 

Wang et al., 2016). Therefore, a thoughtful understanding of aerosol pH variability and its precise prediction are important to 

understand and quantify the formation rates and mechanisms of sulfate in Chinese haze using models, providing insights on 

the outbreak of the haze events.  

However, for nowadays, aerosol pH is poorly constrained due to difficulties in direct measurement techniques (Freedman 

et al., 2019; Keene et al., 1998). Instead, thermodynamic models, such as ISORROPIA II (Fountoukis and Nenes, 2007), 50 

Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) (Zaveri et al., 2008), and Extended Aerosol Inorganics 

Model (E-AIM) (Clegg et al., 2003) are commonly used to calculate aerosol pH (Pye et al., 2020). These models typically 

predict particle deliquescence, gas-particle mass transfer, solid-liquid phase equilibrium, activity coefficients and aerosol water 

content (AWC) (Zaveri et al., 2008; Jia et al., 2018) under observed or modeled meteorological conditions and atmospheric 

chemical compositions. Some of these thermodynamic models have also been implemented in 3D chemical transport models 55 

(CTMs) for representation of aerosol processes. For example, the ISORROPIA II model is incorporated in many 3D models, 

such as the Goddard Earth Observing System with Chemistry model (GEOS-Chem), the Community Multiscale Air Quality 

Modeling System (CMAQ) and the PM-CAMx, while MOSAIC is employed in the Weather Research and Forecasting Model 

coupled with Chemistry (WRF-Chem)(Grell et al., 2005; Fast et al., 2006).  

CTMs are useful tools to understand relevant physicochemical atmospheric processes and to formulate air quality 60 

management strategies. The reliability of particle acidity prediction in CTMs is crucial for aerosol modeling, especially for 

modeling of secondary aerosol formations, and therefore has implications for policy development. Vasilakos et al. (2018) 

demonstrated that pH bias simulated by CMAQ can induce nitrate partitioning bias and thus influences the response of PM2.5 

composition to emission changes in the model. Using GEOS-Chem model with prescribed particle pH values, Shao et al. (2019) 
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investigated the impact of particle pH on heterogeneous sulfate production and found that the model predicts different relative 65 

contributions of sulfate formation pathways to total atmospheric sulfate burden under different pH conditions. Furthermore, a 

recent review paper (Pye et al., 2020) highlighted the critical role of particle pH in model simulations of a variety of 

atmospheric chemical species and/or processes, as aerosol pH directly influences the chemical composition of aerosols as well 

as the reactivities of aerosol components.    

Given the importance of aerosol acidity in secondary aerosol formation and its implications for the outbreak of Beijing 70 

haze, many studies have assessed the acidity of aerosols in northern China using CTMs or offline thermodynamic models 

constrained by observed gas and/or aerosol compositions (Cheng et al., 2016; Wang et al., 2016; Liu et al., 2017; Guo et al., 

2017b; Song et al., 2018; Tan et al., 2018; Ding et al., 2019; Xie et al., 2020; Shao et al., 2019; Pye et al., 2020; Shi et al., 

2019; Tao et al., 2020). Such models predicted a large range of aerosol pH (~3 to ~7) in northern China haze events with no 

general consensus. For example, Cheng et al. (2016) estimated high aerosol pH between 5.4 to 6.2 over the North China Plain 75 

(NCP) using ISORROPIA II in forward (i.e., gas plus aerosol phase measurements as inputs) and reverse mode (i.e., only 

aerosol phase measurements as inputs), and Wang et al. (2016) estimated a near neutral aerosol pH of ~7 over Beijing using 

the same model with a stable state assumption. These two studies proposed that the high aerosol pH was driven by the 

neutralizing effect of high levels of ammonia over northern China, and as a result, NO2 oxidation of dissolved S(IV) was 

suggested to be the dominant heterogeneous sulfate formation pathway. However, not only the conclusion on the role of NO2 80 

oxidation in sulfate production (e.g.,(He et al., 2018; Shao et al., 2019)), but also the predicted aerosol pH during the haze 

events was challenged by later studies (Liu et al., 2017; Ding et al., 2019; Tan et al., 2018). In particular, Liu et al. (2017) and 

Guo et al. (2017b) argued that increasing NH3 does not lead to ambient aerosol pH to near neutral and aerosols should be 

always acidic (pH = 4.2–4.5) over Beijing regardless the level of ammonia using ISORROPIA II with a metastable state 

assumption. Furthermore, Song et al. (2018) pointed out that the high pH values estimated by ISORROPIA II in previous 85 

studies were in fact caused by code errors when the stable state assumption was applied. Song et al. (2018) further calculated 

aerosol pH for winter Beijing of ~4.6 and ~4 on average using ISORROPIA II and E-AIM in forward mode, respectively, 

similar to the results estimated by Liu et al. (2017) and Guo et al. (2017b). Tan et al. (2018) and Ding et al. (2019) also indicated 

similar acidic aerosols with average pH values between 3 and 4.5 in Beijing using ISORROPIA II. Moreover, Shi et al. (2019) 

reported an observationally constrained aerosol pH of 3.4 ± 0.5 for Tianjin using ISORROPIA II.  Using the GEOS-Chem 90 

model, Shao et al. (2019) estimated the mean aerosol pH was 4.3 (ranged from 3.0 to 5.4) for autumn and winter Beijing. 

Using the CAMQ model, Pye et al. (2020) predicted mean aerosol pH of 4.5 ± 0.8 for February Beijing, and an annual mean 

pH of 3.1 ± 1.5 for Tianjin, while Tao et al. (2020) found that the mean aerosol pH was 5.4 in NCP during January of 2013 by 

using WRF-Chem coupled with ISORROPIA II, which is higher than results from the aforementioned studies except that of 

Cheng et al. (2016) and Wang et al. (2016).  95 

WRF-Chem configured with MOSAIC is one of the most extensively used regional air quality models, and has provided 

insights on meteorological and physicochemical processes & mechanisms regarding air pollution issues in China (Huang et 
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al., 2014; Chen et al., 2016; Du et al., 2020; Sha et al., 2019). Pye et al. (2020) indicated that aerosol pH predicted by WRF-

Chem with the MOSAIC thermodynamic scheme is in reasonable agreement with observationally constrained pH estimates 

over the contiguous United States. However, the performance of WRF-Chem configured with MOSAIC on aerosol pH 100 

prediction in China remains rarely reported and evaluated by far. In this study, we used WRF-Chem configured with MOSAIC 

to investigate aerosol pH over China during a few haze episodes (15 October 2014 to 02 November 2014, i.e., in the preceding 

weeks of the Asia-Pacific Economic Cooperation summit period) when extensive observational data arewere available. We 

explored the sensitivity of the modeled aerosol pH to aerosol cation composition, aerosol phase assumption/configuration, 

heterogeneous sulfate productions, etc., compared the modeled results with that estimated using offline ISORROPIA II 105 

constrained by observed and modeled gas-aerosol compositions, and discussed the spatiotemporal variability of the predicted 

aerosol pH over China during the study period. The results should provide insights into the predictability of aerosol pH using 

WRF-Chem and improve the understanding of aerosol pH variability in Beijing and other regions in China.   

2 Methodology 

2.1 Model configuration 110 

2.1.1 The WRF-Chem model 

In this study, the version (v4.0) of WRF-Chem updated by the University of Science and Technology of China (USTC 

version of WRF-Chem) iswas used. Compared to the publicly released version of WRF-Chem, the USTC version includes 

some additional capabilities such as contribution analysis of aerosol related processes and improved turbulent mixing of 

aerosols (Zhao et al., 2013a; Zhao et al., 2013b; Du et al., 2020). The model configurations used in this study arewere 115 

summarized in Table 1. The Carbon Bond Mechanism version Z (CBMZ) (Zaveri and Peters, 1999) and the Model for 

Simulating Aerosol Interactions and Chemistry (MOSAIC) (Zaveri et al., 2008) with eight bins arewere used as gas-phase and 

aerosol chemistry modules, respectively. The Noah land surface model (Chen and Dudhia, 2001) and the Yonsei University 

(YSU) planetary boundary scheme (Hong et al., 2006) arewere used to represent land surface processes and boundary layer 

turbulent mixing, respectively. The Rapid Radiative Transfer Model for General Circulation (RRTMG) (Iacono et al., 2008) 120 

iswas used to calculate the longwave and shortwave radiations.  

