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Abstract. Terrain parameters like topographic horizon and sky view factor (SVF) are used in numerous fields and applications.

In atmospheric and climate modelling, such parameters are utilized to parameterise the effect of terrain geometry on radiation

exchanges between the surface and the atmosphere. Ideally, these parameters are derived from a high-resolution digital ele-

vation model (DEM), because inferring them from coarser elevation data induces a smoothing effect. Computing topographic

horizon with conventional algorithms is however slow, because large amounts of non-local terrain data have to be processes.5

We propose a new and more efficient method, which is based on a high-performance ray tracing library. The new algorithm

can speed-up horizon calculation by two orders of magnitude relative to a conventional approach. By applying terrain simplifi-

cation to remote topography, the ray-tracing based algorithm can also be applied with very high-resolution (< 5 m) DEM data,

which otherwise would induce an excessive memory footprint. The topographic horizon algorithm is accompanied by a SVF

algorithm, which was verified to work accurately for all terrain - even very steep and complex one. We compare the compu-10

tational performance and accuracy of the new horizon algorithm with two reference methods from literature and illustrate its

benefits. Finally, we illustrate how sub-grid SVF values can be efficiently computed with the newly derived horizon algorithm

for a wide range of target grid resolutions (1 - 25 km).

1 Introduction

In mountains, radiation exchange between the surface and the atmosphere is substantially influenced by terrain geometry.15

By knowing local slope angle and aspect, the effect of self-shading on direct incoming shortwave radiation can readily be

considered. However, for all other topographic effects on radiation, like topographic shading, (multiple) reflection of shortwave

radiation and the exchange of longwave emission between slopes, the geometry of non-local terrain must be considered. For

radiation modelling, two parameters are particularly relevant and often applied, the horizon and the sky view factor (SVF). The

first parameter is uniformly defined in the literature and indicates the boundary line between the terrain and the sky as seen20

from a certain location. It can be used to account for topographic shading, i.e. assessing if direct incoming shortwave radiation

is blocked by surrounding terrain. The second parameter can be inferred from the horizon but is ambiguously defined: Zakšek

et al. (2011) specifies the SVF as the solid angle of the visible sky, which corresponds to the fraction of a hemisphere occupied

by the sky. Dozier and Frew (1990) provide a different definition of the SVF, which specifies the fraction of sky radiance a
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location receives under the assumption of isotropic sky radiation. The latter definition is often used to parameterise effects like25

terrain reflection of shortwave radiation and exchange of longwave emission between slopes.

The terrain parameters horizon and SVF are applied in a wide range of disciplines and fields: In atmospheric and climate

modelling, topographic shading is considered in certain models by computing the terrain horizons of all grid cells (Chow et al.,

2006; Arthur et al., 2018). In addition, some models use the SVF to correct fluxes of longwave and/or diffuse shortwave radia-

tion (Müller and Scherer, 2005; Senkova et al., 2007; Buzzi, 2008; Manners et al., 2012; Liou et al., 2013; Rontu et al., 2016;30

Lee et al., 2019). Terrain parameters in these studies are either computed from the model’s internal elevation representation or

from a sub-grid digital elevation model (DEM). Topographic shading is also considered in various spatially distributed land-

surface models with typically higher horizontal resolutions - like in hydrology (Zhang et al., 2018; Marsh et al., 2020) and

glaciology (Arnold et al., 2006; Olson and Rupper, 2019; Olson et al., 2019). Terrain parameters are also relevant for down-

scaling outputs of climate and weather models, for instance in TopoCLIM (Fiddes et al., 2022) or to produce road condition35

forecasts (Karsisto et al., 2016). For urban areas and cities, the SVF is utilised to quantify radiation exchanges in street canyons

and their contribution to the urban heat island effect (Dirksen et al., 2019; Scarano and Mancini, 2017). Additionally, SVF

and horizon can also be used to estimate solar resources in urban environments (Calcabrini et al., 2019). In satellite climatol-

ogy, the horizon line and SVF are crucial quantities to model radiation in complex terrain (Dürr and Zelenka, 2009; Bosch

et al., 2010; Ruiz-Arias et al., 2010). In geochronology, a similar concept to the SVF is applied - the so-called topographic40

shielding (Codilean, 2006; Codilean et al., 2018). This quantity is used to correct incoming cosmic radiation fluxes, which can

provide information on exposure ages of bedrock and surface denudation rates. Finally, horizon lines are also relevant for more

technical applications, like determining the camera position of an image by horizon matching. This technique can be used to

geolocalise photographs (Pritt, 2012; Saurer et al., 2016), improve the estimated azimuth angles of augmented reality devices

(Nagy, 2020) and even to localise a Mars Rover (Chiodini et al., 2017).45

An early concept of computing horizon and SVF is presented in Dozier et al. (1981) and Dozier and Frew (1990). They

propose an algorithm in which the horizon line for a position is computed by dividing the azimuth in discrete sectors. For each

sector, the horizon is derived by computing elevation angles of all DEM grid cells that intersect the sector’s centre line and

taking the maximum angle. A speed-up of this algorithm is suggested in Dozier et al. (1981), but the concept is only applied

to DEM data on a regular and planar grid. Bosch et al. (2010) suggested another approach to speed up horizon calculation.50

They divide a sector in a near-distance (<5 km) and far-distance domain. For the former domain, all DEM information is

process whereas only a part of the information (local maxima) is used for the later. The horizon is then estimated by combining

the near- and far-distance horizons. Finally, Pillot et al. (2016) presents a horizon algorithm that closely follows the initial,

non-accelerated concept of Dozier et al. (1981). In contrast to many earlier studies, they do not assume a planar DEM grid and

account for the curvature of the Earth’s surface.55

In many studies (Pillot et al., 2016; Zhang et al., 2018; Marsh et al., 2020), horizon algorithms are still based on the

conventional concept, in which all terrain information along a finite centre line is scanned to find the highest elevation angle.

These algorithms are typically sufficiently performant for DEMs with coarse resolutions and/or small sizes. Processing of large,

high-resolution (≤ 30 m) DEM data, like NASADEM (NASA JPL, 2020), USGS 1/3 arc-second DEM (USGS, 2017a) and
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swissALTI3D (Swisstopo, 2018) is however very time consuming. We propose a faster horizon algorithm, which is versatile60

in its application and based upon a state-of-the-art high-performance ray tracing library (Wald et al., 2014; Embree) used in

3D computer graphics. Such libraries are highly optimised and undergo continuous development, which make them attractive

for our purpose. In this approach, terrain information is stored as a triangular mesh in a bounding volume hierarchy (BVH),

and only a fraction of terrain information has to be checked along a search line (or ray). The proposed horizon algorithm is

accompanied by a SVF algorithm, which ensures accurate results for all terrain - even very steep and complex one. Additionally,65

we illustrate how sub-grid SVF values can be computed efficiently for a large range of target grid spacings (1 - 25 km), which

was a main motivation to develop the new algorithms.

This paper is structured as follows: Input DEM data, which is used to evaluate the algorithms and illustrate computed terrain

parameters, is described in Sect. 2. Implementation details of the horizon and SVF algorithms are subsequently presented in

Sect. 3. In Sect. 4, the new algorithm is evaluated in terms of computational performance and accuracy. Section 5 shows how70

the algorithm can be used to compute sub-grid SVF and illustrates its application with very high-resolution DEM data. Overall

conclusions and outlooks are presented in Sect. 6.

2 Data

To evaluate and illustrate the proposed horizon and SVF algorithms, we use data from three different DEMs with horizontal

resolutions ranging from ∼ 30 to 2 m:75

– NASADEM (NASA JPL, 2020) offers a horizontal resolution of 1 arc-second (∼ 30 m) and a near-global coverage (56◦

S to 60◦ N). NASADEM is the result of reprocessing Shuttle Radar Topography Mission (SRTM) data and incorporating

additional elevation data primarily from the Ice, Cloud, and Land Elevation Satellite (ICESat). Remaining voids were

mainly filled with ASTER-derived Global DEM (GDEM). NASADEM elevations are referenced to the WGS84 ellipsoid

and provided as orthometric heights relative to the Earth Gravitational Model 1996 (EGM96; Lemoine et al. 1998; NGA).80

– USGS 1/3 arc-second DEM (USGS, 2017a) is provided at a horizontal resolution of ∼ 10 m. The data set provides

void-free and seamless elevation over the conterminous United States, Hawaii, Puerto Rico, other territorial islands, and

in limited areas of Alaska. The elevation data are referenced to the North American Datum of 1983 and orthometric

heights are relative to the North American Vertical Datum of 1988.

