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Abstract. Large-scale (i.e., continental and global) hydrologic simulation is an appealing yet challenging topic for the 

hydrologic community. First and foremost, model efficiency and scalability (flexibility in resolution and discretization) have 10 

to be prioritized. Then, sufficient model accuracy and precision are required to provide useful information for water resource 

applications. Towards this goal, we craft two objectives for improving US current operational hydrological model: (1) 

vectorized routing and (2) improved hydrological processes. This study presents a hydrologic modeling framework CREST-

VEC that combines a gridded water balance model and a newly developed vector-based routing scheme. First, in contrast to 

a conventional fully gridded model, this framework can significantly reduce the computational cost of river routing by at 15 

least ten times, based on experiments at regional (0.07 sec/step vs. 0.002 sec/step) and continental scales (0.35 sec/step vs. 

7.2 sec/step). This provides adequate time efficiency for generating operational ensemble streamflow forecasts and even 

probabilistic estimates across scales. Second, the performance using the new vector-based routing is improved, with the 

median-aggregated NSE (Nash-Sutcliffe Efficiency) score increasing from -0.06 to 0.18 over the CONUS. Third, with the 

lake module incorporated, the NSE score is further improved by 56.2%, and the systematic bias is reduced by 17%. Lastly, 20 

over 20% of the false alarms on two-year floods in the US can be mitigated with the lake module enabled, at the expense of 

only missing 2.3% more events. This study demonstrated the advantages of the proposed hydrological modeling framework 

that could provide a solid basis for continental and global scale water modeling at fine resolution. Furthermore, the use of 

ensemble forecasts can be incorporated into this framework; and thus, optimized streamflow prediction with quantified 

uncertainty information can be achieved in an operational fashion for stakeholders and decision-makers. 25 

1. Introduction 

Flooding all over the world has affected millions of people, especially those who reside in floodplains (Tellman et al., 2021). 

In the US, flooding, as the primary cause of billion-dollar weather disasters, costs $3.9 billion monetary losses and 15 deaths 

per year over the past four decades according to the NOAA National Centers for Environmental Information U.S. Billion-

Dollar Weather and Climate Disasters (2021). In light of frequent flooding in the US, several public agencies have been 30 
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operating real-time flood forecasting systems, such as the NOAA NSSL (National Severe Storms Laboratory) FLASH 

project (https://flash.ou.edu) and NOAA Office of Water Prediction (OWP). However, flood warnings are still either missed 

or unverified due to uncertainties ranging from precipitation forcing, hydrologic model structure, model parameterization, 40 

and/or hydrologic routing. As revealed by Martinaitis et al. (2017), 12.8% of flash floods in the US go completely unwarned 

per year, let alone falsely warned. Apart from pursuing accurate weather forecasts, improving hydrologic simulation is the 

key to issuing flood warnings properly.  

Flow routing in hydrology is the lateral transport of water on the land surface, subsurface, and in waterways (namely 

hydrologic compartments). It is an inseparable component in hydrologic simulation to redistribute and exchange water 45 

between compartments and is also relatively time-consuming. In a lumped hydrologic model (watershed as an integrated 

unit), routing can be simplified to convolution in time, such as the Unit Hydrograph (UH) or referred to Impulse Response 

Function (IRF) (Chow, 1988). However, variable velocities over the land surface and in waterways are difficult to be 

physically considered. Parameterization is a pragmatic way, but too many parameters could lead to equifinality (Beven, 

2006). In addition, only outlet streamflow can be simulated in a lumped model. A semi-distributed model was then born to 50 

resolve flow pathways using Digital Elevation Models (Quinn et al., 1991). Owing to ever-increasing computing power, 

gridded hydrologic models with spatially distributed routing become feasible over large domains (Shaad, 2018). Terrain (or 

hillslope) routing and river channel routing at grid scales can be explicitly represented in model settings with distributed 

solvers such as linear reservoirs (Liston et al., 1994; Wang et al., 2011; Shen et al., 2017), kinematic wave model (Vergara et 

al., 2016), and diffusive wave model (Lighthill & Whitham, 1955; Ponce et al., 1978; de Almeida & Bates, 2013). More 55 

recently, vector-based routing has attracted more attention instead of raster-based routing for large-scale (i.e., continental and 

global extent) simulation. In theory, vector-based routing and raster-based routing differ in defining unit catchments and 

river networks. For instance, a raster-based routing model discretizes both catchments and river networks on Cartesian 

coordinates, while a vector-based routing model builds upon the irregular shape of unit catchments (i.e., polygon) and river 

networks (i.e., polyline). 60 

The pioneering experiment of vector-based routing can be dated back to the early 2000s, in which river network models were 

incorporated in emerging Geographic Information System (GIS) software (Wang et al., 2000). With the burgeoning 

availability of global-scale hydrography datasets (e.g., HydroSHEDS and NHDPlus), vector-based routing models have been 

gaining considerable interest in recent years (David et al., 2011; Lehner & Grill, 2013; Mizukami et al., 2016; Paiva et al., 

2011; Yamazaki et al., 2011). Among those developments, three frameworks have become popular and stand out in the 65 

hydrologic model community. First, David et al. (2011) introduced the RAPID routing framework that is based on the 

Muskingum method. The RAPID has been coupled with the National Water Model operated by the NOAA OWP (Office of 

Water Prediction) (Lin et al., 2018) and the Global Flood Awareness System (GLoFAS) developed by the ECWMF 

(European Center for Median-Range Weather Forecasts). Second, Yamazaki et al. (2011) developed the CaMa-Flood 

framework which generates flood inundation at a large scale by solving the 1D diffusive equation and spilling water over 70 

floodplains. Third, the recent development of the mizuRoute framework by Mizukami et al. (2016) offers terrain routing and 
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multiple channel routing schemes (e.g., IRF and kinematic wave), making it more physically based compared to RAPID 

which ignores terrain routing. The mizuRoute has been used together with the hydrologic framework SUMMA (Structure for 

Unifying Multiple Model Alternatives) (Knoben et al., 2021) and is planned to be implemented in the CESM (Community 

Earth System Model). These vector-based routing models overcome several challenges for large-scale hydrologic 

simulations faced by raster-based routing models. First, higher model resolution in raster-based models comes at the expense 85 

of higher computational cost, which prohibits global hydrological simulations at tens or hundreds of meters. However, the 

vector-based routing model is much more scalable and computationally efficient, irrespective of increasing resolution. 

