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Abstract. Full-Waveform Inversion (FWI) is a high-resolution numerical technique for seismic waves used to estimate the

physical characteristics of a subsurface region. The continuous problem involves solving an inverse problem on an infinite do-

main, which is impractical from a computational perspective. In limited area models, absorbing boundaries conditions (ABCs)

are usually imposed, to avoid wave reflections. Several relevant ABCs have been proposed, with extensive literature on their

effectiveness on the direct wave problem. Here, we investigate and compare the theoretical and computational characteristics5

of several ABCs in the full inverse problem. After a brief review of the most widely used ABCs, we derive their formulations

in their respective adjoint problems. The different ABCs are implemented in a highly optimized domain specific language

(DLS
::::
DSL) computational framework, Devito, which targets seismic modeling

:
is
::::::::
primarily

:::::
used

::
for

:::::::
seismic

:::::::::
modelling prob-

lems. We evaluate the effectiveness, computational efficiency and memory requirements of the ABC methods, considering

from simple models to realistic ones. Our findings reveal that, even though the popular Perfectly Matching Layers (PMLs)10

are effective on avoiding wave reflections on the boundaries, they can be computationally more demanding than less used

Hybrid ABCs. We show here that a proposed Hybrid ABC formulation, with nested Higdon’s boundary conditions, is the most

cost-effective method among the methods considered here, being as effective, or more, as PML and other schemes, but being

computationally more efficient.

Keywords: full-waveform inversion, seismic waves, absorbing boundary conditions, domain specific language15

1 Introduction

Firstly presented for acoustic waves (Tarantola, 1984), and later extended for the elastic (Tarantola, 1986; Mora, 1987) and

viscoelastic cases (Tarantola, 1988), Full Waveform Inversion (FWI) is a high-resolution seismic technique used to estimate

the psychical
:::::::
physical

:
parameters in a subsurface region. It is a wave-equation based technique that searches for an optimal

match between real and computed data. The former is recorded by receivers in the field, whereas the latter consists of computed20

estimates of propagated waves emitted by a specified wave source. The observed data at the receivers is subject to influences

of the subsurface medium while waves propagate from the source. Synthetic data can be generated by propagating the source

waves in an estimated medium, and, therefore, the minimization of the differences between the observed and synthetic data at
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the receivers is a methodology to seek the medium properties of a region. The data difference is traditionally measured by a

least-square misfit function (Tarantola, 1984), also referred to as objective functional. The search for a minimum of the misfit25

function can be performed by a gradient based optimization technique (Mora, 1987). An efficient means of computing the

gradient is the adjoint method (Tarantola, 1984; A. Fichtner, 2006; Fichtner, 2010). This approach is characterized by being

reverse in time, where
:
.
::
To

:::::::::
exemplify,

:::
for

:
a
::::::::::
least-square

:::::
misfit

::::::::
function, the difference between the observed and synthetic data

is back propagated in time from the receivers to the source of the waves. The back propagation requires saving the
:::
data

:::
of

::
the

:
wave equation solutionin every computational time step, thus meaning a high memory usage to solve a FWI problem. In30

addition, FWI has a high computational cost, due to the size of the systems to be solved, also due to the misfit minimization

process, which may demand a substantial number of iterations to achieve satisfactory results (A. Fichtner, 2006; Virieux and

Operto, 2009).

In computational procedures, the forward/adjoint waves are propagated in a limited region, which is different from the real

case where wave propagation occurs in an unlimited medium. On limited domains, the computational boundaries can allow35

spurious wave reflections to appear, which means that nonphysical information will eventually reach receivers and influence

the misfit function (Gao et al., 2017). To tackle this problem, the so-called Absorbing Boundary Conditions (ABC) have been

a usual practice in FWI, as a means of reducing spurious boundary reflections.

In essence, ABCs entail adding
::::
either

::::::::
adopting

:::
an

::::::::
absorbing

:::::::::
pointwise

::::::::
boundary

:::::::::
condition

::
to

:::
the

::::::::::
differential

::::::::
equation,

::
or

::::::::
extending

:::
the

:::::::
domain

::
to
::::::::::::

accommodate
:::

for
:::

an
:::::::::
absorbing

:::::
layer.

::
In

:::::
most

:::::
cases,

:::::::::
additional

:
terms to both the forward and40

adjoint operators, and/or a set of additional equations,
::
are

:::::::
required

:
to be solved together with the original ones. It may also

require extending the computational domain to accommodate for an absorbing layer. The performance of ABC methods is

generally assessed for the forward problem (Gao et al., 2017; Liu and Sen, 2010, 2012; Grote and Sim, 2010). Such analysis is

certainly relevant for FWI, since the forward problem constitutes an expressive part of it, and it is essential to guarantee a good

approximation of medium properties. However, the overall impact of ABCs on the full-waveform inversion problem, from the45

perspective of computational cost-effectiveness and efficiency, is still widely debated in the literature (Gao et al., 2017).

This work proposes to evaluate several relevant ABCs, as applied in the context of FWI problems, while also investigat-

ing the ABCs effects on the adjoint wave equation. The analyses are carried out in a highly optimized software, namely

Devito (Louboutin et al., 2019; Luporini et al., 2018), which provides a domain-specific Language (DSL) and an optimized

code generation framework, for the design of finite difference kernels. In Devito,
::
the

:::::::
seismic

::::::::
modeling

::::::::
examples

::::
have

:::::
used50

Sochaki’s type of Damping Boundary Layer (Sochacki et al., 1987) is the default method to reduce the spurious reflections.

The advantage of such damping method is the ease of implementation, since it only requires one to add a single term to the

acoustic wave equation, and an extension of the computational domain
::
to

::::::::::::
accommodate

:::
for

::
an

:::::::::
absorbing

::::
layer. However, it

can be less effective than other ABCs, sometimes requiring larger domain extensions. More popular, the so-called Perfectly

Matching Layers (PML) have been widely used in FWI (Abubakar et al., 2009; Asnaashari et al., 2012; Aghamiry et al., 2019;55

Ben-Hadj-Ali et al., 2011). The PML require the introduction of auxiliary variables and equations into the problem, as well as

extension of the computational domain. Those features make it more computationally demanding, but they are usually more

effective in avoiding wave reflection at boundaries. An interesting solution to avoid the added cost of auxiliary variables, while
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also preserving method effectiveness, is the use of Hybrid schemes (HABC) (Liu and Sen, 2010, 2012). In such hybrid meth-

ods, domain extensions are still required
::::::::
pointwise

::::::::
absorbing

::::::::
boundary

:::::::::
conditions

:::
are

:::::
used

:::::::
together

::::
with

:::::::::
successive

:::::::
domain60

::::::::
extensions, but no additional variables, nor equations, are needed.

