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Abstract. Reliable simulation of wind fields under stable weather conditions is vital to prevent air pollution. In this study, we 

investigate how different physical parameterizations impact simulated near-surface wind at 10-meter height over the coastal 

regions of North China using the Weather Research and Forecasting (WRF) model with a horizontal grid spacing of 0.5 km. 15 

We performed 640 simulations using combinations of 10 planetary boundary layer (PBL), 16 microphysics (MP), and four 

shortwave-longwave radiation (SW-LW) schemes. Model performance is evaluated using measurements from 105 weather 

station observations. The results show that the WRF model can reproduce the temporal variation of wind speed in a reasonable 

way. The simulated wind speed is most sensitive to the PBL schemes, followed by SW-LW schemes and MP schemes. Among 

all PBL schemes, the MYJ scheme shows the best temporal correlation with the observed wind speed, while the YSU scheme 20 

has the lowest model bias. Dudhia−RRTM and MYDM7 show the best model performances out of all SW-LW and MP 

schemes, respectively, the interactions among schemes also have large influences on wind simulation. Further investigation 

indicates that model sensitivity is also impacted by ocean proximity and elevation. For example, for coastal stations, MYNN 

shows the best correlation with observations among all PBL schemes, while Goddard shows the smallest bias out of SW-LW 

schemes, these results are different from that of inland stations. In general, according to the bias metrics, WRF simulates wind 25 

speed less accurately for inland stations compared to coastal stations, and the model performance tends to degrade with 

increasing elevation. The WRF model shows worse performance in simulating wind direction under stable conditions over the 

study area, with lower correlation scores compared to wind speed. Our results indicate the role parameterizations play in wind 

simulation under stable weather conditions and provide a valuable reference for further research in the study area and nearby 

regions. 30 
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1 Introduction 

Megacities that experience rapid urbanization and economic development also commonly suffer from a simultaneous decline 

in air quality (Ulpiani, 2021). For example, many haze events have been reported in the Beijing, Tianjin, and Hebei regions of 

North China over the past few decades. Haze-related weather and associated high concentrations of fine particulate matter 

have negative impacts on public health and the environment (Wang and Mauzerall, 2006). These events can significantly 35 

disrupt economic growth, as demonstrated by the severe haze events that occurred over North China in January 2013 (Zhang 

et al., 2014; Zhang et al., 2015; Cai et al., 2017). The haze events are most frequent in boreal winter and are closely related to 

local weather conditions with low wind speeds (Li et al., 2015; Wang et al., 2021). Projections of future climate change suggest 

that global temperatures and weather conditions conducive to severe haze will increase affecting North China (Cai et al., 2017). 

However, numerical models often show large bias in wind prediction over China (Gao et al., 2016b; Zhao et al., 2016; Pan et 40 

al., 2021), thus it is crucial to improve wind prediction under stable weather conditions in order to minimize associated 

economic losses and environmental impacts. 

In recent years, numerical models have been used extensively to study and forecast the weather and climate over China, as 

they have high spatial and temporal resolutions, and employ sophisticated physical parameterization schemes that can 

reproduce atmospheric and land surface processes (Wang et al., 2011; Zhou et al., 2019; Kong et al., 2021). However, studies 45 

mostly focus on temperature or precipitation, and only a few have attempted to simulate winds over China (Li et al., 2019; Xia 

et al., 2019; Pan et al., 2021). Meanwhile, numerical models inherently involve many sources of uncertainty, as they cannot 

resolve all processes in the real world; instead, parameterizations are needed to represent the effect of key physical processes, 

such as radiative transfer, turbulent mixing, and moist convection that occur at the sub-grid scale. Different physical 

parameterization schemes depict natural phenomena to different degrees of accuracy and choosing appropriate combinations 50 

is important, as it can strongly influences model results (Yu et al., 2011; Gómez-Navarro et al., 2015; Stegehuis et al., 2015; 

Gao et al., 2016b; Yang et al., 2017; Taraphdar et al., 2021). 

The impact of the planetary boundary layer (PBL) scheme on wind simulation has been studied for many years, as PBL scheme 

plays a critical role in modulating mass, energy, and moisture fluxes between the land and atmosphere, which in turn influences 

the simulation of low-level temperatures, cloud formation, and wind fields (Jiménez and Dudhia, 2012; Gómez-Navarro et al., 55 

2015; Gonçalves-Ageitos et al., 2015; Falasca et al., 2021; Gholami et al., 2021). Many studies indicate an overestimation of 

wind speed in WRF simulations with different PBL schemes (Jiménez and Dudhia, 2012; Carvalho et al., 2014a, b; Pan et al., 

2021; Gholami et al., 2021; Dzebre and Adaramola, 2020). For example, Gómez-Navarro et al. (2015) investigate the 

sensitivity of the WRF model to PBL scheme by simulating wind storms over complex terrain at a horizontal grid spacing of 

2 km. In that study, the WRF model is configured with the Mellor-Yamada-Janjic (MYJ) scheme and overestimates wind 60 

speed by up to 100%, however, the bias is significantly reduced when the non-local scheme developed at Yonsei University 

(YSU) is used instead. The YSU scheme also shows good model skill in simulating winds over Iberian Peninsula, Persian 

Gulf, Tyrrhenian coast, and western Argentina (Jiménez and Dudhia, 2012; Puliafito et al., 2015; Falasca et al., 2021; Gholami 
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et al., 2021). Other studies suggest MYNN and ACM2 are more appropriate for wind simulations (Carvalho et al., 2014b; 

Chang et al., 2015; Prieto-Herráez et al., 2021; Rybchuk et al., 2021). 65 

The performance of wind simulation is also influenced by the choice of cloud microphysics (MP) parameterizations. Cloud 

microphysical processes, such as moisture evaporation and condensation, can change thermodynamic and dynamic interactions 

in the atmosphere (Rajeevan et al., 2010; Cheng et al., 2013; Santos-Alamillos et al., 2013; Li et al., 2020), then affect the 

vertical distribution of heat and wind fields close to the surface.  

