
Downscaling Multi-Model Climate Projection Ensembles with Deep
Learning (DeepESD): Contribution to CORDEX EUR-44
Jorge Baño-Medina1, Rodrigo Manzanas2,3, Ezequiel Cimadevilla1, Jesús Fernández1,
Jose González-Abad1, Antonio S. Cofiño1, and José Manuel Gutiérrez1

1Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander,Spain
2Dept. Matemática Aplicada y Ciencias de la Computación (MACC), Universidad de Cantabria, Santander, Spain
3Grupo de Meteorología y Computación, Universidad de Cantabria, Unidad Asociada al CSIC, Santander, Spain

Correspondence: Jorge Baño-Medina (bmedina@ifca.unican.es)

Abstract. Deep Learning (DL) has recently emerged as an innovative tool to downscale climate variables from large-scale

atmospheric fields under the perfect prognosis (PP) approach. Different Convolutional Neural Networks (CNN) have been

applied under present-day conditions with promising results, but little is known about their suitability for extrapolating future

climate change conditions. Here, we analyze this problem from a multi-model perspective, developing and evaluating an

ensemble of CNN-based downscaled projections (
:::::::
hereafter

:
DeepESD) for temperature and precipitation over the European5

EUR-44i (0.5◦) domain, based on eight GCMs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). To our

knowledge, this is the first time that CNNs have been used to produce
::::::::::
downscaled multi-model ensembles of downscaled

projections
::::
based

:::
on

:::
the

:::::::::::::::
perfect-prognosis

::::::::
approach, allowing to quantify inter-model uncertainty in climate change signals.

The results are compared with those corresponding to an EUR-44 ensemble of regional climate models (RCMs) showing that

DeepESD reduces distributional biases in the historical period. Moreover, the resulting climate change signals are broadly10

comparable to those obtained with the RCMs, with similar spatial structures. As for the uncertainty of the climate change

signal (measured on the basis of inter-model spread), DeepESD yields a smaller uncertainty for precipitation, but a similar

uncertainty for temperature.
:::::::
preserves

:::
the

::::::::::
uncertainty

:::
for

::::::::::
temperature

:::
and

::::::
results

::
in

:
a
:::::::
reduced

::::::::::
uncertainty

::
for

::::::::::::
precipitation.

To facilitate further studies of this downscaling approach we follow FAIR principles and make publicly available the code (a

Jupyter notebook) and the DeepESD dataset. In particular, DeepESD is published at the Earth System Grid Federation (ESGF),15

as the first continental-wide PP dataset contributing to CORDEX (EUR-44).

1 Introduction

The Coupled Model Intercomparison (CMIP) initiative produces periodic multi-model ensembles of centennial global climate

projections under different future scenarios using Global Circulation Models (GCMs). The two latest ensembles available are

CMIP5 (Taylor et al., 2012) and CMIP6 (Eyring et al., 2016), with typical resolutions of around 200 and 100km, respectively.20

These results are widely used by the impacts and adaptation communities in different sectors (e.g., energy, agriculture and

health, among others). However, the biases and spatial resolution of these global projections hampers
::::::
hamper

:
their use in re-
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gional applications and different downscaling approaches and methods are routinely applied to produce actionable information

at the regional and local scales (Maraun and Widmann, 2018).

Dynamical downscaling is based on the use of Regional Climate Models (RCMs) over a limited region driven by GCM out-25

puts at the boundaries (Giorgi, 2019; Gutowski et al., 2020). Different regional initiatives provide high-resolution, physically

consistent downscaled simulations over continental-wide domains. In particular, the Coordinated Regional Climate Down-

scaling Experiment (CORDEX, https://cordex.org) provides multi-model ensembles of regional climate projections driven by

CMIP5 model outputs over 14 continental domains. These regional projections are highly demanding in terms of computational

resources and the resolution of the available regional projections ranges from 50 to 10km, depending on the domain.30

The empirical-statistical downscaling approach (ESD) is based on empirical/statistical models translating the coarse-resolution

information provided by the GCMs (predictors) to the regional/local scale provided by the available historical observations

(predictands), typically temperature or precipitation fields (Gutiérrez et al., 2019). Under the “perfect-prognosis"
:
”
:
(PP) ap-

proach, the statistical models are trained using observations (reanalysis for the predictors) in a historical period and afterwards

::
to

::::
learn

::
a
:::::::::::::::::
predictor-predictand

::::
link

:::::
using

::::::::::::
simultaneous

::::::::
observed

:::
and

:::::::::
reanalysis

:::::::::::::::::
(quasi-observations)

::::::
values

::::::
(daily

::
in

::::
this35

:::::
work)

:::
for

::::::::::
predictands

::::
and

:::::::::
predictors,

:::::::::::
respectively.

:::
The

::::::::
resulting

:::::::
models

:::
are

::::
then

:
applied to GCM predictors from global

projections
::::::::
predictor

:::::
values

::::::
(from

::::::
present

::::::
climate

:::
or

:::::
future

:::::::::
scenarios) to obtain the regional/local downscaled results. These

methods
:::
This

::::::::
approach

::
is
::::::

based
:::
on

:
a
:::::::

number
:::

of
:::::::::::
assumptions.

::::
For

::::::::
example,

::::::::
predictors

:::::
have

::
to

:::
be

::::::::::
realistically

:::::::::
simulated

::
by

::::::
GCMs

:::::
(e.g.

::::::::
exhibiting

::::::
small

:::::::::
systematic

:::::::
biases),

::
so

::::::::::
large-scale

:::::
fields

:::
in

:::::
upper

:::::
levels

:::::
(less

:::::::
affected

:::
by

:::::::::
orography

::::
and

:::::
model

:::::::::
resolution)

:::
are

::::::::
typically

::::
used

::
as

:::::::::
predictors

:::::::
(perfect

::::::::
prognosis

:::::::::::
assumption);

:::::::::
moreover,

:::
the

::::::::
statistical

::::::
models

:::::::
trained

::
in40

::::::
present

::::::
climate

:::::::::
conditions

::::::
should

::::::
remain

::::
valid

:::::
under

::::::::
modified

:::::::::::::
(out-of-sample)

::::::
climate

:::::::::
conditions

::::::::::::
(generalization

:::::::::::
assumption)

:::::::::::::::::::::::::::::::::::
(see Gutiérrez et al., 2019, for more details).