From the perspective of computational development, this work contributes by implementing further options of ABCs in

Devito. Furthermore, we present a new
:::::::
propose

:
a
:
HABC approach based on the Higdon method (Higdon, 1986, 1987), and the

analyses of several ABCs, as applied to adjoint equations. The analyses are carried out for two types of ABCs, namely, Sponge

Layers
:
,
:::::
which

:::
use

:::::::::
additional

:::::
terms

:::::
and/or

:::::::::
equations

::
on

:::
an

:::::::
extended

:::::::
domain

::::::::
absorbing

:::::
layer, and Hybrid Absorbing Boundary65

Conditions (HABC)
:
,
:::::
which

:::::::
impose

::::::::
absorbing

:::::::::
pointwise

::::::::
boundary

:::::::::
conditions

:::
on

::
a

::
set

:::
of

::::::
domain

::::::::::
extensions. In the former

group, we highlight the Sochaki’s type of Damping Boundary Layer (Sochacki et al., 1987), the Perfectly Matched Layer

(PML) (Grote and Sim, 2010) and Convolutional Perfectly Matched Layer (CPML) (Pasalic and McGarry, 2010). Whereas for

the latter, the approach
::::::::::
combination

::
of

:::::::::
pointwise

:::::::::
conditions,

::::::
where

::::
here

:::
we

:::
use

:::
A1

::::
and

::::::
Higdon

::::::::::
conditions,

::::
with

:::::::::
successive

::::::
domain

:::::::::
extensions

:::
are

::::
used

:::
to

::::::::
construct,

:::::::::::
respectively,

:::
the HABC-A1

:::::::
approach (Liu and Sen, 2010) and the HABC-Higdon,70

first presented in this current work, are analyzed. .
:

The ABC analyses are performed with heterogeneous acoustic velocity models, including realist models such as Marmousi

(Martin et al., 2006) and a cut of 2D SEG/EAGE salt (Aminzadeh and Brac, 1997). Finally, this work has the objective of

proposing an ABC method that combines the effectiveness in decreasing spurious boundary reflections with reduced computa-

tional cost and memory usage.75

:::::::::::
Summarizing,

:::
the

:::::::::::
contributions

::
of

:::
the

:::::::
current

::::
work

:::
are

::::::::::
highlighted

::
as

:::::::
follows:

–
:::::::
Detailed

::::::::::
comparison

::
of

::::::
several

::::::
widely

::::
used

:::::
ABCs

::
in
:::::
FWI,

::::::::
analysing

::::
both

:::::::::::
effectiveness

:::
and

::::::::::::
computational

:::::::::
efficiency;

:

–
::::
New

::::::::::::::
implementations

::
of

:::::
ABCs

::
in

:::::::
Devito,

::::::
openly

:::::::
available

:::
for

:::
the

::::::::
scientific

:::
and

:::::::
industry

:::::::::::
communities;

:

–
:::::::::
Theoretical

:::
and

:::::::::
numerical

:::::
study

::
of

:::
the

::::::
effects

:::
that

:::
the

::::::
ABCs

:::
may

:::::
have

::::
upon

:::
the

::::::
adjoint

::::::::
problem;

–
:::
The

::::::::::
proposition

::
of

:
a
::::::
HABC

::::::::
approach

:::::
based

:::
on

:::
the

::::::
Higdon

::::::
method

:::
for

:::::
FWI,

:::::
which

::::
was

::::::
shown

::
to

::
be

:::::
more

:::::::
effective,

::::
and80

:::::::::::::
computationally

:::::
more

:::::::
efficient

::::
than

:::
the

::::::::::
well-known

::::
PML

:::::::
method.

:

This work is organized as follows. Section 2 describes the mathematical framework of an FWI problem: misfit function,

forward wave equation, adjoint wave equation and gradient of misfit function. Section 3 makes a conceptual review of the

ABCs methods in the forward wave equation. Next, section 4 shows the algebraic development to obtain adjoint wave equation

with ABCs methods. The computational framework adopted in this work is presented in section 5, including the main aspects85

of the Devito software, machine configurations and libraries tools used in the computational simulations. Results of the ABCs’

performance in the forward and adjoint problem are presented in section 6. Section 7 presents FWI results with the employment

of PML, HABC-Higdon and Damping methods. Finally, section 8 presents the main conclusions of the current work.

2 The FWI Problem

In essence, FWI consists in a local optimization, where the goal is to minimize the misfit between observed and predicted90

seismograms’ data. On following Tarantola (1984), the misfit function can be measured by the L2 norm, which maybe written
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as, in a continuous space,

I(m)≡ 1

2

∫
τ

∫
Ω

(
u(m,x, t)−uobs(m,x, t)

)2
δ(x− x̌)dVdt. (1)

The data functions, u= u(x, t) and uobs = uobs(m,x, t), are respectively the predicted and observed data, both recorded at a

finite set of receivers, located at the point positions x̌ ∈ Ω0, in a time interval τ ≡ [t0, tf ]⊂ R, where t0 is the initial time and95

tf is the final time. The term δ(x− x̌) is the delta Dirac function to model the receiver point positions. The spatial domain of

interest (usually two- or three-dimensional) is set as Ω0 and referred here as physical domain.

2.1 Wave equation

The predicted data, u(m,x, t), is modeled here by an acoustic wave equation,

m(x)utt(x, t)−∇2u(x, t) = f(x, t), (2)100

where utt represents the second partial derivative with respect to time t and ∇2(·) represents the Laplacian operator with

respect to x ∈ Ω0. The variable coefficient m(x) : Ω0 → R is such that m(x) =
1

c2(x)
, where c(x) : Ω0 → R is the pressure

wave (P -wave) velocity, which is assumed to be piecewise-constant and positive. The external force term f(x, t) : Ω0 → R,

models the source of waves and is usually described by a Ricker Wavelet (?)
::::::::::::
(Ricker, 1940).

The acoustic wave equation should satisfy the homogeneous initial conditions, given by u(x,0) = 0 = ut(x,0) = 0. Further-105

more, for computational simulations, it is necessary to bound the domain Ω0. A limited area domain is illustrated in Figure 1

(a), where the limitation of type Ω0 = [xI ,xF ]× [zI ,zF ] is considered. The boundaries ∂Ωi with i= 1,2,3 are here referred

to as truncated boundaries, and satisfy a null-Dirichlet boundary condition u(x, t) = 0. Finally, the boundary Ω4 satisfies the

null-Neumann ∇u(x, t)·n= 0 (free surface) boundary condition, where n represents the outward normal (with respect to ∂Ω4)

unit vector.

(a) (b)

Figure 1. (a) Limited Domain Representation, with Ω0 = [xI ,xF ]×[zI ,zF ]. (b) Extended domain representation, Ω= [xI −Lx,xF +Lx]×

[zI ,zF +Lz], with absorption or sponge regions (of lengths Lx, Lz) highlighted in blue. ∂Ωi, i= 1,2,3,4, indicates the outmost boundaries

of the full domain.
110
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2.2 Gradient of misfit function

As mentioned in the first part of this section, in FWI the goal is to minimize the misfit function, which can be measured by

eq. (1). Typically, this minimization is carried out by employing a local optimization method. Thus, it is necessary to obtain

the gradient, ∇mI(m), which may be computed efficiently by the adjoint method (Plessix, 2006). The adjoint-based gradient

is achieved by using an augmented functional, also referred as Lagrangian functional. In the current case, it is given by,115

L(u,u†,m) = I(m)−
∫
τ

∫
Ω0

u† ·
(
mutt −∇2u− f

)
dVdt, (3)

where u= u(x, t), m=m(x), and u† = u†(x, t) is the Lagrange multiplier.

