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Abstract. The potential for multiyear prediction of impactful Earth system change remains relatively underexplored 10 

compared to shorter (subseasonal to seasonal) and longer (decadal) timescales. In this study, we introduce a new initialized 

prediction system using the Community Earth System Model Version 2 (CESM2) that is specifically designed to probe 

potential and actual prediction skill at lead times ranging from 1 month out to 2 years. The Seasonal-to-Multiyear Large 

Ensemble (SMYLE) consists of a collection of 2-year long hindcast simulations, with 4 initializations per year from 1970 to 

2019 and an ensemble size of 20. A full suite of output is available for exploring near-term predictability of all Earth system 15 

components represented in CESM2. We show that SMYLE skill for El Niño-Southern Oscillation is competitive with other 

prominent seasonal prediction systems, with correlations exceeding 0.5 beyond a lead time of 12 months. A broad overview 

of prediction skill reveals varying degrees of potential for useful multiyear predictions of seasonal anomalies in the 

atmosphere, ocean, land, and sea ice. The SMYLE dataset, experimental design, model, initial conditions, and associated 

analysis tools are all publicly available, providing a foundation for research on multiyear prediction of environmental change 20 

by the wider community. 

 

1 Introduction 

The desire for accurate advanced warning of high-impact, near-term, and regional environmental change has inspired rapid 

growth in the field of Earth system prediction using initialized coupled climate models. Recent developments in computing, 25 

modeling, and observing have made it possible to explore the potential for predictions that extend well beyond the two-week 

timescale of traditional weather forecasting. Multinational coordinated research efforts exist to advance the science of 

subseasonal (~3-4 week), seasonal (~12 month), and even decadal (~10-year) prediction of the physical, chemical, and 

biological components of the Earth system (Merryfield et al. 2020). Well-defined protocols for prediction system design 

have facilitated the use of large, multi-model ensembles that have, in some instances, revealed unexpectedly high potential 30 
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for skillful initialized prediction on climate timescales (e.g., Smith et al. 2020). The prevalence of unrealistically low signal-

to-noise ratios in models routinely used in Coupled Model Intercomparison Project (CMIP) simulations means that low 

prediction skill does not necessarily imply a lack of potential for skillful prediction (Scaife and Smith 2018; Zhang et al. 

2021). Without a priori knowledge of the inherent predictability limits of the multitude of Earth system processes at work on 

subseasonal to decadal timescales, continuous experimentation with ever more sophisticated models and methodologies is 35 

the sole path forward to advance our understanding of the scope for practicable Earth system prediction. 

 

Prediction systems are generally designed to probe a limited range of timescales that are dominated by climate phenomena 

considered to be the key sources of predictability (Merryfield et al. 2020). While seamless prediction from weather to 

decadal timescales is an aspiration, practical considerations demand a judicious choice of hindcast simulation length, start 40 

frequency, and temporal coverage to provide robust statistics given limited resources. Thus, subseasonal systems designed to 

explore the predictability associated with the Madden-Julian Oscillation (MJO), sudden stratospheric warmings (SSWs), and 

the North Atlantic Oscillation (NAO) are comprised of ensemble simulations of order 1-month duration, initialized weekly 

over a span of roughly 17 years (Pegion et al. 2018; Richter et al. 2022). Seasonal prediction systems primarily focus on the 

climate impacts associated with the El Niño-Southern Oscillation (ENSO), and thus seasonal protocols call for ensemble 45 

simulations lasting up to 12 months, initialized monthly over the past 30 years (Becker et al. 2020). At the far end of the 

initialized climate prediction spectrum, decadal forecast systems require ensemble simulations of up to 10-years duration, 

initialized annually over a historical time window of 50 years or more (Boer et al. 2016) to sample different phases of low-

frequency modes such as Atlantic Multidecadal Variability (AMV). The development of clear experimental protocols for 

exploring prediction on these different timescales has facilitated useful multi-model analyses and intercomparisons while 50 

also giving rise to distinct sub-groups within the Earth system prediction research community. 

 

The potential for skillful prediction on interannual timescales remains much less well examined compared to other 

timescales, in part because the protocols for seasonal and decadal systems are not well-suited for assessing multiyear lead 

times, and because there is not a well-organized protocol focused on this timescale. Seasonal hindcasts are usually integrated 55 

for only 1 year, and while decadal hindcasts do encompass the multiyear timescale, they are only initialized once per year 

(usually on November 1) and so potentially important seasonality effects are missed. Previous work in this area has focused 

on exploring the potential for extended ENSO forecasts. Several studies have reported high skill at up to 2-year lead times 

for predictions of select multiyear La Niña events when hindcasts are initialized close to the preceding strong El Niño events 

(Luo et al. 2008; DiNezio et al. 2017; Wu et al. 2021). A large ensemble analysis of two decadal prediction systems 60 

(initialized in November) revealed modest potential for skillful climate prediction in some regions/seasons at lead times 

greater than 12 months, with notably enhanced skill during active ENSO periods (Dunstone et al. 2020). Such ENSO-related 

forecasts-of-opportunity could have significant practical utility if highly predictable initial states could be identified in 

advance with confidence.  
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In addition to ENSO, potential sources of predictability on seasonal to multiyear timescales include upper ocean heat content 

in the extratropics (Yeager et al. 2018), soil moisture (Esit et al. 2021), sea ice thickness (Koenigk and Mikolajewicz 2009), 

snow cover (Orsolini et al. 2013; Ruggieri et al. 2022), the quasi-biennial oscillation (QBO) of stratospheric winds (Butler et 

al. 2016), volcanic activity (Hermanson et al. 2020), greenhouse gas forcing (Doblas-Reyes et al. 2006; Boer et al. 2013), or 

some combination thereof (Chikamoto et al. 2017). The sources of predictability for the biogeochemical (BGC) components 70 

of the Earth system remain unclear, but decadal prediction systems that include prognostic carbon cycle components have 

revealed promising potential to expand the scope of initialized prediction beyond the physical climate. Recent work has 

highlighted multiyear prediction skill for quantities such as air-sea CO2 and terrestrial carbon fluxes (Lovenduski et al. 

2019a; Lovenduski et al. 2019b; Ilyina et al. 2020), ocean acidification (Brady et al. 2020), ocean net primary productivity 

(Krumhardt et al. 2020), and marine ecosystems (Park et al. 2019). These pioneering results merit closer examination in 75 

experiments that explicitly target the multiyear timescale. Recent work has identified robust multidecadal modulations of 

seasonal prediction skill (Weisheimer et al. 2017; O’Reilly et al. 2020), which suggests that a focused multiyear prediction 

framework could shed further light on important interactions between seasonal, interannual, and decadal processes (e.g., the 

state-dependence of multiyear predictability of seasonal climate) that would otherwise remain obscure. As a result of the 

signal-to-noise paradox (Scaife and Smith 2018), a large ensemble size appears to be a prerequisite for skillful interannual 80 

predictions of some impactful atmospheric variations such as the NAO (Dunstone et al. 2016; Dunstone et al. 2020). A 

multiyear prediction protocol would permit the use of multi-model large ensembles that have been found to consistently 

outperform individual models in subseasonal (Richter et al. 2020) and seasonal (Becker et al. 2020) applications. 

 

In this study, we introduce a new initialized prediction system--the Seasonal-to-Multiyear Large Ensemble (SMYLE)--that is 85 

specifically designed for exploring Earth system predictability out to 24-month lead times. The SMYLE collection of 

hindcasts is unprecedented in size (20-member ensembles initialized quarterly between 1970-2019) and scope (e.g., it 

includes a full suite of prognostic ocean and land biogeochemistry variables). SMYLE uses the latest version of the 

Community Earth System Model (CESM2; Danabasoglu et al. 2020) and is intended to be a foundational resource for future 

prediction research by the CESM community. In addition to an extensive catalog of hindcast output from multiple 90 

components of the Earth system, the SMYLE data release includes historical state reconstructions for the ocean, sea ice, and 

land that were used for initializing component models. SMYLE is more than just a dataset, however, as it establishes an 

extensible experimental framework that will facilitate future CESM model and prediction system development activities. It is 

likely that the broader community impacts of SMYLE will be as significant as (or greater than) the results themselves as 

community members build on this dataset with their own targeted experiments. 95 

 

The goals of this paper are to: 1) motivate the need for focused exploration of multiyear Earth system prediction; 2) 

document SMYLE experimental design; 3) provide a broad overview of SMYLE performance for various Earth system 
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quantities of interest; and 4) lay the foundations for and inspire broad community involvement in initialized prediction 

research using CESM. A detailed description of the SMYLE experimental design follows in Section 2. Section 3 presents a 100 

brief survey of SMYLE skill for a variety of global and regional fields from each of the CESM2 component models. Section 

4 offers some conclusions from this preliminary analysis and includes pointers to SMYLE data and code resources. 

2 Experiment Description and Methods 

SMYLE consists of a large collection of 24-month-long initialized hindcast simulations using the CESM2 model configured 

at nominal 1° horizontal resolution in each of the component models. The atmosphere model is the Community Atmosphere 105 

Model version 6 (CAM6) with 32 vertical levels; the ocean model is the Parallel Ocean Program version 2 (POP2) with 60 

vertical levels and prognostic ocean BGC using the Marine Biogeochemistry Library (MARBL; Long et al. 2021); the sea 

ice model is CICE version 5.1.2 (CICE5) with 8 vertical layers; and the land model is the Community Land Model version 5 

(CLM5; Lawrence et al. 2019) with interactive biogeochemistry and agricultural management. The CESM2 overview paper 

(Danabasoglu et al. 2020) provides additional details and references for readers interested in learning more about the 110 

component models. Hindcasts are initialized quarterly (1st of the month of November, February, May, and August) for each 

year between 1970 and 2019. Each hindcast includes 20 ensemble members, with ensemble spread introduced using a 

random field perturbation method at initialization, as is done in CESM subseasonal predictions (Richter et al. 2020, 2022). 