::::::::::
Compared

::
to

:::::::::
dynamical

:::::::::::
downscaling,

:::::
ESD

::::
lacks

:::::::
explicit

:::::::
physics

::
in

:::
the

::::::
model

:::::::::
formulation

::::
and

::::::::
typically

::::
does

::::
not

::::::
ensure

:::
full

:::::::::::
multivariate

::::::::::
(intervariate

::::
and

::::::
spatial)

:::::::::::
consistency.

::::::::
However,

:::::
these

::::::::
methods

::::::::
overcome

:::
the

:::::::::
systematic

:::::
biases

::::::
present

::
in

:::::
RCM

:::::::
products

:::
(as

:::
the

::::::
model

:
is
::::::
trained

:::::
using

:::::::::::
observations)

::::
and are not computation-

ally demandingand therefore could be extensively ,
:::::::
avoiding

:::
the

::::
need

:::
for

::::
large

::::::::::::
computational

::::::::::::
infrastructures

::::::::::::::::::
(Le Roux et al., 2018)45

:
.
:::::::::
Therefore,

:::::
these

:::::::
methods

:::::
could

:::
be

::::::
widely

:
used to downscale global multi-model ensembles providing continental-wide

regional projection fields
:::::
results

::
at

::::::::::
continental

:::::
scales, e.g. over the

::
in CORDEX domains.

Recently, deep learning methods based on Convolutional Neural Networks (CNNs) have become very popular as a statistical

downscaling technique due to their ability to achieve an automatic selection of predictors in the form of data-driven spatial

features (Baño-Medina, 2020). Although they have shown promising results for continental-level climate downscaling under50

“perfect” conditions (Pan et al., 2019; Baño-Medina et al., 2020; Sun and Lan, 2021; François et al., 2021), there is little knowl-

edge on whether these statistical models are able to generalize to out-of-sample climate change conditions. Some preliminary

work using a single GCM shows that CNNs can accurately reproduce the local climate variability and provide plausible cli-

mate change projections over Europe as compared to well-established statistical downscaling approaches (Baño-Medina et al.,

2021). However, further analysis along these lines is needed to assess the suitability of CNNs for climate change applications.55

Here we provide a multi-model perspective by applying a CNN model (Baño-Medina et al., 2021) to downscale daily pre-

cipitation and temperature over Europe from the historical and future projections (RCP8.5 scenario) provided by an ensemble
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of eight GCMs. We evaluate the consistency of the downscaling approach across models and analyze the uncertainty of the

resulting climate change signals. Moreover, we follow previous downscaling literature (Vrac et al., 2007; San-Martín et al.,

2017; Quesada-Chacón et al., 2021) and compare the resulting projections with an ensemble of RCMs, which are used as60

“pseudo-observations". In order to facilitate further analysis, this dataset (referred to as DeepESD
::::
Deep

:::::::
learning

:::::::::
Empirical

::::::::
Statistical

:::::::::::
Downscaling

::::::::::
(DeepESD)) is made publicly available on the Earth System Grid Federation (ESGF), as a contribution

to the EUR-44i domain (0.5◦ horizontal resolution), so it can be downloaded together with the ensemble of available RCMs.

To our knowledge, this is the first continental-scale climate change projection dataset produced using statistical downscaling

methods contributing to CORDEX and published in ESGF, following the standard procedure for RCMs. Moreover, following65

FAIR principles (Wilkinson et al., 2016), the code used to generate the dataset along with guidelines on how to access the data

is available on GitHub
:::::::
Zenodo (see the section on code and data availability).

2 Data and Methods

DeepESD has been produced based on the application of CNN-based downscaling methods to an ensemble of eight CMIP5

GCMs (Table 1). Following the PP approach, the employed CNNs
::::
CNN

::::::
models

:
have been trained over the period 1979-200570

using daily predictors from the ERA-Interim reanalysis (Berrisford et al., 2011)—upscaled ,
::::::::

upscaled
:
from its original 0.75◦

resolution to a reference 2◦ regular grid—
::::
grid, and predictands from E-OBS v20 (Cornes et al., 2018)—originally ,

:::::::::
originally

at 0.25◦ but upscaled to 0.5◦ for consistency with previous works (Baño-Medina et al., 2020; Baño-Medina et al., 2021). —

::::::
E-OBS

::
is

:
a
:::::::::::::

high-resolution
::::::::::::

observational
::::::
dataset

:::::::::
generated

::
by

::::::::
spatially

:::::::::::
interpolating

:::
the

::::::::
European

:::::::
Climate

::::::::::
Assessment

:::
&

::::::
Dataset

:::::::::
(ECA&D)

:::::::
network

::
of

::::::
stations

::::::::::::::::::::::::
(Klok and Klein Tank, 2009).

::::::::
Although

:::::::
national

::::
and

::::::::::
sub-national

:::::::
datasets

:::::
exist,

::::::
E-OBS75

::::::::
accurately

:::::::::
represents

:::
the

:::::::
regional

::::::
climate

::::
over

:::
the

:::::
entire

::::::::
European

::::::::
continent

::::::::::::::::::::
(Bandhauer et al., 2022)

:::
and

::
it

::
is

:::::::::
commonly

::::
used

::
in

:::::::::::::
continental-wide

::::::::
statistical

:::::::::::
downscaling

::::::::::
experiments

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Maraun et al., 2015; Vrac and Ayar, 2016; Baño-Medina et al., 2020; Baño-Medina et al., 2021)

:
.
:::
We

:::::
chose

::::::
version

:::
20

:::::
(v20,

::::::
release

::::
date

:::::::
October

:::::
2019)

:::::
since

:
it
::::
was

:::
the

:::::
most

:::::
recent

::
at

:::
the

::::
start

::
of

::::
this

:::::
study.