On a local minimum, the gradient of L with respect to u, u† and m should vanish. The gradient of L(u,u†,m), with respect

to m, can be computed by

lim
ϵ→0

L(u,u†,m+ ϵm′)−L(u,u†,m)

ϵ
=∇m[L(u,u†,m)]m′ ==∇m[I(m)]m′ =

∫
τ

∫
Ω0

m′u ·u†tt dVdt, (4)120

where m′ is a perturbation of the parameter m.

2.3 Adjoint Equation

In eq. (4) we observe that the gradient ∇mI(m) depends on the adjoint variable u†, that is computed by solving the adjoint

wave equation:

mu†tt −∇2u† = (u−uobs)δ(x− x̌). (5)125

For the domain Ω0 illustrated in Figure 1 (a), the adjoint wave equation must satisfy the boundary conditions: u(x, t) = 0 for

x ∈ ∂Ωi with i= 1,2,3; and ∇u(x, t) ·n= 0 for x ∈ ∂Ω4. The adjoint wave equation is reverse in time. This way, the initial

condition is given by u†(x, tf ) = 0.

The adjoint wave equation is obtained by carrying out the gradient of L(u,u†,m) with respect to the state variable u. Details

as to the method to obtain it can be found in the works of Plessix (2006) and A. Fichtner (2006).130

3 ABC’s in Forward Problem

3.1 Domain Extension

For all the methods that we are described here, we consider an extension of the spatial domain given by Ω= [xI −Lx,xF +Lx]×
[zI ,zF +Lz], in which an absorption region or sponge layer is added to the original spatial domain, Ω0 = [xI ,xF ]× [zI ,zF ].

The absorption region is composed by two bands of length Lx at the beginning and end of the domain in the direction x and135

of a band of length Lz at the end of the domain in the z direction. Again, ∂Ω denotes the boundary of Ω. Figure 1b shows the

extended domain Ω, with the absorption region highlighted in blue. This kind of extension represent the typical configuration

for seismic problems.

5



3.2 Damping

The method called Damping has been proposed initially by Sochaki Sochacki et al. (1987) and it is a very simple way to reduce140

the spurious reflections of wave propagation in limited domains. The basic idea is to extend the original domain, by adding a

sponge layer to it, like the one in Figure 1b, and then to introduce a damping term into the original wave equation (2), such that

it only affects the added layer. The resulting damped acoustic equation is given by,

m(x)utt(x, t)+ ζ(x)ut(x, t)−∇2u(x, t) = f(x, t), (6)

where the acoustic wave equation (2) has been modified by the introduction of the damping term ζ(x)ut(x, t), with ζ(x)145

being nonzero only within the absorption region. That is, it should grow smoothly across the absorption bands from zero to its

maximum at the outermost boundary. One may still impose the same initial and boundary conditions defined in the previous

section.

Sochacki et al. (1987) proposed various alternatives for the damping function, ζ(x), including linear, cubic or exponential

forms. In general, all of them share a similar characteristic: they vanish identically throughout the interior domain Ω0, while150

growing within the added bands from zero toward the outer boundary ∂Ω. We define the pair of functions ζ1(x) and ζ2(x) as,

respectively:

ζ1(x) =



0,

if x ∈ (xI ,xF ),

ζ̄1(x)

( |x−xI |
Lx

− 1

2π
sin

(
2π|x−xI |

Lx

))
,

if xI −Lx ≤ x≤ xI ,

ζ̄1(x)

( |x−xF |
Lx

− 1

2π
sin

(
2π|x−xF |

Lx

))
,

if xF ≤ x≤ xF +Lx,

(7)

ζ2(x) =



0,

if z ∈ (zI ,zF ),

ζ̄2(x)

( |z− zF |
Lz

− 1

2π
sin

(
2π|z− zF |

Lz

))
,

if zF ≤ z ≤ zF +Lz ,

(8)155

so that the actual damping function ζ(x) is given by:

ζ(x) =
1

cmax

(
ζ1(x)

∆x
+
ζ2(x)

∆z

)
, (9)

where cmax denotes the maximum velocity of propagation of c(x), ∆x and ∆z are the discrete cell sizes of the spatial domain,

respectively in the x and z directions.
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3.3 Perfectly Matched Layer160

The method called Perfectly Matched Layer (PML) has several formulations in the literature, considering the acoustic (second

order equation or first order system formulations) and elastic cases. Like the Damping method, the PML is widely used in

seismic problems, particularly due to its efficacy in reducing spurious reflections in limited domains, being more effective than

the Damping method. The formulation we present here has been proposed by Grote and Sim (2010) for the second order form

of wave equation m second order equation.165

The reasoning is similar to the Damping method, in that sponge layers extend the original domain, like those in Figure 1b.

Additional terms are also introduced into the original wave equation (2), which only affect the sponge layers, but now there are

two of them, and they have their own evolution equations.

The two auxiliary functions provide adequate damping of wave reflections by using similar terms to those of the Damping

method. The design of the method is such that it would ideally suppress all reflections in a continuous setting. However, some170

reflections may remain for a finite difference discretization, although strongly attenuated.

The full set of equations for the acoustic wave propagation with PML, along with the auxiliary functions, is given by:

m(x)utt(x, t)+ (ζ1(x)+ ζ2(x))ut(x, t))+ ζ1(x)ζ2(x)u(x, t) =∇2u(x, t)+ϕ1,x(x, t)+ϕ2,z(x, t)+ f(x, t), (10)

ϕ1,t(x, t) =−ζ1(x)ϕ1(x, t)+ c2(x)(ζ2(x)− ζ1(x))ux(x, t), (11)175

ϕ2,t(x, t) =−ζ2(x)ϕ2(x, t)+ c2(x)(ζ1(x)− ζ2(x))uz(x, t). (12)

Here, ϕ1(x) and ϕ2(x) represent the auxiliary variables, which are nonzero only in the absorption region. The notation ϕi,t

indicates partial derivative of ϕi, i= 1,2, with respect to the variable t, and similarly for the variables x and z, respectively,

with ϕi,x and ϕi,z . The damping functions ζ1(x) and ζ2(x) are defined as in the Damping method. The auxiliary functions will

also be kept at zero over all the outer boundary of Ω.180

On discretizing the PML equations, we stagger1 spatial
::::::
position

::::::::
different

:::::::
variables

:::
on

:::::::
different

:::::
places

:::
of

::
the

:::::
grid,

:::::::::
dislocating

::
by

::::
half

::::::::
grid-size,

:::
or

::::
half

::::::::::::
temporal-step,

:::
in

:
a
::::::::

so-called
::::::::::

staggering
::
of

:::::::::
variables,

::
as

:::::
done

::
in
:::::::::::::::::::

Grote and Sim (2010).
:::::::

Spatial

variables for the auxiliary functions ϕ1 ::
are

:::::::::
staggered in the x direction, and stagger ϕ2 ::::::::

staggered in the z direction, as in

Grote and Sim (2010)
::::::
shown

::
in

::::::
Figure

:
2. This staggering is convenient, considering the centered discretization adopted here

for the partial derivatives of those functions. As a result of this, u must be staggered in the directions of the partial derivatives185

in the evolution equations of ϕ1 and ϕ2. Conversely, ϕ1 and ϕ2 should be staggered in the directions of the partial derivatives

in the evolution equation of u.