– SwissALTI3D (Swisstopo, 2018) is a DEM with a very high resolution of 2 m and covers the entire area of Switzerland.85

The model was compiled from various sources: Below 2000 m a.s.l, LIDAR data with a high accuracy (in all three

dimensions) of ±0.5 m is applied. Above, stereo correlation data are used, which has a accuracy of ±1.0 m to ±3.0 m.

Some manual updates regarding individual points, breaklines and areas were also included, which feature accuracies in

the range of ±0.1 m to ±1.0 m. The elevation data are referenced to the the Swiss coordinate system LV95 and the Swiss

national levelling network LN02.90
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3 Horizon and Sky View Factor algorithms

3.1 Preprocessing of Digital Elevation Model data

To compute the horizon with our applied ray tracing library, elevation data must be available in a Cartesian coordinate system.

Furthermore, auxiliary quantities like local Upward-, North- and East-direction must be known as well as terrain slope angle

and aspect for the successive SVF calculation. Elevation data sets are typically provided on map projections (SwissALTI3D)95

or in geodetic coordinates (ϕ: latitude, λ: longitude) and orthometric height (ho (NASADEM and USGS 1/3 arc-second). A

multi-level coordinate transformation is thus required and the auxiliary quantities must be computed.

3.1.1 Selection of required Digital Elevation Model domain

In a first step, we determine the total size of the DEM tile required to compute the horizon for a inner rectangular domain.

The inner domain has to be extended by a boundary zone width b according to the applied search distance for the horizon.100

Typical values for b used in this study range from 25 - 50 km. For DEM data on an equally spaced grid, like SwissALTI3D, the

extension of the inner domain is straightforward. For DEM data on a geodetic coordinate grid, like NASADEM and USGS 1/3

arc-second DEM, the size of the total domain is computed by extending the inner domain, which is bounded by λmin, λmax,

ϕmin and ϕmax, with ∆λa, ∆ϕs and ∆ϕn, respectively (Fig. 1).

N

λmin λmax

φmin

φmax

∆λa
∆λa

∆φs

∆φn

Figure 1. Total Digital Elevation Model domain (thick blue line) required to compute the horizon for the inner blue mesh. Black parallels of

latitude represent circles and black meridians geodesics.
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The required extension in the longitudinal direction can be approximated by105

∆λa =
2π

pl
b , (1)

where pl represents the length of the parallel at ϕa =max(| ϕmin |, | ϕmax |). This length is computed with

pl = 2π
a√

1− e2 sin2ϕa

cosϕa , (2)

where a represents Earth’s equatorial radius (semi-major axis) and e its eccentricity. The total required DEM input domain in

the longitude direction is then given by subtracting, respectively adding, ∆λa from λmin and λmax. The necessary extension in110

the latitudinal direction (∆ϕs and ∆ϕn) is computed from b via the direct geodesic problem (Karney, 2013), whose equations

are implemented in the C++ library GeographicLib and called via a Python wrapper (Karney). Computing domain extensions

is more cumbersome in case geographic poles are included.

3.1.2 Coordinate transformations and computation of auxiliary quantities

We utilise multiple coordinate systems in this work, which are listed below and partially illustrated in Fig. 2:115

– Map projection (optional)

– Geodetic coordinates

– Geocentric earth-centered, earth-fixed coordinates (ECEF)

– Global east-north-up coordinates (global ENU)

– Local east-north-up coordinates (local ENU)120

– Spherical coordinates in the local ENU reference system

Definitions of these systems and transformations between them are provided in Appendix A. In case of DEM data on a map

projection, we first transform the data to geodesic coordinates. For SwissALTI3D elevation data, we apply the equations

provided in Swisstopo (2016). The following steps are then performed identically for all considered DEM products: First, we

transform geodetic coordinates to a geocentric earth-centered, earth-fixed (ECEF) reference system (x,y,z). Local Up, North125

and East directions are computed in this coordinate system for every DEM grid cell (see Appendix B1). DEM coordinates and

direction vectors are then transformed to a topocentric east-north-up (ENU) reference system (x′,y′,z′). The origin of these

coordinates coincides with the centre of the considered DEM domain and we refer to this system as global ENU coordinates.

The transformation to a global ENU system constrains coordinates to a numerical range that can be represented with sufficient

accuracy as single-precision floats. This data type is required in the applied ray tracing library. The above transformation130

steps are performed once for a certain DEM domain and the obtained DEM coordinates and direction vectors in global ENU

coordinates are subsequently passed to the ray casting part of the algorithm. The size of the selected DEM domain is thereby

primarily restricted by memory requirements.
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Figure 2. Illustration of the different coordinate systems applied: (a) the geodetic coordinate system (λ, ϕ) and the geocentric earth-centered,

earth-fixed (ECEF) reference system (x,y,z); (b) the topocentric east-north-up (ENU) reference system (x′,y′,z′), and a second local ENU

system (x′′,y′′,z′′). The grey mesh in panel (b) shows the curvature of the Earth’s surface and illustrates how local and global ENU coordi-

nates deviate.

Within the ray casting part of the algorithm (see Sect. 3.2.1), another topocentric reference frame is used - the so-called

local ENU coordinate system (x′′, y′′ and z′′). In this reference system, the z-axis is always aligned with the local upward135

direction (and thus the local ellipsoid normal; see Fig. 2b). The same reference system is applied to compute terrain slope

aspect and angle (see Appendix B2). This ensures that Eq. (B6) can be solved for any topographic configuration (i.e. the matrix

is never singular). Finally, the SVF is computed in a spherical coordinate system, which is referenced to the local ENU system.

All above steps regarding coordinate transformations and computations of auxiliary quantities were implemented in Cython

(Behnel et al., 2011) and parallelised with OpenMP.140

3.1.3 Masking of ocean grid cells

Computing the horizon from high-resolution elevation data is an expensive operation, even with the method presented in

this work. It is thus worthwhile to exclude areas, for which horizon information is either not needed or its computation is

superfluous due to the non-existence of topography within a relevant radius. The latter applies to a large fraction of ocean

grid cells. Unfortunately, such areas are not unambiguously masked in some DEM products. For instance, ocean grid cells in145

NASADEM have an elevation of 0 m - but inland areas might share the same value. We thus implemented a two-step method

to address this issue: First, we label potentially relevant areas in the DEM product (for instance grid cells with an elevation of 0
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m in NASADEM). Subsequently, we rasterise ocean coastlines from the Global Self-consistent, Hierarchical, High-resolution

Geography Database (GSHHG; Wessel and Smith 1996) to the same grid. Grid cells labelled as land in at least one of the two

data sets are classified as land and all remaining cells are treated as ocean. Coastlines are then retrieved from this raster as150

contour lines. Finally, we have to find the shortest distance to the coastline for every ocean grid cell along a geodesic. This

procedure is expensive because an iterative algorithm is required to solve the inverse geodesic problem (Karney, 2013). We

therefore use the chord line (the closest straight line connecting two points on the geoid), which can readily be computed in

ECEF coordinates. To efficiently find the shortest distance, we transform coastline contours to ECEF coordinates and store them

in a SciPy k-d tree (Virtanen et al., 2020). A nearest neighbour query is then performed for ocean grid cells. Approximating155

geodesics by chord lines is justifiable, because deviations between the two lines are small (e.g. ∼1 m for 100 km) for relevant

distances. Furthermore, chord lengths are always shorter than geodesics, which guarantees a conservative masking of ocean

grid cells.

Figure 3. NASADEM grid (21960× 32400 cells) for the norther part of Great Britain and Ireland. (a) Chord distance for every grid cell to

the nearest coastline. (b) Ocean grid cells are categorized according to their minimal chord distance to the coastline in bands of ≤ 10 km,

≤ 25 km and ≤ 50 km. The numbers in the upper left indicate the fraction of remaining cells in case all ocean cells are masked (Fland) or

ocean cells exceeding a certain minimal distance to the coastline are masked.
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Figure 3 shows the result of this masking approach for NASADEM data and a region covering the northern part of Great

Britain and Ireland. By masking ocean grid cells entirely, horizon information has to be computed for only ∼32% of the total160

grid cells in the domain. This masking approach might e.g. be useful for land surface models. In case of considering ocean grid

cells and applying a horizon search distance of 25 km, the masking allows to exclude ∼ 39% of all grid cells in the domain.

The implemented masking is not restricted to water grid cells and can be utilised to mask cells based on other criteria (e.g. land

surface type, elevation or slope azimuth).