Second, river networks can be more realistically represented in a vector form. In conventional hydrologic models, the river 

network in a raster form has to be delineated based on a DEM as a preprocessing step. River networks generated in such a 

way do not always align well with natural river centerlines. For studies investigating hydrologic connectivity in particular, 90 

river grid cells in a raster form can easily become discontinuous without considering river topology. Alternatively, river 

networks in popular hydrography data are digitalized based on satellite optical imagery and manual inspection (Lin et al., 

2021). Another weakness of raster-based routing stems from the traditional D8 flow strategy which means water in the 

central grid can only be permitted to flow through one of its neighboring grid cells (Tarboton, 1997). On the contrary, 

vector-based routing offers a more flexible approach from vector representation of river networks. 95 

To date, modern vector-based routing models such as RAPID and mizuRoute have neglected the subsurface routing, which 

is either assumed to be minimum (Mizukami et al., 2020) or treated the way same as surface routing (Lin et al., 2019; Yang 

et al., 2021). However, subsurface routing is an important hydrologic process and dominates over regions that have 

intermittent flow behaviors (Freeze, 1972). For flood simulation, ignoring subsurface routing could underestimate the peak 

flow and miscalculate the flood timing, both of which directly affect decision-making processes. An equally important 100 

research thrust is the representation of lakes and reservoirs in vector formats, since they markedly alter flow response not 

only at a local scale, but also downstream rivers. One of the functions of lakes and reservoirs in the US is for flood control, 

so simulation without incorporating such a process is likely to result in falsely issued flood warnings.  

 In light of the advantages of vector-based routing, this study introduces a coupled modeling framework CREST-VEC 

(Coupled Routing and Excess STorage with VECtor routing), which strives to facilitate real-time flood forecasting across 105 

scales. This framework seamlessly integrates the current operational flash flood forecast model structure – CREST model 

and the vector-based routing framework – mizuRoute. We utilize a case study to demonstrate the advantages of this coupled 

framework and to investigate some updates we made to improve the existing routing scheme. Four questions are posed in 

this regional case study: (1) What are the performance gains for CREST-VEC compared to the CREST model? (2) Does the 

included subsurface routing improve model performance? (3) Can a simple natural lake simulation improve model 110 

performance in a downstream urban area? and (4) How does CREST-VEC model adopt to flood warnings? In the second 

part, we apply this framework to the continental US for a comprehensive evaluation. We ask one additional question: How 

many floods are falsely alarmed without considering reservoir operations? It is anticipated that findings from this work could 
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motivate the future development of large-scale hydrologic models and raise awareness on whether and how much flood 

forecasts by model simulations should be trusted without proper representation of lakes. 125 

2. Data and methods 

2.1 Hydrography data 

In this study, we use the vectorized river network and Hydrologic Response Unit (HRU) dataset derived from the high-

accuracy Multi-Error-Removed-Improved-Terrain (MERIT) Hydro hydrography dataset (Yamazaki et al., 2017, 2019). The 

flowlines were created from the 90-meter DEM data (MERIT DEM), covering the full global land surface (60°S-90°N). A 130 

minimum channelization threshold of 25 km2 (upstream area) was applied to restrict river channel grid cells in the MERIT 

Hydro dataset. The HRUs were processed along with flowlines by the TauDEM software and trimmed with the 

HydroBASINS level-II boundaries. Detailed processing of the hydrography data is listed in Lin et al. (2019). This set of 

hydrography data has been validated against 30-year Landsat imagery (Lin et al., 2021) and empowered the global 

reconstruction of historical streamflow (Lin et al., 2019; Yang et al., 2021). Over the CONUS, we have obtained 341,921 135 

river reaches and the same amount of unit catchments for the routing component. 

Lakes and reservoirs in the U.S. play a significant role in regulating streamflow (Tavakoly et al., 2021). Major river basins 

(e.g., Mississippi and Columbia River Basins) are highly regulated, as shown in Fig.1a and 1b, results obtained from Lehner 

et al. (2011). The HydroLAKES dataset provides a global catalog of lake polygons and pour points that can be easily 

integrated into hydrologic models (Messager et al., 2016). Over one million natural lakes and constructed reservoirs were 140 

identified globally, with a minimum surface area larger than 10 ha. Over the U.S., there are 96,874 lakes recorded in the 

HydroLAKES data, of which 94,865 are natural lakes without human intervention, and 1,992 (17) lakes are reservoirs 

(regulated lakes), as shown in Fig.1c. Of regulated lakes or reservoirs, 20.0% are primarily used for irrigation, 19.9% for 

hydroelectricity, 17.6% for water supply, 17.2% for flood control, 14.1% for recreation, 1.9% for navigation, 0.7 for 

fisheries, and 8.6% for others (Fig.1d). The total lake volume, estimated from the lake bathymetry, is a required field in our 145 

modeling framework to approximate outflow. 

[INSERT FIGURE 1 HERE] 
Figure 1. Maps of (a) percent of regulated river and (b) regulated lake volume; (c) bar plot of lake classifications; (d) pie plot of US 
regulated lake or reservoir function purposes. 