Moreover, some variables are also staggered in time, thus being defined at intermediary time instants. As a final result,

the variable u(x, t) is taken as non-staggered (co-located) in space, whereas ϕ1(x, t) and ϕ2(x, t) are staggered, the func-

tions ζ1(x), ζ2(x), c(x) and f(x, t) are staggered in equation (10) and non-staggered in the equations (11) and (12), when190

1Staggering here means we allow the placement of variables to be dislocated by half grid-size, or half temporal-step, in such a way that different variables

maybe placed in slightly different grid positions or time instants.
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Figure 2.
::::::::
Staggering

::
of

:::::::
variables

:::
for

::::
PML

::::::::::
discretization.

they appear in those equations. Therefore, when updating u(x, t), we employ averages of neighboring values of ϕ1(x, t) and

ϕ2(x, t), so that we have them on the non-staggered grid. On the other hand, when updating ϕ1(x, t) and ϕ2(x, t) we average

the neighboring values of u(x, t), to define it on the staggered grid.

3.4 Convolutional Perfectly Matched Layer

Although the PML method is usually very efficient for reducing boundary reflections, there are situations, such as in the195

presence of grazing waves, in which it is less effective. The Convolutional Perfectly Matched Layer (CPML) has been proposed

as an improvement over PML, which should reduce late time low-frequency wave reflections and provide better absorption of

grazing waves. In the case of the acoustic wave equation, the CPML is generally derived for the first order set of PDEs, but

here we adopt the formulation proposed by Pasalic and McGarry (2010), which was designed for the second order form of the

wave equation.200

The rationale is similar to the PML, in that one extends the original domain, by adding a sponge layer to it (Fig. 1b). However,

now one introduces four auxiliary functions into the original wave equation (2). These functions also have their own evolution

equations, and can only affect the absorbing layer, just as in the previous approach.

The four auxiliary functions should provide adequate damping of wave reflections, by using similar terms to those of the

PML. They consist of weighed-combinations of the displacement and the auxiliary functions, themselves. By design, the205

method should ideally suppress all reflections in a continuous setting, including those situations where the PML method fails.

The main equation reads

m(x)utt(x, t) =∇2u(x, t)+ψ1,x(x, t)+ψ2,z(x, t)+ϕ1(x, t)+ϕ2(x, t)+ f(x, t), (13)

8



and the auxiliary functions are updated by discrete in time relations (from time tn advancing a time-step size of ∆t leading to

tn+1):210

ψ1(x, tn+1) = a1(x)ψ1(x, tn)+ b1(x,z)ux(x, tn+1), (14)

ψ2(x, tn+1) = a2(x)ψ2(x, tn)+ b2(x)uz(x, tn+1), (15)

ϕ1(x, tn+1) = a1(x)ϕ1(x, tn)+ b1(x) [uxx(x, tn+1)+ψ1,x(x, tn+1)] , (16)

ϕ2(x, tn+1) = a2(x)ϕ2(x, tn)+ b2(x) [uzz(x, tn+1)+ψ2,z(x, tn+1)] , (17)

where we have again used the notation for partial derivatives with double sub-index, as in ψ2,z meaning that the second215

component of ψ is differentiated with respect to the z variable. The weighting factors for the auxiliary functions are given by

a1(x) = e−[ζ1(x)+α1]∆t, b1(x) =
ζ1(x) [a1(x)− 1]

[ζ1(x)+α1]
, (18)

a2(x) = e−[ζ2(x)+α2]∆t, b2(x) =
ζ2(x) [a2(x)− 1]

[ζ2(x)+α2]
. (19)

The four auxiliary functions are only nonzero within the absorption region, while the functions ζ1(x) and ζ2(x) are defined as220

in the Damping method. The constants α1,α2 ∈ R can be chosen according to the problem.

3.5 Hybrid Absorbing Boundary Condition

The last class of ABCs to be discussed here is termed Hybrid Absorbing Boundary Condition (HABC). They can be interpreted

as a combination of Sponge Layer and ABC
::::::::
pointwise

::::::::
absorbing

:::::::::
boundary

:::::::::
conditions

::::::
(ABC)

:::
and

:::::::
domain

:::::::::
extensions

:::::
(like

::::::
Sponge

:::::::
Layers),

::::::::
justifying

:::
the

::::::::::
terminology

:::
of

:
a
::::::
Hybrid

:::::::
method.225

It is possible to use ABCs that do not require domain extension, enforced as
:::::::
pointwise

:
boundary conditions, as suggested by

the A1 Clayton’s condition (Clayton and Engquist, 1977), and the schemes by Higdon (1986, 1987). While these demand very

little in terms of computational cost, they can still be prone to spurious reflections, if used on their own. However, they can be

effective if used in a hybrid way, in combination with sponge layers
::::::
domain

:::::::::
extensions, as we illustrate below.

Clayton’s A1 boundary condition Clayton and Engquist (1977) is based on a One-Way Wave Equation (OWWE). This simple230

condition is such that outgoing waves normal to the border would leave without reflection. At the ∂Ω1 part of the boundary,

the condition is,

ut(x,z, t)− c(x,z)ux(x,z, t) = 0, (x,z) ∈ ∂Ω1, (20)

while at ∂Ω3 the condition is

ut(x,z, t)+ c(x,z)ux(x,z, t) = 0, (x,z) ∈ ∂Ω3, (21)235

and at ∂Ω2 the condition is

ut(x,z, t)− c(x,z)uz(x,z, t) = 0, (x,z) ∈ ∂Ω2, (22)
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where we have explicitly expanded the spatial domain variable in its components (x= (x,z)).

The Higdon Boundary condition (Higdon, 1986, 1987), can take into account additional incidence directions, not only the

normal direction as in Clayton’s A1 condition. The scheme, termed to be of order p ∈ N, is given at ∂Ω1 and ∂Ω3 by:240

p∏
j=1

[
cos(αj)

(
∂

∂t
− c(x)

∂

∂x

)
u(x, t)

]
= 0, (23)

and at ∂Ω2

p∏
j=1

[
cos(αj)

(
∂

∂t
− c(x)

∂

∂z

)
u(x, t)

]
= 0. (24)

This method ensure that outgoing waves with angle of incidence at the boundary equal to αj present no reflection. The method

we use in this work employs order 2 (p= 2) and angles 0 and π/4.245

To combine these schemes with sponge layers, thus leading to hybrid schemes (HABC), we also extend the spatial domain

as in Figure 1b. The difference with respect to previous schemes is that this extended region will now be considered as the

union of several nested gradual extensions. As represented in Figure 3, we define a region AM =Ω0, and the regions Ak,k =

M−1, · · · ,1 will be defined as the previous region Ak+1 to which we add one extra grid line to the left, right and bottom sides

of it, such that the final region A1 =Ω.250

Figure 3. Nesting of domains for the Hydrid ABC method. The full region A1 is equivalent to Ω.