The complete set of SMYLE hindcasts therefore comprises 8,000 model simulation years corresponding to roughly 400 TB 

of model output. 115 

 

The historical initial conditions for the models used in SMYLE are derived from the Japanese 55-year Reanalysis (JRA-55; 

Kobayashi et al. 2015)—an ongoing (1958 to present) atmospheric data assimilation product that uses a relatively high-

resolution atmospheric model (~55 km). The atmosphere model is initialized by directly interpolating the JRA-55 analysis 

state onto the CAM6 model grid. The ocean and sea ice initial conditions are obtained from a forced ocean--sea-ice (FOSI) 120 

configuration of CESM2 that uses JRA55-do (Tsujino et al. 2018) atmospheric fields as surface boundary conditions, 

consistent with the protocol for version 2 of the Ocean Model Intercomparison Project (OMIP2; Griffies et al. 2016) of 

CMIP6. The SMYLE FOSI simulation consists of 6 consecutive cycles of 1958-2018 forcing, with the 6th cycle (used for 

SMYLE) extended through 2019 using extended JRA55-do forcing (Tsujino, pers. comm.). In addition to providing 

historical physical states for the ocean and sea-ice that are compatible with each other as well as with the CESM2 model, the 125 

FOSI simulation yields a reconstruction of ocean BGC fields extending back to 1958. The land model is initialized from a 

forced (land-only) simulation of CLM5 using the CRU-JRAv2 forcing that was also used for Trends in land carbon cycle 

(TRENDY) simulations with CLM5 that were contributed to the Global Carbon Project (Friedlingstein et al. 2020). The 

CRU-JRAv2 data are applied cyclically from 1901-1920 to equilibrate the land state, with land carbon pools deemed close 

enough to equilibrium after 4,000 years of spin-up (Fig. A1). A fully transient simulation following the TRENDY S3 130 
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protocol (Friedlingstein et al. 2020) was initialized from the spin-up run and integrated from 1901-2019 with forcings that 

include changes in climate, CO2, land use and land cover, nitrogen deposition, and agricultural fertilization. Such land-only 

CLM5 simulations following the TRENDY protocol have been shown to be quite realistic for many but not all land 

variables, with CLM5 comparing well against other models for most fields (Friedlingstein et al. 2020, 2022). Furthermore, 

land-only CLM5 simulations show greatly improved realism compared to earlier CLM versions (Lawrence et al. 2019). 135 

 

SMYLE FOSI is very similar, but not identical to, the CESM2 contribution to OMIP2 (Tsujino et al. 2020). First, to reduce 

model bias in sea-ice thickness and extent (particularly, in summertime) that were present in the CESM2 OMIP2 submission, 

larger values for sea-ice albedo were employed in SMYLE FOSI than in the default CESM2. Second, SMYLE FOSI used 

strong sea surface temperature (SST) restoring under sea-ice to maintain more realistic sea-ice thickness. Third, to improve 140 

the realism of BGC macronutrient profiles in the deep ocean, the non-dimensional ocean isopycnal diffusion lower bound 

parameter in SMYLE FOSI was reduced from 0.2 to 0.1. The first two modifications yielded significantly improved 

climatological Arctic sea-ice concentration in summer (Fig. A2) and year-round sea-ice thickness (Fig. A3) in SMYLE FOSI 

compared to OMIP2. Surface ocean fields remained largely unchanged by these sea-ice fixes, as shown for example by 

minor differences in upper ocean heat content bias (Fig. A4). In addition to improving deep BGC fields, the modification of 145 

the diffusion parameter greatly reduced the cooling drift in the deep ocean (below 2000m) that was present in the OMIP2 

simulation (see Fig. 2 of Tsujino et al. 2020). This changed the global average temperature decrease over 6 forcing cycles 

from ~0.4°C to ~0.1°C (not shown). The modified sea-ice albedo and deep ocean diffusion settings were carried over to the 

fully-coupled SMYLE hindcast simulations. Other differences from the default CESM2 fully-coupled model configuration 

documented in Danabasoglu et al. (2020) include several modified parameter settings in MARBL and a crop-harvest bug fix 150 

in CLM5. 

 

The historical radiative forcings used in SMYLE exactly match those used in members 51-100 of the CESM2 Large 

Ensemble (CESM2-LE; Rodgers et al. 2021). This 50-member ensemble largely follows the forcing protocols of CMIP6 

(Eyring et al. 2016) for historical (1850-2014) and SSP3-7.0 (2015-2100) time periods. However, a significant deviation 155 

from the CMIP6 protocol is the use of smoothed biomass burning forcing during the 1990-2020 period to avoid spurious late 

20th century warming associated with the introduction of satellite-based emissions forcings (Fasullo et al. 2021). While 

external forcings are identical, SMYLE differs from CESM2-LE members 51-100 in terms of: ocean deep diffusion 

parameter; sea-ice albedo settings; and MARBL tuning parameters, as listed above. Despite these differences, these CESM2-

LE members should serve as a useful uninitialized benchmark for quantifying the benefits of initialization in SMYLE. 160 

 

Results from the SMYLE hindcasts initialized in November (SMYLE-NOV) are compared to the 40-member CESM1 

Decadal Prediction Large Ensemble (Yeager et al. 2018) that also used November 1st initialization (DPLE-NOV) but with 

starts only through 2017. Skill differences between SMYLE-NOV and DPLE-NOV are likely related to differences in 
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prediction system design that include: 1) ensemble size, 2) model physics (CESM2 vs. CESM1.1LENS), and 3) initialization 165 

methodology. Larger ensemble size tends to increase skill, with the magnitude of skill increase varying considerably from 

field to field (Scaife and Smith 2018; Yeager et al. 2018; Dunstone et al. 2020; Athanasiadis et al. 2020). We control for 

ensemble size effects in the SMYLE/DPLE comparison by randomly subsampling 20-member DPLE ensembles from the 

40-member pool (repeated 100 times) and then taking the average of 20-member DPLE skill scores. SMYLE incorporates 

multiple developments in individual component models (Danabasoglu et al. 2020) as well as a more comprehensive 170 

initialization strategy (observation-based initialization of the atmosphere and land in addition to ocean and sea ice). It is not 

possible to attribute differences in SMYLE/DPLE skill to particular design choices, but it is nevertheless of interest to 

document similarities and differences that might be worth exploring in more depth with dedicated sensitivity experiments. 

 

The primary focus of this general assessment of SMYLE performance is on hindcast skill for seasonally averaged fields 175 

(DJF, MAM, JJA, SON). Forecast lead time is defined here following common usage in seasonal prediction (e.g., Becker et 

al. 2020) with lead time (in months) denoting the interval between initialization and the start of a target season. For example, 

SMYLE hindcasts initialized in November (SMYLE-NOV) yield seasonal predictions at 7 lead times as follows: 1:DJF, 

4:MAM, 7:JJA, 10:SON, 13:DJF, 16:MAM, 19:JJA. The terms “forecast season” or “forecast month” refer to the integer 

sequence of temporally averaged forecasts. Thus, the SMYLE-NOV hindcasts yield 7 forecast seasons as follows: 1:DJF, 180 

2:MAM, 3:JJA, 4:SON, 5:DJF, 6:MAM, 7:JJA. Unless otherwise noted, drift is removed from forecasts by converting all 

fields to anomalies from a model climatology that varies with lead time. Observed anomalies are obtained by subtracting the 

equivalent climatology from the observational record. It is well known that long-term trends associated with external forcing 

contribute significantly to hindcast skill assessed over multidecadal time spans (e.g., Smith et al. 2019; Yeager et al. 2018). 

For simplicity and economy, this SMYLE skill assessment focuses primarily on detrended, interannual data to highlight the 185 

potential to predict multiyear departures from a linear trend (but skill for non-detrended data is also shown in Appendix B for 

select fields). Global hindcast fields (and corresponding observations) are mapped to a common regular grid (either 5°x5° for 

global fields or 3°x3° for land fields) using conservative mapping weights prior to skill score computation. This remapping is 

done to highlight aggregate regional skill, increase the efficiency of skill analysis, and improve the quality of global map 

plots that include significance markers (see Appendix B). 190 

 

The primary skill metrics examined are the anomaly correlation coefficient (ACC) and normalized root mean square error 

defined (nRMSE) as follows: 
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where 𝑓&!  is the (dedrifted) ensemble mean forecast anomaly at verification time i, �́�!  is the corresponding anomaly from 195 

observations (or more generally, from the chosen verification dataset), 𝜎& is the observed standard deviation, and N is the 

temporal sample size. Unless otherwise indicated, N is always maximized for a given pairing of forecast and verification 

time series. For example, N = 50 for SMYLE lead month 1 forecasts that verify in the interval 1970-2019 if observational 

data are available for that full period, but N = 41 if observations are only available from 1979-2019. The significance of 

ACC scores is determined from the p-value of a t-test that uses the effective sample size based on the autocorrelation of the 200 

time series (Bretherton et al. 1999). The null hypothesis of zero correlation is rejected if the two-tailed p-value is less than 

𝛼 = 0.10, corresponding to a 90% confidence level. Significant differences between SMYLE-NOV and DPLE-NOV ACC 

scores for select fields are assessed based on p-values computed by comparing the single 20-member SMYLE-NOV score to 

the distribution of 20-member scores obtained from DPLE-NOV. The nRMSE metric reflects only the error variance (not the 

mean bias) and has the value of 1 for a zero anomaly (climatology) forecast. 205 

 

The observational and/or reanalysis datasets used for skill verification are as follows: CRU-TS4.05 (Harris et al. 2020) for 

surface temperature over land; HadISST1 (Rayner et al. 2003) for surface temperature over ocean; GPCP version 2.3 for 

precipitation (Adler et al. 2018); ERA5 reanalysis for sea level pressure (Hersbach et al. 2020); OceanSODA-ETHZ (Gregor 

and Gruber 2021) for aragonite saturation state; National Snow & Ice Data Center (NSIDC) Sea Ice Index (Fetterer et al. 210 

2017) for Arctic sea ice extent; Pan-Arctic Ice Ocean Modelling and Assimilation System (PIOMAS) for Arctic sea ice 

volume (Schweiger et al. 2011); and Best Track data for tropical cyclone activity (Knapp et al. 2010). We compare SMYLE 

ENSO skill to that of the North America Multimodel Ensemble system (NMME; Barnston et al. 2019). 