Another factor influencing wind simulation is the choice of radiation parameterizations, which include shortwave radiation 70 

and longwave radiation (SW-LW) schemes. Differences in surface radiation intensities can generate thermal contrasts in 

regions with complex topography, which in turn affect local and low-level wind distribution patterns (Santos-Alamillos et al., 

2013). 

The combinations of physical parameterizations are also vital to wind simulation, as the processes of atmosphere-land 

interactions, radiation transport, and moist convection interact, and may amplify the uncertainties in wind prediction. The 75 

impact of parameterization scheme combination on WRF performance has been investigated in previous studies (Santos-

Alamillos et al., 2013; Fernández-González et al., 2018), Fernández-González et al. (2018) report that there is no single 

combination of schemes that performs best during all weather conditions. Most of the aforementioned studies considered a 

small number of parameterization schemes. To our knowledge, the sensitivity of parameterizations on wind simulation has not 

been explored in a systematic way in China. In this study, we systematically evaluate the performance of a large number of 80 

parameterization combinations, including PBL, MP, and SW-LW schemes. The investigation is conducted using the WRF 

model at a grid spacing of 0.5 km, which belongs to the PBL “gray zone” resolution that is too fine to utilize mesoscale 

turbulence parameterizations and too coarse for large-eddy-simulation (LES) schemes to resolve turbulent eddies (Shin and 

Hong, 2015; Honnert et al., 2016). Our main objective is to identify a set of configurations of the WRF model that can best 

reproduce wind fields under stable weather conditions over North China, which experienced many haze events during the past 85 

few years. This study addresses the following research themes: (1) quantify the sensitivity of wind simulation to different 

parameterizations under stable weather conditions, and (2) refine optimized configurations with the best performance in 

reproducing winds under stable weather conditions over North China. These results would provide a valuable evaluation of 

WRF performance using a large number of simulations with different physical parameterizations, and be helpful in the wind 

and air quality forecasts in the study area and other coastal regions of China under stable weather conditions.  90 

2. Data and methods 

2.1. The stable weather event in 2019 

The study area is located in the central section of the “Bohai Economic Rim”, which is bordered to the southeast by the Bohai 

Sea and to the northwest by the Yan Mountains (Figure 1a). This region traditionally hosts heavy industry and manufacturing 

businesses and is a significant region of economic growth and development in North China (Song et al., 2020; Zhao et al., 95 



4 

 

2020). Air quality in this area has declined over the past decades, and the frequency of winter haze events has increased due 

to increased pollutant emissions and favorable stable weather conditions with lower wind speed (Gao et al., 2016a; Cai et al., 

2017). For instance, during the heavy fog and haze event over eastern China in January 2013, an anomalous southerly wind in 

the lower troposphere caused by the weak East Asian winter monsoon weakened the synoptic forcing and extent of vertical 

mixing in the atmosphere, thus increasing the stability of air in the boundary layer and the local concentration of hazes (Zhang 100 

et al., 2014).  

During 11-15 January 2019, a severe haze event occurred in the study area, the peak PM2.5 and PM10 concentrations exceeded 

279 μg/m3 and 357 μg/m3 in Tangshan city, and 282 μg/m3 and 358 μg/m3 in Qinhuangdao city, respectively, the locations 

of the two cities can be found in Figure 1. Figure 2 depicts the distribution of geopotential height at 500 hPa, surface winds at 

10 meters and total cloud fraction from the ERA5 dataset (Hersbach et al., 2020) during the study period. A weak high-pressure 105 

system persisted from 11 to 14 January 2019 over the study area, with the geopotential height at 500 hPa of about 5400 gpm, 

at the surface level (10 meters), weak southwest winds occurred at the south side of the study area on 11, 12 and 14 January 

2019. The surface wind speeds over the study area were weaker than 5 m/s during the first four days of the study period , then 

the geopotential height decreased and strong northwest winds occurred over the study area on 15 January 2019. Although there 

were slight differences between ERA5 and satellite products (e.g., CLARA, Karlsson et al., 2021), both datasets indicated 110 

higher cloud fraction on 11 and 14 January 2019, while for the rest of the time, the cloud fraction was low. This stable weather 

event is used to investigate the impact of physical parameterizations of the WRF model. 

2.2 Model configurations 

WRF model (version 3.9.1.1) with the advanced research WRF (ARW) core is used in this study, which is a non-hydrostatic 

atmospheric model with terrain-following vertical coordinates (Skamarock et al., 2008). The simulations contain three one-115 

way nested domains with grid spacing of 8 km, 2 km, and 0.5 km for D01, D02, and D03, respectively (Figure 1b). The 

computational domains are based on Lambert conformal conic projection centered at 38.5°N and 120°E, with 360 × 480, 381 

× 381, and 341 × 421 grid points for D01, D02, and D03, respectively. The evaluations are based on the innermost domain, 

which covers the coastal and surrounding regions of North China (Figure 1a). The simulation domain has 65 vertical levels, 

and the eta values for the first 10 levels are 0.996, 0.988, 0.978, 0.966, 0.956, 0.946, 0.933, 0.923, 0.912, and 0.901, this 120 

ensures that sufficient model levels exist within the PBL at any time. 

The ERA5 reanalysis dataset, which has a horizontal resolution of 0.25° and 38 vertical levels, is used to provide the initial 

and boundary conditions for WRF simulations. The WRF model is initialized at 00:00 UTC (08:00 in local time) on 9 January 

2019, with the first 40 hours treated as the spin-up period. Firstly, the default physical parameterization schemes (Table 2) are 

applied in the WRF simulation for the outer two domains (D01 and D02), and then the output of D02 is used to drive inner 125 

domain simulations with different combinations of PBL, MP, and SW-LW schemes (see section 2.3). This approach helps to 

isolate the impacts of parameterization within the inner domain from changes in boundary forcing (Yang et al., 2017). All 

simulations apply the Noah land surface model with multi-parameterization options (Noah-MP, Yang et al., 2011; Niu et al., 
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2011) as the land surface parameterization scheme. The lateral boundary conditions and sea surface temperature are updated 

every three hours using the ERA5 reanalysis data, and the frequency of wind retrieved from WRF output is hourly, which 130 

matches the frequency of observations in the study area. 