To illustrate how the HABC is used, we will describe the process of how we obtain a solution using the usual solution of

Acoustic Wave Equation together with the absorbing conditions showed in A1 and Higdon schemes. First, assume u(x, t−∆t)

is known at instant t−∆t in all the extended Ω domain. We then update one time step from the solution u(x, t−∆t) to u(x, t)

using the usual Acoustic Wave Equation over Ω, with the null Dirichlet or Neumann boundary conditions defined for ∂Ω.

Now, for each region Ak, with k going from the innermost domain AM to the outermost domain A1, we construct an255

auxiliary functions, uk(x, t), based on the current solution, u(x, t), by applying the absorbing condition A1 or Higdon for the

domain (Ak). For finite difference schemes, this implies in altering only the values of u(x, t) at the border of Ak, that is, on

∂Ak, to obtain uk(x, t). The final solution for each region Ak, which will be the input solution for region Ak−1, will be given

10



by a convex combination between uk(x, t) and u(x, t), as

ũ(x, t) = (1−ωk)u(x, t)+ωkuk(x, t), (25)260

where wk is a weight function that grows from zero at AM = ∂Ω0 to one at A1 = ∂Ω, and ũ(x, t) will be used as the new

u(x, t) for the next region (Ak−1). Summarizing, we loop over the nested regions, from innermost to outermost, subsequently

applying the pointwise A1 or Higdon boundary conditions, weighting with respect to the a distance metric of each boarder

from the innermost domain (defined by weights wk).

The particular weight function to be used could vary linearly or non-linearly (Liu and Sen, 2018). We can choose a linear265

weight function as

ωk =
M − k

M
; (26)

or, preferably, a non linear function,

ωk =


1, if 1≤ k ≤ P +1,(
M − k

M −P

)α

, if P +2≤ k ≤M − 1.

0, if k =M .

(27)

We take P = 2 and we choose α following Liu and Sen (2018):270

– α= 1.5+0.07(npt−P ), in the case of A1;

– α= 1.0+0.15(npt−P ), in the case of Higdon.

where the value of npt designates the number of discrete points that define the length of the extended region in the direction x or

z. In our experiments, we observed that HABC produces better results with a non-linear weight function, but the choice of the

type of weights can be adapted according to the application. Moreover,
:::
here

:::
we

:::
use

:
the values for α follow Liu and Sen (2018)275

and these values are for our applications
:::::::
proposed

:::
by

::::::::::::::::
Liu and Sen (2018), but the parameter can be adjusted for specific cases.

4 ABCs in Adjoint Problem

After introducing the different approaches of ABCs, the goal now is to obtain
:::
this

:::::::
section

:::::::
presents the adjoint equationsfor

each of them. To do so, the augmented functional is considered, in which the constraints are given by the wave equation and

by the equations used in ABCs.280

As shown before, to apply any of the ABCs of interest of this study, the domain considered is built as the union of the

physical domain Ω0 and the extended domain Ωe =Ω/Ω0. In FWI, the goal is to minimize the objective functional I(m) on

the physical domain Ω0. Therefore, the objective functional remains being defined by the expression (1), but now defined over

Ω0:::
The

:::::::::::
formulations

::::
and

::::::
further

:::::
details

:::
for

:::
all

::::
ABC

:::::::
methods

::::
here

::::::::::
investigated

:::
are

:::::::::
presented

::
in

::::::::
Appendix

::
A.
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4.1 Damping285

The acoustic wave equation with dampening mechanism is given by (6). The corresponding adjoint equations are obtained on

pursuing the same sequence presented by Plessix (2006). So, the first step is to write the augmented functional considering the

equations defined in the physical and in the extended domains:

L(u,m,u†) = I(m)−
∫
τ

∫
Ω

u† ·
(
mutt −∇2u− ζut − f

)
dVdt,

where u= u(x, t) and ζ = ζ(x).290

In the current case, the
:::
The

::::::
adjoint wave equation with dampening mechanism is defined in the domain Ω illustrated by the

blue region in Fig. 1(b). To obtain the adjoint equation, their initial and boundary conditions, the gradient
∂

∂u
[L(u,u†,m)]u′

is written as follows:

lim
ϵ→0

L(u+ ϵu′,u†,m)−L(u,u†,m)

ϵ
=∇u[L(u,u†,m)]u′ =∇u[I(m)]u′ −

∫
τ

∫
Ω

u† ·
(
mu′tt −∇2u′ + ζu′t

)
dVdt,

where u′ is a perturbation of the variable u.295

Integration by parts is applied as shown below:

∇u[L(u,u†,m)]u′ =∇u[I(m)]u′ −
∫
τ

∫
Ω

(
mu†tt −∇2u† − ζu†t

)
·u′ dVdt+B,

where the gradient ∇u[I(m)]u′
:::::::
damping

::::
ABC

:::::::
method is given by:

∇u[I(m)]u′ =

∫
τ

∫
Ω

(u−uo)u′δ(x− x̌)dVdt.

The term B is the bilinear concomitant, which the integration by parts entails. After applying the Divergence Theorem, B reads:300

B = B(u′,u†,m) =

∫
τ

∫
∂(Ω)

(−u†∇u′ +∇u†u′)·ndSdt+
∫
Ω

mumutt
::::

†·u′t −∇2
::
u†tu

′ − ζu†t = (
:::

u′−uo)
::::

δ(x−
:::

x̌) dVtf
t0 .∀x ∈ Ω,

::::::

The adjoint
:::::::
meaning

::
a
::::::::::
self-adjoint

:
wave equation, their initial and boundary conditions, are then defined by imposing

∇u[L(u,u†,m)]u′ = 0. That means defining the adjoint equation as follows:

mu†tt −∇2u† + ζu†t = (u−uo)δ(x− x̌) ∀x ∈ Ω.305
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Also, on considering the
:::::
which

:::::::
satisfies

:::
the

::::::::
following

:
boundary and initial conditionsof the forward wave equation, and by

imposing the adjoint boundary conditions given by: :
:

u† = 0, ∀x ∈ ∂Ωi, i= 1,2,3, (28)

∂u†

∂z
= 0, ∀x ∈ ∂Ω4, (29)

u†(x, tf )
:::::::

= u†t(x, tf ) = 0∀x ∈ Ω
::::::::::::::::::

. (30)310

The bilinear concomitant is reduced to:

B = B(u′,u†,m)=

∫
Ω

[
m
(
u† ·u′t −u†tu

′
)
− ζu†u′

]
dV

∣∣∣∣∣∣
tf

t0

.