3.2 Computation of horizon by ray casting165

3.2.1 General implementation

We perform ray casting with the high-performance ray tracing library Intel Embree (Wald et al., 2014; Embree), which has been

released as open source under the Apache 2.0 License. In short, ray tracing in Embree works as follows: First, a BVH is built

(in parallel) from input geometries, which can either be based upon triangles, quads (quadrilaterals) or a grid (quadrilaterals

on a curvilinear or structured grid). This process recursively wraps the geometries in so-called bounding volumes, which form170

leaf nodes of a tree. The tree structure allows to perform the subsequent ray tracing in a highly optimised way: no children

nodes of the tree have to be considered if a ray does not intersect with the parent node. In Cartesian coordinates, DEM data

is typically provided on a (almost) regular grid, thus all three Embree geometries can potentially be used. A performance test

revealed that ray casting is fastest with quads, while using a grid allows for the fastest BVH building and reveals by far the

smallest memory footprint.175

In line with other algorithms (Dozier et al., 1981; Dozier and Frew, 1990; Pillot et al., 2016) , we compute the horizon for

a location by splitting the azimuth angle in discrete sectors and sample along the centre lines. By default, we use 360 sectors.

Four different methods were tested to find the horizon within a sector with ray casting (Fig. 4). Because horizon detection

results from discrete ray sampling, we have to define a desired accuracy for the horizon (αr), which we set to 0.25◦ by default.

The simplest method, called discrete sampling, starts from a minimal elevation angle (-15.0◦ by default) and increments this180

angle until the ray no longer intersects terrain. The increment ∆α is thereby set to 2 αr. The problem can be solved more

efficiently by applying a binary search algorithm, which splits the elevation angle range sequentially. The desired accuracy

is reached as soon as the difference between the preceding and current ray elevation angle is smaller than 2 αr. Even faster

methods can be obtained by considering the fact that the horizon represents a smooth continuous line. Horizon angles between

two neighbouring sectors are thus typically very similar, particularly if a high number of azimuth sectors is used. We therefore185

implemented a third method, which estimates the horizon of the current sector from the previous one. The actual horizon is

then found by applying discrete ray sampling from this angle. A fourth method was also tested, which estimates the horizon

of the current sector by linear extrapolation from the previous two sectors. However, this method did not result in a speed-up

compared to the third method and was thus discarded. For all methods, the actual horizon angle lies within ±0.25◦ of the

computed one. By assuming an uniform probability distribution of the actual horizon in the constrained range of the elevation190

angle (blue shaded area in Fig. 4), the mean error of the computed horizon is ±0.125◦. To ensure that rays do not intersect

8



x''

z''

-15°

90°

1

2

3

1

2

3

1
2

3

Figure 4. Overview of applied horizon detection algorithms with ray casting. Illustrated are the first three rays casted with the method

discrete sampling (red), binary search (green) and estimate from previous azimuth (blue). In contrast to the text, an elevation angle spacing

of 4◦ is used to allow for better readability. The blue dot marks the horizon estimate from the third method.

terrain directly at their origin due to numerical imprecision, the ray’s origin is elevated by a small value of 0.01 m.

The ray casting part was implemented in C++ and parallelised with Intel Threading Building Blocks (TBB), which is recom-

mended by Embree and also released under the Apache 2.0 License. In a first implementation, ray directions for a specific

location were computed by rotating a vector, which initially points towards local North, in global ENU coordinates. This195

approach proved to be expensive due to the large number of trigonometric function evaluations. We accelerated this part by

storing a discrete number of trigonometric functions, which are needed to compute all necessary ray direction in a local ENU

coordinate system. These vectors can subsequently be mapped to global ENU coordinates with Eq. (A5), which is consider-

ably cheaper. Embree offers various options for building the BVH, which affects both BVH building time and subsequent ray

casting. An evaluation of these options revealed that for our application, only the flags robust and compact have a significant200

impact on performance or the memory footprint of the algorithm. The implications of these flags are briefly addressed in Sect.

4.1 and 3.2.2, respectively.
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3.2.2 Processing of elevation data with very high resolution

A disadvantage of the ray tracing based horizon algorithm is its larger memory demand compared to conventional horizon

algorithms. Besides the DEM data, which requires 3 (x, y and z coordinate) × 4 Bytes per grid cell, additional information205

defining the connectivity of the triangle mesh and the BVH has to be stored. The memory requirements for this auxiliary data

are smallest for the input geometry grid and were found to amount to an additional ∼ 90% of the space the elevation data

occupies. Applying the Embree flag compact did not lower these memory requirements any further (but revealed a significant

impact on the memory footprint if quads were used). Currently, various DEMs with very high resolutions are available, like

the USGS DEM 1 m (USGS, 2017b), the ArcticDEM (2 m, Porter et al. 2018) and the swissALTI3D, which is available on210

resolutions of 0.5 and 2 m. In future, further products that cover larger geographical extents will likely become available.

Processing such very high resolution DEM data can result in substantial memory requirements, as shown in the following

example: The horizon of a 5× 5 km domain should be computed from a 1 m DEM with a horizon search distance of 25 km.

The elevation data alone requires 36.3 GB of memory without considering space needed for building the BVH. These memory

demands exceed the specifications of typical personal computers. However, memory requirements can be drastically reduced215

by simplifying terrain geometry in the outer boundary zone of the DEM domain (see Fig. 5). We perform this step with the

heightmap meshing utility (hmm; Fogleman), which simplifies terrain based on a maximal allowed vertical error (∆h). Hmm

is based on Garland and Heckbert (1995) and applies a greedy insertion algorithm and subsequent Delaunay triangulation to

simplify terrain.

Figure 5 illustrates the setup in case terrain simplification is applied. An inner domain, which encompasses the area for which220

horizon values are computed, plus a boundary zone are represented by the full DEM information. The outer domain is split into

for sub-domains and its terrain geometry is simplified to a triangulated irregular network (TIN). This step can be performed in

parallel. Recombination of the five sub-domains introduces discontinuities in the triangulated surface, which are marked by red

lines in Fig. 5. These discontinuities have to be patched - otherwise rays might pass through them without intersection terrain.

We perform the patching by adding a vertical strip of triangles (also referred to as skirt; see Fig. 2 in Campos et al. (2020))225

with a vertical extent of 3∆h. As a consequence of the applied terrain simplification, the accuracy of computed horizon values

decreases in case the horizon line is located in the outer DEM domain. The horizon accuracy due to terrain simplification αs is

thereby linked to the vertical error in terrain ∆h by

αs = 2 arctan

(
∆h

2dm

)
, (3)

where dm is the minimal distance between the area for which horizon values are computed and the simplified outer domain230

(see Fig. 5). This uncertainty in horizon accuracy adds to the one from the horizon detection algorithm (αr; see Sect. 3.2.1).

Concretely, to e.g. meet a total total horizon accuracy of 0.25◦, one could apply the setting αr = 0.15◦ and αs = 0.1◦.
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dm

Figure 5. Illustration of triangulated surface in case of terrain simplification in the outer DEM boundary zone. The light gray dots represent

grid cell centres of the original DEM data. The blue shaded domain shows the area for which horizon values are computed. Red lines mark

discontinuities in the triangulated surface.
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3.3 Sky View Factor computation

We consider the SVF definition, which yields the fraction of sky irradiance under the assumption of isotropic sky radiation,

analogous to Dozier and Frew (1990) and Helbig et al. (2009). For a surface, whose normal is parallel to the coordinate system’s235

z-axis, the SVF is computed by

Fsky =
1

π

2π∫
0

π/2−αt∫
0

cosϑ sinϑdϑdφ, (4)

with αt representing the elevation angle of the surrounding terrain and ϑ and φ the zenith and azimuth angle, respectively.

Integration of Eq. (4) with respect to ϑ yields:

Fsky =
1

2π

2π∫
0

cos2αt dφ. (5)240

This equation is identical to Eq. (8) in Helbig et al. (2009). Eq. (4) and (5) are applicable in a sloped coordinate system, in

which the surface normal of the terrain aligns with the z-axis. An apparently straightforward way to compute Fsky from the

horizon, derived according to Sect. 3.2, is to transform horizon angles from the local ENU to sloped coordinates and apply Eq.

(5). However, this approach is complicated by several factors: First, it is no longer possible to represent horizon as a function

of azimuth in the sloped coordinate system, because αt can obtain multiple values for a certain φ (see Fig. 6a). Secondly, if the245

surface normal intersects with surrounding topography due to very steep terrain, then all horizon values are constrained to an

azimuth range of 180◦ (Fig. 6b). And finally, the azimuth spacing of transformed horizon angles is no longer regular. Solving

the double integral of Eq. (4) in the sloped coordinate system thus requires the consideration of more complex integration

limits. Additionally, transformation of all horizon angles to a sloped coordinate system is expensive due to the evaluation of

numerous trigonometric functions. We therefore discard this approach and derive an exact SVF equation for horizontal local250

ENU coordinates.