:
Following pre-

vious studies (Gutiérrez et al., 2019; Baño-Medina et al., 2020), air temperature, specific humidity, geopotential, meridional

and zonal wind velocity at 500, 700, 850 hPa (i.e., a total of 15 variables per gridbox) have been used as predictors —covering80

:::::::
covering the domain 34◦N -76◦N , 8◦W -34◦E, — resulting in a 22×22×15 (longitude×latitude×variable) high-dimensional

input grid. To avoid potential artifacts derived from the different scale of the distinct variablesthe ,
:::::::::::
ERA-Interim

:
predictors are

standardized at the gridbox level (Baño-Medina et al., 2021).

The trained models are applied to downscale the projections from the ensemble of
:::
For

:::::::::::
downscaling

:::
we

::::
used

:::
an

::::::::
ensemble

::::::
formed

:::
by

:::
the

:
eight CMIP5 GCMs described in Table 1, for the

::
1,

:::::
whose

::::::
ability

:::
to

:::::::::
reproduce

:::
the

:::::::::
large-scale

:::::::::
dynamics85

:::
has

::::::
already

:::::
been

:::::::
assessed

:::
for

:::
PP

::::::
studies

::::::::::::::::::
(Brands et al., 2013)

:::
and

::::
have

::::
also

::::
been

:::::
used

::
in

:::::::::::::::
EURO-CORDEX

::
to

:::::
drive

::::::
RCMs

:::::::::::::::::
(Vautard et al., 2021).

:::::::::
Therefore,

:::
we

:::::
apply

:::
our

::::::
trained

:::::::
models

::
to

::::::::
downscale

:::
the

::::::::::
projections

::::
from

:::
the

:::
this

::::::::
ensemble

:::
for

:::
the

:
his-

torical (1975-2005) and RCP8.5 scenario (2006-2100) periods.
:::
We

:::::
follow

:::::::
previous

:::::
work

::
in

:::
this

::::
field

::::::::::::::::::::::::::::::::::::::
(Baño-Medina et al., 2021; Olmo et al., 2022)

:::
and

:::::
select

:::
the

:::::::
RCP8.5

::::::::
scenario,

:::::
which

::::::
shows

:::
the

::::::::
strongest

::::::
climate

:::::::
change

:::::
signal

::::::::::
(especially

::
for

:::::::::::
temperature)

::::
and

::::::::
therefore

:::::
allows

:::
the

::::::::::::
generalization

::::::::
capability

::
of
::::::
CNNs

::
to

::
be

:::::::::
optimally

::::::::
explored. Due to their different spatial resolutions, all GCM data90
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Name Institution Spatial resolution

CanESM2 (Christian et al., 2010) Canadian Centre for Climate Modelling and Analysis (2.81◦, 2.79◦)

CNRM-CM5 (Voldoire et al., 2013)
Centre National de Recherches Météorologiques and

Centre Européen de Recherche et de Formation Avancée
(1.4◦, 1.4◦)

MPI-ESM-MR (Müller et al., 2018) Max-Planck Institut für Meteorologie (1.87◦, 1.87◦)

MPI-ESM-LR (Müller et al., 2018) Max-Planck Institut für Meteorologie (1.87◦, 1.87◦)

NorESM1-M (Bentsen et al., 2013) Norwegian Climate Center (2.5◦, 1.9◦)

GFDL-ESM2M (Dunne et al., 2013)
National Oceanic and Atmospheric Administration

Geophysical Fluid Dynamics Laboratory
(2.5◦, 2.02◦)

EC-EARTH (Doblas Reyes et al., 2018) European-wide consortium (1.12◦, 1.12◦)

IPSL-CM5A-MR (Dufresne et al., 2013) Institut Pierre Simon Laplace Climate Modelling Center (2.5◦, 1.27◦)
Table 1. The different CMIP5 models used in this study.

have been interpolated to the reference 2◦ grid —the nearest gridboxwas considered—
::::::::::
(considering

:::
the

::::::
nearest

::::::::
gridbox) to

match the predictor space used for ERA-Interim. Moreover, we have applied a harmonization process suggested in previous

works (Brands et al., 2011; Vrac and Ayar, 2016; Baño-Medina et al., 2021), bias adjusting the
::
No

:::::::::
differences

::
in

:::
the

::::::::::
downscaled

:::::
results

::::
were

::::::
found

::
by

:::::::::
employing

::::
other

:::::::::::
interpolation

:::::::::
techniques

::::
(e.g.,

::::::::
bilinear).

:::::::::
Moreover,

::
in

::::
order

::
to

::::::
reduce

:::::::
potential

:::::::::
systematic

:::::
biases

::
in

:::::
GCM

:::::::::
predictors

::::::
which

::::
may

:::::
affect

:::
the

::::::
perfect

:::::::::
prognosis

::::::::::
assumption,

:::
we

::::
bias

::::::
adjust GCM predictors towards the95

corresponding reanalysis values. A simple scaling
:::
As

::::::::
suggested

:::
in

:::::::
previous

:::::::
studies

:::
we

::::
use

:
a
::::::::::::::::

change-preserving
:::::::
method

::::::::::::::::::
(Vrac and Ayar, 2016)

::
in

:::::
order

::
to

:::::
avoid

::::::::::
introducing

::::::::
artificial

::::::::::::
trends/changes

:::
in

:::::
future

::::::
GCM

::::::::
predictor

::::::
values.