The homogeneous initial conditions of the forward wave equation drive the domain integral to zero, that is evaluated at

t0 = 0. In order to eliminate the corresponding domain integral for t= tf , one could impose the following homogeneous

final conditions on the adjoint variable: u†:315

u†(x, tf ) = u†t(x, tf ) = 0

To make the algebra simpler with respect to these conditions, one could define an adjoint time variable in the form

t† ≡ tf − t ⇒ dt† =−dt ⇒

⇒

 t= 0 ⇔ t† = tf

t= tf ⇔ t† = 0
⇒ u†(x, tf ) = u†t(x, tf ) = 0 .

As a result of this change of variables, the adjoint wave equation (A2) becomes, in its final form:320

mu†tt −∇2u† − ζu†t = (u−uo)δ(x− x̌) ∀x ∈ Ω,

which means it is a self-adjoint wave equation.
::::
index

::::::::::
i= 1,2,3,4

:::
are

:::::
based

::
in
:::
the

::::::::::
boundaries

::::::::
illustrated

::
in

::::::
Figure

::::
1(b).

:

4.2 PML and CPML

The work of Xie et al. (2014) presents a mathematical development to obtain the adjoint wave system with the refereed

complex-frequency-shifted unsplit-field perfectly matched layer (CFS-UPML). In essence, the Fourier transform û=
∫∞
−∞ estu(x, t)dt325

of the displacement vector, u, satisfies the Helmholtz equation:

s2û=∇(c2∇û)

where s ∈ C. Also, one considers the transform of spatial coordinates x:

x̃ :=

∫
Ω

γ(x)dV.
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where, for the 2–D case, γ(x) = [γ1,γ2]
T = [γ1(x),γ2(x)]

T is the complex stretching function,330

γj = κj +
ζj

αj + is
, j = 1,2 for 2–D case

and i=
√
−1.

The next step consists in reformulating eq. (A7) in time domain. In the 2–D case, it leads to:

mL(t) ∗u=

=
∂

∂x

(
F−1

(
γ2
γ1

)
∗ux

)
+

∂

∂z

(
F−1

(
γ1
γ2

)
∗uz

)
+ f,335

where L(t) = F−1(s2γ1γ2), F−1 is the inverse Fourier transform, and ∗ represents a convolution.

On taking the wave equation (A8) into account, the adjoint system is then defined as (Xie et al., 2014):

mL(t) ∗u† = ∂

∂x

(
F−1

(
γ2
γ1

)
∗u†x

)
+

+
∂

∂z

(
F−1

(
γ1
γ2

)
∗u†z

)
+(u−uo)δ(x− x̌),

which satisfies the conditions (A3), (A4) and (A5).340

In the standard PML formulation, αj = 0, κj = 1 (Berenger et al., 1994). Therefore, the adjoint wave equation with PML

is a particular case of the methodology presented by Xie et al. (2014). Hence, for the 2–D case the convolutions of the adjoint

wave equation (A9)are given by:

L(t) ∗u†= u†tt +(ζ1 + ζ2)u
†
t + ζ1ζ2u

†,

F−1

(
γ2
γ1

)
∗u†x= u†x − (ζ1 − ζ2)

[
exp−ζ1tH(t)

]
∗u†x,345

F−1

(
γ1
γ2

)
∗u†z= u†z − (ζ2 − ζ1)

[
exp−ζ2tH(t)

]
∗u†z,

where H(t) is the Heaviside distributions.

The convolution terms (ζ1 − ζ2)
[
exp−ζ1tH(t)

]
∗u†x and (ζ2 − ζ1)

[
exp−ζ2tH(t)

]
∗u†z may be solved by considering auxiliary

differential equations (Grote and Sim, 2010; Xie et al., 2014). On defining the auxiliary functions as

ϕ†1= (ζ1 − ζ2)
[
exp−ζ1tH(t)

]
∗u†x,350

ϕ†2= (ζ2 − ζ1)
[
exp−ζ2tH(t)

]
∗u†z,

the terms (A11) and (A12) are rewritten as:

F−1

(
γ2
γ1

)
∗u†x = u†x −ϕ†1, F−1

(
γ1
γ2

)
∗u†z = u†z −ϕ†2.
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Therefore, the
:::
The adjoint wave equation (A9) with the employment of PML method reads:

mu†tt +(ζ1 + ζ2)u
†
t + ζ1ζ2u

† =∇2u† +(ϕ†1)x +(ϕ†2)z +(u−uo)δ(x− x̌),355

mu†tt +(ζ1 + ζ2)u
†
t + ζ1ζ2u

† =∇2u† +(ϕ†1)x +(ϕ†2)z +(u−uo)δ(x− x̌),
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

where the auxiliary functions ϕ†1 and ϕ†2 satisfy the respective auxiliary differential equations:

(ϕ†1)t=−ζ1ϕ†1 +(ζ2 − ζ1)u
†
x,

(ϕ†2)t=−ζ2ϕ†2 +(ζ1 − ζ2)u
†
z,360

(ϕ†1)t
::::

=−ζ1ϕ†1 +(ζ2 − ζ1)u
†
x,

:::::::::::::::::::

(ϕ†2)t
::::

=−ζ2ϕ†2 +(ζ1 − ζ2)u
†
z.

:::::::::::::::::::

The adjoint wave equation (A9) may be also written according to the formulation presented in Pasalic and McGarry (2010)

, i.e., CPML formulation. In this case, αj is a positive value, and κj = 1 (Pasalic and McGarry, 2010). Therefore, to write an365

adjoint system with
:::
For

:::
the CPML method, eq. (A9) is rewritten as:

mF−1(s2) ∗u† = F−1

(
1

γ1

)
∗ ∂

∂x

(
F−1

(
1

γ1

)
∗u†x

)
+

+F−1

(
1

γ2

)
∗ ∂

∂z

(
F−1

(
1

γ2

)
∗u†z

)
+(u−uo)δ(x− x̌),

where F−1(s2) ∗u† = utt and, on following Pasalic and McGarry (2010), we have:

F−1

(
1

γ1

)
∗ ∂

∂x

(
F−1

(
1

γ1

)
∗u†x

)
= u†xx +(ϕ†1)x +(ψ†

1)x370

F−1

(
1

γ1

)
∗ ∂

∂z

(
F−1

(
1

γ1

)
∗u†z

)
= u†zz +(ϕ†2)z +(ψ†

2)z.

Therefore, the adjoint wave equation (A16) is cast in the form:

mu†tt =∇2u† +(ψ†
1)x +(ψ†

2)z +ϕ†1 +ϕ†2 +(u−uo)δ(x− x̌),

375
mu†tt =∇2u† +(ψ†

1)x +(ψ†
2)z +ϕ†1 +ϕ†2 +(u−uo)δ(x− x̌),

::::::::::::::::::::::::::::::::::::::::::::::::::
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where the auxiliary functions (ψ†
1, ψ†

2, ϕ†1, ϕ†2) are obtained by using the auxiliary equations given by:

ψ†
1(x, tn−1)= a1(x)ψ

†
1(x, tn)+ b1(x,z)u

†
x(x, tn−1),

ψ†
2(x, tn−1)= a2(x)ψ

†
2(x, tn)+ b2(x)u

†
z(x, tn−1),

ϕ†1(x, tn−1)= a1(x)ϕ
†
1(x, tn)+ b1(x)

[
u†xx(x, tn−1)+ψ†

1,x(x, tn−1)
]
,380

ϕ†2(x, tn−1)= a2(x)ϕ
†
2(x, tn)++b2(x)

[
u†zz(x, tn−1)+ψ†

2,z(x, tn−1)
]
.