2.2 Forcing data 150 

Forcing data is required as model inputs to drive the hydrologic model. Hourly precipitation rates are obtained from the 

Multi-Radar Multi-Sensor (MRMS) data, operated at the NOAA NSSL (Zhang et al., 2016). The MRMS is a state-of-the-art 

radar-gauge merged product, providing instantaneous rates at a 1-km spatial resolution over the CONUS and parts of 

southern Canada and northern Mexico. We used the one-hour accumulated and gauge-corrected precipitation product in this 

study for streamflow simulation. The performance and hydrologic utility of MRMS data has been corroborated in previous 155 

Deleted: (MERIT-Hydro: Lin et al., 2019) 

Deleted: to

Deleted: rainfall 



5 
 

studies (Li et al., 2020, 2021). The daily temperature from the PRISM (Parameter-elevation Relationships on Independent 

Slopes Model) is used to simulate snow accumulation and melt (PRISM Climate Group, 2014). The PRISM team routinely 160 

collects meteorological data from meteorological stations over the U.S. and interpolates them into 4-km gridded data based 

on the elevation dependence (Daly et al., 2008). The potential evapotranspiration (PET) data is obtained from the USGS 

FEWS data port (https://earlywarning.usgs.gov/fews) at daily and 1° spatial resolution (Allen et al., 1998). Forcing data at 

different spatial resolutions is re-gridded to a 1-km model resolution. All of these data are collected from the simulation 

period in complete calendar days from 2015 to 2019. 165 

2.3 CREST model 

As jointly developed by the University of Oklahoma (OU) and NASA, the CREST model has been released for a decade 

(Wang et al., 2011). It is a distributed hydrologic model whose primary purposes are (1) flood simulation and forecasting, (2) 

evaluating the hydrologic utility of satellite precipitation datasets, and (3) water resources management (Xue et al., 2013; 

Tang et al., 2016; Gourley et al., 2017; Gao et al., 2021; Li et al., 2021; Chen et al., 2022). Owing to its relatively simple 170 

structure and computationally efficient simulation, the CREST model has been promoted by the NOAA NSSL for real-time 

flash flood forecasting over the continental U.S. and its territories (Gourley et al., 2017; Flamig et al., 2020). As shown in 

Fig. 2, the effective rain (deficit of rainfall rates and evaporation rates) reaches the land surface and is partitioned into fast 

runoff from urban impervious area ratio and infiltration into the soils. A Variable Infiltration Curve (VIC) model is 

incorporated to determine the infiltration rate (Liang et al., 1994). Surface runoff is generated when infiltration rates become 175 

higher than the maximum infiltration capacity. In the meantime, slow-flowing interflow is produced while soil water content 

is depleted. In the CREST model, flow routing is handled in two ways. Terrain routing and in-channel river routing are done 

by the kinematic wave model which simplifies the Saint-Venant equation by ignoring the acceleration and forcing terms 

(Vergara et al., 2017). The interflow is routed by a conceptual linear reservoir with parameterized velocity (Shen et al., 2017). 

We refer to the CREST model hereafter as a standalone package that couples the water balance model with gridded terrain 180 

and channel routing. The original code is written in C++. 

To account for snowmelt, we coupled the original CREST model with the Snow-17 model, which is part of the National 

Weather Service River Forecast System in the U.S (Franz et al., 2008). The Snow-17 model is a conceptual snowmelt 

scheme that simulates snow accumulation and ablation based on temperature and precipitation as inputs (Anderson, 2006). 

Although the physics behind it is not as comprehensive as the energy balance model, Snow-17 is advantageous for having 185 

less required input data and performing “at least as good as” energy-based models (Ohmura, 2001). 

2.4 mizuRoute 

The mizuRoute river routing model, developed at the NCAR (National Center for Atmospheric Research), is a vector-based 

routing framework that incorporates both terrain and channel routing for large-domain river routing applications (Mizukami 

et al., 2016, 2021). For the terrain routing, the IRF or UH is used with parameters associated with gamma distribution to 190 
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adjust the shape and scale. For the channel routing, user-defined options are IRF, kinematic wave with Lagrangian solution, 

and kinematic wave with Euler solution. A recent version of mizuRoute (Version 2.0.1) includes two lake routing schemes 

(Gharari et al., 2022; Vanderkelen et al., 2022) – one based on Döll et al. (2003) with a simple level-pool equation for 195 

natural lakes and the other more complicated one based on Hanasaki et al. (2006) which includes reservoir operation rules. 

These two schemes have been applied to the other global hydrologic models (e.g., WaterGAP, VIC, and CWatM) to account 

for regulated streamflow. The original code is written in Fortran. 

The current version of mizuRoute does not explicitly account for subsurface runoff routing over terrain, which is critical in 

the Great Plains and regions where streams are intermittent across a year (Salas et al., 2017). In this study, we enable an 200 

option to turn on or off subsurface routing as defined in the model configuration file. Similar to surface runoff routing, the 

subsurface flow is routed using the IRF scheme but with a much slower velocity and reduced magnitude. We use a two-

parameter Gamma distribution function to materialize the IRF method as shown in eq. 1.  

𝑦(𝑡) =
!

"($)&!
𝑡$'!𝑒'

"
#                                                                                                                                                               (1) 

Where 𝑡 is the time variable, 𝑎 is a shape parameter, and 𝜃 is a time-scale parameter. Both 𝑎 and 𝜃 determine the flood 205 

peaking time and flashiness. After calculating instantaneous rates based on the gamma function, we use convolution to 

compute flow rates 𝑄 at time 𝑡. 𝑅(𝑡 − 𝑠) is the (sub)surface runoff at the time (𝑡 − 𝑠), and 𝑠 is an increment of time from 0 

to 𝑡𝑚𝑎𝑥 (also denoted as the time window). The default values of 𝑎 and 𝜃 for hillslope surface routing are set to 2.5 and 

8000. For subsurface flow routing, the 𝑎 and 𝜃 are 10 and 86400, respectively.  

𝑄(𝑡) = ∫ 𝑦(𝑡) × 𝑅(𝑡 − 𝑠)𝑑𝑠
()$*
+                                                                                                                                              (2)  210 

2.5 CREST-VEC 

The framework, CREST-VEC, and the difference compared to its precedent CREST model are shown in Fig. 2. The main 

difference comes from the routing process, where the original CREST model routes surface flow and interflow via a 

kinematic wave routing model and a conceptual linear reservoir model in a gridded manner. However, the CREST-VEC 

model requires area-averaged time series of surface and subsurface flow at each river reach to be separately routed 215 

downstream. The gridded outputs from the CREST model (i.e., surface runoff and subsurface runoff) are extracted and 

averaged over each unit catchments or HRU using the newly developed Python package EASYMORE (EArth SYstem 

Modeling REmapper), publicly available from https://github.com/ShervanGharari/EASYMORE.  