::
In

:::::::::
particular

::
we

::::
use

:
a
::::::
simple

::::::
scaling

:::::::
method (mean and variance) applied at a monthly scaleis used to keep this harmonization as simple

as possible. ;
:::

for
::::::
future

:::::::
periods,

:::
the

::::::
climate

:::::::
change

:::::
signal

::
is

:::::::
removed

:::::
from

:::
the

::::
data

:::::
before

::::
bias

::::::::::
adjustment

:::
and

::::::
added

::
to

:::
the

::::::
results.

:::
We

::::
want

::
to

::::::
remark

::::
that

::
we

::::::
tested

::::
both

::::::::::::::
signal-preserving

:::
and

::::::::
standard

:::
bias

:::::::::
adjustment

::::::::
obtaining

:::::::::
substantial

::::::::::
differences100

::
in

:::
the

::::::
climate

:::::::
change

::::::
signals

:::
for

:::::::::::
temperature;

::::::::::::::
signal-preserving

::::::
yields

::::
more

::::::::
plausible

::::::
results

:::
(as

:::::::::
compared

::::
with

:::::
GCM

::::
and

::::
RCM

:::::::
climate

::::::
change

:::::::
signals).

:::
As

::
in

:::
the

::::
case

::
of

:::
the

:::::::::
reanalysis,

:::::
GCM

:::::::::
predictors

:::
are

:::::::::::
standardized

::
at

:::
the

::::::
gridbox

:::::
level

:::
for

::::
their

:::
use

::
in

:::
the

::::
CNN

::::
(the

:::::
same

::::::::::::
standardization

::::::::::
parameters

::::
used

:::
for

:::
the

::::::::
reanalysis

::::
data

::
is

::::::
applied

:::::
here).

:

:::
The

:::::
above

:::::::::::::
pre-processing

::::
steps

:::
are

:::::::::
illustrated

::
in

:::
Fig.

::
1.

:

In particular
::
For

:::
the

:::::
CNN

::::::
models

::::
used

::
in

:::
this

:::::
work, we deploy the best performing topologies developed in Baño-Medina et al. (2020)105

::::::::::::::::::::::
(Baño-Medina et al., 2020), a recent study which intercompares different CNNs over Europe in “perfect" conditions to downscale

precipitation/temperature
:
to

:::::::::
downscale

::::::::::
temperature

::::::::::::
(precipitation). They consist of 3-layers with 3×3 kernels of

::::
three

:::::::::::
convolutional

:::::
layers

:::::::::::::::::
(LeCun et al., 1995)

::::
with 50, 25 and 1/10 filter maps

::
(1)

::::::
spatial

::::::
kernels

:::::
(3x3

:::::::::
gridboxes) followed by a dense connec-

tion which links
::::::
linking the last hidden layer with

:
to
:

the output neurons (one per each gridpoint
:::::::::::
corresponding

::
to
::::

the
::::
land

::::::::
gridpoints

:
in E-OBS). For precipitation (temperature), these CNNs

::
As

::
in

:::::::::::::::::::::::
(Baño-Medina et al., 2020)

::
we

:::::
apply

::
a

:::::::::::
distributional110

::::::::::
downscaling

::::::::
approach

:::
and

:::
use

:::
the

:::::::
network

:::
to

:::::::
estimate

::::
daily

::::::::::::::::::
predictor-conditioned

::::::::
Gaussian

::::::::::::::::
(Bernoulli-Gamma)

:::::::::::
distributions

::
for

:::::::::::
temperature

::::::::::::
(precipitation).

::::
This

::
is
::::::::::::

implemented
:::
for

::::
each

::::
land

:::::::
gridbox

:::::
using

::::
two

::::::
(three)

::::::
output

:::::::
neurons

::::::::::::
corresponding

4
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Figure 1.
:::::::
Workflow

::
of
:::::::::::
pre-processing

::::
steps

::::::
applied

::
to

::::::::
reanalysis

:::
and

::::
GCM

::::
data

::
in

:::
this

::::
work.

:

GCM member RCM Institution

CanESM2 1 SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre

CNRM-CM5 1 CLMcom-CCLM5-0-6 Climate Limited-area Modelling Community

CNRM-CM5 1 SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre

MPI-ESM-LR 1 CLMcom-CCLM4-8-17 Climate Limited-area Modelling Community

MPI-ESM-LR 1 MPI-CSC-REMO2009 Max Planck Institute for Meteorology

NorESM1-M 1 SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre

GFDL-ESM2M 1 SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre

EC-EARTH 12 SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre

EC-EARTH 12 CLMcom-CCLM5-0-6 Climate Limited-area Modelling Community

IPSL-CM5A-MR 1 SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre

IPSL-CM5A-MR 1 IPSL-INERIS-WRF331F Institut Pierre-Simon Laplace
Table 2. Details of the EURO-CORDEX (EUR-44 domain) RCM simulations used in this study. The first two columns show the GCM and

ensemble member driving the RCM.

::
to

:::
the

:::::::::::
distributional

::::::::::
parameters:

:::::
mean

:::
and

::::::::
variance

::::::::::
(probability

::
of

::::
rain,

:::::
shape

::::
and

::::
scale

:::::::
factors).

::::
The

::::::::
resulting

::::::::
networks are

trained to optimize the negative log-likelihood of a Bernoulli-Gamma (Gaussian ) distribution, yielding thus daily estimates

of its probability of rain, shape and scale parameters (mean and variance) .
::
the

::::::::
Gaussian

::::::::::::::::
(Bernoulli-Gamma)

:::::::::::
distribution.

:::
We115

5



::::
refer

:::
the

:::::
reader

::
to

::::::::::::::::::::::
Baño-Medina et al. (2020)

:::
for

::::
more

:::::::
details.

::::::
During

:::::::::
calibration,

:::
we

:::
use

::
a

:::
test

:::
set

::::::::
(randomly

:::::::
selected

:::::
10%

::
of

::
the

:::::
data)

::
to

:::::::
perform

::::::::::::
early-stopping,

::::
and

::::
stop

::::::
training

:::::
when

:::
the

:::
test

:::::
error

::::
stops

::::::::::
decreasing

::::
after

::
30

:::::::
epochs.