ψ†
1(x, tn−1)

:::::::::
= a1(x)ψ

†
1(x, tn)+ b1(x,z)u

†
x(x, tn−1),

::::::::::::::::::::::::::::::::

ψ†
2(x, tn−1)

:::::::::
= a2(x)ψ

†
2(x, tn)+ b2(x)u

†
z(x, tn−1),

:::::::::::::::::::::::::::::::

ϕ†1(x, tn−1)
:::::::::

= a1(x)ϕ
†
1(x, tn)+ b1(x)

[
u†xx(x, tn−1)+ψ†

1,x(x, tn−1)
]
,

:::::::::::::::::::::::::::::::::::::::::::::::

385

ϕ†2(x, tn−1)
:::::::::

= a2(x)ϕ
†
2(x, tn)+ b2(x)

[
u†zz(x, tn−1)+ψ†

2,z(x, tn−1)
]
.

:::::::::::::::::::::::::::::::::::::::::::::::

The adjoint auxiliary equations (A18)–(A21
:::
ψ†
i :::

and
:::
ϕ†i ::::

(i=1,
::
2) are solved recursively in adjoint/backward time t†, which is

reverse with respect to the forward time t.

Again, it is possible to note that the resulting adjoint equations are self-adjoint with respect to the forward problem with

PML .390

:::
and

::::::
CPML.

::::
Both

:::::
PML

:::
and

::::::
CPML

::::::
adjoint

:::::
wave

::::::::
equations

:::::
satisfy

:::
the

::::::::
boundary

:::
and

:::::
initial

:::::::::
conditions

:::::
given

::
by

:::
the

:::
eqs.

:::::::::
(28)–(30).

4.3 Hybrid Absorbing Boundary Condition (HABC)

The HABC methods apply the discrete convex combination (25) to a discrete transitional area of Ωe. As explained in section

3.5, this approach combines the solution of the wave equation with the boundary conditions A1 Clayton’s condition for395

HABC-A1, and Higdon for HABC-Higdon. So, to derive the adjoint equations, let us start by considering boundary conditions

on the truncated boundaries (∂Ωi0 , i0 = 1,2,3)that satisfy the A1 Clayton’s. In this case, the augmented functional is given by

(3).

On integrating it by parts, one arrives at:

∇u[L(u,u†,m)]u′ =∇u[I(m)]u′ −
∫
τ

∫
Ω

(
mu†tt −∇2u†

)
·u′ dVdt+B,400

where
:::
On

:::::::::
employing

:::
the

:::::::
HABCs

::::::::
methods, the adjoint wave equation is defined by (5), reaching ∇u[L(u,u†,m)]u′ = B. On

adopting
:::::
which

:::::::
satisfies

:
the boundary condition at the free surface (A4) , and zero initial conditions of the forward and adjoint

16



variables, it yields:

∇u[L(u,u†,m)]u′ =−
∫
τ

∫
∂Ωi0

[
−u†(∇u′)+∇u†u′

]
·ndSdt.

In the truncated boundaries, ∂Ωi0 , A1 Clayton’s boundary condition reads405

1

c

∂u′

∂t
+∇u′ ·n= 0,

which implies ∇u′ ·n=−1

c

∂u′

∂t
. Hence, the right side term of eq. (A22) is rewritten as :

−
∫
τ

∫
∂Ωi0

−u†
(
−1

c

∂u′

∂t

)
+
(
∇u†u′

)
·n dSdt.

Next, the integration by parts with respect to time can be applied and
::::
given

:::
by

::::
(29)

:::
and

::::
the

:::::
initial

:::::::::
conditions

:::::
reads

::
as

:::
in

eq. (A22)becomes:410

∂

∂u
[L(u,u†,m)]u′ =−

∫
τ

∫
∂Ωi0

1

c

∂u†

∂t
u′ +

(
∇u†u′

)
·n dSdt,

:::
28).

:::
For

::::::::::
HABC-A1

:::::::
method,

:::
the

:::::::
truncated

::::::::::
boundaries,

:::::
∂Ωi0 ,

:::::
have

::
the

:::::::::
following

::::::::
condition:

:

1

c

∂u†

∂t
+∇u† ·n= 0.

:::::::::::::::::

since u(x,0) = u†(x, tf ) = 0.0 ∀x ∈ Ω is satisfied. Lastly, on imposing
1

c

∂u†

∂t
+∇u† ·n= 0, the extremum

∂

∂u
[L(u,u†,m)]u′ = 0

is then realized.415

The same approach may be employed to obtain the adjoint wave equation in the case where the Higdon boundary condition is

imposed on the truncated boundaries
:::::::
Whereas

:::
for

:::::::::::::
HABC-Higdon,

:::
the

::::::::
boundary

::::::::
condition

::
at ∂Ωi0 . Therefore, the adjoint wave

equation is defined by eq. (5). Also, on imposing the boundary conditionat the free surface (A4), zero initial conditions for the

forward (u) and adjoint (u†) variables, the gradient is reduced to eq. (A22). So, based on Higdon (1986), Higdon’s boundary

condition was proposed by considering the wave propagating outward at an angle of incidence α. In a two-dimensional domain,420

the wave solution was described by u= f(xcosα+ y sinα+ ct). Hence, the generalized boundary condition is

Πp
j=1

(
cos(αj)

(
1

c

∂

∂t
− (n · ∇)

)
u(x, t)

)
= 0,

:
is
::::
read

:::
as:

Πp
j=1

(
cos(αj)

(
1

c

∂

∂t
− (n · ∇)

)
u†(x, t)

)
= 0,

:::::::::::::::::::::::::::::::::::::::
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such that |α| ≤ π

2
for all j. That allows to write ∇u′ ·n=−cosα

1

c

∂u′

∂t
,
:::
The

:::::::::
boundary

::::::::
condition

:::::
above

::
is

::::::
written

::
in

:::::::
general425

::::
form.

:::
In

:::
this

:::::
work,

:::
we

::::::
employ

::
in
::::
both

:::::::
forward

::::
and

::::::
adjoint

:::::
solver,

:::
the

:::::
order

::
2

::::::
(p= 2) and the eq. (A22) as follows:

∂

∂u
[L(u,u†,m)]u′ =−

∫
τ

∫
∂Ωi0

u†
(
cosα

1

c

∂u′

∂t

)
+
(
∇u†u′

)
·ndSdt.

On integrating it by parts in time, the above equation becomes :

∂

∂u
[L(u,u†,m)u′ =−

∫
τ

∫
∂Ωi0

cosα
1

c

∂u†

∂t
u′ −

(
∇u†u′

)
·ndSdt.