2.1.2 MOSAIC 

MOSAIC is an aerosol model with sectional approach to represent aerosol size distribution. It includes treatments for 

simulating aerosol physical and chemical processes such as nucleation, coagulation, gas-particle partitioning and 

heterogeneous chemistry. The chemical species treated by MOSAIC include sulfate, nitrate, chloride, methanesulfonate, 125 
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carbonate, ammonium, sodium, calcium, mineral dust, black carbon, organic mass, and liquid water. Potassium and magnesium 

are represented by equivalent amounts of sodium, while other unidentified inorganic species are gathered as “other inorganic 

mass” (OIN). The gas-phase species comprising H2SO4, MSA, HNO3, HCl, and NH3 are capable of partitioning into the 

particulate phase. MOSAIC consists of three submodules pertinent to the calculation of size-resolved aerosol pH as described 

below.  130 

The Multicomponent Taylor Expansion Method (MTEM) is used to estimate the mean activity coefficients of various 

inorganic electrolytes in multicomponent solutions based on its values in pure binary solutions of all the individual electrolytes 

present in the solution (Zaveri et al., 2005b). Zdanovskii-Stokes-Robinson (ZSR) mixing rule (Zdanovskii, 1948; Stokes and 

Robinson, 1966) is applied for calculation of aerosol water content. Most of the MTEM and ZSR parameters are derived from 

the comprehensive Pitzer-Simonson-Clegg (Pitzer and Simonson, 1986; Clegg et al., 1992) model at 298.15 K for self-135 

consistency.  

The Multicomponent Equilibrium Solver for Aerosols (MESA) (Zaveri et al., 2005a) uses a pseudo-transient continuation 

method to solve the solid-liquid phase equilibrium reactions expressed as pseudo-transient precipitation and dissolution 

reactions. The equilibrium solution is determined by integrating the resulting stiff nonlinear ordinary differential equations 

until the system reaches the steady state. 140 

The gas-particle partitioning module ASTEM (Adaptive Step Time-split Euler Method) is coupled with the 

thermodynamic module MESA-MTEM to solve the mass transfer equations (Zaveri et al., 2008). To reduce the stiffness, it 

first separates the non-volatile from semi-volatile gases in the numerical solver. For non-volatile gases (H2SO4 and MSA), 

ASTEM analytically integrates the condensation for all size bins, while for semi-volatile gases (HNO3, HCl and NH3), it 

numerically integrates condensation and evaporation for all size bins. Since the gas-particle mass transfer rates are strongly 145 

affected by the phase state of particles, different procedures are selected in ASTEM for completely solid, completely liquid, 

and mixed-phase particles. 

In completely liquid or mixed-phase particles, the H+ ion molality (mH+) is needed for mass transfer calculations. In order 

to determine mH+, two domains, i.e., sulfate rich and poor domains, are defined by sulfate ratio, Xt. 

𝑋𝑡 =  
𝐶𝑁𝐻4

+ + 𝐶𝑁𝑎+ + 2𝐶𝐶𝑎2+

𝐶𝑆𝑈𝐿𝐹 + 0.5𝐶𝐶𝐻3𝑆𝑂3
−

(1) 150 

Where C represents specie concentration in liquid phase, and 𝐶𝑆𝑈𝐿𝐹 =  𝐶𝑆𝑂4
2−+𝐶𝐻𝑆𝑂4

− . In the sulfate-rich domain (i.e., Xt < 2), 

the liquid phase tends to absorb negligible HNO3 and HCl due to the high acidity, thereby suppressing the oscillation behavior 

of H+ concentration during numerical integration. In this case, the equilibrium mH+ is calculated by explicitly solving the 

partial dissociation of the bisulfate ion together with the electroneutrality equation (Zaveri et al., 2005b). In the sulfate-poor 

domain (i.e., Xt ≥ 2), the use of equilibrium mH+ will cause oscillations in the numerical solution associated with the 155 

condensation and/or evaporation of HNO3, HCl and NH3. Therefore, a new concept of dynamic mH+ was introduced, which 

is a function of equilibrium constants, mass transfer coefficients, and the gas and particle-phase concentrations of all the related 
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species (Zaveri et al., 2008). In this approach, the surface equilibrium equations and acid-base coupled condensation 

approximation are solved simultaneously to determine the dynamic mH+ in each size bin. 

2.2 pH calculation 160 

The pH is defined as the negative logarithm of the hydrogen ion activity in an aqueous solution, following the 

recommendation by the International Union of Pure and Applied Chemistry (IUPAC).  

pH = −𝑙𝑜𝑔10𝑎𝐻+ = −𝑙𝑜𝑔10𝛾𝐻+𝐻𝑎𝑞
+ (2) 

 

where 𝑎𝐻+is the activity of hydrogen ion in aqueous solution on a molality basis, 𝛾𝐻+ is the hydrogen ion activity coefficient 165 

(in this study assumed to be unity) and 𝐻𝑎𝑞
+  is the hydrogen ion molality in particle liquid water (mole kg-1, moles of H+ ions 

per kg of solvent). As MOSAIC outputs size-resolved hydrogen ion molality, the pH of PM2.5 in the model was calculated 

using the following equation: 

𝑝𝐻𝑝𝑚2.5 =  
∑ 𝑚𝐻𝑖

+
𝑖 × 𝑊𝑖

∑ 𝑊𝑖𝑖

(3) 

where 𝑚𝐻𝑖
+ (mole kg-1) is the hydrogen ion molality in size bin i, and 𝑊𝑖 (kg m-3) is the aerosol water content in that particular 170 

size bin. There are 6 size bins for PM2.5. 

2.3 Experimental design 

In this study, simulations are were performed at 36 km horizontal resolution with 1389 (west-east) × 1498 (south-north) 

grid cells covering the entire China as shown in Fig. S1. The simulation period iswas from 15 October 2014 to 02 November 

2014 with the first 3 days used as model spin-up. This period iswas chosen because severe haze events occurred in Beijing and 175 

extensive observational data arewere available to constrain the model and evaluate the results. Initial and lateral boundary 

conditions for meteorological variables arewere derived from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) reanalysis data with a 0.703° × ~0.702° horizontal resolution that are updated every 6 h (ERA-Interim dataset). 

The modeled u and v component wind, air temperature, and water vapor mixing ratio at layers above the planetary boundary 

layer (PBL) are nudged towards the reanalysis data with a 6 h timescale (Stauffer and Seaman, 1990; Seaman et al., 1995). 180 

The modeled winds at 850 hPa and temperature at 2m are compared with the ERA5 reanalysis dataset (Fig. S2), which show 

that the model can reproduce these basic meteorological fields with the spatial correlation coefficient of 0.98 and 0.99, 

respectively. The chemical initial and boundary conditions arewere provided by a quasi-global WRF-Chem simulation 

configured as described in Zhao et al. (2013a). Anthropogenic emissions arewere obtained from the Multi-resolution Emission 

Inventory for China (MEIC) at a 0.1° × 0.1° horizontal resolution for the year 2015 (Li et al., 2017a; Li et al., 2017b). For 185 

emissions outside of China, the Hemispheric Transport of Air Pollution version-2 (HTAPv2) at 0.1° × 0.1° resolution for the 
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year 2010 iswas used (Janssens-Maenhout et al., 2015). The Goddard Chemistry Aerosol Radiation and Transport (GOCART) 

dust emission scheme (Ginoux et al., 2001) is used to simulate natural dust emission fluxes, and the emitted dust particles are 

distributed into MOSAIC aerosol size bins based on the physics of scale-invariant fragmentation of brittle materials derived 

by Kok (2011). More details about the dust emission scheme coupled with MOSAIC aerosol scheme in WRF-Chem can be 190 

found in Zhao et al. (2010; 2013a). It is worth noting that dust and OIN are treated as two separate aerosol species in the USTC 

version of WRF-Chem. 

All experiments conducted arewere listed in Table 2. In addition to a default WRF-Chem simulation (named as the ORIG 

scenario), we also conducted simulations to investigate the sensitivities of the modeled pH to variables including aerosol 

concentrations of nonvolatile cations (NVCs, such as Na+, K+, Ca2+, Mg2+), semi-volatile species (e.g., ammonia and chloride), 195 

as well as aerosol phase state assumptions and heterogeneous sulfate production. These sensitivity experiments are were named 

as CTL1, CTL2, CTL3, CTL3meta, CTL3het_NoIs, and CTL3het_Is, respectively. 

NVCs can strongly modulate aerosol acidity (Vasilakos et al., 2018; Kakavas et al., 2021). However, the default WRF-

Chem significantly underestimatesd NVCs concentrations as compared with observations (Fig. S3a-b3a and Fig. S3b). Note 

Mg2+ and K+ are not included in the model but regard as charge-equivalent Na+, therefore the simulated Na+ is compared to 200 

the observed sum of Na+, K+ and Mg2+, while simulated Ca2+ is directly compared with observed Ca2+. As seen in Fig. S3a and 

S3b, Ca2+ and Na+ are significantly underestimated in the ORIG simulation by ~96.8% and ~97.6%, respectively, because in 

ORIG simulation, the only source of Ca2+ is scaled to dust emissions with a mass fraction of 1.2% and Na+ is only from seasalt 

emissions. These results suggest missing cation emission sources in model, which could lead to an underestimation in pH. The 

CTL1 experiment iswas thus conducted with modified cation speciation profiles constrained by observations. To better match 205 

the observed NVCs concentrations, we set the mass of Ca2+ was 7.5% of dust and 10% of OIN, Mg2+ was 0.8% of dust, and 

Na+ and K+ from OIN were 13% and 5%, respectively. As a result, the simulated NVCs become more consistent with the 

observations, with a normalized mean bias (NMB) ≤ ± 5%. Note that K+ and Mg2+ were converted to charge-equivalent Na+ 

amounts since MOSAIC does not explicitly treat K+ and Mg2+.  