2.3 Experimental design 

The WRF model contains different parameterization schemes that represent different physical processes. Further, every scheme 

in the model has many parameters, such that a model can range from being simple and efficient to sophisticated and 

computationally costly. In this study, a systematic evaluation of parameterizations is achieved by considering 10 PBL, 16 MP, 135 

and four LW-SW schemes, which produce 640 (i.e., 10 × 16 × 4) combinations in total. 

The parameterization schemes investigated in this study are listed in Table 1. As the horizontal grid spacing of 0.5 km is within 

the PBL gray zone resolution, both PBL and LES assumptions are imperfect, we test both PBL and LES schemes in this study. 

For the LES configuration, the 1.5-order turbulence kinetic energy closure model is used to parameterize motion at the sub-

grid scale (Deardorff, 1985). For the YSU scheme, topographic correction for surface winds is included to represent extra drag 140 

from sub-grid topography and enhanced flow at hilltops (Jiménez and Dudhia, 2012). The option for top-down mixing driven 

by radiative cooling is also turned on during the integration. For the rest of the PBL schemes, the default configurations are 

chosen. The atmospheric surface layer (SL) is the lowest part of the atmospheric boundary layer, of which the 

parameterizations are used to quantify surface heat and moisture fluxes in the land surface model and surface stress in the PBL 

schemes. In the current generation of WRF, the SL schemes are tied to the PBL schemes. In this study, ETA, QNSE, MYNN, 145 

Pleim-Xiu, and TEMF SL schemes are chosen for PBL schemes of MYJ, QNSE, MYNN, ACM2, and TEMF, respectively. 

The revised MM5 scheme (Jimenez et al., 2012) is used for the rest PBL schemes. 

Sixteen MP schemes are applied in this study (Table 1), Lin, WSM3, WSM5, ETA, WSM6, Goddard, SBU, and NSSL1 

schemes are the single-moment bulk microphysical scheme, which predicts only the mixing ratios of hydrometeors (i.e., cloud 

ice, snow, graupel, rain, and cloud water) by assuming particle size distributions. The other eight schemes (Thompson, 150 

MYDM7, Morrison, CMA, WDM6, NSSL2, ThompsonAA and P3) use a double-moment approach, predicting not only 

mixing ratios of hydrometeors but also number concentrations. Among them, two types of hydrometeors are included in WSM3 

(cloud water and rain), three types of hydrometeors are included in ETA (cloud water, rain, and snow) and P3 (cloud water, 

rain, and ice), four types of hydrometeors are included in WSM5 and SBU (cloud water, rain, ice, and snow), five types of 

hydrometeors are included in Lin, WSM6, Goddard, Thompson, Morrison, CAM, WDM6 and ThompsonAA (cloud water, 155 

rain, ice, snow, and graupel), six types of hydrometeors are included in MYDM7, NSSL1, and NSSL2 (cloud water, rain, ice, 

snow, graupel, and hail).  

Four SW-LW combinations are applied in this study (Table 1), Dudhia is a simple and efficient shortwave radiation scheme 

for clouds and clear-sky absorption and scattering; RRTM provides efficient look-up tables for longwave radiation; CAM SW-

LW schemes are derived from the CAM3 model used in CCSM3, and allows modeling of aerosols and trace gases. RRTMG 160 

is a scheme that utilizes Monte Carlo independent column approximation (MCICA) method of random cloud overlap. 
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2.4 Observational data and evaluation metrics 

Observations from weather stations across the study region are used to evaluate the performance of the model. These stations 

are operated by the China Meteorology Administration (CMA), and report wind speed and direction at an altitude of 10 m. In 

this study, we use two-minute-averaged wind speed at hourly frequency. All data are screened before analysis in order to 165 

remove stations with data showing spurious jumps (e.g., wind speed jumps to 0 m/s due to frozen sensor). After this filtering, 

105 out of 132 weather stations (Figure 1a) remained, including 89 inland stations and 16 coastal stations. The results of WRF 

are directly compared with observations at each weather station, which is achieved by using the model result that is 

geographically closest to the weather station under consideration. Although some errors are introduced when performing these 

comparisons, they are systematic and shared by all simulations, and therefore have minor effects on the evaluation of model 170 

performances. 

Several metrics are employed for evaluating the performance of each model configuration, including the Pearson correlation 

coefficient (CORR), BIAS, root mean square error (RMSE), and Taylor skill score (T). CORR is a measure of the strength 

and direction of the linear relationship between simulation and observation, BIAS is a measure of mean difference between 

simulation and observation, and RMSE is the square root of the average of the set of squared differences between simulation 175 

and observation, thus each of this score gives a partial view of the model performance. 

They are defined as follows: 

𝐶𝑂𝑅𝑅 =
∑ (𝑀𝑖−𝑀)(𝑂𝑖−𝑂)

𝑁

𝑖=1
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2𝑁
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2𝑁

𝑖=1
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𝑁
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𝑁
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𝑖=1   180 

𝑇 =
2(1+𝐶𝑂𝑅𝑅)

(𝑆𝐷+
1

𝑆𝐷
)

2   

Here, M is the value of the model output, O is the value of the observation, N is the number of observations, and SD is the 

ratio of simulated to observed standard deviation. A higher Taylor skill score indicates a more accurate simulation (Gan et al., 

2019), while higher CORR, lower BIAS and RMSE scores indicate better model simulations. 