:::
The

::::::::::::
computations

:::::::::
performed

::
in

::::
this

::::
work

:::::
were

::::::::
executed

:::
on

:
a
::::::
single

::::
node

:::
2x

:::::::
Intel(R)

::::::::
Xeon(R)

:::::::
E5-2670

::
0
:::
@

::::::::
2.60GHz

::::
CPU

:::
(16

::::::
cores)

::::
with

::
60

::::
GiB

:::
of

:::::
RAM.

::::
The

::::::::::::
computational

::::
time

:::::
taken

::
to

::::::::
calibrate

:::
the

:::::
model

::::
and

:::::::
generate

:::
the

::::::::::
projections

:::
for

:
a
:::::
GCM

::::
was

:::
less

::::
than

:::
six

::::::
hours,

:::::
which

::
is
:::::::::::
considerably

::::
less

::::
than

:::
the

::::
time

:::::::
required

::
to
::::

run
:
a
::::::
similar

::::::::::
experiment

::::
with

:::
an

:::::
RCM120

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(for instance, the EUR-44 simulations performed with the WRF model for a single GCM in Fernández et al., 2019, lasted six months using 9 nodes with 144 cores)

:
. This approach can provide either deterministic predictions, by considering the expected value of the distribution for each day

and grid-point, or stochastic ones, by simulating a random value from the distribution. Note that the deterministic approach

typically result in an underestimation of the variability (and the extremes), since the explained variance may be significantly

smaller than the observed one (Williams, 1998; Cannon, 2008; Baño-Medina et al., 2020). This is especially relevant for pre-125

cipitation, whose local variability is often influenced by local phenomena which are not captured by the chosen predictors

(Schoof and Pryor, 2001; Maraun and Widmann, 2018). We analyzed both deterministic and stochastic approaches and finally

used the stochastic (deterministic) version of the precipitation (temperature) downscaled fields. For the stochastic version we

tested the results for different realizations and found robust results for historical biases and climate change signals.

We use a set of CORDEX RCMs (EUR-44 domain, Table 2) to analyze the generalization to out-of-sample climate change130

conditions of the CNN-based regional projections. Using RCM simulations as “pseudo-observations" is a common procedure

adopted in the literature to validate ESD downscaled projections for future scenarios (Vrac et al., 2007; San-Martín et al., 2017;

Quesada-Chacón et al., 2021). Nevertheless, note that RCMs still suffer from deficiencies in their model formulations that may

affect their futures estimates (Boé et al., 2020; Gutiérrez et al., 2020), and therefore they should not be considered as purely

true values for the CNN projections but rather as plausible trajectories. For a direct comparison, these RCMs were interpolated135

::
we

:::::::::
interpolate

:::::
these

::::::
RCMs from their original spatial resolution (0.44◦) to the predictand 0.5◦ regular grid.

Finally, we tested
::
test

:
the sensitivity of CNN training on the results by repeating the downscaling experiment ten times and

evaluating
::::::
evaluate

:
historical biases and future climate change signals as shown below without finding appreciable variations.

3 Results

Figure 2 shows mean daily precipitation and temperature over the historical period 1975-2005 (and biases relative to E-OBS)140

for the multi-model means provided by the GCMs, RCMs and DeepESD ensembles.

Annual mean daily precipitation (left block) and temperature (right) for the 31-year period 1975-2005, as obtained from

the GCMs, RCMs and DeepESD ensemble means (left, middle and right columns, respectively). The bottom row displays the

corresponding biases with respect to E-OBS v20.

For precipitation, the raw GCM results show a smooth spatial pattern which does not capture the strong local-to-regional145

variability of this variable, and both GCM and RCM overestimate rainfall over most of the domain. As expected, DeepESD

exhibits a largely unbiased spatial pattern over the entire continent, which is a result of being trained directly with observations.

For temperature all approaches capture the latitudinal gradient, but both GCM and RCM results exhibit important biases over

6



vast regions of the continent with predominant negative biases for RCM results. Again, DeepESD yields a mostly unbiased

spatial pattern . The reduction of biases in the mean is
::
as

:
a consequence of the training process (Casanueva et al., 2016), but150

this reduction is also notable .
:::::::
Besides

:::::
these

:::::
results

:::
for

:::
the

::::::
mean,

::::::
Figure

:
3
::::::::
compares

:::
the

:::::
entire

:::::::::::
precipitation

::::
and

::::::::::
temperature

::::::::::
distributions

:::
for

:::
the

:::::
GCM,

:::::
RCM

::::
and

::::::::
DeepESD

:::::::::
ensembles

::::
over

:::
the

::::::::
historical

:::::
period

::::::::::
1979-2005,

:::
for

::::
three

::::::::
different

:::::::::
illustrative

::::::
regions

::::
(the

::::
Alps,

:::::::
Iberian

::::::::
Peninsula

:::
and

:::::::
Eastern

:::::::
Europe).

::::
The

::::::::
reduction

::
of

::::::
biases

:::
for

::::::::
DeepESD

::
is

:::::::::
noticeable along the entire

distribution
::::::::
(including

:::
the

::::::::
extremes)

:
for both precipitation and temperatureas shown in Figure 3. .

:::::
Note

:::
that

:::
for

:::::::::::
precipitation

::::
these

::::::
results

:::
are

:::
due

::
to

:::
the

:::
use

::
of
:::
the

:::::::::
stochastic

:::::
nature

::
of
:::
the

:::::::
method,

::::::::
sampling

:::::
from

:::
the

::::::
inferred

::::::::::
conditional

:::::::::::
distributions.155
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Figure 2.
::::::
Annual

::::
daily

:::::::::
precipitation

::::
(left

:::::
block)

:::
and

:::::::::
temperature

:::::
(right)

::
for

:::
the

:::::::
historical

:::::
period

:::::::::
1975-2005,

::
as

::::::
obtained

::::
from

:::
the

::::::::
ensembles

:
of
::::::

GCMs,
:::::
RCMs

::::
and

:::::::
DeepESD

::::::::::::::
GCM-downscaled

:::::
results

::::
(left,

::::::
middle

:::
and

::::
right

:::::::
columns,

::::::::::
respectively).