3 Results 

3.1 Global surface temperature and precipitation 215 

The overall performance of SMYLE is summarized in global maps of ACC for surface temperature (Fig. 1) and precipitation 

(Fig. 2) as a function of start month (columns) and lead time (rows). As expected, skill is high in the first season following 

initialization and degrades with lead time. Surface temperature skill is generally higher over ocean than over land, but ACC 

scores exceeding 0.5 are evident for some land regions for lead times up to 13 months (e.g., northern South America). The 

following ocean regions stand out as hotspots of particularly high and long-lasting SST skill: the tropical Pacific and 220 

Atlantic, the subpolar North Atlantic, the western Indian, and the Pacific sector of the Southern Ocean. In each of these 

regions, significantly positive ACC scores (in places, exceeding 0.5) are found even at 19-month lead time (Fig. 1, bottom 

row). At long lead times, significantly positive land surface temperature skill is found primarily in low latitude regions 
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adjacent to the zones of high tropical ocean skill, while midlatitude land regions show low skill, in general. Possible 

exceptions are the west coast of North America (extending to Alaska) and the British Isles, which show significant ACC 225 

values (albeit less than 0.5) even in the second year of the predictions. For boreal summer (JJA), the most promising regions 

for multiyear prediction are the Caribbean and Central America, southeast Asia, western North America, Greenland, and 

parts of China and the Middle East. For boreal winter (DJF), statistically significant 2-year skill is found over Central 

America, Africa, and Australia. As expected, ACC scores are greatly enhanced almost everywhere when considering raw 

(non-detrended) data because of large amplitude, externally forced secular temperature trends (cf. Figs. 1, B1). 230 

 

There is considerably less skill for seasonal precipitation than for surface temperature (cf. Figs. 1,2). Skill for precipitation is 

high over tropical oceans, particularly the tropical Pacific, for lead months 1-7, but it degrades faster with lead time than skill 

for surface temperature. Like for surface temperature, the high precipitation skill over tropical oceans generally does not 

extend to land regions except in select areas at short lead times. Potentially useful prediction skill (ACC>0.5) is seen for land 235 

precipitation over southwestern North America in DJF (lead month 1), Central America in JJA (lead months 1-4), Florida 

and adjacent island regions in DJF (lead months 1-7), Australia in JJA and SON (lead months 1-4), east Africa in DJF (lead 

months 1-4), and northern South America in all seasons (lead month 1) but particularly in DJF (lead months 1-10). The 

longest lasting precipitation skill is found over the Maritime Continent in the western Pacific where ACC in boreal spring 

(MAM) remains above 0.5 out to lead month 13 (and perhaps, lead month 16). Apart from that, there is scant evidence of 240 

useful skill for seasonal precipitation over either land or ocean in year 2 of SMYLE hindcasts, although many regions have 

ACC scores that are significantly positive at the 90% confidence level (Fig. 2, bottom 3 rows). Unlike surface temperature, 

precipitation ACC skill is largely insensitive to removal of a linear trend (cf. Figs. 2, B2). 

 

The temperature and precipitation results from SMYLE are broadly in line with previous assessments of multiyear prediction 245 

skill (Dunstone et al. 2020). A key outstanding question is whether the low skill over land (particularly for precipitation) 

reflects fundamental predictability limits or, instead, potentially correctable flaws in model realism and/or prediction system 

design. We cannot answer that question, but we can at least explore the combined sensitivity to CESM model version and 

initialization methodology by comparing the skill of SMYLE-NOV to that of DPLE-NOV (rightmost two columns in Figs. 

1,2). Both systems are verified against the same observations using similar hindcast sets (1970-2019 initializations for 250 

SMYLE-NOV and 1970-2017 initializations for DPLE-NOV), and skill scores are computed using consistent 20-member 

ensembles (see Section 2 for details). In general, the large-scale patterns of ACC skill for both seasonal temperature and 

precipitation, and their evolution with lead time, are very similar between these systems. However, SMYLE-NOV exhibits 

notably higher regional skill than DPLE-NOV, along with more widespread regions showing significantly positive ACC, 

particularly at short lead times. A more detailed skill comparison based on maps of surface temperature ACC difference 255 

confirms that SMYLE-NOV outperforms DPLE-NOV for lead times out to 16 months, based on the percentage of global 

surface area showing a significant increase in ACC (Fig. B3). There is widespread skill increase at short leads that shows 
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largest amplitude over South Asia and the north-eastern Indian Ocean, but there is also significant skill degradation over the 

North Atlantic, Greenland, and Eurasia. At longer leads (lead month 7 and beyond), the comparison grows increasingly 

heterogeneous from region to region, but the areas associated with significant skill increase/decrease become roughly equal 260 

only at lead month 19 (Fig. B3). For precipitation, there is also evidence of skill improvement in SMYLE-NOV compared to 

DPLE-NOV at leads up to 4 months, but the global statistics indicate a rough equivalence of the two systems by lead month 

7 (Fig. B4). Whether these skill improvements derive from recent CESM model developments or from the other prediction 

system design differences that distinguish SMYLE-NOV from DPLE-NOV (see Section 2) is unclear, but the large skill 

increases at short leads do suggest that the more realistic initialization of the atmosphere and land components in SMYLE is 265 

likely an important factor. This preliminary comparison is a hopeful sign that prediction system development (achieved 

through advances in both modelling and incorporation of observations) can expand the spatiotemporal bounds of skillful 

prediction. More work is needed to develop a deeper, process-level understanding of the skill patterns shown in Figures 1 

and 2, the sensitivity of process representation to system design, and where and how further improvement might be possible. 

 270 
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Figure 1: Anomaly correlation coefficient (ACC) for surface temperature after removing a linear trend. Columns correspond to different 
20-member hindcast sets from SMYLE, with the far-right column showing 20-member DPLE results. Rows correspond to forecast season 
as indicated by labels that give forecast lead time and target season. Correlations are plotted only where significant (p<0.1). Verification is 
against a blend of CRU-TS4.05 (over land) and HadISST1 (over ocean) that spans 1970-2020. Figure B1 shows corresponding maps for 275 
non-detrended data and Figure B3 shows where SMYLE-NOV differs significantly from DPLE-NOV. 
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Figure 2: Anomaly correlation coefficient (ACC) for precipitation after removing a linear trend. Columns correspond to different 20-
member hindcast sets from SMYLE, with the far-right column showing 20-member DPLE results. Rows correspond to forecast season as 
indicated by labels that give forecast lead time and target season. Correlations are plotted only where significant (p<0.1). Verification is 280 
against the GPCP v2.3 (Adler et al. 2018) dataset that spans 1979-2021. Figure B2 shows corresponding maps for non-detrended data and 
Figure B4 shows where SMYLE-NOV differs significantly from DPLE-NOV. 
 

 

3.2 Sea Surface Temperature 285 

Variations in tropical SST provide the essential underpinnings for climate prediction on seasonal to interannual timescales 

(Palmer and Anderson 1994; Troccoli 2010; Merryfield et al. 2020).  ENSO is a dominant driver of global climate variability 

on interannual timescales and is therefore an important consideration in the performance appraisal of multiyear prediction 

systems like SMYLE. In this section, we first compare the ENSO skill from SMYLE with that obtained in other prominent 
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seasonal prediction systems, and then evaluate SMYLE performance at predicting seasonal anomalies in the tropical Atlantic 290 

and Indian Oceans. 

 

3.2.1 El Niño-Southern Oscillation (ENSO) 

The persistently high ACC for SST over the tropical Pacific in Fig. 1 is associated with long-lead predictability of ENSO 

events. The ENSO prediction skill in SMYLE is assessed based on SST anomalies averaged over the Niño-3.4 region (5°S-295 

5°N, 170°-120°W; Fig. 3). The ACC for Niño-3.4 for SMYLE forecasts initialized from 1970-2019 remains above 0.5 out to 

lead month 11 when averaged across the four initialization months (black curve; Fig. 3i). This high mean skill extends out 

lead month 14 when the forecasts are subsampled to only include 1982-2016 initializations (blue curve; Fig. 3i). Skill for 

boreal winter (DJF) Niño-3.4 is high (ACC~0.6) even when hindcasts are initialized in February (10-month lead; Fig. 3a), 

and there is evidence of potentially useful (ACC~0.5) multiyear skill (e.g., the second DJF season from SMYLE-AUG 300 

corresponding to lead month 16; Fig. 3e). Forecast error is quite stable from summer through winter but grows rapidly 

during boreal spring (Fig. 3b,d,f,h). SMYLE-MAY has the largest error for lead month 1 seasonal hindcasts (Fig. 3d), while 

SMYLE-NOV shows the smallest error (Fig. 3h). The nRMSE metric yields 1 for a climatology forecasts (Section 2), and so 

SMYLE error for seasonal Niño-3.4 can beat climatology up to lead month 19 for targest seasons in boreal fall and winter 

(SMYLE-FEB and SMYLE-MAY; Fig. 5b,d).  305 

 

SMYLE compares well with an 8-model set of 12-month Niño-3.4 hindcasts spanning 1982-2016 from the North America 

Multimodel Ensemble system (NMME; Barnston et al. 2019). Slightly higher ACC and smaller RMSE are obtained using a 

1982-2016 forecast set compared to a 1970-2019 forecast set, suggesting that ENSO prediction skill may be time-dependent 

(Fig. 3, compare black and blue curves). For lead times up to 11 months, SMYLE skill very closely matches that of the 310 

NMME multimodel mean (MMM) when averaged over the four initialization months (Fig. 3i). SMYLE skill exceeds that of 

all NMME models (as well as the MMM) for February-initialized forecasts (Fig. 3a,b), and it shows a very close match to 

the NMME MMM for November-initialized forecasts (Fig. 3g,h). The Niño-3.4 prediction skill of SMYLE is also very 

comparable to other operational seasonal forecast systems, such as the ECMWF seasonal forecast system 5 (SEAS5), which 

shows an ACC of ~0.6 at 12-month lead time during 1981-2016 when averaged over the same four initialization months as 315 

in SMYLE (Johnson et al. 2019). The corresponding ACC value from SMYLE is also ~0.6 (Fig. 3i, blue curve at lead time 

12). The ENSO skill from these dynamical prediction systems is lower than that obtained from statistical prediction systems 

based on machine learning methods, such as the Ham et al. (2019) system in which the all-season ACC for 1984-2017 

remains above 0.5 for 17 months. The lower skill of dynamical forecast systems is likely related to inherent model bias and 

initialization errors. 320 

 



13 
 

 
Figure 3: (left) Anomaly correlation coefficient (ACC) and (right) normalized RMSE skill scores for Niño-3.4 SST (regional average over 
170°W-120°W, 5°S-5°N). Panels (a)-(h) show skill for seasonal mean Niño-3.4 for 4 different start months (FEB, MAY, AUG, NOV), 
with x-axis showing lead time in months and target season. Panels (i) and (j) show skill for monthly mean Niño-3.4 averaged across all 4 325 
start months as a function of lead time in months. Filled symbols for ACC (left panels) indicate significant correlation scores (p<0.1). 
SMYLE skill is shown for two different forecast sets: the full set initialized 1970-2019 (solid black curve) and a subset initialized 1982-
2016 (dashed blue curve). The latter can be directly compared to NMME results, which are shown as scores for the full multimodel 
ensemble mean (dashed red curve) as well as the range of scores from 8 individual NMME models (red shading). Verification dataset is 
HadISST1. 330 
 

 