First, we compute the intersection of the sloped terrain surface with a unit sphere. This plane passes through the origin of

the local ENU coordinate system, thus we can write its implicit plane equation as

nx′′ x′′ +ny′′ y′′ +nz′′ z′′ = 0 , (6)

with n= (nx′′ , ny′′ , nz′′) being the surface normal of the terrain in local ENU coordinates. Combining Eq. (6) and (A7) yields255

the elevation angle of the plane-sphere intersection αp as a function of the azimuth angle:

αp = arctan

(
−nx′′

nz′′
sinφ− ny′′

nz′′
cosφ

)
. (7)

A crucial part of the correct SVF equation, which is sometimes omitted in literature, is Lambert’s cosine law, which is rep-

resented by cosϑ in Eq. (4). The angle in this cosine function has to be measured between an arbitrary incoming ray and the
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Figure 6. Visualisation of the horizon for two locations in the Lauterbunnen Valley (Bernese Oberland, Switzerland). (a) and (b) show the

horizon in local ENU coordinates (grey) and in a sloped coordinate system (blue and red, respectively), whose z-axis is aligned with the

surface normal. (c) illustrates the surrounding terrain of the two locations in an oblique view of the Lauterbunnen Valley from North. The

blue and red arrows represent the surface normals of the two locations. The illustrated domain has an extent of ∼ 7.5 km (East-West) and

∼ 6.9 km (North-South). An approximate scale, valid for the northern edge of the domain, is provided in the lower left.
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surface normal, which is n in the local ENU coordinate system. We can thus express the cosine term as260

cosγ =


nx′′

ny′′

nz′′

 ·


sinϑ sinφ

sinϑ cosφ

cosϑ

 . (8)

for local ENU coordinates. Analogous to Eq. (4), we can multiply the cosine term with the surface element of a sphere

(sinϑdϑdφ) and integrate with respect to φ and ϑ, which yields

Fsky =
1

π

2π∫
0

π/2−αm∫
0

(
nx′′ sinϑ sinφ+ny′′ sinϑ cosφ+nz′′ cosϑ

)
sinϑdϑdφ, (9)

where αm =max(αt, αp) is either defined by the surrounding terrain horizon or the local (sloped) surface. Integration of Eq.265

(9) with respect to ϑ yields

Fsky =
1

2π

2π∫
0

(
(nx′′ sinφ+ny′′ cosφ)

(
π

2
− αm − sin(2αm)

2

)
+nz′′ cos2αm

)
dφ. (10)

This represents the analytical formulation of the SVF. To apply this equation with computed terrain horizon angles, we have to

discretise it to

Fsky ≈
∆φ

2π

M∑
i=1

(nx′′ sinφ+ny′′ cosφ)

(
π

2
− αm − sin(2αm)

2

)
+nz′′ cos2αm , (11)270

where M represents the number of equally spaced azimuth directions for which the horizon was computed. In principle, one

could improve the accuracy of the numerical integration by employing Simpson’s rule, but we believe that the overall uncer-

tainty is not determined by the errors of this integration, but rather by the computational resolution of the horizon computation.

In the literature, SVF computation is performed with different methods, which are for instance based on formulations from

Helbig et al. (2009), Manners et al. (2012) and Dozier and Frew (1990). Computing the SVF in a sloped coordinate system with275

the equation suggested in Helbig et al. (2009), which is identical to Eq. (5), requires careful consideration of the integration

limits. As illustrated by the blue and red dots in Fig. 6a) and b) and previously discussed, these limits can be complicated for

steep and complex terrain. Integration can be performed successfully with the Trapezoidal rule and by summing up obtained

areas - analogous to the area computation of a two-dimensional polygon. Apart from negligible numerical deviations, we

obtained the same results with this method compared to applying Eq. (11). By testing the method of Manners et al. (2012),280

we believe to have found an error in its derivation: In Eq. (13) of Manners et al. (2012), angles are added that are expressed

in different coordinate systems. The resulting error is minor for small slope angles but more pronounced for steeper terrain.

Finally, we considered the method suggested by Dozier and Frew (1990). By applying multiple trigonometric identities and

considering the different coordinate systems applied, we found it to be identical to our solution. Concluding, if horizon angles

are available in a horizontal coordinate system, it seems most convenient to perform the SVF integration in the same reference285

system.
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4 Computational performance and accuracy of algorithms

We consider two reference horizon algorithms to evaluate the computational performance and accuracy of our method: First,

the algorithm described in Pillot et al. (2016), which is available as a MATLAB implementation (Pillot, 2016). Secondly, the

algorithm applied in Buzzi (2008), which was implemented in the pre-processing tool of the limited-area atmospheric model290

COSMO (Steppeler et al., 2003) in Fortran and parallelised with OpenMP. Both algorithms are based on the conventional

concept of sampling all elevation data along a centre line of an azimuth sector. The algorithm by Buzzi (2008) was developed

to process elevation data on a rotated latitude/longitude grid centred at the coordinate system’s origin. The Earth’s shape is fur-

thermore assumed to be spherical. Due to these restrictions, we processed the input DEM data for this section as follows: First,

we assume that DEM heights are referenced to a spherical Earth and ignore differences between orthometric and ellipsoidal295

heights. Secondly, we bilinearly remapped DEM data to rotated longitude/latitude coordinates, whose origin is located in the

centre of the selected DEM domains. We apply two elevation data sets in this section: NASADEM with a horizontal resolution

of 30 m and USGS 1/3 arc-second DEM, which has a higher horizontal resolution of 10 m. For all algorithms, we used the

default number of 360 azimuth sampling sectors. For the ray-casting based algorithm, the elevation angle accuracy was set to

±0.25◦ and terrain simplifications according to Sect. 3.2.2 were not applied.300

4.1 Evaluation of the computational performance

In the literature, suggested search distances for the horizon typically range from ca. 20 km (Senkova et al., 2007) to 50 km (Dürr

and Zelenka, 2009). These distances should be defined according to the desired horizon accuracy and the complexity of the

regional terrain. In areas like the Himalayas, elevation differences within 50 km can be as high as 7000 m (without intermediate

terrain obstruction), which corresponds to a horizon angle of ∼8◦. For such terrains, an even larger search distance than 50 km305

might be necessary if a high horizon accuracy is required. We applied NASADEM data, centred at Kleine Scheidegg (Bernese

Oberland, Switzerland) and USGS 1/3 arc-second DEM data, centred at Denali (Alaska, USA), for the performance evaluation.

The performance analysis of the ray-tracing based method revealed a dependency on terrain complexity and the algorithm’s

performance is higher for simpler terrain. We therefore considered two additional domains for this algorithm, which are located

north of the above mentioned domains and feature less complex, hilly terrain. The overall performance was then computed as310

an average between the two domains with different terrain complexity. The performance dependency on terrain is however

minor and in the order of ±10% from the average. Performance experiments have been carried out on a workstation with an

Intel Core i5 Quad-Core processor (3.4 GHz) with 16 GB of memory, except for assessing the parallel scaling performance

of the algorithm, which was evaluated on an Intel Xeon Gold processor (3.4 GHz) with 2x16 physical cores and 1.5 TB of

memory.315

Figure 7 shows results from the performance analysis for two different horizontal DEM resolutions and horizon search

distances. The algorithm of Pillot et al. (2016) is not considered in this analysis because it was designed for point location

applications (its run time is substantially larger than the other two considered algorithms). Figure 7a reveals that the run time of

the conventional algorithm (Buzzi, 2008) scales distinctively with horizon search distance. For the ray tracing based method,
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Figure 7. Computational performance of the ray casting algorithm relative to the one implemented by Buzzi (2008) in a log-log-plot. Panels

(a) and (b) show the performance for a DEM with 30 and 10 m horizontal resolution, respectively. Dashed lines indicate a linear extrapolation

of the performance relationship. The inset panel in (a) shows the parallel scaling performance of the ray casting algorithm for a fixed terrain

size of approximately 106 grid cells, a horizon search distance of 50 km and a DEM resolution of 30 m.

this is only true for relatively small (ca. < 105 grid cells) terrain sizes. This diverging pattern is caused by the varying ratio320

of time spent on BVH building and ray tracing. For small domains, the BVH building contributes significantly to the total

run time, whereas for larger domains, this contribution is negligible. For larger domains (ca. > 105 grid cells), run times for

the ray casting algorithm are almost independent of the horizon search distance. For the DEM with 10 m resolution (Fig. 7b),

the performance analysis looks overall very similar. However, run times between the conventional and the ray-tracing based

algorithm diverge even further: for processing 106 grid cells with a search distance of 50 km, the new algorithm reveals a325

speed-up factor of ∼72 for a 30 m DEM, whereas this factor increases to ∼321 for a 10 m DEM. As mentioned in Sect.