Ammonia is one of the most important atmospheric alkaline species, and considered as a dominant factor causing higher 210 

aerosol pH in China than in the United States (Guo et al., 2017b; Ding et al., 2019). Previous studies indicated that NH3 may 

be underestimated in current bottom-up emission inventories and using the MEIC inventory underestimated NH3 emissions by 

about 40% for the north China (Zhang et al., 2018; Wang et al., 2018; Kong et al., 2019). In experiment CTL2, the NH3 

emissions arewere multiplied by 2 and the others are were the same as CTL1. Figure S3c indicates that the modeled Cl- 

concentration is almost zero in ORIG simulation because there is only seasalt source of chloride and anthropogenic chloride 215 

emissions are not included. On top of CTL2 simulation, we also conducted a chloride sensitivity simulation (i.e., CTL3) with 

additional emissions for chloride (assuming a 15% mass contribution from OIN) by increasing chloride emissions to improve 

the model prediction of aerosol chloride concentrations compared with observations. Spatial distributions of emissions of 

NVCs, NH3, and Cl- from default configuration and its corresponding sensitivity experiment can be found in Fig. S4. 
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Ambient aerosol phase state is uncertain and difficult to constrain experimentally or theoretically due to difficulties in 220 

obtaining the efflorescence relative humidity (RH) for multicomponent salts. In general, aerosol can be treated as in metastable 

or stable state, where metastable means the aerosol solution is supersaturated and stable means crystallization of salts could 

occur once the solution reaches saturation. In MOSAIC, a flag called “hysteresis water content” (Whyst) is transported to 

determine whether the particles at a grid point are on the stable or the metastable branch of the hysteresis curve. This is the 

default phase state determination method in WRFE-Chem. To explore the effect of phase state determinations on the predicted 225 

aerosol pH, on top of CTL3 we performed CTL3meta simulation in which the aerosol phase iswas fixed as metastable. 

The last, Aaerosol pH can also be influenced by heterogeneous sulfate production foras which is the main acid component 

of aerosol (Tilgner et al., 2021). We incorporateed heterogeneous S(IV) oxidations in aerosol water into MOSAIC chemical 

mechanism using the same reaction parameterizations in Shao et al. (2019). The incorporated heterogeneous reactions include 

reactions of dissolved S(IV) with H2O2, O3, NO2 and O2 catalyzed by transition metal ions (Table S1). Under this circumstance, 230 

we also tested the effects of ionic strength on aerosol pH prediction as it influences heterogeneous sulfate production (Cheng 

et al., 2016; Liu et al., 2020). These two additional simulations on top of CTL3 arewere named as CTL3het_NoIs and 

CTL3het_Is, with the latter explicitly involvesed the effects of ionic strength on H2O2 and TMI-catalyzed S(IV) oxidations. In 

particular, for heterogeneous S(IV) oxidations, the first-order rate constant (k, s-1) for the loss of gaseous species on aerosols 

iswas calculated by as follows (Jacob, 2000): 235 

k = (
𝑅𝑝

𝐷𝑔

+
4

𝜈𝛾
)

−1

𝑆𝑝 (4) 

where 𝑅𝑝 is the radius of aerosol (cm), 𝐷𝑔 is the gas-phase molecular diffusion coefficient (cm2 s-1), ν is the mean molecular 

speed (cm s-1), γ is the uptake coefficient of SO2 on aerosols (dimensionless), and 𝑆𝑝 is the aerosol surface area per unit volume 

of air (cm2 cm-3). The parameter γ is obtained for each heterogeneous pathways using a similar method as Shao et al. (2019): 

γ = [
1

𝛼
+

𝜈

4𝐾∗𝑅𝑇√𝐷𝑎𝐾𝑐ℎ𝑒𝑚

∙
1

𝑓(𝑞)
]

−1

(5) 240 

where α is the mass accommodation coefficient (dimensionless), 𝐾∗ is the effective Henry's law constant (M atm-1), R is the 

universal gas constant (L atm mol-1 K-1), T is air temperature (K), 𝐷𝑎 is the aqueous phase molecular diffusion coefficient (cm2 

s-1),  𝐾𝑐ℎ𝑒𝑚 is the first-order chemical loss rate constant in the liquid phase (s-1), and 𝑓(𝑞) is given by: 

𝑓(𝑞) = coth 𝑞 −
1

𝑞
(6) 

𝑞 =  𝑅𝑝 (
𝑘𝑐ℎ𝑒𝑚

𝐷𝑎

)

1
2

(7) 245 
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2.4 Observations 

The ground observations of inorganic components of PM2.5 (SO4
2-, NO3

-, NH4
+, Ca2+, K+, Na+, Mg2+, Cl-) as well as the 

observed temperature and RH data arewere obtained from the HOPE-J3A (Haze Observation Project Especially for Jing–Jin–

Ji Area) field campaign located at the campus of the University of the Chinese Academy of Sciences (40.41° N, 116.68° E, 

around 20 m from the ground) which is around 60 km northeast of downtown Beijing (He et al., 2018; Yang et al., 2018; Chen 250 

et al., 2015; Zhang et al., 2017). The aerosol composition data arewere used to evaluate the model’s prediction on NVCs and 

Cl-, and these data along with the observed temperature and RH arewere further used as inputs to calculate PM2.5 pH using the 

ISORROPIA II model (in the forward and metastable mode). As gaseous NH3 and HNO3 observations are not available, we 

use aerosol NO3
- only as NO3 input and estimated gaseous NH3 values using the empirical equation [NH3] (nmol mol-1) = 0.34

×[NOx] (nmol mol-1) + 0.63 following He et al. (2018). In order to assess the effects of uncertainties in NH3 concentration on 255 

aerosol pH predictions, we also run ISORROPIA II with ±10% fluctuations in NH3 concentration and find little changes (i.e., 

+0.03 and -0.04 pH unit) can be induced. The ISORROPIA II model results arewere treated as observational constrained PM2.5 

pH and compared with that from the WRF-Chem simulations.                  

3 Results 

3.1 Spatial variability of simulated PM2.5 pH  260 

Figure 1 shows the spatial distribution of the WRF-Chem predicted surface PM2.5 pH over China averaged from 18 

October 2014 to 02 November 2014 under default WRF-Chem configuration and a set of sensitivity experiments as listed in 

Table 2. The PM2.5 pH iswas calculated by using weighted average aerosol water content as described in Sect. 2.2. The whole 

area of China iswas divided into six sub-regions (Fig. 1a) including the Taklimakan Desert (TD), the Gobi Desert (GD), the 

Northeast Plain (NEP), the North China Plain (NCP), the Yangtze River plain (YR) and Southern China (SC) to review the 265 

spatial variability of the modeled pH.  

In ORIG simulation (Fig. 1b), WRF-Chem predictsed PM2.5 pH with distinct spatial patterns, spanning ~0–7 pH units 

over China. The highest mean PM2.5 pH is predicted over the GD (~4.218 ± 2.23) and TD (~5.71 ± 1.44), where nonvolatile 

cations  (e.g., Ca2+) from mineral dust is abundant, and the predicted pH is consistent with CMAQ and GEOS-Chem 

simulations of fine-mode aerosol pH (approximately 4–6) downwind of the deserts (Pye et al., 2020). Notably, the PM2.5 pH 270 

shows a declined trend from the north towards the south, with mean pH values over NEP, NCP, YR and SC are 3.02.95 ± 

0.878, 2.329 ± 0.439, 1.74 ± 0.438 and 1.766 ± 0.329, respectively. Though the spatial features of PM2.5 pH predicted by the 

default WRF-Chem model are similar with those from other chemical transport models (e.g., (Shao et al., 2019; Pye et al., 

2020)), WRF-Chem generally tendsed to predict lower aerosol pH (0.8–3.6) over most regions of southern and Central China 
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compared to other studies (1.3–5). For example, WRF-Chem predictsed an averaged PM2.5 pH of (2.3 ± 1.3) for Beijing during 275 

the modeling period, which is 1–2 pH units lower than those reported by other studies using offline ISORROPIA II model 

constrained by observed aerosol and/or gas compositions (~3–4.5) for fall and winter Beijing (Tan et al., 2018; Song et al., 

2018; He et al., 2018), and ~2 units lower than the GEOS-Chem predictions within the same period (Shao et al., 2019). The 

WRF-Chem model predicted PM2.5 pH of ~2.2 in Tianjing is also lower than the values reported by Shi et al. (2019) who 

estimated the pH of PM2.5 in Tianjing is ~3.4 using ISORROPIA II and ~3.1 using CMAQ. For a southern city, Guangzhou, 280 

WRF-Chem predictsed the pH of PM2.5 is ~1.2 ± 1.0, lower than the estimate from Jia et al. (2018) (~2.5–2.8) but who reported 

values for July and used different models (ISORROPIA II, E-AIM IV and AIOMFAC).  