The framework is loosely coupled with two models written in different programming languages. A bash file calls three 

executables after model compilation subsequently (CREST-EASYMORE-mizuRoute). The input files for this model chain 220 

include forcing data (gridded precipitation, potential evaporation, and temperature), topography data (gridded digital 

elevation model, flow direction, flow accumulation, river network topology, and hydrologic response unit), and 

configuration files.  The topography data can be accessed from the HydroSHEDS website which consists of grid-based and 

vector-based topography data.   
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We use the IRF scheme in this study for both terrain routing and channel routing in this study and activate the lake model 

with the Döll et al. (2003) lake model. The parameters for lake parameters such as the outflow coefficient a and exponent b 

of eq.3, are based on suggested values in Döll et al. (2003) and Gharari et al. (2022). For lakes that have monitored storage 230 

provided by the US Geological Survey (USGS), we directly insert storage time series into the model. As reservoir operation 

is not considered in this study, we exclude observed streamflow that is regulated by reservoirs and regulated lakes, as shown 

in Fig. 1c. So, only results from natural lakes, which account for 98% of US lakes or reservoirs, are considered valid for 

statistical comparison. To initialize model states, especially for initial lake volumes, we warm up the CREST-VEC model 

from 1948 to 2014 using the GLDAS forcing (Global Land Data Assimilation System) at a daily time step. 235 

𝑄,-( = 𝑎 × 𝑆. × (𝑆. 𝑆.,)$*)⁄
0,                                                                                                                                                  (3) 

where a and b are the outflow coefficient (1/day) and exponent, respectively; 𝑆. is the actual lake storage (m3); 𝑆.,)$* is the 

maximum lake storage (m3). 

[INSERT FIGURE 2 HERE] 
Figure 2. Schematic view of the CREST-VEC framework. The red arrow highlights the newly added subsurface routing option to 240 
the original mizuRoute framework. 

3. Results 

3.1 Case study: Houston region 

As mentioned in the objectives of this study, we first conduct a case study analysis to assess the relative contributions of 

subsurface flow routing and lake routing to streamflow simulation based on the CREST-VEC framework. The original 245 

CREST model is used as a benchmark. We chose the Houston region (Fig. 3a) because there are two large natural lakes - 

Lake Barker and Lake Addicks that impact hydrologic simulations (Fig. 1a). For the CREST model with gridded routing, we 

calibrate the model using the DREAM (Differentiable Evolution Adaptive Metropolis) optimizer (Vrugt et a., 2009) from 

2016-06-01 to 2017-06-01 at an hourly time step and performed evaluation from 2017-06-01 to 2020-01-01. The NSCE is 

used as the objective function for calibration, and the model is warmed up for one year from 2016-06-01 to 2017-06-01. We 250 

run the CREST model at three spatial resolutions: 1 km, 250 m, and 90 m. To be comparable with CREST-VEC simulations, 

whose hydrography data is built upon a 90-meter resolution DEM, we only use CREST model results at 90 meters for 

statistical comparisons and use the results at 1 km and 250 meters to assess computational efficiency. The evaluation metrics 

shown in Fig. 3c are based on the evaluation period. The river flows from 22 stream gauges are curated from the USGS. 

3.1.1 Model speedup 255 

Figure 3b shows the computational cost (elapsed time at seconds per step) for a series of model configurations for the routing 

process. All the tests were run on a single core Intel i7-6700K CPU (4.00 GHz). The grid-based CREST model costs 0.01, 

0.08, and 0.12 seconds per step at 1-km, 250-m, and 90-m resolutions, respectively. However, the CREST-VEC model can 

reduce this to approximately 0.002 seconds per step, regardless of grid resolutions from forcing data. There is little 
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difference among the three scenarios (i.e., CREST-VEC, CREST-VEC+subq: CREST-VEC plus subsurface routing, and 

CREST-VEC+subq+lake: CREST-VEC with subsurface routing and lake routing). Relatively speaking, CREST-VEC can 

speed up the current operational CREST model at 1-km by 10x, let alone at finer resolutions. 

3.1.2 Performance improvement 

Regarding model skills, the CREST model and CREST-VEC achieve similar median NSE (Fig. 3c) based on observations 290 

from 22 stream gauges, even though the CREST model takes advantage of automatic calibration. CREST-VEC and CREST-

VEC+subq overestimate flows downstream of two natural lakes, resulting in poor scores. But after incorporating lake routing 

schemes, the CREST-VEC+subq+lake model achieves not only better median scores but also less spread (quantified by the 

interquartile range). Notably, both CREST-VEC+subq and CREST-VEC+subq+lake have positive NSE values and smaller 

uncertainty ranges, primarily owing to included subsurface routing. The time series in Fig. 4 highlights the model 295 

performance at three stream gauges affected by upstream lakes. The CREST-VEC overestimates streamflow by a 

considerable amount (i.e., three times higher than observation in Hurricane Harvey), resulting in low NSE scores: 0.11, 0.16, 

and 0.18, respectively. With lake routing considered in the CREST-VEC+subq+lake, the simulated streamflow aligns well 

with observations, achieving NSE scores of 0.61, 0.65, and 0.64, respectively. Although the CREST model captures 

streamflow magnitude after calibration with the NSE scores – 0.37, 0.52, and 0.54, the peak timing is at least one-day 300 

delayed for Hurricane Harvey. In summary, the advantages for the general CREST-VEC framework against the gridded 

CREST model are threefold: (1) improve computational efficiency by at least ten times, (2) improve overall model skill, (3) 

reduce uncertainty ranges. 