Figure 4 compares the time series of the seasonal (DJF) Niño-3.4 index in observations and SMYLE hindcasts with lead 

times ranging from 1 to 19 months. The NOV (1-month lead) and AUG (4-month lead) hindcasts show very high ACC (~0.9 

or better), low nRMSE, and small ensemble spread (Fig. 4a,c). Skill progressively degrades in the MAY and FEB hindcast 335 

sets (Fig. 4e,g), but the latter still yields potentially actionable skill (ACC ~0.6) at a lead time of 10 months. The skill of 
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SMYLE-FEB is associated with good predictions of strong winter El Niño (e.g., 1973, 1983, 1998, and 2016) and La Niña 

(e.g., 1974, 1989, 1999, and 2000) events. This indicates that ENSO forecasts initialized in February can overcome the 

spring predictability barrier for strong events, possibly due to the initial large upper ocean heat content anomalies in the 

equatorial Pacific (Meinen and McPhaden 2000; McPhaden 2003). SMYLE ACC skill ranges from 0.49 to 0.41 for lead 340 

times exceeding one year (Fig. 4, right column), but there are indications that certain years or decades are much more 

predictable than others at long lead times. For example, the multiyear La Niña events that followed the strong El Niños in 

1983 and 1998 are well-captured in the 19-month lead forecasts, but the multiyear La Niña event that followed the strong El 

Niño of 2016 is not well predicted. In the 1980s, the AUG and MAY hindcasts (16- and 19-month lead, respectively) show 

an excellent match with observations and smaller ensemble spread than for other decades. The explanation for such 345 

interannual and decadal variations in ENSO predictability and SMYLE hindcast performance will be the topic of future 

research. 
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Figure 4: Time series of DJF Niño-3.4 index in observations (black curve; HadISST1) and SMYLE hindcasts at 7 different lead times. 
Colored curves show the SMYLE ensemble mean and shading shows ensemble spread (±1 standard deviation). The ACC and normalized 350 
RMSE scores are given at the top of each panel. The x-axis reflects the year of January (e.g., DJF 2020 represents the average for Dec 
2019, Jan 2020, and Feb 2020).  
 

 

3.2.2 Tropical Atlantic and Indian Oceans 355 

In addition to ENSO, interannual SST variations in the tropical Atlantic and Indian Oceans are also important for regional 

and global climate variability and predictability, not least through the key role they play in tropical interbasin interactions 

[see Cai et al. (2019) for a review]. Here we evaluate the seasonal-to-multiyear prediction skill for three major indices of 

climate variability in the tropical Atlantic and Indian Oceans.  

 360 

The dominant mode of interannual SST variability in the equatorial Atlantic region is the Atlantic Niño (Merle et al. 1980) 

which is characterized by irregular periods of warming during boreal summer (Xie and Carton 2004). While the amplitude of 

the Atlantic Niño is weaker than that of ENSO, and its duration shorter (spanning approximately May-August), the Atlantic 

Niño shares many commonalities with its Pacific counterpart. It is a coupled air-sea mode that exhibits numerous regional 

and global teleconnections, including rainfall variability across West Africa and an intensified summer monsoon over 365 

northeast India (Lübbecke et al. 2018; Sahoo and Yadav 2021). The Atlantic Niño has also been linked to Pacific variability, 

with the Atlantic Niño state in boreal summer potentially modulating the development and amplitude of ENSO (Ding et al. 

2012; Ham et al. 2013, Keenlyside et al. 2013). Coupled global climate models struggle with skillful representation of the 

Atlantic Niño, which is partly attributed to model bias that prevents the development of a cold tongue across the eastern 

equatorial Atlantic (Nnamchi et al. 2015; Dippe et al. 2018). 370 

 

SMYLE ACC scores for Atlantic Niño exhibit a strong dependence on initialization month and verification season (Fig. 5a). 

Skill for boreal summer (JJA) is of most interest, as Atlantic Niño interannual variability is strongly peaked in that season 

(Lübbecke et al. 2018). As expected, SMYLE-MAY yields the highest skill for JJA at lead month 1 (ACC~0.65), but 

SMYLE-FEB shows low-level skill at lead month 4 (ACC>0.4, nRMSE<1). The February initialization result is in line with 375 

the multisystem assessment of Richter et al. (2018; their Figure 1) as well as the Norwegian climate prediction system 

assessment of Counillon et al. (2021; their Figure 4), although the comparisons are complicated by differences in temporal 

averaging (monthly vs. seasonal). Skill for boreal spring (MAM) shows the most rapid degradation with lead time with 

insignificant ACC scores for all leads greater than 1 month and largest increase in nRMSE (Fig. 5d). In contrast, boreal 

winter (DJF) ACC scores remain significant (albeit low) out to 16-month leads, and skill actually increases with lead time 380 

for boreal fall (SON) with an ACC maximum (nRMSE minimum) seen at lead month 10. There is also a rebound in boreal 

winter (DJF) skill at lead month 13 (Fig. 5a, black diamond). This skill rebound in winter and fall at longer lead times may 

be related to the seasonality of Atlantic Niño or it could be an artifact of potentially correctable initialization shocks in the 
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prediction system. Overall, the Atlantic Niño results highlight a strong sensitivity to initialization month and target season, 

and they offer an interesting contrast to the ENSO results (Fig. 3) which show a steady decline in skill after boreal spring 385 

without any rebound. 

 

Assessment of SST skill for the tropical Atlantic basin main development region (MDR) is important because of the region’s 

potential impact on tropical cyclone development during the Atlantic hurricane season (June through November). The MDR 

encompasses a subtropical region extending from the Caribbean Sea to the West coast of Africa. ACC is generally greater 390 

than 0.5 for Atlantic MDR SST for lead times up to 7 months (Fig. 5b). In contrast to Atlantic Niño, ACC and nRMSE 

scores for MDR are relatively insensitive to target season, and so there is much less variability in skill with lead time (Fig. 

5b,e). This could be related to the fact that MDR is a larger region, but likely also reflects the fundamentally different 

dynamics at play in these two regions (Dunstone et al. 2011). At long leads, there is a curious increase in skill for May and 

August initializations, and in particular, SMYLE-AUG shows a rather high ACC (~0.5) at lead month 16 (DJF target season) 395 

which might be related to the long-range predictability of ENSO (Fig. 3c). This skill resurgence is evident to a lesser extent 

in the lead month 13 of SMYLE-AUG (SON target season), which is more relevant for predicting Atlantic tropical cyclone 

activity in boreal fall.  

 

The Indian Ocean dipole (IOD), a zonal oscillation in the tropical Indian Ocean, is highly relevant for seasonal to interannual 400 

prediction due to its teleconnections to regional climate over Africa, India, and Australia, as well as its influence on ENSO 

(Saji et al. 1999; Ashok et al. 2001). ACC for IOD maximizes in boreal fall (target season SON) for all initializations (Fig. 

5c), remaining above 0.5 at lead month 4 and significantly positive out to lead month 10. The ability to predict IOD in SON 

could be important for anticipating winter rainfall anomalies over Australia (Ashok et al. 2003), and there is indeed some 

evidence of skillful prediction of SON precipitation over the Maritime Continent and northern Australia at short leads (Fig. 405 

2). However, the nRMSE for IOD is large even at lead month 1 (compared to the other SST indices examined), and the 

errors grow with lead time while exhibiting a large sensitivity to target season (Fig. 5f). Note that the CESM2 is 

characterized by a too westward extension of the eastern pole of IOD (not shown), and this likely contributes to the large 

RMSE in predicting the amplitude of the IOD index. 
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 410 
Figure 5: Anomaly correlation (top row) and normalized RMSE (bottom row) skill scores for regionally-averaged seasonal SST indices as 
follows: (a,d) Atlantic-Niño (20°W-0°W, 3°S-3°N); (b,e) Atlantic Main Development Region (MDR; 80°W-10°W, 10°N-20°N); (c,f) 
Indian Ocean Dipole (50°E-70°E, 10°S-10°N minus 90°E-110°E, 10°S-0°N). Scores for individual SMYLE start months (colors) are 
shown as a function of lead month, with verification season indicated by symbols as shown in the legend. Filled symbols for ACC indicate 
significant correlation scores (p<0.1). Time series were detrended prior to skill score computation. Verification dataset is HadISST1. 415 
 

 

3.3 Sea Level Pressure 

SMYLE skill at predicting seasonal variations in the large-scale atmospheric circulation is revealed by maps of ACC for sea 

level pressure (SLP; Fig. 6). Related to the SST prediction skill (Fig. 1), regions of useful skill (ACC>0.5) are found in the 420 

Tropics where ocean-atmosphere interaction is strong for lead times extending beyond 1 year, particularly in the eastern 

Pacific and over the Maritime Continent extending into the eastern Indian Ocean. Low but significantly positive SLP skill is 

evident even at 19-month lead time in select low-latitude regions as well as some areas in the Southern Ocean. As for 

temperature (Fig. 1) and precipitation (Fig. 2), SLP skill over land is generally lower than skill over ocean, and seasonal 

variations in the extratropics are poorly predicted even at short lead times. The modest skill at predicting SLP variations in 425 

tropical regions adjacent to land at leads greater than 12 months suggests that predictable atmospheric dynamics may be 

contributing to land surface temperature skill in certain low-latitude regions (cf. Figs. 1,6). As was also observed for 

precipitation, SLP skill exhibits low sensitivity to the removal of a linear trend (cf. Figs. 6, B5). Comparing SLP skill from 

SMYLE-NOV to that from DPLE-NOV reveals improved skill in the former for all leads (Fig. 6, rightmost two columns). 



18 
 

Maps of significant SLP skill difference between the two systems confirm this visual impression, but also highlight areas of 430 

skill degradation in SMYLE that change with lead time but appear most consistently in the pan-Atlantic region (Fig. B6). 

There are suggestions of a possible connection between areas of skill degradation in surface temperature and SLP (cf. B3, 

B6), particularly at early leads when SMYLE temperature skill over the North Atlantic is significantly lower than in DPLE. 