To show the effects of the above-mentioned influencing factors on the predicted PM2.5 pH, the differences in PM2.5 pH 

between sensitivity runs arewere also displayed in Fig. 2. Compared to the ORIG run, the modeled PM2.5 pH in the CTL1 run 

shows a ubiquitous increase all over China owing to the increased concentrations of NVCs in PM2.5 (Fig. 2a). In particular, the 285 

PM2.5 pH changes arewere more prominent over the NEP and NCP regions, where PM2.5 pH increasesd by more than 0.9 pH 

units on average (Fig. S52). For regions near the deserts, i.e., GD and TD, PM2.5 pH arewere increased by 0.8 and 0.7 pH units, 

respectively. In comparison, relatively small increases (~0.765 and ~0.547) in PM2.5 pH arewere noted over YR and SC where 

aerosol iswas relatively acidic in the ORIG run (Fig. S52).  

When NH3 emissions arewere doubled (CTL2 scenario), the predicted PM2.5 pH displaysed diverse degrees of elevation 290 

(Fig. 2b), increasesd by 0.2–0.8 for most areas of China except for TD and GD where pH staysed nearly constant (Fig. 2b and 

Fig. S52). The rise in mean PM2.5 pH iswas comparable (0.3–0.4) among NEP, NCP, YR and SC. In addition, minimal values 

of PM2.5 pH showed slight increases (0.2–0.6) while the maximum values remained almost unchanged (Fig. S5). 

For the CTL3 scenario that includesd extra chloride emissions, the predicted PM2.5 pH indicatesd negligible decreases 

compared to CTL2 (Fig. 2c), similar to the findings of Tao et al. (2020). Due to the low sensitivity of simulated aerosol pH to 295 

Cl- concentration, the result of CTL3 scenario and the potential effect of Cl- is not further discussed. However, it is noteworthy 

that WRF-Chem underestimatesd Cl- concentrations compared to the observations (Fig. S3c). In addition, Cl- is the precursor 

of reactive chloride species (e.g., Cl, ClNO2, HOCl) that are important in atmospheric oxidation capacity (Wang et al., 2019; 

Wang et al., 2020b). For example, reactive chloride not only influences ozone and HOx concentrations, but also directly 

participates in atmospheric nitrate and sulfate production as oxidants (Wang et al., 2019; Wang et al., 2020b). Recent studies 300 

(Gunthe et al., 2021; Chen et al., 2022) found that chloride is also important in aerosol water uptake, playing an important role 

in the development of severe haze events. Therefore, future research should be devoted to the development of anthropogenic 

and natural chloride emissions to improve the prediction.  

With regard to CTL3meta scenario which specifiesd the aerosol to be in metastable state indiscriminately, significant 

decreases (~1.2–1.8) in PM2.5 pH compared to CTL3 arewere predicted over northwestern China and Tibet while the changes 305 

arewere smaller elsewhere (Fig. 2d). In particular,  PM2.5 pH decreasesd by ~1.987 for TD and ~1.13 for GD, causing  reducing 
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aerosol pH values down to 4.8 and 4.0, respectively, whereas the metastable state assumption hasd little impacts on the 

predicted PM2.5 pH in the NCP, YR and SC regions.  

In the CTL3het_NoIs scenario, additional sulfate production (on top of CTL3) resultsed in noticeable decrease of PM2.5 

pH over eastern and central China (Fig. 3a) where gas precursors (e.g., SO2) from anthropogenic emissions are high (Fig. S6). 310 

The largest decrease in the predicted mean PM2.5 pH occursoccurred in the NCP, by about 0.9 pH unit, compared with that of 

0.7 pH unit in YR, 0.325 pH unit in SC and 0.217 pH unit in NEP (Fig. S52). However, PM2.5 pH changes becomebecame 

negligible in TD and GD, which may be attributed to their low SO2 emissions and low abundance of AWC that limit local 

heterogeneous production of sulfate. PM2.5 pH changes in CTL3het_Is scenario displayed spatial patterns similar to that of 

CTL3het_NoIs scenario but with smaller degree of decreases in PM2.5 pH (Fig. 3b).  315 

3.2 Temporal variation of PM2.5 pH in haze events 

During the study period, several haze episodes occurred over Beijing and there were several complete evolution cycles 

of pollution level from very clean to severely polluted conditions. Over this period, time slots arewere referred to as “clean”, 

“light pollution”, “moderate pollution” and “heavy pollution” days according to different levels of PM2.5 mass concentrations 

of 0–75, 75–115, 115–150, and >150 μg m-3, respectively. To further investigate the evolution of PM2.5 pH during a haze cycle, 320 

time series of the predicted PM2.5 pH values over Beijing during the study period are were shown in Fig. 4. The average values 

and ranges of PM2.5 pH during the entire period, as well as the pollution levels arewere also listed in Table S2. 

 All the simulation results exhibit large but similar temporal variations in PM2.5 pH during the study period, typically 

covering extreme acidic (<2) to alkaline (>7) pH levels (Fig. 4). As shown in Table S2, the largest pH range (0.64–7.63) iswas 

predicted by the CTL3het_NoIs scenario, and the smallest pH range fluctuating between 2.109 and 7.54 iswas found in the 325 

CTL2 scenario. The simulated pH from other scenarios variesd by approximately 6 pH units. The large variations of PM2.5 pH 

during haze episodes are consistent with the results from other studies. For example, He et al. (2018) utilized ISORROPIA II 

to estimate PM2.5 pH during Beijing winter haze and found a similarly large pH range of 3.4–7.6 when assuming metastable 

aerosol state. Gao et al. (2020) calculated aerosol pH in Tianjin using ISORROPIA II and reported that PM2.5 pH ranged from 

−0.08 to 13.75, in which pH varied more severely.           330 

On the other hand, Ssimilar temporal patterns of PM2.5 pH arewere found in all scenarios, i.e., aerosols becomebecame 

more acidic at higher PM2.5 levels (Fig. 4 and Table S2). During clean period, PM2.5 pH spansned a wide range, with maximum 

pH values above 7 and minimum pH values below 2 (for ORIG, CTL1, CTL3het_NoIs) and below 2.5 (but above 2, for CTL2, 

CTL3, CTL3meta, CTL3het_Is). For light pollution period, PM2.5 pH exhibitsed a similar range as in the clean period, but with 

a lower mean value. However, under moderate and heavy pollution conditions, PM2.5 pH iswas concentrated in a narrow range, 335 

varying within 1.5 pH units and with the most acidic aerosols (with mean pH values mostly between 1.5 and 3). These findings 

are consistent with those of Ding et al. (2019), who employed ISORROPIA II to calculate PM2.5 pH in Beijing for four seasons 

and found that the highest PM2.5 pH appeared on clean days ranging from 2 to 7, followed by polluted and heavily polluted 



12 

 

days for all seasons except winter. Analysis in Gao et al. (2020) also showed that the range of pH was more confined with 

aggravation of air pollution.  340 

In Fig. 4, we also plotted the offline model results of PM2.5 pH (termed as pH-obs) from ISORROPIA II (forward mode 

and metastable state) constrained by observed PM2.5 compositions, temperature and RH. As gaseous NH3 observations were 

not available, so we estimated the values using an empirical equation following He et al. (2018). The observed PM2.5 

compositions arewere in coarse resolution (12 or 24 hours), so that the pH-obs results arewere also 12 or 24 hour averages. As 

shown in Fig. 4, pH-obs in general variesd similarly to those predicted by WRF-Chem, but with higher absolute values. The 345 

default WRF-Chem (ORIG scenario) showsed the maximum deviation (up to 2.22 pH units on average) from pH-obs. With 

the modifications of NVCs and NH3 emissions, CTL2 scenario efficiently improvesd the discrepancies between WRF-Chem 

predictions and pH-obs (the mean bias iswas reduced from 2.2 pH unit to 0.62).  Similar discrepancies (~0.8 pH units) arewere 

found under CTL3meta and CTL3het_Is scenarios. The differences between other scenarios (i.e., CTL3 and CTL3het_NoIs) 

and pH-obs arewere larger than 1.2 pH units. 350 

In addition, the responses of the predicted PM2.5 pH to varying influencing factors under different pollution levels differed. 