3.2.1, Embree offers an option for robust BVH building, which we used for the analysis shown in Fig. 7. Disabling this option

increases ray tracing performance by approximately 20%. However, as a trade-off, the requirements for horizon accuracy are

not longer strictly met because triangles from the terrain mesh might be missed by rays. We thus always enable the flag robust

for BVH building, even if such errors were found to occur extremely infrequent. The inset panel in Fig. 7a shows the parallel330

scaling performance of the ray casting based horizon algorithm. For the considered terrain size and setup, the algorithm reveals

and excellent scalability with a speed-up factor of ∼ 27 using 32 cores relative to a single-core execution.
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In summary, the performance analysis revealed that the ray-casting method is much faster for all considered terrain sizes (by

about two orders of magnitude). The speed-up increases with both higher spatial DEM resolution and larger horizon search

distances as well as with terrain size up to approximately 106 grid cells. The higher performance of the ray-tracing based335

algorithm is mainly caused by the more efficient storage of DEM data, which drastically reduces the elevation information that

has to be considered along a sampling line. The relevance of this effect grows both with increased DEM resolution and horizon

search distance.

4.2 Accuracy evaluation for real terrain

We compared the accuracy of the ray tracing based horizon algorithm to the methods suggested by Buzzi (2008) and Pillot340

et al. (2016). The accuracy of the latter algorithm was assessed by in-situ horizon measurements collected with a Theodolite

in Corsica (Pillot et al., 2016). We evaluated the different algorithms for an approximately 10 by 10 km wide NASADEM

domain (324× 324 grid cells) centred at Kleine Scheidegg (Bernese Oberland, Switzerland). To increase overall accuracy of

the computed horizon lines, we enhanced the search distance for the horizon to 100 km. Due to the comparably high run time

of the Pillot et al. (2016) algorithm, we did not apply it to the full domain. Instead, we ran it for 1000 cells within the 324×324345

domain, which were drawn by random uniform sampling.

Figure 8 shows obtained horizon lines for three example locations. In Fig. 8a, the distance to locations forming the horizon

is generally larger than 1 km and the agreement between the three algorithms is, with a mean spread of 0.42◦, very good. For

locations shown in 8b and 8c, the agreement between the algorithms deteriorates and maximal deviations up to 14.34◦ occur.

Considering the horizon distance information, it is obvious that the inferior agreement is constrained to azimuth angles with350

close distances to the horizon. For these ranges, both reference algorithms indicate staircase-shaped changes in the horizon

line, which is e.g. also apparent in Fig. 9 in Pillot et al. (2016). Table 1 indicates that findings from the three example locations

translates to the entity of analysed locations. The agreement between the three algorithms is considerably smaller for locations

and azimuths with close (< 1 km) proximity to the horizon line – both in terms of statistical mean and 95th percentile. Ad-

ditionally, Table 1 reveals that the agreement between the ray casting and Buzzi (2008) algorithm is consistently better than355

between the other two combinations. Deviations from the algorithm by Pillot et al. (2016) are higher for large horizon dis-

tances. A potential explanation for this pattern might be the way how sampling for a certain azimuth direction is implemented

in Pillot et al. (2016), which happens along a loxodrome.

The pronounced staircase-shaped artefacts in Fig. 8b and 8c, which cause the poor agreement between the algorithms for

close horizon distances in Table 1, are induced by the non-smooth terrain representation in the reference algorithms of Buzzi360

(2008); Pillot et al. (2016). These algorithms assume uniform elevations within grid cells with vertical drops at the cells’ edges.

The non-smooth terrain representation introduces two disadvantages: First, the occurrence of unnatural steps in the horizon

line (see Fig. 8c) and secondly, a high sensitivity of the computed horizon on the chosen azimuth angle. The relevance of

these issues increases with decreasing distance between the centre location and the horizon. If computed horizon lines are used

for SVF calculations, the issue of artificial steps is partially attenuated because terrain horizon αt is occasionally exceeded365

by plane horizon αp and thus not considered (see Sect. 3.3). However, a part of the error does propagate to computed SVF
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Figure 8. Horizons for three locations computed with the three different algorithms. The boxes at the lower boundary of the panels illustrate

the distance to the horizon line based on the ray casting algorithm. The numbers in the panel’s upper left show the geographic longitude (λ)

an latitude (ϕ) of the location. The numbers at the right boundaries of the panels represent the mean (∆mean) and maximal (∆max) spread in

computed horizon angles for the location. The three methodologies considered qualitatively agree, but note the occurrence of staircase-like

behaviour for the Pillot and Buzzi algorithms.

values. In the ray casting algorithm, gridded DEM data are converted to a triangle mesh, which represents a smooth surface.

Subsequently, this algorithm does not suffer from the aforementioned issues.

4.3 Verification with idealised terrain geometries

To quantitatively verify our methodology, we additionally assessed the implemented horizon and SVF algorithms by means370

of two idealised z-axis-symmetric terrain geometries. The first one, called Crater, represents a simple hemispherical cavity,
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Table 1. Absolute differences in horizon angles [◦] between the three algorithms. The mean and the 95th percentile (p95) are shown for all

data and grouped according to the associated distance to the horizon.

Comparison
Horizon distance

all < 1 km ≥ 1 km

mean p95 mean p95 mean p95

Ray casting – Pillot et al. (2016): 1.54 7.78 2.55 10.91 0.87 3.12

Ray casting – Buzzi (2008): 1.02 4.25 1.80 7.10 0.49 0.89

Pillot et al. (2016) – Buzzi (2008): 1.33 5.50 1.96 9.04 0.91 1.94

which was also considered in Manners et al. (2012). Its elevation h is defined according to

h(d) =

r−
√
r2 − d2 if d < r

r if d≥ r
, (12)

where d is the distance from the centre and r the radius of the cavity. Except for the rim of the cavity, the terrain represented

by this geometry is concave, which implies that horizon lines are almost exclusively formed by non-adjacent terrain. To cover375

the other case, we consider a second, partially convex geometry (Crater hill), whose elevation is defined by

h(d) =


0.5rfa (cos(

2dπ
r )+ 1.0) if d < r

2

r− 2
√
rd− d2 if r

2 ≤ d < r

r if d≥ r

, (13)

where fa represents the amplitude factor, which determines the height of the central bump. Cross-sections of the two geometries

are shown in Fig. 9a for the parameter setting r = 1000 m and fa = 0.9.

We discretised both terrains by 1026× 1026 grid cells and computed the horizon with the default setting of 360 azimuth380

sectors and an accuracy of 0.25◦. The resulting horizon for three grid cells, whose location is marked in Fig. 9a, is illustrated in

panel (b) (Crater) and (d) (Crater hill) of the same figure. In accordance with the smooth surfaces of the geometries, horizon

angles represent smooth lines without artefacts. In case of the Crater geometry, the horizon is invariably formed by the rim of

the cavity and its exact solution can thus readily be derived. Figure 9b indicates that horizon lines computed with ray casting

align with these ’perfect’ solutions. Obtained spatial SVF values for both geometries are shown in Fig. 9c and 9e. The SVF385

for the Crater geometry is uniformly 0.5 within the cavity (with negligible numerical deviations), which is in line with the

analytical solution derived in Manners et al. (2012). The SVF for the Crater hill geometry is spatially variable with lowest

values around d= r/2 and highest values in the centre.

It is possible to validate the resulting SVF values of both geometries, at least in a horizontally aggregated way, by physical

and geometrical considerations: Manners et al. (2012) illustrates in Sect. 2.4 that the same horizontally aggregated long-390

wave flux is emitted from a flat disc and a hemispherical cavity. This relation holds for any cavity - not only the perfectly
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Figure 9. Terrain parameters for the two idealised geometries Crater (blue) and Crater hill (red). (a) Elevation cross-sections of the two

terrains, where black symbols mark locations for which the horizon is illustrated in (b) and (d). In (b), exact solutions (grey lines) for the

horizon are shown in addition to the ones computed with ray casting. (c) and (e) illustrate horizontally resolved SVF for the Crater and

Crater hill geometries, where the black symbols indicate again the locations considered in (b) and (d).

hemispherical one. We can rearrange Eq. (24) and (25) of Manners et al. (2012) to

Fsky,disc =
Acavity

Adisc
Fsky,cavity , (14)

where Acavity and Adisc represent the surface area of the cavity and the flat disc, and Fsky,disc the SVF of the disc, which is

exactly 1. Applying Eq. (14) to the Crater and Crater hill geometries yields ∼0.999 for both cases, which confirms the correct395

implementation of the horizon and SVF algorithm.
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5 Application examples of the algorithms

In this section, we present example applications of the ray tracing based horizon and SVF algorithm. Output from Sect. 5.1 and

5.2 can be used to parameterise the effect of terrain on surface radiation in weather and climate models. Sect. 5.3 illustrates

the computation of horizon and SVF from very high-resolution elevation data. These outputs are primarily interesting for very400

high-resolution land-surface models applied in mountainous terrains.