 

 435 
Figure 6: Anomaly correlation coefficient (ACC) for sea level pressure after removing a linear trend. Columns correspond to different 20-
member hindcast sets from SMYLE, with the far right column showing 20-member DPLE results. Rows correspond to forecast season as 
indicated by labels that give forecast lead time and target season. Correlations are plotted only where significant (p<0.1). Verification 
dataset is ERA5 reanalysis. Figure B5 shows corresponding maps for non-detrended data, and Figure B6 shows where SMYLE-NOV 
differs significantly from DPLE-NOV. 440 
 

 

Some dynamical forecast systems have achieved noteworthy skill at predicting year-to-year variations in the winter NAO 

index at lead times ranging from 1 month (Scaife et al. 2014) out to even 13 months (Dunstone et al. 2016). The ability to 
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predict winter NAO has important implications for anticipating winter climate impacts over Europe and North America, for 445 

even if such impacts are not themselves well-predicted, combined dynamical-statistical predictions may be possible 

(Simpson et al. 2019). The SMYLE set of hindcasts do not show any significant skill for DJF NAO even at the shortest lead 

time of 1 month, regardless of how the NAO index is computed (station-based or EOF-based; Fig. 7a,b). Furthermore, there 

is no evidence of useful seasonal-to-interannual ACC skill for NAO in any target season from SMYLE, and nRMSE scores 

are close to or above 1 at all lead times (Fig. 7). Skill from 40-member DPLE-NOV is slightly better than 20-member 450 

SMYLE-NOV (higher ACC and lower nRMSE), but the station-based NAO skill confidence interval for 20-member DPLE-

NOV is too wide to definitively conclude that SMYLE skill is worse than DPLE. SMYLE-NOV skill does appear to be 

significantly worse than DPLE-NOV at lead month 7, and significantly better at lead month 19 where SMYLE-NOV yields a 

significantly positive ACC, in line with SLP skill differences in the North Atlantic sector (Fig. B6). However, obtaining such 

significant values through chance is not out of the question. NAO prediction skill can vary considerably with verification 455 

window (Shi et al. 2015), and there is evidence that predictability increased in the 1980s and 1990s (Weisheimer et al. 2017). 

Indeed, the DPLE-NOV skill for DJF NAO becomes significant for lead month 1 (ACC~0.45) if the forecast initializations 

are subsampled to only include 1981-2015 (to roughly match the verification window used in Dunstone et al. 2016), while 

the corresponding SMYLE-NOV score remains low (and now appears significantly lower than DPLE-NOV; Fig. B7). The 

lack of NAO skill in SMYLE (and apparent degradation relative to the DPLE system) is a clear target for future CESM 460 

prediction system improvement. While it is not clear which specific design features of the Met Office forecast systems 

(GloSea5, Scaife et al. 2014; DePreSys3, Dunstone et al. 2016) account for high NAO skill, noteworthy differences from 

SMYLE include the use of higher horizontal resolution (60km in atmosphere; 25km in ocean) and a high-top atmospheric 

model that can simulate stratospheric processes including the Quasi-Biennial Oscillation. Work is underway to test whether 

higher vertical resolution in the atmosphere and a better-represented stratosphere yields higher NAO skill relative to these 465 

baseline SMYLE results, although a robust connection between atmospheric vertical resolution and NAO skill has not been 

demonstrated (Butler et al. 2016). Finally, we note that lack of seasonal NAO skill does not necessarily imply a lack of skill 

for longer period NAO variability. The DPLE system has been shown to exhibit high skill at predicting decadal fluctuations 

in winter NAO (Athanasiadis et al. 2020), despite showing rather low skill for seasonal NAO (Fig. 7). 
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 470 
Figure 7: Anomaly correlation coefficient (ACC; top panels) and nRMSE (bottom panels) for NAO as a function of initialization month 
and target season. Results are shown for both station-based (left; computed as the normalized SLP difference between model grid cells 
nearest to Lisbon, Portugal and Reykjavik, Iceland) and EOF-based (right; computed as the PC time series of the first EOF of SLP in the 
domain 90°W-40°E, 20°N-80°N) seasonal NAO. Filled symbols in (a,b) indicate significant ACC scores (p<0.1). Scores from 40-member 
DPLE-NOV are shown in dashed grey, with grey shading giving the 90% confidence bounds obtained from 100 resamplings (across 475 
members) of 20-member DPLE-NOV. Verification dataset is ERA5. 
 

 

3.4 Ocean Biogeochemistry 

The inclusion in SMYLE of initialized, prognostic ocean BGC fields via the MARBL module of CESM2 (Long et al. 2021) 480 

permits exploration of the predictability of marine ecosystems (Fig. 8) and ocean carbonate chemistry (Fig. 9). In Figure 8, 

SMYLE skill is quantified in terms of potential predictability by evaluating hindcasts against SMYLE-FOSI over the longest 

possible verification window (1970-2019), rather than against in situ observations which are relatively sparse and comprise 

short records. In Figure 9, SMYLE is verified against an observation-based dataset that has broad spatiotemporal coverage to 

give a measure of actual BGC prediction skill. 485 
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The basic elements of marine ecosystems and the biological carbon pump, such as net primary productivity (NPP), 

zooplankton carbon pools (Zoo C), and carbon export to depth (C export), are well-predicted on seasonal timescales over 

much of the global ocean (Fig. 8). The global patterns of skill are mostly consistent across different ocean BGC fields, 

suggesting common sources of predictability such as regional physical drivers. C export and Zoo C, however, appear to have 490 

higher potential predictability than NPP for the Southern Ocean in the SMYLE-MAY forecasts (Fig. 8a-c). There is 

particular interest in developing capacity to predict near-term changes in coastal Large Marine Ecosystem (LME) regions 

that delineate distinct marine environments of high societal value (Krumhardt et al. 2020; black lines in Fig. 8a-c). The high 

predictability of BGC fields in LMEs suggests that SMYLE forecasts could potentially be used for fishery applications. A 

comparison of ACC skill for the California Current and Southeast US Shelf LMEs (Fig. 8 panels d-f and g-i, respectively) 495 

reveals considerably higher and longer-lasting skill for the latter region. Correlation scores for detrended NPP, carbon 

export, and Zoo C remain above 0.5 for boreal summer and fall seasons even out to lead month 19 for the Southeast US 

LME. High skill in this region would appear to be related to the overall high predictability within the Atlantic subtropical 

gyre (Fig. 8 a-c), which has been linked to predictable variations in nutrient limitation (Krumhardt et al. 2020). In contrast to 

the Southeast US region, the California Current LME exhibits different levels of skill for different BGC components, with 500 

considerably higher ACC for carbon export than for NPP or Zoo C. Nevertheless, ACC for Zoo C remains above 0.5 for 

boreal fall for lead times of up to 13 months (Fig. 8f). Both LMEs shown in Figure 8 (panels d-i) exhibit higher potential 

predictability in ecosystem variables during the summer/fall than for winter/spring. We hypothesize that this is due to the 

persistence of initialized subsurface nutrient anomalies, as demonstrated in Park et al. (2019). Wintertime mixing of the 

water column causes the reemergence of these deep nutrient anomalies into the upper ocean and subsequently affects 505 

ecosystem productivity and export during the following growing season, leading to more skillful ecosystem predictability 

during these months. Further work is needed to assess the practical utility of such extended range marine ecosystem forecasts 

for LME management. 
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Figure 8: Anomaly correlation coefficients for SMYLE-MAY lead month 1 (JJA target season) forecasts of (a) net primary productivity, 510 
(b) carbon export, and (c) zooplankton carbon. ACC skill for spatially averaged seasonal fields as a function of lead month for (d-f) the 
California Current System and (g-i) the Southeast US Shelf regions. Large Marine Ecosystem (LME) boundaries are shown by black lines. 
Filled symbols in (d-i) indicate significant ACC scores (p<0.1). 
 

 515 

Ocean acidification will be a steadily increasing stressor on marine ecosystems in the future as the atmospheric CO2 

continues to rise in response to emissions. Short-term fluctuations in pH driven by variations in circulation and tracer 

anomalies, however, could temporarily exacerbate the acidification problem in specific regions of interest. Figure 9 shows 

SMYLE skill at predicting regional anomalies in aragonite saturation state (Ω'(')), a measure of ocean acidification. Here, 

SMYLE output with climatological drift removed was compared to OceanSODA-ETHZ (Gregor and Gruber 2021), a 520 

gridded observation-based data product, to determine the skill for seasonally-averaged anomalies at various lead times over 

the verification window 1985-2018 (determined by OceanSODA-ETHZ availability). Given the strong sensitivity of Ω'(') 

to increasing atmospheric CO2, time series were first detrended to highlight the ability to predict deviations from a linear 

trend. A persistence benchmark forecast (computed by persisting forward in time the most recently observed seasonal 

anomaly at the time of SMYLE initialization) is included for comparison. Three regions were selected for analysis: the 525 

California Current LME (CA Current; see Fig. 8), the Niño3.4 region, and the subpolar North Atlantic Ocean (55-60°N, 30-
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50°W). The highest skill is found for Niño3.4, where ACC remains above 0.5 out to lead month 16 for most initialization 

times. This implies there is a slightly longer predictability window for Ω'(') than for SST in this region (cf. Figs. 3, 9b). In 

the North Atlantic, skill scores are lower than for Niño3.4 at short lead times, but skill remains stable even out to multiyear 

timescales (Fig. 9c). Skill for the CA Current is highest in boreal fall and winter seasons when initialized during the spring 530 

upwelling season (Fig. 9a; green curve corresponding to SMYLE-MAY). The May initialization also yields the highest skill 

for the spring upwelling season the following year (r~0.6 at lead month 10). 

 

 
Figure 9: Anomaly correlation coefficients for aragonite saturation state (Ωarag) averaged over (a) the California Current System LME, (b) 535 
the Niño3.4 region, and (c) the subpolar North Atlantic (55-60°N, 30-50°W). Colored solid lines and symbols denote SMYLE 
initialization month and verification season, respectively. Colored dashed lines give persistence forecast results for different initialization 
months. Filled symbols in (a-c) indicate significant ACC scores (p<0.1). 
 

 540 

3.5 Land 

Land initialization contributes to Earth system predictability across a broad range of time scales due to the inertia of 

climatically relevant fields such as soil moisture, vegetation, and snow cover (Merryfield et al. 2020, and references therein). 

In addition to adding important reservoirs of memory into the coupled system, land initialization permits exploration of the 

predictability of land hydrology (Esit et al. 2021), carbon uptake (Lovenduski et al. 2020), and vegetation state (Alessandri et 545 

al. 2017). While additional sensitivity experiments will be needed to quantify the specific contribution of land initialization 

to prediction performance in SMYLE, initialized SMYLE hindcasts permit evaluation of land state potential predictability 

even when observations are sparse. Here, we demonstrate SMYLE capabilities by examining two regional case studies of 

land fields that exhibit high multiyear predictability: terrestrial water storage (TWS) and gross primary productivity (GPP). 

The forced CLM5 simulation used to initialize SMYLE (referred to as land-only) is used as an observational proxy for 550 

forecast verification. 
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TWS has been the focus of several recent decadal prediction studies given its significant low-frequency variability and high 

relevance to water management decision-making on multiyear to decadal time horizons (Yuan and Zhu 2018; Zhu et al. 