When NVCs are increased, the aerosol pH increases by 0.9 on average with the largest increase occurring during clean periods, 

This is likely because of the higher fraction of NVCs from primary aerosol in addition to the insufficient neutralization by acid 

species due to their low concentrations from secondary formation compared to polluted periods. In contrast, when NH3 

emissions are doubled, the aerosol pH increase is smaller (0.4 pH units) compared to CTL1 simulation, which can be explained 355 

by the higher original pH and the semi-volatile nature of NH3. With higher NH3 emissions, the simulated pH increases more 

in more polluted periods. This is because aerosol pH is lower on more polluted conditions, which promotes more NH3 shifting 

to aerosol phase to consume H+, leading to increases in pH.The average pH of Beijing PM2.5 was increased by 0.9 in CTL1 

run compared to ORIG run, with the largest increase (~1.4) found in clean period and smaller increases (~0.6) occurring in all 

other pollution periods. In contrast, the predicted pH increase (~0.36) was the smallest for the clean periods when NH3 360 

emissions were doubled (the CTL2 scenario), followed by light pollution (~0.92), moderate pollution (~1.11) and heavy 

pollution (~1.22) periods. Both increasing Cl- emission (CTL3 scenario) and changing phase state assumption (CTL3meta 

scenario) leadled to negligible effectsimpact on pH in Beijing among all periods. For the two additional scenarios that 

incorporatesd heterogeneous S(IV) reactions, when considering ionic strength effects (CTL3het_Is scenario) little changes in 

the predicted PM2.5 pH arewere seen, but more pronounced changes arewere seen when ionic strength effects arewere not taken 365 

into account (CTL3het_NoIs scenario). The latter case leadled to the decreases in pH by 0.7 and 1.3 units for moderate and 

heavy pollution periods, respectively, due to increased heterogeneous production of sulfateand increases by 0.3 units for clean 

period. AWC generally tracks the pattern of RH, with lowest water amount appearing during clean periods. Among all 

scenarios, ORIG predicts the lowest AWC. High abundance of AWC is seen in CTL3meta since metastable assumption 

normally predicts higher amount of water. The increased concentrations of sulfate in CTL3het_NoIs would enhance aerosol 370 
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water uptake, resulting in more AWC. A detailed discussion of the correlation of AWC and pH during haze cycle can be 

found in Sect. 4.2. 

4 Discussion 

        Overall, the modeled PM2.5 pH over China by all experiments displaysed a clear spatial pattern, being more acidic in 

Southern China while neutral in northwestern China. This spatial pattern is mainly controlled by dust emissions from the desert 375 

regions in northwestern China. In addition, the PM2.5 pH appearsed to be the most sensitive to the abundance of alkaline species 

(i.e., NVCs and NH3). In addition, fFor NCP where experienced severe and frequent haze events occur, PM2.5 pH is was also 

very sensitive to the magnitude of heterogeneous sulfate production; while for the TD and GD regions, the phase state 

assumption appearsed to be important. In the discussions as follows, we first analyzed the sensitivity of PM2.5 pH to influencing 

factors such as, NVCs emission, NH3 emission, and etc., and then focus on as well as the evolution of PM2.5 pH in a haze 380 

development cycle in Beijing. 

4.1 Sensitivity of the PM2.5 pH spatial variability to influencing factors 

4.1.1 The influence of NVCs  

Aerosol composition (e.g., shifting in the relative fractions of anions versus cations) is known to influence its pH (Tao 

and Murphy, 2019; Lawal et al., 2018; Ding et al., 2019). NVCs are the alkaline components of aerosol which can neutralize 385 

sulfuric acid irreversibly and impact aerosol water amount through its effects on aerosol composition which regulates aerosol 

hygroscopicity, thereby influencinge aerosol pH both directly and indirectly (Guo et al., 2018a; Vasilakos et al., 2018; Kakavas 

et al., 2021). 

In the ORIG simulation, the model significantly underestimated the observed Ca2+ and Na+ concentrations in Beijing (Fig. 

S3a and S3b). Note Mg2+ and K+ are not included in the model but regarded as charge-equivalent Na+, therefore the simulated 390 

Na+ was compared to the observed sum of Na+, K+ and Mg2+, while simulated Ca2+ was directly compared with observed Ca2+. 

As seen in Fig. S3a and S3b, Ca2+ and Na+ were significantly underestimated in the ORIG simulation by ~96.8% and ~97.6%, 

respectively, suggesting missing cation emission sources in model, which could lead to an underestimation in pH. To improve 

the model’s performance in NVCs prediction, in the CTL1 run we modified the cation emission profile as described in Sect.  

2.3. As a result, the simulated NVCs became more consistent with the observations, with a normalized mean bias (NMB) ≤ ± 395 

5%.  

Compared to the ORIG simulation, CTL1 predictsed higher PM2.5 pH almost everywhere with varying degrees as 

illustrated in Sect. 3.1. This is mainly due to the increased aerosol NVCs. However, in areas with high NVCs emissions (e.g. 

TD, GD; Fig. S4b), the increase in pH is not prominent (Fig. 2a) probably because in such regions the acidic species are already 
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neutralized by NVCs which are alkaline. In Fig. 5a, we plotted the changes in PM2.5 pH in response to the changed aerosol 400 

NVCs as a function of the pH values from the ORIG simulation. The data arewere categorized in six sub-regions as indicate 

in Fig. 1a. As shown in Fig. 5a, the response of PM2.5 pH to elevated NVCs displays a saddle-shaped curve. In all, for regions 

(e.g., NEP) with moderate acidic aerosol (i.e., pH = ~3–4) predicted by ORIG, their pH increased the most in response to 

elevated NVCs, indicating a large sensitivity of the aerosol pH to NVCs. While for regions with very acidic (e.g., in SC, pH  

~1) or nearly neutral (e.g., in the central part of GD) aerosol pH, the response to elevated NVCs arewere minimalum. This 405 

saddle-shaped curve response can be explained as follows. For aerosols with nearly neutral pH, they already contained high 

abundance of alkaline species (i.e., NVCs and/or ammonium), and addition of NVCs won’t change their NVCs significantly. 

What is more, addition of NVCs may facilitate NH3 partitioning to the gas-phase, lowering pH.  Further, carbonate could play 

a buffer role in keeping aerosol pH values from getting too high. As a result, little to no changes in pH should be expected. On 

the other hand, for very acidic aerosols with PM2.5 pH < 2, the amounts of NVCs increase cannot reduce H+ effectively due to 410 

excessive acids which may partition more to the aerosol phase to neutralize NVCs, and thus only exertsed a small influence 

on aerosol pH. While for aerosols in intermediate pH ranges, there arewere neither sufficient acidic species to neutralize the 

elevated alkaline NVCs, nor enough NVCs to buffer the added amount, so that the response iswas large. This effect iswas the 

largest for aerosols with pH around 3.  

It is also noteworthy that, in this study the modified NVCs emission profiles arewere only constrained by observations in 415 

Beijing (located in the center of NCP) for the purpose of sensitivity test. This may be one of the reasons why the responses of 

PM2.5 pH to elevated NVCs arewere the most in NCP and NEP which are closely located and influenced by the same dust 

emission sources. Nevertheless a more accurate NVCs emission inventory needs to be addressed in future model developments 

given the sensitivity of the modeled pH to the abundance of aerosol NVCs.   

4.1.2 Sensitivity to NH3 emissions 420 

        In addition to Ca2+ and Na+ (i.e., the NVCs) abundances, NH3 is also an important alkaline component and plays essential 

role in aerosol pH by neutralizing acidic components (H2SO4 and HNO3) to form particulate sulfate and nitrate and thus driving 

NH3 towards to the particle phase (Wang et al., 2020a; Zheng et al., 2020; Zhang et al., 2021). But the NH3 emission inventory 

used in WRF-Chem (MEIC) was suggested to be underestimated in China (Kong et al., 2019; Li et al., 2021). Therefore, CTL2 

was performed to investigate the sensitivity of the modeled PM2.5 pH to NH3 emissions. After doubling NH3 emissions, the 425 

response in PM2.5 pH iswas not as large as that to NVCs. This is somewhat expected as in comparison with NH3, NVCs can 

also neutralize acidic components but with a greater preference due to their low volatility. As a result, in regions close to the 

dust sources (i.e., in the northwest) or affected by dust outflows, the relatively high pH and sufficient NVCs (Fig. S4b) tend to 

prevent the partitioning of NH3 to aerosols, leading to limited response in PM2.5 pH to NH3 variation. As shown in Fig. 2b, in 

TD and GD, PM2.5 pH arewere increased negligibly and even somewhat decreased. While for regions with relatively low 430 
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aerosol pH (e.g., NCP, YR), more NH3 can be partitioned to the aerosol phase to consume H+, increasing pH. This is clearly 

seen in Fig. 5b where increases in PM2.5 pH due to elevated NH3 emissions arewere larger for more acidic aerosols. These 

results agree well with previous studies which have shown that pH responds nonlinearly to the changes in NH3 emissions 

(Wang et al., 2020a; Ding et al., 2019; Liu et al., 2017) . 