[INSERT FIGURE 3 HERE] 
Figure 3. (a) Map of the study area (Houston region) showing river networks and water bodies; (b) Computation time per step for 305 
CREST at three resolutions and CREST-VEC model at four configurations on the x-axis; (c) Nash-Sutcliffe efficiency values for 
CREST and CREST-VEC model. 

[INSERT FIGURE 4 HERE] 
Figure 4. Performance of models downstream of two lakes. The Nash- Sutcliffe Efficiency coefficients are obtained from the 
CREST-VEC model with lake routing and subsurface routing. Three plots of time series of stream gauges (from upstream to 310 
downstream: 08073500, 08073600, 08074000) are pointed aside by the map, and the Hurricane Harvey event is highlighted in red 
box and insets. 

3.2 CONUS simulation 

Moving towards continental-scale hydrologic simulation, the CREST-VEC model excels at reducing computational costs, 

leaving room for quantifying uncertainties from forcing, model structure, and parameters in real-time. The following 315 

question is whether and how much the new lake routing improves a continental simulation. To answer this question, we 

simulate CREST-VEC with and without lake routing over the CONUS from 2017-06-01 to 2020-01-01 at an hourly time 

step. Notably, subsurface routing is activated for both models with and without lake routing, so we expect the difference in 

results to be primarily due to lake simulation. Streamflow data from 5,350 stream gauges in the same period are collected 
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and used for model verification. For this case, the CREST-VEC model parameters are based on the pre-configured CONUS-

wide parameters, the same as the ones used in Flamig et al. (2020). 

3.2.1 Model speedup 

Table 1 lists model performance with respect to total computational costs and evaluation scores of streamflow simulation. 

CREST-VEC certainly improves streamflow simulation not only via a higher resolution (from 1-km to 90-m) but with faster 325 

computational speed (149.2 hours to 29.9 hours in total; 7.2 sec/step to 0.37 sec/step for routing step only). Considering all 

preprocessing steps altogether, CREST-VEC model is still at least four times faster than the original framework. To be noted, 

a considerable amount of time is spent on mapping gridded runoff data to a vector form (>50% of the time). Future attention 

should be drawn on how to optimize the efficiency while preserving certain degrees of accuracy for this process. 

3.2.2 Performance improvement 330 

The median NSE score has increased from -0.06 (gridded) to 0.12 (no lake) and 0.18 (lake). The fraction of gauges with 

positive NSE scores has been improved from 41.8% (gridded CREST) to 50.6% (CREST-VEC without lake) and to 56.2% 

(CREST-VEC with lake). However, the CREST-VEC results are more biased than gridded CREST, partly due to the 

systematic overestimation of streamflow by the IRF routing scheme in the CREST-VEC. The difference would be primarily 

attributed to the different routing processes, as CREST permits leakage in the interflow reservoir, thereby leading to lower 335 

positive bias. Results with lake simulation have reduced BIAS from 27% to 17%, as part of the water is being held in the 

lake. The CC (Correlation Coefficient), however, does not vary much between scenarios with and without lake simulation, as 

shown in Fig. 5. One of the reasons is that the CREST-VEC model does not simulate regulated lakes or reservoirs which 

have strong control of streamflow time shifts. Notably, the IQRs (interquartile ranges) of NSE and BIAS for lake simulation 

are lower than without lakes, meaning that this method particularly boosts scores at gauge locations that had poor 340 

performance previously.  

Figure 6 depicts the spatial map of model skill (with lake) and its difference between scenarios with and without lake 

simulation. CREST-VEC with lake module in regions like the West Coast and Upper Mississippi River Basin have relatively 

good performance (NSE>0.4), yet over the Great Plains and East Coast, the model bias is high (BIAS>1), yielding low NSE 

scores. Similar issues are found in the literature with other models (Clark et al., 2008; Newman et al., 2015; Mizukami et al., 345 

2017; Salas et al., 2017; Lin et al., 2019; Konben et al., 2020; Knoben et al., 2020; Yang et al., 2021; Tijerina et al., 2021). 

Taking the Great Plains as an example (highlighted box in Fig. 6c), the model physics of CREST-VEC does not correctly 

represent the real hydrologic processes by two means. First, the surface runoff (before routing) simulated by CREST-VEC is 

biased. We compare the annual surface runoff by CREST-VEC to the public community dataset GRFR (Global Reach-level 

Flood Reanalysis) in Fig. 7. The runoff in GRFR is simulated by the VIC model and undergoes stringent bias correction 350 

against observations via the discrete quantile mapping technique (Yang et al., 2021; Lin et al., 2019). There is a 116.3% 

higher surface runoff by the CREST-VEC than theirs, partly explaining the high BIAS and low NSE scores in such region. 

We suspect the singular bulk soil layer represented in the CREST model yields such systematic differences. Second, the 

missing representation of playas, small and rain-fed lakes that are prominent in the Great Plains, leads to falsely produced 
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runoff (Hay et al., 2016; Solvik et al., 2021). However, even when accounting for multiple hydrologic model structures, 

performance in this region is still ranked as one of the poorest (Clark et al., 2008; Knoben et al., 2020). For example, Knoben 

et al. (2020) analyzed 36 hydrologic models over the U.S., in which the maximum KGE scores out of those models are lower 

than 0.5 over the Great Plains.  

 395 
Table 1. Statistical comparison of model performance over the continental U.S. Bolded numbers indicate the best metrics among 
the three model configurations. The computational speed is calculated as an average speed over a whole simulation period. 