5.1 Computation of terrain parameters and sub-grid sky view factor

As mentioned in the introduction, terrain parameters like horizon and SVF are already applied in several numerical weather

and climate models to account for topographic effects on radiation. In some models, terrain parameters are derived from the

model’s internal elevation representation, which typically features a grid spacings of > 500 m to ∼ 100 km. This elevation405

data is normally smoothed to ensure numerical stability of the model. The relative coarse spacing (and the potential smoothing

of orography) lead to a smoothing of terrain parameters - i.e. computed horizons angles are typically lower and obtained

SVF values higher. In other models, terrain parameters are computed from a sub-grid scale DEM and subsequently spatially

aggregated. In the latter case, DEM data with high spatial resolution has to be processed, which can be done efficiently with

our ray tracing based algorithm. Such a sub-grid scale parameterisation is for instance presented in Helbig and Löwe (2012),410

which emulates the effects of terrain reflection of shortwave radiation on surface albedo.

We illustrate the computation of terrain parameters and the spatial aggregation of the SVF by means of two DEMs with

different resolution, the NASADEM and the USGS 1/3 arc-second DEM. Output from the NASADEM is shown in Fig. 10 for

a 40 km wide domain centred at Lauterbunnen Valley (Bernese Oberland, Switzerland). The horizon was computed with the

default setting of 360 azimuth sectors and a search distance for the horizon of 50 km. Panels (d) to (f) illustrate how the range of415

SVF changes with spatial aggregation. 3 and 12 km are common horizontal resolutions applied in regional climate modelling

(Ban et al., 2021; Sørland et al., 2021; Jacob et al., 2014). Fig. 10f shows that, even on a relatively coarse resolution of 12 km,

the aggregated SVF of some grid cells is still significantly smaller than 1.0. Fig. 11 illustrates terrain parameters computed from

the USGS 1/3 arc-second DEM for a 40 km wide area centred at Denali (Alaska, USA). The geographic latitude of this area is

relatively high (∼ 63◦ North), which means that topographic shading is a very relevant process due to low solar elevation angles420

– particularly during Northern Hemispheric winter. In contrast to NASADEM processing, the number of azimuth sectors was

decreased to 60 to reduce the required storage space for the 3-dimensional horizon information. Compared to Fig. 10, obtained

SVF values on the native grid are generally lower. This translates to the spatially aggregated SVF values and even on a scale

of 12 km, almost the entire area features SVF values below 0.85 (see Fig. 11f).

5.2 Accelerated computation of sub-grid Sky View Factor425

The application of sub-grid SVF in weather and climate models, as for instance in Hao et al. (2021), requires the computation

of high-resolution horizon for large domains spanning several hundred to thousand kilometres. This step is computationally

expensive, even with the new horizon algorithm (with the default setting of Na = 360 and αr = 0.25◦) presented in this study.
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Figure 10. Terrain parameters computed from NASADEM for a 40 km wide window centred at Lauterbunnen Valley (Bernese Oberland,

Switzerland). Panels (a) to (c) illustrate the elevation, slope angle and slope aspect. Note that aspects with slopes < 1◦ are masked. Panel (d)

shows the computed SVF on the native resolution of ∼ 30 m and panels (e) and (f) the spatial aggregation of this parameter to 3 and 12 km,

respectively.
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Figure 11. Terrain parameters computed from USGS 1/3 arc-second DEM for a 40 km wide window centred at Denali (Alaska, USA). Panels

(a) to (c) illustrate the elevation, slope angle and slope aspect. Note that aspects with slopes < 1◦ are masked. Panel (d) shows the computed

SVF on the native resolution of ∼ 10 m and panels (e) and (f) the spatial aggregation of this parameter to 3 and 12 km, respectively.
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We thus tested two approaches to decrease computational time further while maintaining a high level of accuracy: On the one

hand, we decreased the number of azimuth sectors and the horizon accuracy.430

Table 2. Different geographic domains used to test the accelerated computation of sub-grid SVF values.

Label Geographical

Location

Latitude/

longitudea [◦]

Domain

size [km]

Spacing

[m]

Mean

slopeb [◦]

Mean

SVFb [-]

Central Alps Switzerland/

Austria/Italy

46.663/10.393 100 x 100 30 26.5 0.87

Grand Canyon USA 36.130/-111.970 50 x 50 30 16.3 0.91

Hawaii USA 22.050/-159.540 50 x 50 30 8.6 0.97

Kamchatka Russia 55.920/160.500 50 x 50 30 11.9 0.97

Karakoram Pakistan/

China

35.883/76.513 100 x 100 30 28.7 0.83

Fiordland New Zealand -44.750/168.100 50 x 50 30 29.0 0.82

Patagonia Argentina/

Chile

-49.271/-73.043 100 x 100 30 12.3 0.95

Three Parallel

Rivers

China 28.186/98.871 100 x 100 30 31.8 0.83

Yosemite USA 37.750/-119.600 50 x 50 30 16.7 0.94

Denali USA 63.069/-151.008 50 x 50 10 24.8 0.85
aGeographic coordinates refer to the centre of the domain.

bComputed with the reference sampling density (∼1024 samples per km2).

These two parameters are interdependent in the fastest horizon detection method (see Sect. 3.2.1). If e.g. only Na is de-

creased, the average number of rays applied per sampling location and sector increases due to larger horizon differences

between neighbouring sectors. We thus only considered settings in which both Na and αr are altered simultaneously to keep

the averaged number of rays per grid cell and sector similar. We considered three combinations beside the default setting: Na

= 60 & αr = 1.5◦, Na = 30 & αr = 3.0◦ and Na = 15 & αr = 6.0◦, which represent performance increase factors of ∼6, ∼12435

and ∼24. On the other hand, we reduced spatial sampling density. For this analysis, we bilinearly remapped NASADEM and

USGS 1/3arc-second data to resolutions of ∼31.3 m and ∼10.4 m, respectively. This allows for a simple spatial aggregation of

sub-grid SVFs to grids with resolutions of 1 km and integer multiples, as a 1 km2 cell contains exactly 32× 32 (NASADEM)

or 96× 96 (USGS 1/3arc-second DEM) resampled DEM cells. For the reference solution, we consider SVF information from

all NASADEM sub-grid cells and 1/9 of all USGS 1/3arc-second DEM sub-grid cells, which corresponds to a spatial sam-440

pling density of ∼ 1024 times per km2. Subsequently, we decreased spatial sampling densities by considering subsets of the

reference sampling locations, which were drawn randomly and spatially uniformly. To obtain more robust results, we repeated

the random drawing 104 times. We performed these tests for 10 different geographic domains, which cover a broad range of
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geomorphologies (see Table 2). Spatial SVF aggregation scales of 1, 3, 12 and 25 km are considered, which represent common

horizontal resolutions for numerical weather and climate models.445

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of reference sampling density [-]

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e 

er
ro

r [
%

]

Na = 360, r = 0.25
Na = 60, r = 1.5
Na = 30, r = 3.0
Na = 15, r = 6.0

Maximum
95th percentile
Mean

0 200 400 600 800 1000
Sampling density [km 2]

Figure 12. Example of the relative error in spatially aggregated SVF for the Central Alps region as a function of sampling density. The figure

displays errors from 104 randomly and spatially uniformly drawn samples for an aggregation to 3 km. Na denotes the number of applied

azimuth sectors and αr the horizon accuracy. The lower x-axis shows the sampling density relative to the reference density (∼ 1024 samples

per km2) while the upper x-axis indicates absolute values. Intersections of the coloured solid lines, which represent the maximal relative

error, with the horizontal 1% error line are denoted by gray circles and vertical lines.

Figure 12 illustrates the obtained results for the Central Alps region and a spatial aggregation of the sub-grid SVF values to 3

km. As expected, decreasing sampling density induces a gradual increase in relative SVF error in all considered error statistics

(maximum, 95th percentile and mean). Remarkably, this gradual behaviour is less evident for the applied sets of Na and αr.