4.1.3 Sensitivity to aerosol phase state assumption 435 

In chemical transport models, the history of the phase state of atmospheric aerosols cannot be easily tracked as aerosols 

move and mix quickly between different grid points due to turbulent transport (Zaveri et al., 2008). For this reason, it is 

challenging for models to determine whether the mixed aerosols follow the efflorescence branch (i.e., metastable state) or the 

deliquesced branch (i.e., stable state). When aerosols with different hydration histories and phase states mix together, the 

resulting particles in a given size bin must all be placed either on the stable or the metastable branch of the hysteresis curve as 440 

the aerosol size distribution at a grid point is represented by a single set of size bins.  In MOSAIC, the phase state of particles 

in different size bins can be different as the model determines whether the particles in a given size bin are on the stable or the 

metastable branch using the Whyst parameter (Zaveri et al., 2008). In comparison, many previous studies investigated aerosol 

pH during Beijing haze events by assuming the aerosols are in metastable states, which is regarded as a reasonable assumption 

for high RH (> 50%) conditions (Liu et al., 2017; Guo et al., 2017b; Guo et al., 2018b; Ding et al., 2019). ISORROPIA II 445 

adopted in some CTMs (e.g., GEOS-Chem, CMAQ) also applies the metastable state assumption (Shao et al., 2019).  

As shown in Fig. 5c and Fig. 2d, after fixing aerosol phase to metastable, the response (decrease) of the modeled PM2.5 

pH iswas larger for regions with aerosols that arewere less acidic, especially for GD, TD, and central Tibet. These regions 

arewere also in general with low RH (Fig. 6S4). RH is known to affect AWC and thus the phase state of aerosols. Karydis et 

al. (2021) reported similar findings in their modeling study, that the metastable assumption caused a pH decrease (~2 pH unit 450 

on average) over the regions with low RH and high crustal species. To explore the effects of the phase states on the predicted 

PM2.5 pH, we plotted the pH of aerosols in each size bin (bin 01–bin 06 with increasing particle diameters from 0.039 to 2.5 

μm) from CTL3 and CTL3meta runs in Fig. 7S5. The first impression from reviewing Fig. 7S5 is that the modeled decreases 

in PM2.5 pH in CTL3meta arewere mainly caused by changes in the first four size bins. Notably, in the CTL3 run, aerosols in 

these bins (01–04) in GD, TD and central Tibet arewere determined to be mostly solid (i.e., no liquid water thus no pH exists) 455 

due to low RH. But in the CTL3meta run when metastable state iswas assumed, these aerosols arewere calculated to have a 

very small amount of water (Fig. S76) and thus the pH arewere very low. As shown in Fig. 5c, the small changes in water 

content could lead to a wide fluctuation in pH. We select one area (denoted by the blue box in Fig. 7) in the pH-decreasing 

regions to discuss the characteristics in detail. Further analyses on the components of aerosols in these size bins in that area 

(Table S3) in TD indicated that they arewere high in sulfate but low in NVCs, suggesting “sulfate rich” particles that are in 460 

general highly acidic (Zaveri et al., 2008).  
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For regions with RH > 70%, little to no changes in PM2.5 pH arewere predicted when fixing aerosol phase to metastable 

(Fig. 5c and Fig. 2d). This is because that when RH > 70%, aerosols in all size bins may be already determined to be in 

metastable state by Whyst in the default MOSAIC scheme. In addition, since both states predict a liquid aerosol at ambient RH > 

70% which reaches the deliquescence RH for most mixed-salt aerosols, changes in pH between stable and metastable states at 465 

higher RH should be insignificant as modeled. Our modeled results are also consistent with that from previous box model and 

chemical transport modeling studies which found a similarly small effect of phase assumption on pH at high RH condition 

(Song et al., 2018; Tao et al., 2020). In all, these results demonstrate that metastable assumption is might be inappropriate at 

low RH conditions and would lead to unrealistic pH predictions. This in turn suggests the rationality and advances of MOSAIC 

scheme in phase state determination in WRF-Chem.    470 

4.1.4 Sensitivity to heterogeneous sulfate production 

  Sulfate is the main acidic component of aerosols and thus largely determines aerosol pH (Weber et al., 2016; Tilgner et 

al., 2021). We implemented the heterogeneous sulfate formation pathways on aqueous aerosols in WRF-Chem in this study, 

and explored the effects of ionic strength on the production rates with two additional runs, i.e., CTL3het_Is and CTL3het_NoIs. 

Overall, after the addition of heterogeneous S(IV) oxidations, modeled sulfate concentrations increased largely over eastern 475 

and central China (Fig. 3bc), and where PM2.5 pH decreasesd significantly as a consequence (Fig. 3a). This is as expected 

because sulfate can release free H+. Figure 5d shows that for these regions where PM2.5 pH has an obvious response, the 

decrease of pH gets larger as original pH increases. On the other hand, the effects of sulfate production on pH can be buffered 

by uptake of bases (e.g., ammonia) from the gas-phase (Zheng et al., 2020), which could differ by regions depending on NH3 

level. For example, relatively prominent sulfate production occurs in the south part of Jiangxi Province, whereas the 480 

corresponding decrease in pH is less obvious, which may be partially offset by the buffering effect of excess ammonia. AWC 

also changes in response to changes in aerosol components, which in turn affects aerosol pH. Therefore, PM2.5 pH change in 

response to additional sulfate production in the system iswas in fact a result of the combination of these factors. 

Notably, for the CTL3het_Is run, PM2.5 pH changes arewere much smaller (Fig. 3cb) compared to the CTL3het_NoIs run 

because of a smaller amount of additional sulfate production (Fig. 3d). As reported by Liu et al. (2020), high ionic strength 485 

can largely inhibit the TMI-catalyzed reaction rate and slow it down by a factor of ~85 at an ionic strength of 2.8 M. Although 

high ionic strength would make the reaction of S(IV) with H2O2 faster in aerosol water (Liu et al., 2020), the modeled low 

H2O2 concentration hindersed the contribution of this reaction to sulfate production despite the effects of high ionic strength. 

Therefore, when ionic strength iswas considered, the heterogeneous production of sulfate iswas inhibited and thus smaller 

decreases in pH arewere caused. Note the inclusion of heterogeneous sulfate production here iswas just used to test the 490 

sensitivity of PM2.5 pH to variations in acidic components, but not aiming to simulate atmospheric sulfate so that we did not 

conduct further analyses on the model’s ability to capture observed sulfate production. Recent experimental studies suggest 

that interfacial chemistry at aerosol surfaces rather than in the bulk solutions may also be important for ambient sulfate 
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formation, such as the newly proposed aerosol-phase acceleration for the Mn-catalyzed oxidation of S(IV) (Wang et al., 2021) 

and water-assisted interfacial reaction of NO2 with SO3
2- (Liu and Abbatt, 2021). Inclusion of these additional sulfate formation 495 

pathways would presumably increase sulfate production and lower the modeled PM2.5 pH further. However, large uncertainties 

still remain in atmospheric sulfate formation mechanisms especially for these newly proposed mechanisms, and the kinetic 

parameters in concentrated solutions (i.e., the surface of aerosols) also need to be accurately constrained by further 

investigations. 

4.2 Driving factors of the temporal PM2.5 pH variation in Beijing haze 500 

       As all modeled scenarios displayed a similar temporal variation for the studied period in Beijing, here we choose the 

CTL3meta scenario for further discussion on the temporal evolution of PM2.5 pH and driving factors under different pollution 

levels. CTL3meta scenario is selected because this scenario shows a better agreement with observations on PM2.5 compositions 

and allows us to make a fair comparison with ISORROPIA II in which the metastable state is also assumed. Figure 4 shows 

that the predicted PM2.5 pH values arewere in general lower (more acidic) at more polluted days for all WRF-Chem simulations 505 

as well as the ISORROPIA II results constrained by observed aerosol composition, temperature and RH. To reveal this trend 

more clearly, the corresponding pH values in Beijing under different pollution levels modeled by the CTL3meta scenario 

arewere illustrated in the box-and-whisker plots in Fig. 86a. In addition to the WRF-Chem predictions (Fig. 86a), the offline 

ISORROPIA II estimates using WRF-Chem outputs (i.e., aerosol composition, temperature and RH from CTL3meta scenario, 

Fig. 86b) and observations (Fig. 86c) arewere also displayed. Figure 86 illustrates that PM2.5 pH calculated by ISORROPIA II 510 

(both based on WRF-Chem simulated data or observational data) generally shows consistent patterns as WRF-Chem 

simulation, and the PM2.5 pH iswas higher during relatively clean days while the lowest during heavy pollution days. Despite 

their similar trend, overall ISORROPIA II predicts higher absolute pH values than that of MOSAIC with 1.1, 1.0 and 1.0 pH 

units higher during light, moderate and heavy pollution days, respectively, possibly due to the different thermodynamic 

representations such as activity coefficients and solution approach (see Text S1 for more details). The multiple model average 515 

of PM2.5 pH in Beijing under heavy pollution events (> 150 μg m-3) iswas 3.656 ± 0.549.  These results suggest that PM2.5 pH 

in Beijing under heavy haze conditions is likely moderate acidic (pH remains below 5.0), and thus the NO2 oxidation pathway 

highly unlikely dominates in heterogeneous sulfate production. As NO2 oxidation of dissolved S(IV) only becomes effective 

in less acidic pH ranges (~6) (Cheng et al., 2016). Most recently, an experimental study (Liu and Abbatt, 2021) proposed a 

water-assisted interfacial mechanism for SO2 oxidation by NO2 at the aerosol surface that can maintain its atmospheric 520 

importance at a lower pH of 5. This value is nevertheless still higher than the predicted pH during the heavy haze period and 

thus implying an unlikely importance of NO2 oxidation. 