Metrics Gridded CREST (Flamig 

et al., 2020) 

CREST-VEC (w/o lake) CREST-VEC (w/ lake) 

Simulation resolution 1 km 90 m 90 m 

Total computational cost 

(hours)  
149.2 29.9 32.96 

Computational Speed for 

routing (sec/step) 

7.2 0.35 0.37 

Max NSE 0.71 0.87 0.87 

Median NSE -0.06 0.12 0.18 

% gauges NSE>0 41.8 % 50.6 % 56.2 % 

Max CC 1.0 0.96 0.96 

Median CC 0.40 0.67 0.67 

Median bias 9% 27% 17% 

[INSERT FIGURE 5 HERE] 

Figure 5. Boxplot of model performance comparing results with lake routing and without it.  

[INSERT FIGURE 6 HERE] 400 
Figure 6. Spatial map of model performance with the lake (left column) and the difference between with and without lake simulation (right 
column). (a): NSE scores; (b) NSE differences (results with lake minus results without lake); (c) BIAS; (d) BIAS difference; (c) 
Correlation Coefficient (CC); (f) CC difference. The blue box in (c) highlights the region where high positive BIAS is present. 

[INSERT FIGURE 7 HERE] 
Figure 7. (a) density plot of CREST-VEC simulated annual surface runoff against GRFR (Global Reach-level Flood Reanalysis) in the 405 
Great Plains; (b) cumulative density function (CDF) of CREST-VEC and GRFR simulated annual runoff. 

3.3 How likely are floods falsely detected? 

In this section, we shift gears to explore how likely US floods are falsely alarmed if no lake simulations are included. We 

selected 283 gauges that are downstream of natural lakes (Fig. 8), with most of them located in the middle and eastern US. 

The hourly time series of streamflow of those gauges are compared against advised flood thresholds (2-year flooding) 410 

provided by the US Geological Survey. They fit a log-Pearson III type distribution to the annual maxima streamflow from 
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long-term records and extract values with given flood frequency. Following a similar approach as in Yang et al. (2021), 

consecutive yet independent events have to be two days apart from one another. From there, we calculated the Probability of 570 

Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI) based on the contingency table.  

As expected, median FAR is reduced from 0.63 (without lake simulation) to 0.50 (with lake), resulting in a slightly higher 

CSI of 0.36 than that of 0.31 for no lake simulation (Fig. 8a). Additionally, previous research reported that simulation results 

with the lake module mitigate the seasonal variability of the river discharge (Tokuda et al., 2021). The decrease in FAR 

values implies five instances: (1) decrease in false alarms while hits remain the same; (2) increase in hits while false alarms 575 

remain the same; (3) decrease in false alarms while increase in hits; (4) decrease in both false alarms and hits; and (5) 

increase in both false alarms and hits. We find that however POD values decrease from 0.87 without lakes to 0.85 with lakes, 

from which we can infer that both hits and false alarms are decreasing, but false alarms decrease at a higher rate. That is a 

fact of reducing simulated flood peak, which results in fewer hits in flood forecasts but meanwhile less falsely alarmed 

floods. As most studies focus on flood detection, they inevitably arrive at more falsely detected floods. Too many false 580 

alarms could make people disregard the warnings, despite a real threat, causing the “cry wolf” effect.  

Maps in Fig. 8b display the distributions of flood detectability with lake simulation and its improvements compared to 

results without lake simulation. High POD and FAR values co-exist in the Great Plains, where the model simulates 

considerably higher streamflow values than observations. Moderate FAR values are found near the Florida panhandle and 

parts of Georgia. Lower FAR values are found in the Midwest and West Coast. Compared to results without the lake, FAR 585 

values are reduced reasonably over the East Coast, Midwest, Gulf Coast, and West Coast, although POD values remain 

relatively unchanged or even decreased.  

Five local cases are shown in Fig. 9, which depicts the river topology and time series of hourly streamflow. One can infer 

that these lakes are not heavily regulated from recorded streamflow time series, therefore showing the effectiveness of our 

model. In Fig. 9a, the simulated streamflow without lakes is heavily overestimated, peaking at 1200 cms in the year 2017, 590 

whereas the actual flow rate is around 400 cms. The scenario with lake simulation, however, produces a magnitude much 

closer to the observation. Due to decreased systematic bias, the lake scenario boosts the NSE score from -0.2 to 0.5. There is 

also an 8% less chance of issuing false alarms than the model without lake simulation. Figure 9b shows a case where FAR is 

reduced from 0.70 to 0.17, a reduction rate of 75.7%. The flood detectability, i.e., CSI, is greatly improved from 0.29 to 0.57. 

Figure 9c exemplifies a case with all improved metrics (i.e., NSE, POD, FAR, and CSI). All these three cases in Figs. 9a-c 595 

are located along the St. Johns River, in which we expect a systematic improvement along this river after incorporating the 

lake simulation. Figure 9d displays more common cases where a reduction of FAR comes at the expense of reducing POD 

(i.e., flood detection), almost at the same pace. Figure 9e shows that although the model with lakes produces better baseflow, 

it underestimates flood peaks, resulting in lower NSE values (0.3) than results without lakes (0.4). It implies that parameters 

governing the lake outflow need to be improved. 600 
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Figure 8. Flood detection performance comparing lake and no lake simulation. (a) Similar to Figure 5, but for flood detectability; 630 
(b) Similar to Figure 6, but for flood detectability. 

[INSERT FIGURE 9 HERE] 
Figure 9. Five case examples of streamflow time series at gauges downstream of lakes: (a) St. Johns River near Sanford, FL; (b) St. 
Johns River near Cocoa, FL; (c) St. Johns River near De Land, FL; (d) Big Muddy River at Plumfield, IL; (e) Mississippi River at 
Clinton, IA. 635 

 

4. Discussion 

4.1 Vector vs. Raster routing 

In this study, we compare the advantages of vector-based routing with respect to conventional raster-based routing in two 

aspects: (1) model efficiency and (2) model accuracy. Overall, the vector-based routing shows great promise, as it speeds up 640 

the routing process by at least ten times, compared to grid-based routing, for both the regional simulation (0.07 sec/step vs. 