Initial decreases of Na, until Na = 30, revealed minor effects on the accuracy of the computed sub-grid SVF. Only the decrease

from Na = 30 to Na = 15 showed a clear deterioration in the accuracy of sub-grid SVF. The same behaviour was also found450

for other geographical regions. The grey circles and vertical lines in Fig. 12 illustrate the required sampling density to meet a

maximal relative error of 1% and the associated 95th percentile and mean of this error.

Figure 13 displays these values for all considered regions and spatial aggregation scales. Values for different regions are

typically clustered in relatively narrow bands. Apparently, the Fiordland region in New Zealand exhibits the highest terrain

complexity, as it typically requires the highest sampling density to meet the 1% maximum relative error (see upper row in455

Fig. 13). In contrast, the Kamchatka region in Russia requires a comparably low sampling density. This can be explained by
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Figure 13. Overview of error statistics for the applied speed-up tests of sub-grid SVF calculation. The upper row illustrates the required

spatial sampling density to meet a maximum relative error of 1% in sub-grid SVF computation. The lower row shows the associated 95th

percentiles and means in relative error. Settings (Na and αr) for which the maximum relative error never falls below 1% are hatched. Note

the variable y-axis range between panels in the upper row.

the relative simple terrain geometry of this region, which is shaped by Stratovolcanos. For all conducted experiments, the

95th percentile and the mean in relative error remain below 0.5% and 0.2% - except for the experiment with Na = 15 (see

lower row in Fig. 13). Regarding speed-up factors for computing sub-grid SVF with a maximal absolute error of 1%, the

following conclusions can be drawn from Fig. 13: For a spatial aggregation to 1 and 3 km, the setting Na = 30 & αr = 3.0◦460

is most favourable, while a decrease in the spatial sampling density is not (or only to a minor extent) possible. This allows a

performance increase, relative to the default setting, of a factor of ∼12. For the spatial aggregation to coarser resolutions (12

and 25 km), the setting Na = 30 & αr = 3.0◦ is again optimal. For these resolutions, the sampling density can additionally be
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reduced to 5% (12 km) and 2.5% (25 km) of the reference density. This yields total speed-up factors of ∼ 240 (12× 1.0/0.05)

and ∼ 480 (12× 1.0/0.025) for sub-grid SVF computations for resolutions of 12.0 and 25.0 km, respectively.465

An earlier method to compute sub-grid scale SVF was presented in Helbig and Löwe (2014). They developed a model,

which estimates spatially aggregated SVF from local terrain parameters, which are cheap to compute. This model is faster than

our approach but also exhibits larger relative errors in computed SVF - particularly for target grids with high spatial resolutions

(1.0 - 2.5 km). The choice of model, i.e. Helbig and Löwe (2014) versus our approach, depends on the available computational

resources and the desired accuracy for the sub-grid scale SVF. An advantage of our approach is its potential to seamless derive470

accurate sub-grid SVF values for all spatial scales.

5.3 Application to very high resolution DEM data

In this section, we demonstrate the application of the horizon and SVF algorithm with very high resolution DEM data. As

mentioned in Sect. 2, we used SwissALTI3D data with a horizontal resolution of 2 m. To lower the memory footprint of the

high resolution data during processing, we simplified terrain representation in the boundary zone of DEM according to Sect.475

3.2.2. We computed terrain parameters for two 3× 3 km domains in the Glarus Alps in Switzerland.

The first domain is centred around Tödi and is overall convex-shaped (Fig. 14), while the latter is centred at Limmerensee

and features a rather concave-shape terrain geometry (Fig. 15). For the absolute horizon accuracy, we selected a value of 0.25◦,

which is partitioned to αr = 0.15◦ and αs = 0.1◦. For dm (see Fig. 5), we chose a distance of 7 km. For the domain centred

around Tödi, a search distance for the horizon of 30 km was applied. Choosing a larger distance is not possible due to the480

limited spatial coverage of SwissALTI3D data. Without terrain simplification, the memory footprint of the DEM data amounts

to ∼ 11.9 GB, while with terrain simplification, total memory requirements can be lowered to ∼ 0.92 GB (∼ 867 MB for the

inner domain and ∼ 55 MB for the outer TIN). For this domain, obtained SVF values are highest and close to 1.0 in the centre,

which features a high-elevated glaciated plateau. The lowest SVF values, which frequently fall below 0.4, typically coincide

with steep walls that are e.g. found north and south-west of the plateau. Further areas with very low SVF values can be found485

in the southern-eastern region and are caused by glacier crevasses.

For the second considered domain (Fig. 15), the horizon search distance could be enhanced to 35 km. By considering the

full DEM information, memory demands for the DEM data would have amounted to ∼ 16.0 GB - without considering memory

needed to build the BVH. With terrain simplification, these demands dropped to ∼ 0.94 GB (∼ 867 MB for the inner domain

and ∼ 73 MB for the outer TIN). In contrast to Fig. 14a, the spatially aggregated SVF is lower and averages to 0.71. This490

relatively low value is primarily caused by the deep gorge in the north-western part of the domain, which features a larger

coherent area with SVF values below 0.5.

6 Conclusions

Horizon and derived SVF are used in various fields and applications. Conventional horizon algorithms typically process the

full elevation information along an azimuth sector’s centre line, which makes them slow for (very) high resolution DEMs. We495
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Figure 14. Terrain parameters computed from 2 m SwissALTI3D DEM for a 3 km wide domain centred at Tödi (Glarus Alps, Switzerland).

Panel (a) illustrates the spatially gridded SVF, while the number in the lower left represents the domain-wide average. Panels (b) and (c)

show the associated surface elevation and slope angles.

propose an new and more efficient method, which is based on a high-performance ray-tracing library. In this approach, terrain

information is stored in a tree structure (BVH) and only a fraction of elevation data have to be considered along a scanning

line. A comparison of the ray-tracing based horizon algorithm with a conventional method revealed its high computational

performance, which amplifies for higher DEM resolutions and larger horizon search distances. The new algorithm exhibits

only a minor performance dependency on horizon search distance, which allows to compute more accurate horizon angles by500

considering larger search distances. Applying the horizon (and SVF) algorithm to larger domains can additionally be acceler-

ated by masking water grid cells, whose minimal distance to the coastline is larger than the search distance for the horizon.

In terms of accuracy, the ray tracing based algorithms agrees well with two existing methods in case of larger distances (> 1

km) between the sampling location and the horizon line. For smaller distances, deviations are larger. These discrepancies are

caused by differences in internal terrain rendering. In the two reference algorithms, terrain is represented by quadrilaterals505

with a uniform elevation within individual cells, which results in a staircase-shaped surface. These structures translate to the

computed horizon lines. In the new algorithm, terrain information is rendered by a triangle mesh, which represents a smooth

continuous surface. Computed horizon lines have subsequently more natural gradients and do not suffer from staircase-shaped
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Figure 15. Terrain parameters computed from 2 m SwissALTI3D DEM for a 3 km wide domain centred at Limmerensee (Glarus Alps,

Switzerland). Panel (a) illustrates the spatially gridded SVF, while the number in the lower left represents the domain-wide average. Panels

(b) and (c) show the associated surface elevation and slope angles.

artefacts induces by terrain representation. A disadvantage of the new algorithm is its larger memory footprint, which is critical

if very high resolution DEM data is processed. However, these memory demands can be drastically lowered by simplifying510

terrain in the outer boundary zone of the DEM domain.

To infer SVF values from computed horizon angles, various methods are suggested in the literature (Dozier and Frew, 1990;

Helbig et al., 2009; Manners et al., 2012), which are either applied in a horizontal or sloped coordinate system. We tested these

methods for very steep and complex terrain and concluded that, in case horizon angles are available in a horizontal coordinate

system, the method by Dozier and Frew (1990) is most convenient to apply. This SVF algorithm yields correct results for all515

terrains - even very steep and complex ones.