2019; Jensen et al. 2020). The CLM5 model used in SMYLE has been shown to do a good job at simulating TWS (Lawrence 555 

et al. 2019). SMYLE exhibits significant long-lead skill for TWS in select regions, with the US Southwest standing out as a 

location of particularly high potential predictability on multiyear time scales (Fig. 10a; the JJA season is shown, but other 

seasons give qualitatively similar maps). TWS in the US Southwest is dominated by decadal variability, and this region has 

been in extended drought conditions since the turn of the century (Fig. 10b), likely due to the combined effects of internal 

and anthropogenically-forced variability (Lehner et al 2018, Williams et al. 2020). The predominance of low-frequency 560 

variability implies that persistence of (initialized) decadal anomalies is an important contributor to skill in this region, and 

the CESM2-LE ensemble average implies that external forcing has played a role in the recent downward trend in Southwest 

TWS (Fig. 10b). Initialized SMYLE hindcasts outperform persistence forecasts out to about 16-month lead times, and they 

are more skillful than the uninitialized CESM2-LE projection at all lead times (Fig. 10c,d). Here, persistence skill is 

computed from the lag autocorrelation of detrended JJA TWS anomalies in the land-only simulation that was used to 565 

initialize SMYLE. The lag-1 autocorrelation corresponds to a prediction lead time of 9 months, and the lag-2 autocorrelation 

corresponds to a lead time of 21 months. These two persistence scores are used as benchmarks for SMYLE hindcasts at lead 

times less than and greater than one year, respectively. The improvement relative to CESM2-LE clearly demonstrates the 

value of initialization in addition to external forcing for predicting regional climate on multiyear timescales. The 

improvement relative to persistence suggests that there is some skill gain through prediction of TWS drivers in SMYLE, 570 

particularly in the first year (e.g., skillful prediction of seasonal precipitation over this region at short lead times; see Fig. 2). 
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Figure 10: (a) ACC for terrestrial water storage (TWS) in boreal summer (JJA) at lead month 19 (from SMYLE-NOV). The blue box 
(120°W-100°W, 22°N-37°N) defines a “Southwest” region. (b) Time series of raw Southwest JJA TWS (in units of mm; anomalies from 
1972-2018 climatology) from land-only simulation (black), SMYLE-NOV (blue; lead month 19 with ensemble mean/range given by 575 
line/shading), and CESM2-LE (red; 50-member mean). (c,d) ACC and nRMSE scores for JJA TWS over the Southwest region. Time 
series were detrended prior to skill score analyses shown in panels a,c,d, but panel b shows the non-detrended data. Dashed lines in (c) 
show skill for persistence forecasts computed from the lag autocorrelation of detrended JJA TWS from the land-only simulation, and red 
dotted lines in (c,d) give the CESM2-LE scores (which are independent of lead month). 
 580 

 

GPP is another land field that exhibits noteworthy multiyear potential predictability in select regions such as Siberia (Fig. 

11a). GPP variability over Siberia is characterized by large multiyear fluctuations superimposed on a significant externally-

forced upward trend (Fig. 11b). Skill maps for non-detrended seasonal GPP show widespread regions of high skill on every 

continent, with much of that skill presumably associated with external forcing (not shown). The skill scores obtained after 585 

detrending (Fig. 11a,c,d) help to highlight the predictability conferred by initialization. ACC remains above 0.5 for 

detrended Siberia GPP in boreal summer out to lead month 10, and it beats persistence at all lead times (Fig. 11c). While the 

uninitialized CESM2-LE ensemble accurately captures the upward trend in GPP over Siberia, SMYLE greatly improves the 

skill at predicting near-term deviations from the linear trend (Fig. 11b,c,d). This result suggests that potentially useful GPP 

forecasts may be possible at lead times of a year or more, but further work is needed to identify the predictability 590 
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mechanisms to bolster confidence in their use. The significant ACC scores obtained over Siberia for JJA TWS (Fig. 10a) 

offer a hint that high GPP skill may be related to accurate prediction of soil water availability in this region and season. 

 

 
Figure 11: (a) ACC map for gross primary productivity (GPP) in boreal summer (JJA) at lead month 19 (from SMYLE-NOV). The blue 595 
box (92°E-137°E, 45°N-67°N) defines a “Siberia” region. (b) Time series of raw Siberia JJA GPP (in units of gC/m2/s; anomalies from 
1972-2018 climatology) from land-only simulation (black), SMYLE-NOV (blue; lead month 19 with SMYLE ensemble mean/range given 
by line/shading), and CESM2-LE (red; 50-member mean). (c,d) ACC and normalized RMSE scores for JJA GPP over the Siberia region. 
Time series were detrended prior to skill score analyses shown in panels a,c,d, but panel b shows the non-detrended data. Dashed lines in 
(c) show persistence forecast scores computed as the lag autocorrelation of detrended JJA GPP from the land-only simulation, and red 600 
dotted lines in (c,d) give the CESM2-LE scores (which are independent of lead month). 
 

 

3.6 Sea Ice 

The FOSI simulation used to initialize the ocean and sea ice component models in SMYLE exhibits realistic interannual 605 

variability in pan-Arctic winter (JFM) and summer (JAS) sea ice extent (SIE), although JFM variance is somewhat lower 

than observed (Fetterer et al. 2017) and JAS anomalies are biased high in the decade spanning 2008-2018 (Fig. 12). Given 

this imperfect initialization as well as the limited observational record (from 1979 onwards), Figure 12 compares SMYLE 

SIE skill assessed relative to both FOSI (potential skill) and satellite observations (actual skill). In all seasons, Arctic SIE 
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variance is dominated by a large amplitude forced decline which can be estimated from the CESM2-LE ensemble mean 610 

(members 51-100; see Section 2). As a result, SMYLE SIE correlation scores (relative to either FOSI or observations) 

exceed 0.83 at all lead times for both JFM and JAS (not shown). To avoid skill score saturation associated with this forced 

decline, we report in Table 1 correlation and nRMSE (normalized by the standard deviation of the verification dataset) 

scores after removing a linear trend (although we note that removing a linear trend does not necessarily remove the forced 

response, which is likely nonlinear--see blue curve in Fig. 12).   615 

 

Detrended SIE skill is higher for JAS than for JFM at short lead times (Fig. 12; see Table 1 at lead months 2 and 5). The 

relatively good skill for summer SIE up to lead month 5 (Fig. 12d) appears to be related to accurate reproduction in SMYLE 

of the abrupt decline in summer SIE in the mid-2000s (Fig. 12d). However, the SMYLE ensemble spread fails to encompass 

the extreme summer SIE minimum observed in 2012 even at lead month 2 (Fig. 12b). This prediction system failure may be 620 

related to biases in the initial conditions noted above, but the SMYLE spread also fails to encompass the FOSI value for JAS 

SIE in 2012 and the prediction error grows with lead time. The uninitialized but externally forced CESM2-LE ensemble 

simulates changes in the rate of JAS SIE decrease (more rapid decrease around 2000 followed by slower decrease after 

2010) that yield a correlation of ~0.2 with detrended observations. This suggests that external forcing may have played a role 

in the observed deviation from a linear decrease in summer SIE. Winter SIE exhibits lower amplitude variability about the 625 

linear trend, and this variability is dominated by interannual fluctuations. Initialization does improve the simulation of winter 

SIE (Fig. 12, left column; Table 1, JFM column), but the detrended skill scores are quite low even when verified against 

FOSI (ACC~0.37 at lead month 2). SMYLE skill scores for JFM SIE are relatively insensitive to verification dataset 

(satellite observations vs. FOSI), in contrast to JAS skill which is clearly higher when FOSI is used as the benchmark (Table 

1). Overall, the SMYLE results for detrended pan-Arctic SIE appear to be in line with those reported from other seasonal 630 

prediction systems (e.g., Chevallier et al. 2013; Bushuk et al. 2017), but a dedicated multi-system study would be needed for 

a clean skill comparison. The present examination of pan-Arctic seasonal variability masks the considerable sensitivity of 

Arctic sea ice prediction skill to verification month and region (Bushuk et al. 2017), which can be a topic of future 

investigation with SMYLE.  
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 635 
Figure 12: Northern Hemisphere seasonal sea ice extent (SIE) anomalies (relative to 1980-2015 climatology) for JFM (a,c,e,g) and JAS 
(b,d,f,h) from SMYLE (red and pink dots show ensemble mean and individual members, respectively), satellite observations (black line; 
Fetterer et al. 2017), SMYLE-FOSI (grey line), and CESM2-LE (blue line; 50-member mean). Rows show results for lead months 2, 5, 8, 
and 11. Skill scores (correlation and normalized RMSE) are provided for SMYLE (red) and CESM2-LE (blue) relative to both 
observations and SMYLE-FOSI (scores in parentheses). All time series were detrended (over the window of overlap between SMYLE and 640 
the verification dataset) prior to computing skill scores. 
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 JFM JAS 

Data     \      Verification Obs FOSI Obs FOSI 

CESM2-LE 0.13, 1.01 -0.08, 1.11 0.16, 1.04  0.03, 1.11 

FOSI 0.86, 0.51    1, 0 0.85, 0.54 1, 0 

SMYLE (LM=2) 0.38, 0.97 0.37, 1.03 0.58, 0.82 0.68, 0.73 

SMYLE (LM=5) 0.31, 1.03 0.25, 1.15 0.39, 0.93 0.45, 0.90 

SMYLE (LM=8) 0.32, 0.98 0.28, 1.05 -0.01, 1.11 0.12, 1.07 

SMYLE (LM=11) 0.22, 1.03 0.21, 1.08 0.04, 1.09 0.25, 0.99 

Table 1: Skill scores for detrended Northern Hemisphere seasonal sea ice extent (SIE) anomalies (relative to 1980-2015 climatology) for 
JFM and JAS seasons (see Fig. 12 for corresponding non-detrended time series).  Leftmost column lists the simulations being evaluated, 
including SMYLE at lead months 2, 5, 8, and 11. The remaining columns show ACC (left number; in bold if p<0.1) and nRMSE (right 
number) evaluated against satellite observations (Fetterer et al. 2017) and FOSI. Time series were detrended prior to skill score 
computation. 650 
 

 

As discussed in the review by Guemas et al. (2016), sea ice volume (SIV) is much more predictable than SIE. SMYLE skill 

for detrended SIV remains high (ACC>0.5 and nRMSE<1.0) even out to lead month 20 for both winter and summer seasons 

when verified against FOSI (Fig. 13; Table 2). This potential skill derives from accurate simulation of variations in the rate 655 

of SIV change simulated in FOSI: fast decline between about 1985-1995, a rebound between about 1995-2003, and slower 

decline after about 2003 (Fig. 13). It is interesting to note that the conditional bias seen in SMYLE for JAS SIE (resulting in 

a lower decreasing trend than seen in observations or FOSI, particularly at long leads; Fig. 12), is not evident for JAS SIV 

even at lead month 20 (Fig. 13). The explanation for this merits further investigation, but it implies there is a compensating 

conditional bias in the sea ice thickness field. The CESM2-LE exhibits negligible skill at capturing the deviations from the 660 

linear trend as reconstructed in FOSI (Table 2). The CESM2-LE exhibits negligible skill at capturing these deviations from 

the linear trend. While SMYLE shows high potential prediction skill for SIV, the actual skill is less clear as there are no 

observed timeseries for pan-Arctic SIV that can be used for verification. The Pan-Arctic Ice Ocean Modelling and 

Assimilation System (PIOMAS; Schweiger et al. 2011) reanalysis product is a commonly used benchmark, but the detrended 

SIV variability from PIOMAS does not correlate with that obtained from FOSI (Table 2). As a result, SMYLE correlations 665 

with PIOMAS are generally negative (indeed, significantly negative at long lead times; Table 2) and scores relative to 

PIOMAS are worse than the corresponding scores for CESM2-LE (Fig. 13). The discrepancy between the FOSI and 

PIOMAS reconstructions of SIV, an essential component of sea ice predictability, highlights the challenges associated with 

generating consistent, long timescale reconstructions of the Earth system state for use in initialized dynamical prediction. 