The difference in wind direction was calculated as follows: 185 

∆= {
𝑀 − 𝑂, 𝑤ℎ𝑒𝑛 |𝑀 − 𝑂| ≤ 180°

(𝑀 − 𝑂)(1 −
360

|𝑀−𝑂|
), 𝑤ℎ𝑒𝑛 |𝑀 − 𝑂| > 180°

  

The correlation between simulated and measured angles is determined by a circular correlation coefficient, and the mean of 

angular is calculated using vector notation approach. Circular correlation coefficient is calculated as follows: 
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𝐶𝑂𝑅𝑅 =
∑ 𝑠𝑖𝑛(𝛼𝑖−𝛼)𝑠𝑖𝑛(𝛽𝑖−𝛽)

𝑁

𝑖=1

√∑ 𝑠𝑖𝑛2(𝛼𝑖−𝛼)𝑠𝑖𝑛2(𝛽𝑖−𝛽)
𝑁

𝑖=1

  

Here, α and β are simulated and observed wind direction angles, respectively. 190 

3. Results 

3.1 Impacts of physical parameterizations 

3.1.1 PBL 

Figure 3a shows the time series of observed wind speed in local time. Model wind speeds are shown for different PBL schemes 

averaged over all other parameterization types. The WRF model generally reproduces the temporal variation of observed wind 195 

speed in the study area with exaggeration; in particular, the shift from low to high wind speed on 14 January 2019 is reproduced 

by all schemes except for QNSE, with which the wind speed change is considerably larger than with all other schemes during 

the simulation period. Almost all the PBL schemes overestimate wind speed by 1 m/s, however, for the QNSE scheme, the 

largest overestimation exceeds 10 m/s during the daytime on 11 and 15 January 2019. The difference between simulation and 

observation is lower during 11-13 January 2019 using the LES scheme, while YSU is more similar to the measurements during 200 

14-15 January 2019. In addition, the spread within the PBL schemes is larger on 15 January 2019, partly due to high wind 

speed (> 4 m/s) or the general error growth in the model. 

The statistics of CORR, BIAS, and RMSE are illustrated in Figure 3b-d. MYJ shows the best CORR score of 0.96; MYNN, 

ACM2 and UW are next best according to this verification score. YSU is the best scheme in terms of BIAS and RMSE with 

the values of 0.45 m/s and 0.61 m/s, flowed by MYNN (0.55 m/s and 0.70 m/s). The ranges of statistic scores across the 105 205 

stations are also illustrated in Figure 3, for the schemes except for QNSE, the range of CORR is 0.18-0.88, the range of BIAS 

is -2.10-2.91 m/s, and the range of RMSE is 0.79-3.85 m/s. Further comparison indicates that the CORR scores for individual 

stations are lower than the ensemble means, and the BIAS and RMSE are larger than the ensemble means. For the QNSE 

scheme, the maximum BIAS and RMSE scores for individual stations exceed 10 m/s and 16 m/s, indicating that it has problems 

in reproducing wind speed under stable conditions over the study area. 210 

Figure 4 shows the wind roses during 11-15 January 2019 from observations and simulations with different PBL schemes, as 

well as the statistic scores. Observations indicate that during the study period, wind is mostly from southwest to northwest 

direction (225-330°), while simulations with different PBL schemes produce primarily southwest wind (200-270°), indicating 

an anticlockwise bias of wind direction over the study area under stable conditions. Further comparison indicates that all PBL 

schemes strongly overestimate the speed of north wind compared to the observations, which may be the main cause of positive 215 

bias in wind speed (Figure 3). The CORR scores of wind direction (0.42-0.59) are notably lower than that of wind speed, 

indicating the degraded performance of WRF in wind direction simulation. LES shows the best CORR score of 0.59, while 
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TEMF shows the best BIAS and RMSE scores of -11.33° and 56.19°. Considering the large model bias in wind speed, 

simulations with the QNSE scheme (64 in total) are omitted from further investigation in order that these anomalous data do 

not affect our overall analysis. 220 

3.1.2 MP  

Figure 5 shows the time series of wind speed from the observations and simulations with different MP schemes. The 

simulations are similar, especially during 14-15 January 2019. The spread among simulations with different MP schemes is 

smaller than that with different PBL schemes, indicating that wind speed is less sensitive to the MP schemes. The CORR 

scores are very similar for all the MP schemes at a precision of 0.01, while MYDM7 is the best scheme according to BIAS 225 

and RMSE scores, followed by P3 and ETA. The range of statistic scores across the stations is similar within different MP 

schemes, which provides a further indication of the low sensitivity of wind speed to MP schemes. 

The sensitivity of wind direction to the MP schemes is also low, as the wind roses from simulations with different MP schemes 

are very similar (Figure 6). WDM6, NSSL2 and ThompsonAA show the best CORR score of 0.52, followed by Thompson 

and CAM5. Meanwhile, WSM3 is the best scheme according to the BIAS score, and ThompsonAA is the best scheme 230 

according to the RMSE score.  

3.1.3 Radiation 

Figure 7 shows the time series of observed and simulated wind speed, the ensemble spread among different SW-LW schemes 

is larger than that with different MP schemes, but smaller than that with different PBL schemes, which indicates that simulated 

wind speed is more sensitive to the SW-LW schemes than the MP schemes and less sensitive to the PBL schemes. RRTMG 235 

and CAM show a larger overestimation than Dudhia-RRTM and Goddard at daytime peaks. The CORR scores are very similar 

for the SW-LW schemes at a precision of 0.01, and Dudhia-RRTM is the best scheme according to BIAS and RMSE scores, 

followed by Goddard.  

Figure 8 shows the wind roses during 11-15 January 2019 from simulations with different SW-LW schemes and the 

corresponding statistic scores. In simulations, wind is mostly from the southwest direction during the study period, which is 240 

different from the observation. According to the CORR score, Dudhia-RRTM is the best scheme with the highest value (0.55), 

meanwhile, the RRTMG scheme shows the best BIAS of -15.69°, and Dudhia-RRTM shows the best RMSE of 61.13°. As 

wind direction is more variable but less important under stable conditions with weak wind speed, the subsequent investigations 

mainly focus on wind speed. 