The terrain parameters horizon and/or Sky View Factor are applied in various numerical weather and climate models (Müller

and Scherer, 2005; Chow et al., 2006; Senkova et al., 2007; Buzzi, 2008; Manners et al., 2012; Liou et al., 2013; Rontu et al.,

2016; Arthur et al., 2018; Lee et al., 2019) to parameterise the effects of terrain geometry on surface radiation - either on the

scale of the model grid or on a sub-grid scale. The relevance of the SVF for parameterising the effect of topography on surface520

radiation was confirmed in a recent study by Chu et al. (2021). They showed that, on domain-averaged scales, results from
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a three-dimensional ray-tracing simulation agree well with a SVF-based parameterisation. Even with our efficient horizon

algorithm, the computation of sub-grid SVF is expensive for large weather and climate model domains. Fortunately, these

sub-grid parameters have to be computed only once during the pre-processing stage of the model simulation. Nevertheless, it

makes sense to compute them as efficiently as possible. We demonstrated that the computational time can be further reduced525

by considering less accurate horizon lines and by reducing the spatial sampling density. The loss in SVF accuracy is thereby

only very minor. The speed-up factor growths with increasing resolution differences between the DEM and the target grid

and exceeds 400 for the coarsest considered target resolution (25 km). The proposed method to efficiently computed sub-grid

SVF provides a complement to the statistical method suggested by Helbig and Löwe (2014), which links SVF to local terrain

parameters and is thus computationally very cheap. The choice of method depends on the available computational resources530

and the desired accuracy in SVF.

A run time analysis of our horizon algorithm revealed a considerable speed-up compared to conventional algorithms. How-

ever, performance could likely be further improved with the following suggestions, which concern the performance-critical ray

tracing part: We currently do not apply coherent rays in Embree, which allow for a more efficient utilisation of the BVH. Con-

sidering such ray streams might speed up horizon detection. To increase run times for workstations with performant graphic535

processing units (GPUs), ray casting could be performed with a GPU-based ray tracer, like NVIDIA OptiX (Parker et al.,

2010).

Code and data availability. HORAYZON is made available under the terms and conditions of the MIT license. The source code has been

archived on Zenodo (https://doi.org/10.5281/zenodo.6965104) and is available on GitHub (https://github.com/ChristianSteger/HORAYZON).

HORAYZON’s core dependencies are Intel Embree and Threading Building Blocks (TBB), the NetCDF-4 C++ library and the Python pack-540

ages Cython, NumPy, SciPy, GeographicLib, tqdm, requests and xarray. Dependencies can either be installed manually or conveniently via

the package manager Conda. HORAYZON is a cross platform application and supports both x86 and ARM architectures. On multi-core

processor systems, HORAYZON can be run in parallel via TBB (respectively OpenMP). All DEM data used in this study is freely available

from the respective source stated in the reference.

Appendix A: Coordinate transformations545

Various Cartesian and spherical/elliptical coordinate systems are used in this work. In terms of Cartesian coordinates, we apply

three different systems: ECEF (x,y,z), global ENU (x′,y′,z′) and local ENU (x′′,y′′,z′′) coordinates. Equations to transform

between the different reference systems are provided below.
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A1 Transformation from Geodetic to ECEF coordinates

Transformation from Geodetic to ECEF coordinates is performed by550

x= (N(ϕ)+he)cosϕ cosλ

y = (N(ϕ)+he)cosϕ sinλ

z =

(
b2

a2
N(ϕ)+he

)
sinϕ

, (A1)

with N(ϕ) = a/
√
1− e2 sin2ϕ and e2 = 1− b2/a2. ϕ represents the geodetic latitude, λ longitude, a the equatorial Earth

radius (semi-major axis), b the polar Earth radius (semi-minor axis) and e the eccentricity.

A2 Transformation from ECEF to global ENU coordinates

Transformation from ECEF to global ENU coordinates is achieved by555 
x′

y′

z′

=


−sinλr −cosλr 0

−sinϕr cosλr −sinϕr sinλr cosϕr

cosϕr cosλr cosϕr sinλr sinϕr



x−xr

y− yr

z− zr

 , (A2)

with ϕr and λr representing the geodetic latitude and longitude. xr, yr and zr constitute the coordinates of the tangential point

in ECEF coordinate. The transformation of a vector b from ECEF to global ENU coordinates is performed with
bx′

by′

bz′

=


−sinλr −cosλr 0

−sinϕr cosλr −sinϕr sinλr cosϕr

cosϕr cosλr cosϕr sinλr sinϕr



bx

by

bz

 . (A3)

A3 Transformation between global and local ENU coordinates560

We distinguish between two topocentric reference systems, the global and local ENU coordinates. The axes of the global ENU

coordinate system do not coincide with local East, North and upward directions of all DEM grid cells. This is only true for

local ENU coordinates. A vector b, expressed in global ENU coordinates (x′, y′ and z′), is converted to local ENU coordinates

(x′′, y′′ and z′′) by
bx′′

by′′

bz′′

=R


bx′

by′

bz′

 , (A4)565

where R represents the rotation matrix. The inverse transformation requires the inverse of the rotation matrix R−1. Rota-

tion matrices represent orthogonal matrices, thus their inverse is identical to their transpose. The inverse transformation can
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subsequently be written as:
bx′

by′

bz′

=RT


bx′′

by′′

bz′′

 . (A5)

The rotation matrix R is defined by570

R=


ae,x′ ae,y′ ae,z′

an,x′ an,y′ an,z′

au,x′ au,y′ au,z′

 , (A6)

where ae, an and au represent the local ENU coordinate axes East, North and Up in global ENU coordinates.

A4 Transformation between local ENU and spherical coordinates

In the local ENU coordinate system, we also apply spherical coordinates

x′′ = cosα sinφ

y′′ = cosα cosφ

z′′ = sinα

. (A7)575

In this reference system, the azimuth angle φ is measured clockwise from North (y′′) and the elevation angle α is measured

from the x′′ − y′′-plane. In terms of the zenith angle ϑ, which is measured from Up (z′′), the transformation can be expressed

as

x′′ = sinϑ sinφ

y′′ = sinϑ cosφ

z′′ = cosϑ

. (A8)

The elevation and zenith angle are linked via the relation α= (π/2)−ϑ.580

A5 Conversion from orthometric to ellipsoidal height

Elevation data of DEMs often refers to orthometric heights. These elevations are measured relative to a geoid and must be

converted to ellipsoidal heights, if coordinates are subsequently transformed from a geodetic to a geocentric coordinate system.

The relation between the ellipsoidal height he, the orthometric height ho and the geoid undulation N is specified by the

following equation (Pillot et al., 2016; Grohmann, 2018):585

he = ho +N. (A9)

For NASADEM data, we computed the undulation N based on EGM96 (Lemoine et al., 1998; NGA). For USGS 1/3 arc-second

elevation data, the GEOID12A geoid model (NGS) is applied. We bilinearly interpolate N from a 5 arc-minutes (EGM96) or

1 arc-minute (GEOID12A) reference grid.
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Appendix B: Computation of auxiliary quantities590

B1 Local East, North and Upward unit vectors

Computing the horizon line for a certain location requires knowledge about the local direction vectors pointing towards East,

North and Up. We compute these unit vectors in ECEF coordinates according to the following equations. The upward vector

is represented by the ellipsoid normal vector and can be computed as
au,x

au,y

au,z

=


cosϕcosλ

cosϕsinλ

sinϕ

 . (B1)595

This vector (au) is also called geodetic normal or n-vector. The vector an, pointing towards North and being perpendicular to

vector au, can readily be derived in ECEF coordinates. First, the vector between the current location (vl) and the North Pole

vp is computed as

vn = vp −vl . (B2)

The North Pole is given by vp = (0, 0, b). Vector vn is then projected on the location’s normal plane to receive600

vj = vn − (vn ·au) au . (B3)

Vector an is obtained by normalising vector vj

an =
vj

∥vj∥
. (B4)

The East unit vector (ae) is simply computed as

ae = an ×au . (B5)605

The direction vectors are subsequently transformed to global ENU coordinates with Eq. (A3).

B2 Slope aspect and angle of terrain

To compute the SVF, local terrain slope an aspect must be known, which can be represented by a local surface tilt vector.

Various slope algorithms exist (Jones, 1998; Corripio, 2003) which typically consider the nearest four to eight DEM grid cells.

We select an approach, in which a plane is fitted to the respective centre grid cell and its eight neighbours. The plane fitting610

is performed in the local ENU coordinate system by minimising the sum of squared z′′-differences between the plane and the

nine cells. This approach requires solving a linear system of equations defined as
∑9

i=1x
′′2
i

∑9
i=1x

′′
i y

′′
i

∑9
i=1x

′′
i∑9

i=1x
′′
i y

′′
i

∑9
i=1 y

′′2
i

∑9
i=1 y

′′
i∑9

i=1x
′′
i

∑9
i=1 y

′′
i 9




nx′′

ny′′

nz′′

=


∑9

i=1x
′′
i z

′′
i∑9

i=1 y
′′
i z

′′
i∑9

i=1 z
′′
i

 , (B6)
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where n represents the surface normal of the sloped plane and x′′, y′′ and z′′ the DEM coordinates of the nine grid cells. The

same method is used in the Geographic Information System software ArcGIS (ArcGIS).615
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