 670 
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Figure 13: Northern Hemisphere seasonal sea ice volume (SIV) anomalies (relative to 1980-2015 climatology) for JFM (a,c,e,g) and JAS 
(b,d,f,h) from SMYLE (red and pink dots show ensemble mean and individual members, respectively), the PIOMAS reconstruction (black 
line; Schweiger et al. 2011), SMYLE-FOSI (grey line), and CESM2-LE (blue line; 50-member mean). Rows show results for lead months 
2, 8, 14, and 20. Skill scores (correlation and normalized RMSE) are provided for SMYLE (red) and CESM2-LE (blue) relative to both 675 
PIOMAS and SMYLE-FOSI (scores in parentheses). Time series were detrended (over the window of overlap between SMYLE and the 
verification dataset) prior to computing skill scores. 
 

 

 680 
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 JFM JAS 

Data     \      Verification PIOMAS FOSI PIOMAS FOSI 

CESM2-LE 0.34, 0.95 0.06, 1.06 0.09, 1.05  -0.02, 1.09 

FOSI 0.11, 1.30    1, 0 0.08, 1.33 1, 0 

SMYLE (LM=2) -0.02, 1.47 0.97, 0.27 -0.11, 1.43 0.87, 0.50 

SMYLE (LM=8) -0.35, 1.66 0.79, 0.63 -0.27, 1.53 0.78, 0.65 

SMYLE (LM=14) -0.45, 1.71 0.67, 0.80 -0.48, 1.68 0.67, 0.77 

SMYLE (LM=20) -0.55, 1.77 0.57, 0.88 -0.52, 1.65 0.50, 0.94 

Table 2: Skill scores for detrended Northern Hemisphere seasonal sea ice volume (SIV) anomalies (relative to 1980-2015 climatology) for 
JFM and JAS seasons (see Fig. 13 for corresponding non-detrended time series).  Leftmost column lists the simulations being evaluated, 685 
including SMYLE at lead months 2, 8, 14, and 20. The remaining columns show ACC (left number; in bold if p<0.1) and nRMSE (right 
number) evaluated against PIOMAS or FOSI. Time series were detrended prior to skill score computation. 
 

3.7 Climate Extremes 

There is great interest in developing capacity to skillfully predict shifts in the probability of high-impact weather extremes. 690 

Tropical cyclones (TCs) are prime examples of impactful weather events whose statistics are shifted by potentially 

predictable changes in the background climate state (e.g., Chang et al. 2020). TC activity is largely controlled by large-scale 

environmental conditions, including tropical SST, vertical wind shear, mid-troposphere relative humidity and low-level 

vorticity. Variability of these large-scale conditions, and in particular ENSO-related variability (Lin et al. 2020), can strongly 

modulate TC statistics in different ocean basins.  695 

 

To assess SMYLE skill at predicting TC activity, we focus on interannual TC statistics and their modulation with ENSO. 

While individual TC events are not predictable at seasonal to interannual lead times, SMYLE exhibits promising skill at 

predicting some of the key environmental variables that affect year-to-year changes in TC statistics, such as tropical SST 

(Figs. 1,5). TCs in SMYLE are detected and tracked by applying the TempestExtremes tracking algorithm (Ullrich and 700 

Zarzycki 2017; Zarzycki et al. 2021) to the 6-hourly model output. The TC detection criteria in the tracker were adjusted to 

accommodate the relatively coarse model resolution. The detected global average annual number of TCs (or TC-like storms) 

in SMYLE lead month 1 hindcasts for the period of 1970-2018 is 69, which is less than the observed annual number of 87. 

However, the detected TC tracks in SMYLE exhibit realistic spatial distribution and seasonality (Figs. B8, B9). 

 705 

TC activity in SMYLE is assessed during the extended summertime TC season (JJASON for the Northern Hemisphere 

basins and DJFMAM for the Southern Hemisphere) with a focus on basin-scale statistics. Figure 14 compares the observed 

regression between ENSO and global TC track density to that from SMYLE at various lead times. TC track density is 

defined as the total number of TCs passing through each 5˚x5˚ box during TC season, and ENSO state is quantified as the 
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observed Nino 3.4 index averaged over the corresponding TC season for the period of 1970-2018. Note that forecast lead 710 

time is defined as outlined in Section 2, and that the SMYLE initialization month changes with hemisphere in Figure 14. For 

example, the lead month 1 panel (Fig. 14b) displays results from SMYLE-MAY in the Northern Hemisphere (target season 

JJASON) and from SMYLE-NOV in the Southern Hemisphere (target season DJFMAM). The observed benchmark (Fig. 

14a) is based on the Best Track data set that combines NOAA’s National Hurricane Center (Landsea and Franklin 2013) and 

the U.S. Navy’s Joint Typhoon Warning Center (Chu et al. 2002) products. During El Niño years, observed TC activity 715 

increases in the northwestern Pacific (NWP) and the South Pacific (SP), decreases in the North Atlantic (NA), and shifts 

westward in the eastern Pacific (EP). These ENSO-related variations in TC activity are well captured in SMYLE at lead 

times up to 16 months. However, SMYLE also shows a strong ENSO-related decrease in TC activity in the South Indian 

Ocean (SI) which is not seen in observations. 

 720 

Figure 14: Regressions of seasonal-mean TC track density on the corresponding seasonal mean Nino 3.4 index (JJASON in the Northern 
Hemisphere and DJFMAM in the Southern Hemisphere) for the period of 1971-2018 in the (a) Best Track observations and (b-h) SMYLE 
forecasts. Shadings are significant at the 90% confidence level. The green lines in (a) mark the boundaries of different TC basins -- 
Northwestern Pacific (NWP), North Atlantic (NA), eastern Pacific (EP), North Indian Ocean (NI), South Indian Ocean (SI), and South 
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Pacific Ocean (SP). Note that at 19-month lead time (panel (h)), data from SMYLE-NOV is for JJASO (instead of JJASON) given the 24-725 
month simulation length. Similarly, data from SMYLE-MAY at 19-month lead is for DJFMA (instead of DJFMAM).  
 

 

Figure 15 shows the interannual variability of normalized seasonal TC accumulated cyclone energy (ACE; defined as the 

sum of the squared 6-hourly maximum sustained surface wind speed (in kt2) over the lifetime of a TC for all TCs within a 730 

certain basin) in NA, EP, NWP, and SP. The corresponding correlation coefficients between the normalized TC ACE from 

observations and SMYLE are shown in Table 3. The correlations from the NI and SI regions are not significant and are 

therefore not shown. The highest ACE skill is seen in the NA region, where significant positive correlations (90% 

confidence level) are found at all seasonal lead times apart from the 7-month lead (Nov-initialized) forecast. Skill for the 

NWP region is shorter lived, but significant correlations are found even out to 13-month lead. The correlations in EP and SP 735 

are only significant out to 4-month lead. In addition to TC ACE, we also examined the interannual variability of seasonal TC 

number, which in general shows weaker correlations with the observations than ACE. For example, the correlations for TC 

numbers are significant only at 1-month and 4-month lead in NA, and only at 1-month lead in EP (Table B1). Skill for the 

NA and NWP regions at 1-month lead is generally comparable with other seasonal forecast models. For example, Befort et 

al. (2022) evaluated TC prediction skill over the NA (during JASO) and NWP (during JJASO) for the period of 1993-2014 740 

in six seasonal forecast systems. They found that the models on average have a correlation coefficient of 0.6 for ACE over 

the NA.  For the NWP, the average correlation is 0.65, with 0.4 being the lowest value. Despite having a lower model 

resolution, SMYLE skill falls within the range of these results, although the comparison is complicated by different 

verification windows and different definitions of active TC season. 
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 745 

Figure 15: Time series of normalized seasonal-mean (JJASON for the Northern Hemisphere and DJFMAM for the Southern Hemisphere) 
TC Accumulated Cyclone Energy (ACE) for the period of 1970-2018 in the observations (black curves), SMYLE forecasts at 1-month 
lead (red curves), and the respective SMYLE forecasts at the longest lead that yields a significant correlation (as shown in Table 3) 
(colored curves) in (a) North Atlantic, (b) eastern Pacific, (c) Northwestern Pacific, and (d) South Pacific. TC basin boundaries are shown 
in Fig 14. Note that at 19-month lead time (panel (a)), data from SMYLE-NOV is for JJASO (instead of JJASON) given the 24-month 750 
simulation length.  
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Lead NA EP NWP SP 

1-month 0.55 0.52 0.44 0.41 

4-month 0.37 0.27 0.26 0.47 

7-month 0.20 0.22 0.38 0.12 

10-month 0.27 -0.2 0.19 0.06 

13-month 0.28 -0.16 0.24 -0.16 

16-month 0.34 -0.06 0.08 0.04 

19-month 0.25 -0.02 0.13 0.12 

 
Table 3: Correlation coefficients of normalized seasonal-mean (JJASON for the Northern Hemisphere; DJFMAM for the Southern 
Hemisphere) TC ACE between the observations and the SMYLE hindcasts (rows give leadtime). Bold numbers indicate that correlations 
are significant at 90% confidence level (p<0.1). The correlations in the North and South Indian Ocean are not significant at any leadtime 760 
and are therefore not shown. Note that at 19-month lead time (bottom row), data from SMYLE-NOV is for JJASO (instead of JJASON) 
given the 24-month simulation length. Similarly, data from SMYLE-MAY at 19-month lead is for DJFMA (instead of DJFMAM).  
 