In addition, we noticed that the high pH values arewere generally associated with high mass fractions of NVCs and low 

AWC, whereas low pH values arewere often accompanied by low mass fractions of NVCs and high AWC (Fig. S87). This 

suggests the important roles of AWC and aerosol compositions in determining PM2.5 pH. To explore their relationship, mass 525 
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fractions of PM2.5 ionic species as well as AWC under different pollution levels are shown in Fig. 9S8. As the pollution 

deterioratesd, AWC increasesd and the mean value reachesed 88.0 μg m-3 during the heavy pollution period (Fig. 9S8b). What 

is more, NVCs haved a higher proportion of 0.19 in clean period, compared to 0.06 in light pollution period, 0.04 in moderate 

pollution period and 0.03 in heavy pollution period (Fig. 9S8a). This is consistent with changes in PM2.5 pH as NVCs tend to 

increase pH. These results are in line with some previous studies (Ding et al., 2019; Shi et al., 2017) who have demonstrated 530 

that the role of NVCs in aerosol acidity. But some other studies found NVCs have limited impacts on aerosol pH, which may 

be due to the relatively minor contribution of crustal ions to aerosol mass in their cases (Liu et al., 2017; Zheng et al., 2020; 

Zhang et al., 2021). In addition, the mass fraction of sulfate declinesd from clean periods (0.16) to light and moderate pollution 

periods (0.08) then slightly increasesd in heavy pollution periods (0.10). Nitrate hasd the predominant mass fraction, 

accounting for 0.49 during clean period and remaining almost constant during other periods (0.65). Sulfate and nitrate 535 

formation arewere apparently enhanced on more polluted conditions. This lead to the release of free H+ which promotes the 

partitioning of ammonia into the aerosol phase, neutralizing the formed acidic species and buffering the pH. This also at least 

in part explains why the mass fraction of ammonium increasesd steadily throughout the haze evolution with 0.10, 0.18, 0.20 

and 0.21 for clean, light, moderate and heavy pollution periods, respectively.  

Ambient RH has also been recognized as a key factor in the evolution of winter haze events (Tie et al., 2017; Sun et al., 540 

2013) and aerosol acidity (Tao and Murphy, 2019; Battaglia et al., 2017; Ding et al., 2019; Jia et al., 2020). This can also be 

seen in Fig. 4 where RH iswas in general high onat more polluted days. Here we analyzed the correlation of AWC and pH 

with RH. As shown in Fig. 107, AWC exponentially increases with increasing RH, with a mean value of (0.018 ± 0.006) μg 

m-3 at 20% RH and (130 ± 43) μg m-3 at 100% RH. In contrast, PM2.5 pH shows a general decreasing trend with RH. These 

can be explained as follows. RH is typically low at the start-up phase of haze events, under which condition NVCs from 545 

primary aerosols would be rich and gas uptake as well as secondary aerosol formation are restricted due to the limited AWC, 

thereby leading to higher pH (clean period). As RH elevates with the deterioration of PM2.5 pollution, greater amounts of AWC 

are formed caused by the acceleration of aerosol hygroscopic growth. AWC then serves as an efficient medium for 

heterogeneous reactions on the surface of aerosols, thereby substantially enhancing secondary formation of acid species (such 

as sulfate and nitrate) and resulting in greater acidity. The latter is also facilitated by the accumulation of reactive gas precursors 550 

as the haze event evolves under stable boundary layer conditions. Aerosol hygroscopic growth is further enhanced by a positive 

feedback mechanism that the production of secondary aerosol species can in turn enhance aerosol hygroscopicity and 

increasing AWC (Wu et al., 2018). It should be noted that more AWC could also exert a dilution effect which would dilute the 

H+, but the acid effect likely prevails over the dilution effect leading to a net drop of pH. The schematic process of temporal 

evolution of PM2.5 pH during haze cycle in Beijing is given in Fig. 11. 555 



19 

 

4.3 Comparison of PM2.5 pH predictions between MOSAIC and ISORROPIA II 

      To further explore the potential effects of different thermodynamic models on the modeled aerosol pH differences between 

this study and previous studies, we also compared the MOSAIC results with those obtained from ISORROPIA II. The WRF-

Chem simulated hourly chemical concentrations along with temperature and RH in Beijing from CTL3meta scenario were 

used as inputs to ISORROPIA II (forward mode, assuming metastable to be consistent with CTL3meta). Time series of aerosol 560 

pH (bin 01–bin 06) predicted by the two different models are given in Fig. S9. Overall, ISORROPIA II and MOSAIC predicted 

a similar temporal pH trend, but ISORROPIA II in general predicted higher absolute pH values than that of MOSAIC for all 

particles with the size less than 2.5 µm. What is more, a regression slope of 0.87 between the calculated PM2.5 pH by MOSAIC 

and ISORROPIA II was found (Fig. S10). These findings are comparable to the results reported by Pye et al. (2020) who found 

that with the same model inputs, a regression slope of 0.89 between the calculated pH from the box-model version of MOSAIC 565 

and ISORROPIA II was obtained. Comparisons of the pH values predicted by MOSAIC and ISORROPIA in Zaveri et al. 

(2008) also showed a similar phenomenon that ISORROPIA tended to predict higher values under same conditions. The 

discrepancy between these two models may be attributed to the higher amounts of aerosol water content predicted by 

ISORROPIA II relative to MOSAIC, as indicated in Fig. S11, despite both models use the same phase state assumption and 

RH. Difference in other fundamental thermodynamic treatments, including activity coefficients, gas-particle partitioning 570 

scheme and solution approach may also account for the final pH difference. Nevertheless, the exact causes of the differences 

in pH predicted by these two models remain to be explored. 

5 Conclusion 

In this study, the performance of WRF-Chem configured with MOSAIC in predicted PM2.5 pH over China iswas evaluated. 

In particular, using the model, we assessed the evolution of PM2.5 pH over a few haze episodes in Beijing from 18 October 575 

2014 to 02 November. The results indicate default WRF-Chem could predict similar spatial gradient of PM2.5 pH across China 

compared to other CTMs as reported by previous studies. However, WRF-Chem in general yieldsed low pH (0.8–3.6) over 

most regions compared to other models (1.3–5). This is mainly due to the model underestimations of NVCs concentrations, 

with additional contributions from low model NH3 emissions as well as inherent differences in thermodynamic representations. 

The latter iswas further assessed by comparing against the corresponding pH predictions from offline ISORROPIA II using 580 

WRF-Chem modeled aerosol composition, temperature and RH as inputs. Compared to ISORROPIA II values, pH calculated 

by MOSAIC is consistently lower by 0.6 units on average, despite the pH variation trend matchesed quite well. 

Further, six experiments arewere conducted to investigate the response in modeled PM2.5 pH to varying NVCs, NH3, 

phase state assumption and sulfate production over China. The model results show that pH sensitivity have substantial spatial 

heterogeneity. Elevated NVCs emissions caused ubiquitous increases in PM2.5 pH with higher effects in NEP and NCP regions 585 
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where original pH is in the moderate acidic range. For regions with high or low original pH, the effects from NVCs are minor. 

Doubling NH3 emission also leadled to an increase in PM2.5 pH over most areas of China except for TD and GD where are 

characterized by high aerosol pH and sufficient NVCs. The effects of phase state assumption on pH arewere found to be minor 

at high RH conditions but large decrease in PM2.5 pH can be induced at low RH conditions due to an unrealistic metastable 

phase state assumption. Additional formed sulfate in aerosol water tendsed to effectively decrease PM2.5 pH over eastern and 590 

central China in a complex manner, due to the buffering effect of semi-volatile ammonia and the accompanied AWC change.  