:::
The

:::
first

::::
row

:::::
shows

::
the

::::::::
ensemble

::::
mean

:::::::::::
climatological

:::::
values

:::
and

::
the

::::::
second

:::
row

::::::
displays

:::
the

:::::::::::
corresponding

:::::
biases

:::
with

::::::
respect

::
to

:::::
E-OBS

::::
v20.

Figure 4 shows the mean climate change signal resulting from the GCM, RCM and DeepESD ensembles, as well as the

underlying uncertainty (characterized by multi-model dispersion). In particular, the right (left) panel in this figure shows the

values for precipitation (temperature) for near, mid and far future periods (rows 1-3) relative to 1975-2005, as projected by the

GCM, RCM and DeepESD ensembles (in columns).

Overall, the spatial pattern of future precipitation changes is similar for the three ensembles, with precipitation decreasing160

over Southern Europe and increasing over the Northern part of the continent. Slight regional differences exist among the

three ensembles, with DeepESD presenting weaker (decreasing) signals of change over the Iberian Peninsula but stronger

(increasing) ones over some parts of Northern and Eastern Europe, especially when compared with GCMs. Interestingly, both

the climate change signal and the multi-model uncertainty spatial patterns of DeepESD are more similar to the downscaled

7
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Figure 3. Probability Density Functions (PDFs) of the GCM (red), RCM (blue) and DeepESD (green) ensembles of precipitation and

temperature over the historical period 1979-2005, plus E-OBS (black) for the Alps, the Iberian Peninsula and Eastern Europe as defined in

the PRUDENCE regions (Christensen and Christensen, 2007). The solid line represents the ensemble mean and the shadow encompass two

standard deviations. The dashed line indicates the distributional mean of each PDF.

RCM than to the GCM ensemble. Moreover, DeepESD projects lower uncertainty than both physical-based ensembles across165

most of the European continent.

Regarding temperature, the spatial patterns are broadly consistent among the three ensembles, with the highest warming

located over Northern Scandinavia, Eastern Europe and the Mediterranean basin, and the lowest one for the British Isles and

western and central
::::::
Western

::::
and

::::::
Central

:
Europe. As in the case of precipitation, the spatial patterns of the climate change

signal are similar for RCM and DeepESD (as compared with GCM results), with larger differences over Iberia
:::::
some

:::::::
regional170

:::::::::
differences

::::
exist

::::::
among

:::::::::
ensembles,

:::::::::
especially

::::
over

:::::::
Central and Eastern Europe . However, the uncertainty (ensemble spread)

is higher in DeepESD than in the GCM and RCM ensembles in most regions. In addition, both RCM and CNN downscaling

reduce
:::::
where

::::
both

:::::
RCMs

::::
and

::::::::
DeepESD

::::::
project

:::::
lower

::::::
signals

::
of

::::::
change

::::
than

:
the

::::::
GCMs,

::::::::
reducing

:::
the warming signal by about

0.5-1.5
:
-1◦C over most of Europe, as compared with the global GCM signal, especially for the far-future.

::
by

:::
the

:::
end

:::
of

:::
the

::::::
century.

:::::::
Finally,

:::
the

::::::
GCMs’

::::::::
ensemble

::::::
spread

:::::
range

:::::::
between

::::::::
0.5-1.5◦C

::::
with

::::::
higher

::::::
values

::
in

:::::::
Southern

::::
and

::::::::
especially

::::::::
Northern175

::::::
Europe

::::
than

::
in

:::
the

:::
rest

:::
of

:::
the

::::::::
continent.

::::
The

::::::
RCMs

::::::::::
(DeepESD)

::::::
project

:
a
::::::
similar

::::::
spatial

::::::
pattern

::::
than

:::
the

::::::
GCMs

::::
with

::
a

:::::
lower

:::::
spread

::::
over

:::::::
Central

:::
and

::::::
Eastern

:::::::
Europe

::::::::::::
(Scandinavia).
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Figure 4. Climate change signal for annual mean precipitation (left) and temperature (right) for near- (2006-2040), mid- (2041-2070) and

far-future (2071-2100) periods, in rows, relative to 1975-2005 as projected by the GCM, RCM and DeepESD ensembles (in columns). The

last row shows the uncertainty of the far-future signal, as measured by the standard deviation of the results across models.

Further research is needed to assess whether these differences
::
the

::::::::::
differences

:::::::
between

:::::
GCM

::::
and

::::::::::::::
RCM/DeepESD

::::::
signals

are due to an added value of downscaling or to deficiencies in the models. In the case of the RCMs, some recent studies

attribute these differences
::::
them

:
to the lack of time-varying anthropogenic aerosols in the RCM formulation (Boé et al., 2020;180

Gutiérrez et al., 2020). For the DeepESD dowscaled results, this issue is yet to be explored. To further analyze this
::
the

::::::
results

::
for

:::::::::
DeepESD, Figure 5 shows the differences (

:::
(in

:::::::
columns)

:::
the

:::::::
climate

::::::
change

::::::
signals

::::::::::
(2071-2100

::::
with

::::::
respect

::
to

::::::::::
1975-2005)

::
of

:::
the

::::
eight

::::::
CMIP5

:::::::
climate

::::::
models

:::::::::
considered

::::
and

::
the

::::::::::::
corresponding

:::::::::
DeepESD

::::::::::
downscaled

:::::
fields

::
for

:::::::::::
precipitation

:
(rows 1-2)

:::
and

::::::::::
temperature

:::::
(rows

:::::
4-5).