3.1.4 Interactions among parameterization schemes 245 

Interactions among physical parameterizations also play an important role in wind simulation. Since it is not possible to show 

all possible combinations of PBL, MP, and SW-LW schemes in this study, the results of interactions between PBL and SW-

LW schemes are selected as examples, which are illustrated in Figure 9. The MP schemes used in the simulations are MYDM7 
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and P3, given that they show better performance in earlier investigations (see Section 3.1.2), thus for each MP scheme, a total 

of 36 simulations (excluding QNSE) are illustrated. For wind speed simulations, the combination of MYJ and Dudhia-RRTM 250 

shows the best CORR, while the combination of YSU and Dudhia-RRTM ranks best according to BIAS and RMSE scores. 

For wind direction simulations, the combination of LES and Dudhia-RRTM shows the best CORR. According to BIAS and 

RMSE scores, the combination of TEMF and Dudhia-RRTM ranks best in MYDM7 case, and the combination of TEMP and 

RRTMG ranks best in P3 case. 

Overall, for BIAS and RMSE scores of wind speed, within each PBL scheme, the same SW-LW group ranks best, and within 255 

each SW-LW group, the same PBL scheme ranks best. For example, no matter which SW-LW group, YSU is always the best, 

which indicate the good performance of YSU. However, it is worth noting that YSU shows pretty low BIAS (< 0.4 m/s) and 

RMSE (<0.6 m/s) scores only when combined with the Dudhia-RRTM or Goddard schemes, when it is combined with RRTMG 

schemes, the BIAS and RMSE scores increase a lot. For the wind direction simulation, the pattern is different from that of 

wind speed. For example, for BIAS and RMSE scores, the best PBL scheme depends on the choice of SW-LW schemes, which 260 

indicates the influence of scheme interaction on model performance in wind direction simulations. 

3.1.5 WRF configurations with the best individual performance 

To determine the WRF configuration with the best individual performance, Taylor skill scores are calculated for wind speed 

within all simulations, the scores range from 0.2 to 1.0, with the best 10 WRF configurations having similar scores of about 

1.0. The timeseries and statistics are illustrated in Figure 10. The best 10 configurations have in common that they use the 265 

same PBL and SW-LW schemes, namely YSU and Dudhia-RRTM. This indicates a large impact of PBL and SW-LW on wind 

speed simulation compared with MP schemes, and highlights the best performance of YSU and Dudhia-RRTM. Since Taylor 

skill score considers both correlation and standard deviation, the best scheme (i.e., WDM6) is not the scheme that has the best 

CORR (i.e., Goddard), BIAS (i.e., MYDM7 and ETA), or RMSE (i.e., Goddard, NSSL1, MYDM7 and ETA). In fact, there is 

no scheme that has all the best scores of CORR, BIAS and RMSE. Thus, model ensemble is needed to improve the 270 

performance. Figure 10 also illustrates the ensemble of different number of simulations, as well as a super ensemble of all 576 

simulations (excluding QNSE). The result indicates that ensemble mean of four simulations with WDM6, Goddard, NSSL1 

and MYDM7 MP schemes shows the best BIAS and RMSE scores. For the time series of wind speed (Figure 10a), the spread 

of ENS(4) is significantly lower than that of ENS(576), and ENS(4) shows lower bias compared to ENS(576). According to 

the statistic scores, ENS(4) reduces model bias by approximately half compared to ENS(576), at the same time, the best 275 

individual schemes (NSSL1, MYDM7, P3 and ETA) can also reduce the bias by ~50%. It is worth to mention that the best 

CORR score of ENS(576) is also result of single model simulation with Goddard MP scheme. At the same time, the best BIAS 

score (0.33 m/s) is result of the single model simulation with MYDM7 or ETA, and the best RMSE score (0.52 m/s) is result 

of either the single model simulation with Goddard, NSSL1, MYDM7, or the ensemble using the 3, 4 or 5 best simulations. 
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3.2 Performance dependency on ocean proximity and elevation  280 

Land surface conditions can affect the partitioning of sensible and latent heat fluxes, which impacts local low-level circulation 

patterns and wind distribution (Yu et al., 2013; Barlage et al., 2016). The weather stations in the study region were classified 

into different groups according to the ocean proximity and elevation.  

3.2.1 Ocean proximity 

Figure 11 compares the results of wind speed for coastal stations (closer than 5 km from the shoreline, 16 stations in total) and 285 

inland stations (over 5 km from the shoreline, 89 stations in total), the locations of these stations are shown in Figure 1a. For 

both coastal and inland stations, the ensemble spread is the largest among the PBL schemes, followed by SW-LW and MP 

schemes, which is consistent with the results of the previous analysis in this study. WRF reproduces the timeseries of wind 

speed reasonably, with a larger overestimation for inland stations. The ensemble spread is larger for coastal stations compared 

with inland stations. As such, in addition to physical parameterizations, model performance is also influenced by ocean 290 

proximity.  

The statistic scores are also illustrated in Figure 11, the CORR scores are consistently lower for coastal stations compared to 

inland stations, while the BIAS scores are generally worse for the inland stations. Thus, the model performance tends to 

degrade for the inland stations according to the BIAS scores.  

Our comparison indicates that the parameterization schemes with the best performance for inland stations are generally 295 

consistent with those of previous investigations for all the stations in this study, as most of the stations are inland stations (89 

out of 105 stations). However, for coastal stations, the results are different. For instance, MYNN shows the best CORR score 

among the PBL schemes, while LES (YSU) shows the best BIAS (RMSE) score. For SW-LW schemes, Goddard shows the 

best CORR, BIAS and RMSE, while Dudhia-RRTM ranks worst according to the CORR score.  