In addition, PM2.5 pH evolution during haze cycles in Beijing iswas investigated. The results indicate that aerosols 

becomebecame more acidic as haze pollution accumulatinged, from 5.21 ± 0.988 in clean period to 3.656 ± 0.549 in heavily 

polluted period, due to both changes in aerosol components and meteorological conditions. Large mass fraction of NVCs is 

was found to be responsible for the high aerosol pH during clean periods. The elevated AWC with increasing RH during 595 

polluted periods acceleratesd secondary aerosol formation (e.g., sulfate and nitrate), enhancesd water uptake and further 

lowersed pH. The moderately acidic aerosols under heavy haze conditions suggest that S(IV) oxidation by NO2 is highly 

unlikely to contribute significantly to sulfate production in Beijing haze.  

In all, our study suggests that NVCs and NH3 influence the predicted PM2.5 pH the most at least in the WRF-Chem model, 

but currently the model cannot predict the abundance and variations of these species especially for Ca2+ and Na+. Future 600 

research efforts need to be undertaken to better constrain NVCs and NH3 emissions in model to improve aerosol pH predictions. 

A priori assumption that aerosols are at either stable or metastable state in model simulations (e.g., in GEOS-Chem) maybe 

less accurate compared to WRF-Chem which applies a more rigorous and computationally expensive phase state determination 

approach, especially for aerosol pH prediction for regions with low RH. Across China both stable and metastable state of 

aerosols exist, thus both states should be represented in regional and global models. Follow-up studies to including more 605 

accurate and up-to-date heterogeneous sulfate formation pathways in model would also be necessary. More high temporal 

resolved observational datasets (e.g. hourly) are needed to help evaluate and understand the detailed evolution of pH during 

haze episodes as well as diurnal pattern of pH. Since observationally constrained pH is limited in terms of spatial coverage, 

more measurements need to be devoted to the regions where observations are rare or unavailable. In addition to aerosol 

composition, concurrent measurements of gas species subject to phase partitioning (e.g. HNO3 and NH3) will provide better 610 

constraints on acidity estimates. Measurements of size-resolved aerosol composition will also be useful to further evaluate 

MOSAIC predictions of aerosol pH from different size bins. What is more, future measurements can also consider to monitor 

throughout the boundary layer (e.g. from tall towers, mountain-based sites and aircraft) in order to provide insights into the 

vertical distribution of aerosol pH. The last, in-situ measurement technique of aerosol pH are desired to provide an improved 

understanding of aerosol pH and its effect on aerosol chemistry, and recently some approaches (e.g., Raman spectroscopy 615 

method (Cui et al., 2021; Li et al., 2022)) show the potential to do so in the future.The last, more high resolution observation 

datasets at different locations may be necessary to further evaluate MOSAIC predictions of aerosol pH. 
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Code and data availability 

The release version of WRF-Chem can be downloaded from http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. 

The modified version of WRF-Chem used in this study is archived on Zenodo at https://doi.org/10.5281/zenodo.6359417. The 620 

ERA-Interim reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) for initial and 

boundary conditions can be downloaded from https://rda.ucar.edu/datasets/ds627.0/. The ERA5 reanalysis data can be 

downloaded from https://rda.ucar.edu/datasets/ds633.1/. 
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Table 1. Summary of model configurations. 

Description Selection 

Horizontal grid spacing 36 km 

Vertical levels 41 (roughly 8 layers below 1 km) 

Grid dimensions 149 × 138 

Aerosol scheme MOSAIC 8 bin 

Gas-phase chemistry CBM-Z 

Long wave Radiation RRTMG 

Short wave Radiation RRTMG 

Cloud Microphysics Morrison 2-moment 

Cumulus Cloud Grell-Devenyi 

Planetary boundary layer YSU 

Land surface Noah land-surface model 

                                   Nudging variables u and v component wind, air temperature, water vapor mixing ratio 

Grid nudging              Applied layers Layers above the PBL 

                                   Nudging timescale 6 h 

 

 

Table 2. Numerical experiments conducted in this study. 945 

Name Cation 
NH3 

emission 
Cl emission Phase state Sulfate production 

ORIG default default default defaulta default 

CTL1 modify default default default default 

CTL2 modify ×2 default default default 

CTL3 modify ×2 modify default default 

CTL3meta modify ×2 modify metastable default 

CTL3het_NoIs modify ×2 modify default Add het (No Is effect) 

CTL3het_Is modify ×2 modify default 
Add het (consider Is 

effect) 

aBy default, in MOSAIC a flag called “hysteresis water content” (Whyst) is transported to determine whether the particles are 

on the stable or the metastable branch. 
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Figure 1. (a) Six sub-regions. (b-h) Spatial distributions of mean surface PM2.5 pH (LWC-weighted average pH) during the 950 

study period of 15 October 2014 - 02 November 2014 predicted by (b) ORIG (c) CTL1 (d) CTL2 (e) CTL3 (f) CTL3meta (g) 

CTL3het_NoIs (h) CTL3het_Is. “I” in (a) represents the Taklimakan Desert (TD), “II” represents the Gobi Desert (GD), “III” 

represents the Northeast Plain (NEP), “IV” represents the North China Plain (NCP), “V” represents the middle and lower 

reaches of Yangtze River plain (YR), and “VI” represents Southern China (SC). 
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Figure 2. Spatial distributions of the difference in mean surface PM2.5 pH during the study period of 15 October 2014 - 02 

November 2014 between (a) CLT1CTL1 and ORIG scenarios, (b) CTL2 and CTL1 scenarios, (c) CTL3 and CTL2 scenarios, 960 

(d) CTL3meta and CTL3 scenarios.  
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Figure 3. Spatial distributions of the difference in mean surface (a,cb) PM2.5 pH and (bc,d) PM2.5 sulfate (μg m-3) between  

(top panels) CTL3het_NoIs and CTL3 scenarios (top panels), and (bottom panels) CTL3het_Is and CTL3 scenarios (bottom 

panels) during the study period of 15 October 2014 - 02 November 2014. Different scales are used. 975 
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Figure 4. Time series of (top panel) surface PM2.5 pH, and (bottom panel) PM2.5 water contents (μg m-3) (left y-axis) predicted 

by all WRF-Chem scenarios at Beijing site during the study period of 15 October 2014 - 02 November 2014 and Relative 

humidity (%) (RH, right y-axis, black dashed line) are given from ORIG scenario. ISORROPIA II-calculated pH values 990 

constrained by observations as well as the observed RH are shown as black star markers, with each value corresponding to a 

PM2.5 sample (12h or 24h). Shaded areas represent four different pollution levels (green-clean; buleblue-light; orange-moderate; 

grey-heavy).    
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 1000 

Figure 5. Scatterplots of the surface PM2.5 pH differences between (a) CLT1CTL1 and ORIG scenarios, (b) CTL2 and CTL1 

scenarios, (c) CTL3meta and CTL3 scenarios, (d) CTL3het_NoIs and CTL3 scenarios vs. the corresponding original pH, 

separated by regions. Different scales are used. 
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Figure 6. Spatial distribution of mean 2m relative humidity [%] from WRF-Chem during the study period of 15 October 2014 

- 02 November 2014. 
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Figure 7. Spatial distributions of mean surface aerosol pH during the study period of 15 October 2014 - 02 November 2014 1030 

predicted by (top panel) CTL3 scenario and (bottom panel) CTL3meta scenario for six size bins. (a) Bin 1 for 0.039-0.078 μm 

diameter, (b) Bin 2 for 0.078-0.156 μm diameter, (c) Bin 3 for 0.156-0.312 μm diameter, (d) Bin 4 for 0.312-0.625 μm diameter, 

(e) Bin 5 for 0.625-1.25 μm diameter, (f) Bin 6 for 1.25-2.5 μm diameter. The blue box in top panel (a) represents the focus 

area of analysis in follow. 
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Figure 86. The box-and-whisker plots of surface PM2.5 pH in each haze stage in Beijing from (a) WRF-Chem CTL3meta 

scenario, (b) ISORROPIA predictions with WRF-Chem (CTL3meta) relevant outputs as inputs, and (c) ISORROPIA 

predictions with observations as inputs. The boxes represent, from top to bottom, the 75th, 50th, and 25th percentiles of 1040 

statistical data. The whiskers represent, from top to bottom, the minimum and the maximum, and the solid circles represent 

the mean values. 

 

 

 1045 

 

 

 

 

 1050 

 

 

 

 

 1055 



 43 

 

 

 

 

 1060 

Figure 9. Modeled (a) mass fractions [%] of PM2.5 ionic species and (b) AWC (μg m-3) from CTL3meta scenario in each haze 

stage.  
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Figure 107. (a) AWC (μg m-3) (a) and (b) PM2.5 pH (b) predicted by CTL3meta scenario as a function of RH for data at Beijing 

site during the study period of 15 October 2014 - 02 November 2014. Data are grouped in RH bins (10% increment). The error 

bars represent the standard deviations. 1075 
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 1095 

Figure 11. The schematic plot of the temporal evolution of PM2.5 pH during haze cycle in Beijing. The size of blue circles 

indicates the relative amount of aerosol water and the thickness of downward arrows indicates the relative strength of the 

process. 