 

4 Conclusions 765 

The SMYLE prediction system using CESM2 is a new community resource for exploring predictability of the Earth system 

out to a 2-year time horizon. With its relatively large ensemble size (20 members), broad temporal coverage (4 starts per year 

from 1970-2019), and extensive global output of fields from all component models of CESM2 (including ocean 

biogeochemistry), SMYLE is a large and enormously rich dataset that can facilitate rapid advancements in our understanding 

of seasonal to multiyear variability and predictability in the atmosphere, ocean, land, and sea ice. SMYLE represents one 770 

piece of a larger effort within CESM to move towards seamless initialized prediction for climate timescales. A subseasonal 

prediction system (45-day hindcasts initialized weekly) has recently been introduced that employs the same CESM2 model 

and nearly the same method for initializing ocean and sea ice components (Richter et al. 2022). An extension of SMYLE-

NOV to decadal timescales is already underway and will be available soon. Extending SMYLE by adding missing start 

months (from 4 to 12 per year) would allow for more detailed studies of seasonal prediction skill, and this possibility is 775 

under consideration. Finally, the CESM2-LE future scenario simulations permit investigation of Earth system change out to 

2100 (Rogers et al. 2021). As such, SMYLE occupies a heretofore neglected range within a suite of CESM2 prediction 

systems designed to probe possible climate futures over timescales from weeks to centuries. 
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The skill overview presented here, while necessarily cursory, shows that SMYLE performance is quite good albeit not 780 

groundbreaking. In terms of ENSO skill, which is of paramount importance for global prediction on these timescales, 

SMYLE appears to be competitive with both NMME and the SEAS5 system from ECMWF. A relative benefit of SMYLE is 

that the large collection of long (24-month) hindcasts permit the study of extended ENSO predictability as well as its state 

dependence. We have also presented evidence of promising multiyear skill (or potential skill) for marine ecosystems and 

ocean carbonate chemistry, terrestrial water storage and gross primary productivity, Arctic sea ice volume, and tropical 785 

cyclone activity. A community effort will be needed for a full assessment of SMYLE forecast fidelity for various quantities 

of interest. This preliminary assessment has focused on deterministic skill metrics, and an evaluation of SMYLE 

probabilistic skill is left for future work. 

 

The lack of skill for winter NAO stands in stark contrast to some other systems (e.g., Dunstone et al. 2016) and will require 790 

further investigation, but SMYLE represents a control dataset (as well as an experimental system) that will greatly facilitate 

such research. Likewise, the disappointing skill for seasonal precipitation over land, while not obviously unique to SMYLE, 

suggests that follow-up is needed to better understand why relatively long-lasting ENSO skill does not translate into skillful 

predictions of hydroclimate over land. Dunstone et al. (2020) show that interannual skill for regional monsoon precipitation 

is considerably enhanced during active ENSO years, suggesting that relatively low mean precipitation skill may mask the 795 

presence of episodic forecasts of opportunity related to the state of the tropical Pacific. Work is ongoing to develop more 

insight into state-dependent predictability from the vast archive of SMYLE data. 

 

The inclusion of historical state reconstructions that utilize CESM2 component models (for ocean, sea ice, land, and ocean 

biogeochemistry) in the SMYLE dataset allows for assessments of potential predictability by verifying hindcasts against the 800 

reconstructions that were used for initialization. This alleviates issues associated with sparse or unreliable observations (as 

demonstrated above for ocean biogeochemistry, land, and sea ice) and can be very useful for detailed studies of predictability 

mechanisms (Yeager 2020). The choice to use JRA55 (JRA55-do) as the basis for component state reconstruction means that 

SMYLE could potentially be extended back in time as far as 1958, and forward in time to near real-time. We anticipate that 

future SMYLE extensions will further enhance the utility of this resource. 805 
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Appendix A 

 815 
Fig. A1: Evolution of land carbon fields in land-only spin-up simulation: total ecosystem carbon (TOTECOSYSC), total soil organic 
matter carbon (TOTSOMC), total vegetation carbon (TOTVEGC), total leaf area index (TLAI), gross primary productivity (GPP), and 
terrestrial water storage (TWS). Fields are plotted both as raw global average timeseries as well as “Delta” timeseries that show the 
running difference between consecutive 20-year averages. The latter show that TOTSOMC dominates TOTECOSYSC and is the slowest 
term to equilibrate, but has reached a reasonable Delta value of around -0.04 Pg C after 4,000 years of spinup. The plots in the bottom row 820 
show that less than 10% of global land area remains outside of the target Delta range for TOTECOSYSC (shown as dashed lines in the 
Delta plots), and that the regions associated with slight disequilibrium at the end of spin-up are concentrated in northern Siberia. 
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Fig. A2: Climatological (1991-2010) sea ice concentration for March (top) and September (bottom) from (a,c) SMYLE-FOSI and (b,d) 825 
FOSI-OMIP2. Black contour line shows the observed sea ice extent (15% concentration) from SSMI averaged over the same climatology. 
Note that the color scale starts from 15%. 
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Fig. A3: Climatological (1991-2010) sea ice thickness for March (top) and September (bottom) from (a,d) PIOMAS, (b,e) FOSI-SMYLE, 830 
and (c,f) FOSI-OMIP2.  
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Fig. A4: Climatological (1991-2010) upper 300m ocean temperature bias relative to EN4 from (a) FOSI-SMYLE and (b) FOSI-OMIP2.  835 
 

 

 

 

 840 

 

 

 

  



41 
 

 845 

 

Appendix B 

 

 
Fig. B1: Equivalent to Figure 1 (surface temperature ACC) but without removing a linear trend. 850 
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 855 
Fig. B2: Equivalent to Figure 2 (precipitation ACC) but without removing a linear trend. 

 

 

 

 860 
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Fig. B3: Difference in ACC skill for surface temperature between SMYLE-NOV and the mean of the 20-member skill score distribution 
from DPLE-NOV. Here, both hindcast sets use identical verification windows (corresponding to start dates spanning 1970-2017). Open 
and filled circles indicate significantly higher and lower ACC in SMYLE-NOV, respectively (corresponding to SMYLE-NOV skill falling 865 
above the 90th or below the 10th percentile of a 100-member distribution of 20-member DPLE-NOV scores). Values in parentheses give 
the percentage of global surface area (within 80°S-80°N) where there is significant skill increase/decrease. 
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Fig. B4: Difference in ACC skill for precipitation between SMYLE-NOV and the mean of the 20-member skill score distribution from 
DPLE-NOV. Here, both hindcast sets use identical verification windows (corresponding to start dates spanning 1970-2017). Open and 
filled circles indicate significantly higher and lower ACC in SMYLE-NOV, respectively (corresponding to SMYLE-NOV skill falling 
above the 90th or below the 10th percentile of a 100-member distribution of 20-member DPLE-NOV scores). Values in parentheses give 875 
the percentage of global surface area (within 80°S-80°N) where there is significant skill increase/decrease. 
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Fig. B5: Equivalent to Figure 6 (sea level pressure ACC) but without removing a linear trend. 
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 880 
Fig. B6: Difference in ACC skill for sea level pressure between SMYLE-NOV and the mean of the 20-member skill score distribution 
from DPLE-NOV. Here, both hindcast sets use identical verification windows (corresponding to start dates spanning 1970-2017). Open 
and filled circles indicate significantly higher and lower ACC in SMYLE-NOV, respectively (corresponding to SMYLE-NOV skill falling 
above the 90th or below the 10th percentile of a 100-member distribution of 20-member DPLE-NOV scores). Values in parentheses give 
the percentage of global surface area (within 80°S-80°N) where there is significant skill increase/decrease. 885 
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Fig. B7: Identical to Figure 7 except SMYLE and DPLE data are subsampled to only include forecasts initialized in years 1981-2015. 890 
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Fig. B8: Annual mean global TC track density (over 5˚x5˚ box) during 1970-2018 in (a) observations and (b) SMYLE lead month 1 
forecasts (averaged over 4 initialization times).  
 895 



49 
 

 
Fig. B9: Climatological mean TC number seasonality in observations (black curves) and SMYLE forecast at 1-month (orange), 4-month 
(blue), 7-month(green) and 10-month (red) lead time in different TC basins -- North Atlantic (NA), eastern Pacific (EP), North Indian 
Ocean (NI), Northwestern Pacific (NWP) and Southern Hemisphere (SH). 
 900 
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Lead NA EP NWP 

1-month 0.61 0.3 0.25 

4-month 0.44 0.002 0.08 

7-month 0.14 0.06 0.28 

10-month 0.14 -0.17 0.07 

13-month 0.22 -0.16 0.07 

16-month 0.19 0.03 0.05 

19-month 0.2 -0.02 0.09 

Table B1: Similar to Table 3 of Main Text, but showing correlation coefficients of normalized seasonal-mean (JJASON) TC number 
between the observations and the SMYLE forecasts. Bold numbers indicate the correlations are significant at 90% confidence level. The 
correlations in the North Indian Ocean, the South Indian Ocean and the South Pacific Ocean are not significant at any leadtime and are 
therefore not shown. 910 
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 920 

Code and data availability.  The SMYLE project webpage at https://www.cesm.ucar.edu/working-groups/earth-system-

prediction/simulations/smyle includes pointers to SMYLE data and references, contact information, and instructions for how 

to replicate the experiment. Output data from SMYLE hindcast simulations as well as from the historical reconstructions 

used for initialization (the SMYLE FOSI and forced CLM5 runs) are available from NCAR’s Climate Data Gateway at 

https://doi.org/10.26024/pwma-re41. Output data from CESM2-LE simulations can be accessed at 925 

https://doi.org/10.26024/kgmp-c556. The model code, configuration files, and boundary condition data used for SMYLE 

(CESM 2.1) are all available from the CESM2 website: https://doi.org/10.5065/D67H1H0V. The analysis code (python, 

NCL, bash) along with auxiliary data used to generate the figures in this manuscript are available at 

https://doi.org/10.5281/zenodo.6341790. CRU-TS4.05 data were accessed from 

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/. HadISST1 data were accessed from 930 

https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html. JRA55 reanalysis data were accessed from https://esgf-

node.llnl.gov/projects/create-ip/. ERA5 reanalysis data were accessed from 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. GPCPv2.3 data were provided by the NOAA PSL, 

Boulder, Colorado, USA, from their website at https://psl.noaa.gov. OceanSODA-ETHZ data were accessed from 

https://doi.org/10.25921/m5wx-ja34. NSIDC Sea Ice Index data were accessed from https://nsidc.org/data/seaice_index/. 935 

PIOMAS data were accessed from http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/. BestTrack 

data were accessed from https://doi.org/10.25921/82ty-9e16. NMME data were accessed from the IRI data library at 

https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/#info.  
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