3.2.2 Elevation 300 

Figure 12 shows the comparison for stations with different elevation (e.g., < 50m, 51 stations in total; >50 & < 250m, 36 

stations in total; < 250m, 19 stations in total). Observation shows that peak wind speed decreases with increasing elevation 

during the study period; for example, the peak observed wind speed of high-elevation stations (>250 m) is 1.5 m/s slower than 

that of low-elevation stations (<50 m). However, the peak simulated wind speed is generally similar for stations with different 

elevation, which bring larger model errors for the high-elevation stations. Further investigations are needed to reveal the 305 

underlying mechanisms for lower wind speed of high elevation stations and the mismatch between observations and model 

simulations. As shown by the statistic scores, for each PBL, MP and SW-LW schemes, CORR generally decreases with 

increasing elevation, while BIAS and RMSE scores increase with elevation, thus the evaluation metrics tend to degrade with 

increasing elevation under stable conditions over the study area. For different parameterization types, the scheme with the best 
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performance is generally similar with different elevations, e.g., for PBL schemes, MYJ is always the best at all elevation 310 

categories according to CORR, and YSU always ranks best according to the BIAS and RMSE scores. 

3.3 Comparison of simulations with different model performance and the effects of other model options  

In order to evaluate atmospheric properties that are crucial for air quality under stable conditions and investigate what drives 

the differences in wind speed, we compare the simulated wind field from the simulation with the best Taylor skill score (i.e., 

using YSU, Dudhia-RRTM and WDM6 schemes) to the station observations, meanwhile, the same simulation but with QNSE 315 

PBL scheme (i.e., using QNSE, Dudhia-RRTM and WDM6 schemes) is used for comparison between the simulations with 

good and poor performances. In addition, the impacts of land surface model, surface layer scheme and different options in the 

YSU scheme are also investigated in this section. 

3.3.1 Spatial distribution of wind field  

Figure 13 compares the spatial distribution of observed and simulated wind fields during the study period, we choose 14:00 in 320 

local time as an example. The simulation with the best Taylor skill score is referred to as YSU, and the simulation using QNSE 

PBL scheme is referred to as QNSE. YSU generally reproduces the wind field in the study area, especially in terms of wind 

speed. For example, the observed wind speed is lower on 13 January 2019, with values lower than 2 m/s for many stations, 

while on 15 January 2019, the observed wind speed is higher than 4 m/s for most stations. In the simulation using YSU, wind 

speed is about 2 m/s on 13 January 2019 and higher than 4 m/s on 15 January 2019 over the study area, which is similar to the 325 

observation. On the contrary, simulation with QNSE fails to reproduce the distribution of wind speed, and shows strong 

overestimation, especially over the mountain areas of the study area, for example, the peak wind speed in simulation with 

QNSE exceeds 20 m/s on 15 January 2019, which is more than five times greater than the observation, this overestimation is 

consistent with the large positive bias in previous investigation of Figure 3. For the wind direction simulation, YSU shows 

degraded performance compared to wind speed, and generally fails to reproduce the wind direction distribution for most of the 330 

stations, which is also the case for QNSE. 

3.3.2 Vertical profile of wind speed 

Figure 14 shows the observed and simulated vertical profile of wind speed at 08:00 and 20:00 during the study period, the 

location of the sounding station is illustrated in Figure 1. YSU reproduces the vertical structure of wind speed reasonably, for 

example, within the low levels below 2.5 km, the simulated wind speed from the YSU scheme is similar to the observation, 335 

with model bias lower than 2.5 m/s in most cases. Meanwhile, QNSE shows worse performance in reproducing the vertical 

structure of wind speed, with large model bias compared to YSU. QNSE overestimates the wind speed by almost 20 m/s at 

20:00, 11 January 2019, and by 30 m/s at 20:00, 12 January 2019. It is interesting to note that at 08:00, the simulations using 

QNSE show smaller differences with that using YSU, thus the largest differences between YSU and QNSE generally occur at 

specific time during the study period, which is also revealed in Figure 3a. 340 
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3.3.3 Impact of land surface models 

Figure 15 shows the evaluation of different land surface models (LSMs), only five simulations were conducted using the model 

configurations with the best Taylor skill score (i.e., YSU in Section 3.3.1) expect for the LSM schemes, the LSMs (i.e., SLAB, 

NOAH, RUC and NOAHMP) investigated are listed in Table 3. The simulations reproduce the timeseries of wind speed well, 

with larger spread during 14-15 January 2019. NOAHMP and CLM4 show the best CORR score of 0.93, and NOAH are 345 

slightly worse according to this score. Meanwhile, NOAHMP ranks best according to the BIAS and RMSE score, followed by 

the RUC scheme. Thus, NOAHMP shows the best performance among different LSMs in wind speed simulation in this study. 

However, the large difference among LSMs indicates that we should take land surface parameterizations into consideration in 

future studies.  

3.3.4 Impact of surface layer schemes 350 

In the WRF model, the surface layer (SL) schemes are somehow binding with PBL schemes, it is not possible to run all PBL 

schemes with the same SL scheme. However, it is meaningful to conduct simulations using a specific PBL scheme that can 

work with multiple SL schemes to investigate the effect of SL schemes on wind simulation. Figure 16 compares the simulations 

results of different SL (MM5, Janjic, GFS, MYNN and PX, Table 4) schemes using UW as the PBL scheme, the other model 

configurations are the same as the simulation with the best Taylor skill score. Simulations with different SL schemes generally 355 

reproduce the timeseries of wind speed well, with CORR scores of about 0.93 for most schemes. However, all simulations 

overestimate the wind speed, especially for the Janjic scheme. At the same time, according to the BIAS and RMSE scores, 

MYNN shows the best performance, followed by GFS and PX schemes. Thus, SL schemes also have major influence on the 

wind simulation. 