0.002 sec/step) and the CONUS simulation (0.35 sec/step vs. 7.2 sec/step). In terms of results against observations, the 

CONUS-wide performance is improved regarding NSE values. However, the variable river reach lengths (from hundreds of 

meters to tens of kilometers) in large-scale simulation pose challenges for estimating routing parameters such as the time and 

shape parameters in a unit hydrograph. Second, most land surface models are still grid-based, making a type mismatch (grid-645 

based land surface model vs. vector-based routing model) (Lehner & Grill, 2013). To integrate the two, we need a processing 

step by mapping surface and subsurface runoff onto representative HRUs. Different aggregation strategies are present and 

subject to the primary purpose of interest. At present, there is an ongoing effort to seamlessly integrate these two processes 

together (Gharari et al., 2020). However, it is yet to be efficient and draws further attention to improving this mapping 

scheme. Third, the many-to-one river network is established but not for one-to-many, meaning river bifurcation is 650 

challenging to represent and tackle (Yamazaki et al., 2014). 

Raster-based routing comes at the resolution of the input DEM data, albeit at a slower computational speed. Having matured 

over the years, most raster-based routing models are seamlessly integrated with water balance models so that model can be 

set up at minimum effort by a modeler. Mostly derived from hydrodynamic models, the concept of “raster” can be extended 

to “grid” because of the emerging unstructured grids such as triangles, curvilinear, hexagons, etc. These flexible grid types 655 

mimic the real flow directions and reduce computational costs. However, they are yet to be accepted/applied by the 

hydrologic model community. 

As one objective of this study, we want to examine the potential improvement from the with-lake configuration on 

streamflow simulation over a wide range of hydrometrical and geographical settings in the CONUS, rather than provide 

some optimal model setup and parameterization at the CONUS scale, which we believe is way beyond our scope and several 660 

steps forward from the current CREST-VEC or any existing CONUS models. As far as what qualifies ‘an adequate base 
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simulation’, there may be some room for debate but should be some bottom-line principles: first, one should be clearly aware 

of the sources of uncertainties, including forcing, model structure, parameterization, streamflow observation as the reference, 

etc. Optimization, though effective in improving the model performance, compensates for uncertainties from the other 680 

sources simply via adjusting model parameters. This has been acceptable for operational purposes but is not appropriate for 

this study where a modification of the model structure is introduced. Instead, we use an a-priori parameter set that was 

developed based on remote sensing datasets and also evaluated at the CONUS scale (Vergara et al., 2016). The physical base 

of these a-priori parameters set a solid foundation for examining the new with-lake configuration, thus should not be 

compromised via parameter tunning. 685 

The CREST-VEC model, by no means, represent all physical hydrological processes. Instead, it is a conceptual flood 

forecast model that aims to deliver timely flood information to stakeholders, decision-makers, and broader users. We admit 

that some processes such as vadose zone modeling, snow melting, hillslope routing, in-channel river routing, and reservoir 

operations are simplified, and some processes such as vegetation and groundwater modeling are missing from the current 

version. For the lake module, we expect to include more sophisticated multi-layer decision processes instead of a level-pool 690 

process. Lake evaporation is another important factor to be considered for improved water balance. Since it is a compromise 

between model complexity and efficiency, we hope to continuously push the envelope on this front to optimize the real-time 

flood forecast system. 

4.2 Room for improving large-scale hydrologic simulation 

Large-scale hydrologic simulation is still a long-standing challenge for the hydrologic community, especially with debates 695 

on developing a “one-model-fits-all” structure or a “malleable” structure (Burek et al., 2020; Clark et al., 2015a; Fenicia et 

al., 2011; Savenije, 2008). The CREST model, in our study, systematically overestimates surface runoff over the Great 

Plains and Southeast, a result of some misrepresented or missing processes, yet excels in flash flood simulation. Diverse 

hydrologic model structures, on the other hand, hope to overcome individual limitations and offer joint benefits (Horton et 

al., 2021). We, therefore, promote the “malleable” model structure from the efficiency point of view - a flexible structure 700 

disables redundant hydrologic processes. Then, the central question becomes: How do we adapt the model to variable 

catchment processes? In such a context, intercomparisons and discussions of different hydrologic models in varying 

catchment processes become particularly valuable (Clark et al., 2015a; Knoben et al., 2020; Tijerina et al., 2021). Notably, 

simply relying on the NSE or KGE score to assess the model performance can be misguiding (Clark et al., 2021).  

Hydrologic calibration is powerful in boosting model accuracy, yet large-scale models oftentimes suffer from the complexity 705 

that impedes credible model calibration. River routing schemes and their parameters can affect streamflow simulations, 

especially at fine time scales such as sub-daily (Mizukami et al., 2021). Our current study used an IRF scheme in which the 

impulse response function is derived from a diffusive wave equation (see Lohman et al., 1996; Mizukami et al., 2016) and 

includes two parameters – diffusivity and celerity. These parameters need to be exposed to calibration in addition to the 

hydrologic model parameters. Furthermore, to fully understand the routing model's impact on streamflow simulations, it is 710 
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necessary to consider other routing schemes including a diffusive wave model as well as a kinematic wave model, which 

may be suited for flood forecasting.   

Lastly, the computational costs for large-scale simulation can be optimized from accelerated hardware (multi-core CPUs and 735 

GPUs) once codes are parallelized and scalable. Advances in Reduced Order Modeling (ROM), a surrogate model which 

develops a parsimonious solution to replace the computationally intensive part, hold promise to reduce costs (Clark et al., 

2015b). For instance, to integrate reservoir simulation into the CREST-VEC system, we can build an offline ML model 

which is promising in mimicking human decisions (Yang et al., 2021) and plug it into the system. 