:::::
Rows

:
3
::::

and
::
6

::::
show

:::
the

::::::::::
differences between the DeepESD downscaled and raw climate change

9
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Figure 5. Differences between DeepESD and raw GCM
:::
The climate change signals (delta) of the mean precipitation and temperature (in

rows) for the far future (2071-2100 ), relative
:::
with

::::::
respect to 1975-2005, for

:
)
::
of the eight GCMs

:::::
CMIP5

::::::
climate

::::::
models considered

:::
and

:::
the

:::::::
equivalent

::::::::
DeepESD

:::::::::
downscaled

:::::
fields

::
for

::::::::::
precipitation (in columns

::::
rows

:::
1-2) . For

::
and

:
temperature , “centered" fields are also displayed

by substracting the spatial mean of each panel indicated in the upper left corner (row 3
:::
rows

:::
4-5). The averaged

::::
Rows

::
3
:::
and

::
6

::::
show

:::
the

:::::::
difference

:::::::
between

::
the

::::::::
DeepESD

:::::::::
downscaled

:::
and

:::
raw

:
climate change signals are also indicated in

::
for

:
the same corner.

::::::
different

:::::
GCMs
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signals for the different GCMs(in columns). These differences are quite systematic for the case of precipitationindicating a185

robust CNN extrapolation fingerprint. On the contrary, the differences exhibit different magnitudes and patterns as a function

of the GCM , alternating from mostly positive (CanESM2 and GFDL), mostly negative (MPI-ESM-LR/MR, NorESM1
:
.
:::
As

:::
per

::
the

:::::::
climate

::::::
change

:::::
signal

::
of

:::::::::::
precipitation, EC-Earth) or a combination of both (

::
we

:::::::
observe

:
a
:::::::::::::
South-to-North

:::::::
gradient

::::
with

:::::::
different

::::::::
intensities

:::::::::
depending

::
on

:::
the

:::::
GCM

::::
(i.e.,

:::::
MPI,

:::::
GFDL

::::
and

::::
IPSL

::::::
present

:::
the

::::::
lowest

:::::
values

::::
over

:::
the

::::::::::::
Mediterranean

::::::
basin).

:::::::::
Differently

::
to

:::
the

::::::
GCMs

:::::
signal,

:::::::::
DeepESD

:::::::
provide

:
a
:::::
more

:::::::::::
homogeneous

::::::
spatial

::::::
pattern

:::::::::
explaining

:::
the

:::
low

::::::::::
inter-model

::::::
spread190

::
of

::::::
Figure

::
4.

:::
As

:::
per

:::::::::::
temperature,

::
all

::::::
GCMs

:::::::
project

:
a
:::::::
positive

:::::::
climate

::::::
change

:::::
signal

:::::
with

:::::
subtle

::::::
spatial

:::::::
patterns

::::::
which

::::
vary

:::::
across

::::::
GCMs

:::
that

:::
are

::::
well

::::::::
captured

::
by

:::
the

:::::::::
DeepESD

:::::::::
downscaled

::::::
fields.

::::
This

::::::::
similarity

::
in

:::
the

::::::
climate

:::::::
change

::::::
signals

:::::::
between

::
the

::::::
GCM

:::
and

:::::::::
DeepESD

:::::
fields

::::::
explain

:::
the

:::::::
similar

::::::::::
inter-model

:::::
spread

:::
of

::::::
Figure

::
4.

:::::
Also,

:::
we

:::::::
observe

:::
that

:::
the

:
CNRM-CM5 ,

IPSL ). Nevertheless, the spatial patterns present a similar structure (a robust CNN fingerprint) when substracting their spatial

means (row 3 in Figure 5), with lower (higher) values in Eastern Europe (Scandinavia and the Iberian Peninsula). This shows195

that the CNN extrapolation yields different scaling factors for different GCMs but a similar patter of regional changes (when

compared to the GCMs). Moreover, as shown by the numbers included in the figures, these scaling factors are not related to the

magnitude of the GCM warming signal and thus, they contribute increasing the uncertainty of the ensemble. Further analysis

of the ensemble to detect potential problems and reduce uncertainty would require a detailed analysis of the signal-carrying

predictors for the different GCMs and their effect in the relationships learnt in present-day conditions using reanalysis data,200

but this is beyond the scope of this paper
:
is
:::
the

::::
one

:::::
model

::::::::::
responsible

:::
for

:::
the

:::::::
reduced

::::::::
warming

:::::
signal

:::::
over

::::::
Eastern

:::::::
Europe

::::::::
described

::
in

:::::
Figure

::
4.

To examine the behaviour of CNNs beyond climatological fields, Figure 6 shows the yearly time-series for precipitation and

temperature averaged over Eastern the Alps, the Iberian Peninsula and Eastern Europe domains, as defined in the PRUDENCE

regions (Christensen and Christensen, 2007), which are broadly representative of the different European climate regimes —205

mountainous, mediterranean and continental, respectively.— Namely, we focus on the frequency of rainy days (R01), i.e. those

receiving at least 1mm of rain, the average precipitation in rainy days (SDII) and the mean of temperature. For every indicator,

the ensemble of GCMs (red), RCMs (blue) and DeepESD (yellow) for the total period 1975-2100, plus the observational

reference, E-OBS (black), for the period 1979-2008, are shown. In all cases, the solid lines represent the multi-model ensemble

mean whilst the shadows encompass all the models contributing to the ensemble.210

Figure 6.a shows that both GCMs and RCMs overestimate the frequency of wet days with respect to the observational

reference —consequence of the drizzle effect (Dai, 2006).— For the SDII, RCMs present mostly unbiased fields whilst GCMs

underestimate this metric across all regions, remarking the added value of RCMs to reproduce regional precipitation. In contrast

to GCMs and RCMs, DeepESD provides in general more robust estimates for both R01 and SDII under the historical scenario.