3.3.5 Impact of options in the YSU scheme 360 

The impact of different options in YSU on wind-speed simulation is illustrated in Figure 17, the simulation with the best Taylor 

skill score is referred to as YSU, and three extra simulations with top-down mixing option turning off (No_mix), topographic 

correction option turning off (No_topo), and both options turning off (No_topo_mix) were conducted for comparison. The 

simulated wind speed increases when we turn off the individual or both options, which enlarges the overestimation of wind 

speed under stable conditions in our study (Figure 15a). Turning off the two options in YSU degrades the model performance 365 

with worse evaluation metrics. For example, the BIAS score increases from 0.36 m/s to 0.67 m/s in No_topo, to 0.43 m/s in 

No_mix, and to 0.69 m/s in No_topo_mix simulation. At the same time, RMSE scores show similar degradation when turning 

off the options in YSU.  
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4. Summary and discussion  

In this study, we investigate wind simulations under stable conditions when a haze event affected North China. Surface 370 

meteorological observations are used to evaluate the WRF model’s ability to reproduce the evolution of winds during the 

event. The grid spacing of 0.5 km used in this study belongs to the PBL gray zone resolution, which has rarely been used in 

previous simulation studies in China, thus the results of this study provide a valuable reference for other simulations over 

North China. A number of WRF sensitivity experiments (640 in total) are conducted, altering the PBL, MP and SW-LW 

schemes to determine the sensitivity of wind speed and direction simulations to model physical parameterizations. Further 375 

investigations considering the ocean proximity, elevation and other model options are conducted to provide deeper insight into 

the factors that influence model sensitivities. 

In general, the WRF model reproduces the temporal variation of wind speed over the study area well, the spread in wind speed 

is largest within the PBL schemes tested, followed by SW-LW, and then MP schemes. The wind direction is notably worse 

reproduced by WRF compared to wind speed. This result is consistent with the findings of previous simulations performed in 380 

other locations (Dzebre and Adaramola, 2020; Gómez-Navarro et al., 2015; Santos-Alamillos et al., 2013). 

Among all PBL schemes, MYJ shows the best CORR score of 0.96, MYNN, ACM2 and UW are slightly worse according to 

this score. YSU is the best scheme according to the BIAS and RMSE scores (0.45 m/s and 0.61 m/s), followed by MYNN 

(0.55 m/s and 0.70 m/s). For the SW-LW and MP schemes, the CORR scores are similar, and Dudhia−RRTM and MYDM7 

show the best model performances out of all SW-LW and MP schemes according to the BIAS and RMSE scores. The 385 

simulation using YSU PBL, WDM6 MP and Dudhia-RRTM SW-LW schemes shows the best performance with the highest 

Taylor skill score. Interactions among physical parameterization schemes also play an important role in wind simulations, as 

the best verification scores can be achieved by certain combination of schemes. The ensemble mean of all the simulations 

shows the highest CORR core in wind speed, while the best 10 simulations show much better performance than the ensemble 

in terms of BIAS and RMSE.  390 

The schemes with the best performance for inland stations are consistent with the results of all stations, as the majority of 

stations are inland stations, however, for coastal stations, MYNN is the best scheme among all PBL schemes according to 

CORR, while LES (YSU) shows the best BIAS (RMSE) score. For SW-LW schemes, Goddard schemes show the best scores 

of CORR, BIAS and RMSE, while Dudhia-RRTM schemes rank worst according to the CORR score. The schemes with the 

best performance are similar with different elevations for different parameterization types, however, model performance tends 395 

to degrade with increasing elevation. 

As in our study, the model ensemble does not always provide the best performance, model post-processing, especially the bias 

correction techniques are needed to be taken into consideration, which can significantly reduce the systematic errors in model 

simulation. In addition, the PBL schemes play a dominant role in wind simulation, further tuning of the parameters within the 

PBL schemes, such as turbulent kinetic energy (TKE) dissipation rate, TKE diffusion factor, and turbulent length-scale 400 

coefficients is needed. In addition to PBL and SW-LW schemes, LSM and SL schemes also has unneglectable influence on 
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the wind simulation, which should be taken into consideration in future studies. Finally, it is worth pointing out that the 

presented findings in this study could be unique to the meteorological setup of the event, the location, the input dataset, the 

domain setup, and other unchanged parameterization types or model settings. 

 405 
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Table 1: List of microphysics (MP), planetary boundary layer (PBL), and shortwave-longwave radiation (SW-LW) 

schemes investigated in the 640 simulations, schemes that share rows are not specifically assigned to each other (except 

for SW-LW). 

 MP PBL SW LW 

1 Purdue Lin (Lin; Chen and Sun, 2002) LES (Mirocha et al., 2010) Dudhia 

(Dudhia, 

1989) 

RRTM 

(Mlawer et al., 

1997) 

2 WRF single-moment 3-class (WSM3; 

Hong et al., 2004) 

Yonsei University (YSU; Hong et al., 

2006) 

CAM (Collins 

et al., 2004) 

CAM (Collins 

et al., 2004) 

3 WRF single-moment 5-class (WSM5; 

Hong et al., 2004) 

Mellor–Yamada–Janjic (MYJ; Janjić, 

1994; Mesinger, 1993) 

RRTMG 

(Iacono et al., 

2008) 

RRTMG 

(Iacono et al., 

2008) 

4 ETA Ferrier (ETA, Rogers et al., 2001) Quasi-normal scale elimination (QNSE; 

Sukoriansky et al., 2005) 

Goddard 

(Matsui et al., 

2020) 

Goddard 

(Matsui et al., 

2020) 

5 WRF single-moment 6-class (WSM6; 

Hong and Lim, 2006) 

Mellor–Yamada Nakanishi Niino 2.5 level 

TKE (MYNN; Nakanishi and Niino, 2009) 

  

6 Goddard (Tao et al., 1989) Asymmetric convection model 2 (ACM2; 

Pleim, 2007) 

  

7 Thompson (Thompson et al., 2008) Bougeault–Lacarrere (BouLac; Bougeault 

and Lacarrere, 1989) 

  

8 Milbrandt-Yau double-moment 7-

class (MYDM7; Milbrandt and Yau, 

2005) 