4.3 Towards improved flood forecasting with lake routing 740 

Flood forecasts are difficult because of their rarity, and their hits and misses are typically low while false alarms are high 

(Bartholmes et al., 2009; Cloke & Pappenberger, 2009). Results in this study demonstrate a dilemma in which the model 

with a lake module reduces false alarms but at the cost of more missed flood events compared to the one without a lake 

module. Although the combined metric CSI has a certain degree of improvement, this leaves a question – should we reduce a 

large number of false alarms at the expense of missing a small number of real events? Before discussing this point, we 745 

acknowledge that the current lake routing process is simple and imperfect, and improvement in this process possibly leads to 

an optimal situation where both false alarms and misses can be improved. However, in most situations, tradeoffs exist in 

hydrologic predictions. A good strategy in our case would be running both simulations with and without the lake module 

concurrently and making the “without lake” results the worst-case scenario. Since the CREST-VEC model has the advantage 

of efficiency, running two scenarios is totally feasible. A decision-maker can be trained to assess the situation – results from 750 

two scenarios disagree – from the perspective of flood severity and consequences. 

5. Conclusion 

This study compares a conventional raster-based routing scheme with the emerging vector-based routing approach in 

hydrologic models for regional case and continental simulations. From the continental run, we demonstrate the improvement 

in streamflow simulation after incorporating the lake storage and release module. Last but not least, flood-related false 755 

alarms can be greatly reduced by including the lake module. The following points summarize the primary findings of the 

study: 

1. Vector-based routing can accelerate continental-scale river routing by up to ten times, compared to a grid-based routing, 

for both a regional case (0.07 sec/step) and a continental case (0.002 sec/step). This leaves adequate room for generating 

ensemble predictions with variable forcing, parameters, and/or model structures. Furthermore, it improves streamflow 760 

simulation from -0.06 to 0.18, according to the aggregated median NSE values. 

2. A newly developed lake model increases the NSE score by 56.2% and reduces systematic BIAS by 17% for the 

continental simulation.  
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3. Flood false alarm ratios can be mitigated by 20.6% after enabling the lake module at the expense of missing 2.3% more 

floods on a continental scale.  785 

We recommend the use of ensemble simulations stemming from different model structures to overcome and adapt to varying 

catchment processes. Optimized streamflow prediction with quantified uncertainty information can be achieved in an 

operational manner for stakeholders and decision-makers. Future studies can fully investigate the limitation and uncertainty 

of different forcing, parameters, and/or model structures to catchment signatures such as climatology, dominant hydrologic 

processes, lithology, etc. Vector-based routing, in such a context, can enable fair comparison by excluding the effect of 790 

different routing schemes while focusing on discrepancies in water balance models alone. For future work, we hope to have 

the best possible model-simulated streamflow product in the US, fused with multi-model structures and observations. 

Another direction is to improve current lake and reservoir outflow simulation with a hybrid model – process-based and ML-

based.  
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Figure 1. Maps of (a) percent of regulated river and (b) regulated lake volume; (c) bar plot of lake classifications; (d) pie plot of US 
regulated lake or reservoir function purposes. 
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 1045 

Figure 2. Schematic view of the CREST-VEC framework. The red arrow highlights the newly added subsurface routing option to 
the original mizuRoute framework. 
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Figure 3. (a) Map of the study area (Houston region) showing river networks and water bodies; (b) Computation time per step for 
CREST at three resolutions and CREST-VEC model at four configurations on the x-axis; (c) Nash-Sutcliffe efficiency values for 1050 
CREST and CREST-VEC model. 

(a)

(b)

(c)
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Figure 4. Performance of models downstream of two lakes. The Nash-Sutcliffe Efficiency coefficients are obtained from the 
CREST-VEC model with lake routing and subsurface routing. Three plots of time series of stream gauges (from upstream to 
downstream: 08073500, 08073600, 08074000) are pointed aside by the map, and the Hurricane Harvey event is highlighted in red 1055 
box and insets. 
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Figure 5. Boxplot of model performance comparing results with lake routing and without it.  
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 1060 
Figure 6. Spatial map of model performance with the lake (left column) and the difference between with and without lake 
simulation (right column). (a): NSE scores; (b) NSE differences (results with lake minus results without lake); (c) BIAS; (d) BIAS 
difference; (c) Correlation Coefficient (CC); (f) CC difference. The blue box in (c) highlights the region where high positive BIAS 
is present. 
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 1065 
Figure 7. (a) density plot of CREST-VEC simulated annual surface runoff against GRFR (Global Reach-level Flood Reanalysis) in 
the Great Plains; (b) cumulative density function (CDF) of CREST-VEC and GRFR simulated annual runoff. 

(a) (b) 
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(a)

(b) Deleted: ¶
Figure 7. Bar plot of Spearman Correlation between 34 1070 
environmental indices (including NSE itself) from the U.S. 
CAMELS dataset and NSE scores simulated by CREST-VEC. 
Asterisk (*) signifies the statistically significant correlation 
between represented index with NSE (p-value < 0.05); Two 
asterisks (**) signify very significant correlation (p-value <0.01).¶1075 ... [5]
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Figure 8. Flood detection performance comparing lake and no lake simulation. (a) Similar to Figure 5, but for flood detectability; 
(b) Similar to Figure 6, but for flood detectability. 
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Figure 9. Five case examples of streamflow time series at gauges downstream of lakes: (a) St. Johns River near Sanford, FL; (b) St. 1080 
Johns River near Cocoa, FL; (c) St. Johns River near De Land, FL; (d) Big Muddy River at Plumfield, IL; (e) Mississippi River at 
Clinton, IA. Images courtesy of Google Map.  
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Deleted: ¶1085 
Supplementary Figure 1. (a) density plot of CREST-VEC 
simulated annual surface runoff against GRFR (Global Reach-
level Flood Reanalysis) in the Great Plains; (b) cumulative 
density function (CDF) of CREST-VEC and GRFR simulated 
annual runoff.¶1090 
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