In terms of future changes, the three ensembles project an increase in in the SDII across all regions, and a decrease (increase)215

of the number of wet days in the Southern (Northern) regions consistent with the results of Figure 2.

For temperature, Figure 6.c shows that the three ensembles perform similarly across all regions, with some systematic

underestimation of mean temperatures by the RCMs, and DeepESD exhibiting nearly unbiased results under the historical

scenario. Note that the GCMs time-series are mostly unbiased which is the result of averaging out the positive and negative
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Figure 6. Annual time-series for R01, SDII and the mean of temperature, averaged over the eight PRUDENCE regions. For every indicator,

the ensemble of GCMs (red), RCMs (blue) and DeepESD (yellow) for the total period 1975-2100, plus the observational reference, E-OBS

(black), for the period 1979-2008, are shown. In all cases, the solid lines represent the multi-model ensemble mean whilst the shadows

encompass all the models contributing to the ensemble.

biases appearing in the spatial fields of Figure 2. As per the projected signals of change, the three ensembles point out to a220

(quasi) linear increase along the century and across all regions, with warming values of about 4-6◦C for the far-future in most

of cases.
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This indicates that DeepESD is able to accurately reproduce the historical climate —even the discrete-continuous nature

of precipitation,— and beyond the regional differences showed in Figure 5, there is a synchrony in the temporal evolution of

the signals among ensembles. These results also indicate that DeepESD results in a smaller spread of the ensemble due to the225

adjustment of the models towards the observed climatology.

4 Conclusions

Deep learning topologies are increasingly being tested for downscaling purposes, achieving promising results in present climate

due to their ability to infer complex non-linear patterns from climate data. Nevertheless, the ability of these models to generalize

to out-of-sample climate change conditions is still to be analyzed with many questions open. Here, we present DeepESD, an230

ensemble of regional precipitation and temperature projections (up to 2100) over Europe produced by applying convolutional

neural networks to downscale a set of eight GCMs over the EUR-44 CORDEX domain. This multi-model perspective permits

to analyze unexplored aspects of CNN-based downscaling such as the inter-model uncertainty of the climate change signals or

the similarities/differences of the downscaling across GCMs. We build on existing CNNs models (Baño-Medina et al., 2020)

and focus on their performance in the climate model space, using GCM projections. In this sense, we follow previous literature235

(Vrac et al., 2007; San-Martín et al., 2017; Quesada-Chacón et al., 2021) and compare the DeepESD future fields with a set of

state-of-the-art CORDEX RCMs, which are used as “pseudo-observations". To our knowledge, this is the first time that CNNs

are
::::
have

::::
been

:
used to produce

:::::::::
downscaled

:
multi-model ensembles of downscaled projections

:::::
based

::
on

:::
the

:::::::::::::::
perfect-prognosis

:::::::
approach

:
and are compared against an ensemble of RCMs.

We find that CNN-based downscaling is able to reproduce the observed climate over the historical period for both pre-240

cipitation and temperature fields at a distributional level, reducing the systematic biases exhibited by the global and regional

physical models. When analyzing the future climate change signals we find that DeepESD presents spatial patterns and mag-

nitudes which are broadly similar to the ones from the RCMs. Nevertheless, there are considerable regional differences —at a

climatological, inter-annual and seasonal
:::
and

::::::::::
inter-annual

:
scales,— in the projected climate change signals among DeepESD

and the physical-based models. For the case of precipitation, these differences are driven towards a decrease of the multi-model245

uncertainty with respect to the one of their driving GCMs. As per temperature, the CNNs learns regional downscaled pattern

which scales differently for each GCM for climate change conditions introducing uncertainty in the future climate change

signal. This problem
:::::
project

::::::
similar

:::::::
signals

::
of

::::::
change

::::
than

::::
the

::::::
GCMs

:::::
being

::::
able

::
to

:::::::
capture

:::
the

:::::::::::
particularities

:::
of

::::
each

::::
one

:::::::
resulting

::::
into

:
a
::::::
similar

::::::::
ensemble

::::::
spread.

::::
This

:::::::
property

:
was not perceived in previous studies (Baño-Medina et al., 2021) where

a single GCM (i.e., EC-Earth) was considered.250

Despite the analysis presented herein, the plausibility of the projections has to be further analyzed prior to the integration of

DL topologies into climate change applications. For instance, this can be done by developing specific studies dealing with the

domain adaptation of the statistical models learned in “perfect" conditions to climate model spaces; by conducting synthetic

case-studies permitting to analyze their extrapolation capabilities to climate change conditions; and by comparing the CNN-

based fields against other machine learning techniques. To this aim, following the FAIR principles we make publicly available255
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DeepESD from the ESGF portal, which will allow the scientific community to continue exploring the benefits and shortcomings

of these new techniques for the downscaling of climate. Precisely, DeepESD contributes to CORDEX EUR-44 being the first

statistical-based dataset to ever participate in this international initiative, entailing a breakthrough of this type of techniques on

the study of regional climate.

Code and data availability. To promote transparency and reproducibility of our results, we provide the data (DOI: 10.5281/zenodo.6823421)260

and the companion Jupyter notebook (DOI: 10.5281/zenodo.6828303), explaining how DeepESD has been produced. This notebook is

based on the R software and builds on the climate4R framework, a set of libraries specifically designed for climate data access and post-

processing (Iturbide et al., 2019). To build the CNNs used, we rely on downscaleR.keras ((Baño-Medina et al., 2020)), which integrates

Keras, a state-of-the-art DL library, within climate4R. Furthermore, most of the results shown in this manuscript can be replicated by

following the indications given in the notebook, providing thus the basis for practitioners to perform their own experiments.265

DeepESD downscaled results have been published at the ESGF data node at Cantabria University https://data.meteo.unican.es/thredds/

catalog/esgcet/catalog.html.
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