University of Washington (UW; 

Bretherton and Park, 2009) 

  

9 Morrison double moment (Morrison; 

Morrison et al., 2009) 

TEMF (Angevine et al., 2010) 
  

1

0 

CAM double-moment 5-class (CAM; 

Eaton, 2011) 

Shin-Hong scale-aware (Shin-Hong, Shin 

and Hong, 2015) 

  

1

1 

Stony-Brook University (SBU; Lin 

and Colle, 2011) 

   

1

2 

WRF double-moment 6-class 

(WDM6; Lim and Hong, 2010) 
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1

3 

NSSL double moment (NSSL2; 

Mansell et al., 2010) 

   

1

4 

NSSL single-moment 7-class (NSSL1, 

Mansell et al., 2010) 

   

1

5 

Aerosol-Aware Thompson 

(ThompsonAA; Thompson and 

Eidhammer, 2014) 

   

1

6 

P3 (Morrison and Milbrandt, 2015) 
   

 635 
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Table 2: List of default parameterization schemes for the simulation of outer domains (D01 and D02). 

Parameterizations D01 D02 

Microphysics  SBU SBU 

Planetary boundary layer Shin-Hong Shin-Hong 

Shortwave radiation CAM CAM 

Longwave radiation CAM CAM 

Culumus  Modifed Tiedtke (Tiedtke, 1989) None 

Land surface  Noah-MP Noah-MP 

 

 640 
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Table 3: List land surface models investigated in this study. 

No. Scheme Name References 

1 Five-layer thermal diffusion scheme (SLAB) Dudhia, 1996 

2 NOAH Chen and Dudhia, 2001 

3 Rapid Update Cycle scheme (RUC) Smirnova et al., 2000 

4 Noah-MP (NOAHMP) Yang et al., 2011; Niu et al., 2011 

5 Community Land Model Version 4 (CLM4) Lawrence et al., 2011 
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Table 4: List of surface schemes investigated in this study. 

No. Scheme Name References 

1 Revised MM5 Monin-Obukhov (MM5) Jiménez et al., 2012 

2 Monin-Obukhov Janjic (Janjic) Janjić, 1994 

3 NCEP Global Forecast System (GFS) Hong et al., 2004 

4 MYNN surface layer (MYNN) Nakanishi and Niino, 2009 

5 Pleim-Xiu surface layer (PX) Pleim, 2006 
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Figure 1: Map showing the (a) study area and (b) WRF nested domains (D01–D03). Solid yellow and blue circles in (a) 

represent coastal (16 stations in total) and inland stations (89 stations in total), the size of circles represents the station 

elevations, and white circle represent the sounding station. 655 
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Figure 2: The daily averaged geopotential height (contour lines, units: gpm) at 500 hPa, total cloud fraction (shading) 

and surface winds at 10 meters (vectors, units: m/s) from ERA5 during 11 to 15 January 2019, the box indicates the 

D03 domain in Figure 1. 660 
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Figure 3: (a) Time series of observed and simulated wind speeds (m/s) and the corresponding statistics of (b) CORR, 

(c) BIAS and (d) RMSE for the PBL schemes. In a, the frequency of wind speed is hourly, and the tick marks in x-axis 665 

indicate 12:00 in local time of that day, for each PBL scheme, the average is calculated over the 105 stations and then 

over all the simulations with that scheme; the dots in b, c and d represent the range across the stations, for each station, 

the metrics are calculated by averaging all the simulations with the specific PBL scheme.  
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 670 

 

 

Figure 4: The wind rose charts for the PBL schemes during 11-15 January 2019 averaged over the stations and the 

corresponding scores of CORR, BIAS and RMSE, for each wind rose chart, the circles represent the relative frequency 

(%), and the colors represent wind speed (m/s).  675 
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Figure 5: Same as Figure 3, but for the MP schemes.  
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Figure 6: Same as Figure 4, but for the MP schemes. 680 
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Figure 7: Same as Figure 3, but for the radiation schemes.  
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Figure 8: Same as Figure 4, but for the radiation schemes. 
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Figure 9: Statistic scores (CORR, BIAS and RMSE) for wind speed and direction for different combinations of PBL 

and SW-LW schemes, the MP schemes used in (a) and (b) are MYDM7 and P3, respectively. Dudhia represents Dudhia-

RRTM SW-LW schemes in all the subplots. 690 
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Figure 10: (a) Time series of wind speed (m/s) from observation and different ensembles, and (b) CORR, (c) BIAS and 695 

(d) RMSE scores for the best 10 simulations along with different ensembles. The shadings in a represent the spread for 

ENS(4) and ENS(576). As the best 10 simulations use the same PBL (YSU) and SW-LW (Dudhia-RRTM) schemes, only 

the MP schemes are labeled in the figure. 
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Figure 11: Comparison of simulated wind speeds between the coastal and inland stations shown in Figure 1a, as well 

as the corresponding statistic scores. 
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Figure 12: Comparison of simulated wind speeds (m/s) for stations < 50m (51 stations in total), >50 & < 250m (36 

stations in total) and < 250m (19 stations in total) and the corresponding statistic scores.  
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Figure 13: Spatial distribution of simulated (black vector) and observed (red vector) winds at 14:00 (in local time) 

during the study period from simulations with the YSU and QNSE schemes, the shading indicates the elevation, and 

the height of the wind is 10 meters. 
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Figure 14: Wind speed profile from observation and simulations with the YSU and QNSE schemes at 08:00 and 20:00 

(in local time) during the study period. 
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 720 

Figure 15: Same as Figure 3, but for simulations with different land surface schemes, the PBL, MP and SW-LW 

schemes used are the same as the simulation with best Taylor skill score (WDM6 in Figure 10). 
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Figure 16: Same as Figure 3, but for simulations with different surface layer schemes. 
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Figure 17 Same as Figure 3, but for simulations with different YSU options. 730 

 