As a result of it, on imposing cosα
1

c

∂u†

∂t
−∇u† = 0, the extreme

∂

∂u
[L(u,u†,m)]u′ = 0 is attained and the generalization430

Πp
j=1

(
cos(αj)

(
1

c

∂

∂t
− (n · ∇)

)
u†(x, t)

)
= 0,

may be imposed as boundary conditions on the adjoint wave problem
::::::
angles

:
0
:::
and

::::
π/4.

After setting the adjoint counterparts to A1 Clayton’s and Higdon boundary conditions
::
as

:::::
shown

::
in

:::::::::
Appendix

::
A3, the adjoint

HABC approach is completed using a similar process of forward problem. In summary, once the adjoint is solved inverse in

time, assume u†(x, t+∆t) is known at instant t+∆t in all the extended Ω domain, update it to u†(x, t) using the usual Adjoint435

Acoustic Wave Equation over Ω, then construct the auxiliary functions u†k(x, t) for each region, from AM to A1, applying the

A1 or Higdon conditions for each region. As in the forward problem, we construct each update of the solution to the adjoint

problem, at each region Ak, with a convex combination using a weight ωk,

ũ†(x, t) = (1−ωk)u
†(x, t)+ωku

†
k(x, t), (31)

where ũ†(x, t) will be used as the new u†(x, t) for the next region (Ak−1).440

This derivation shows, once more, the self-adjoint nature of the adjoint problem with HABC-A1 or HABC-Higdon.

5 Computational Framework

The numerical simulations were carried out using the Devito software (Louboutin et al., 2019; Luporini et al., 2018; Kukreja

et al., 2016). According to its own website, Devito is a Python package that combines a domain-specific Language (DSL) and

a full code generation framework. It is especially geared towards the design of highly optimized finite difference kernels, for445

its use in inverse problems. It makes use of SymPy to allow symbolic definition of operators at a high-level notation, and then

it generates optimized code that is automatically tuned to specified computer architectures.

5.1 Coding framework

In general, symbolic computation is a powerful tool, as it allows users to build complex solvers in only a few lines of high-

level code. However, symbolic computation is usually impractical, from a computational performance point of view, for most450
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complex applications. On the other hand, considering the compilation of a high-level symbolic solver into a highly optimized

low-level code, with adjustable stencil discretization at run-time, one should be able to develop computationally efficient

methods, reducing the coding development time. This is the underling
:::::::::
underlying goal of Devito. Here we highlight the main

aspects that concern this work with respect to software development in Devito.

In this work, we use the main Devito backend as driver, but implement all methods using only high-level symbolic methods455

available from Devito. This allows methods to be easily modified by interested users. Our implementation is described in

details in the ABC Devito tutorials, available in the master branch of Devito 1.

Due to the simplicity of working with symbolic equations, the code development can be accomplished with minor modifi-

cations of existing codes in Devito for typical acoustic wave propagation. We highlight in Figure 5.2 the main implementation

characteristics. The differential operators have a syntax related to their original structures, such as dt, dt2, dx, dz, Laplace,460

for instance. Their corresponding Finite Difference approximations (Fornberg, 1988) can then be picked by the user among

many available, or custom designed, schemes for each operator. An important resource of Devito for ABCs is the possibility

of partitioning the domain of interest into subdomains, to which distinct attributes can be assigned.

The creation of space-dependent (Function), space-time dependent (Timefunction) and other types of fields is done as a

pre-processing step. It amounts to setting the properties linked to that field, such as, for instance, spatial order, temporal order,465

staggering type, floating number type, among other specific properties of each field.

The term op described in Figure 5.2 represents the time evolution operator for a given set of symbolic equations, and is

where all the backend compilation, optimization, and running of Devito takes place. At this point, a user defines a number of

time-steps and its size (dt). In that operator, one places the elements called stencils, which represent the differential equations

that are applied to each particular subdomain. Furthermore, the op carries the natural boundary conditions (bc), forcing terms470

(src_term) and information about the receivers (rec_term).

::
An

:::::::::
important

:::::::
resource

::
of

::::::
Devito

:::
for

:::::
ABCs

::
is

:::
the

:::::::::
possibility

::
of

:::::::::
partitioning

:::
the

:::::::
domain

::
of

::::::
interest

::::
into

::::::::::
subdomains,

::
to
::::::
which

::::::
distinct

::::::::
attributes

:::
can

:::
be

::::::::
assigned.

:::
The

:::::::::
additional

:::::
PDE’s

:::::::::
originated

:::::
from

::
the

::::::
ABCs

:::::::
methods

:::::
PML,

::::::
CPML

::::
and

:::::::
HABC’s

:::::
were

:::::
solved

::::
only

::
in

:::
the

::::::::
extended

:::::::
domain

::::
(blue

::::::
region)

:::
as

::::::::::
exemplified

::
in

:::::
Figure

::
1,
::::::::::
considering

::::
their

:::::::::
particular

::::::::
structure.

::
In

:::
the

::::
case

::
of

::::::::
Damping,

:::::
PML,

:::
and

::::::
CPML

::::::::
methods,

:::
the

::::
pure

::::::::
Acoustic

::::
Wave

::::::::
Equation

::::
was

:::::
solved

::
in
:::
the

:::::
main

::::::
domain

::::::
(white

:::::::
domain),

::::
and475

::
the

::::::::
modified

::::::::
Acoustic

:::::
Wave

::::::::
Equation,

:::
that

:::
is,

:::
the

:::::::
equation

:::
that

::::::::
includes

:::::::
auxiliary

::::::::
functions

::::::
and/or

:::::::
damping

:::::::::
functions,

::
as

::::
well

::
as

:::
the

::::::::
equations

:::
for

:::
the

::::::::
auxiliary

::::::::
functions,

:::
are

::::::
solved

::::
only

:::
in

:::
the

::::::::
extension

:::::
(blue

::::::
region)

:::::
where

::::
they

::::::
really

:::
are

:::::::
required.

:::
In

::
the

::::
case

:::
of

:::::::
HABC’s

::::::::
methods,

::
as

:::
we

:::::::
showed

::::::
before,

:::
we

::::::
solved

:::
the

::::
pure

:::::::
Acoustic

:::::
Wave

::::::::
Equation

::::
over

:::
all

:::
the

:::::::
domains

::::::
(white

:::
and

::::
blue

:::::::
region),

:::
but

:::
the

::::::::
additional

:::::::::
equations

:::
for

:::
the

:::::::::
boundaries

:::
are

::::::
solved

::::
only

::
in

:::
the

::::::::
extension

:::::::
domain

::::
(blue

:::::::
region),

::
to

:::
be

::::
later

::::::::
combined

::::
with

:::
the

:::::::
original

:::::::
solution

::::::
through

::
a
::::::
convex

:::::::::
procedure,

::
as

::::
was

:::::::::
previously

::::::::
described.

::::
The

:::::::::
possibility

::
of

:::::::
creating480

::::::
specific

::::::::::
subdomains

::::::
allows

::
us

::
to

::::
save

::::
time

::::
and

:::::::
memory

:::
for

:::
the

:::::::::::
computations.

:

1PML Jupyter notebook example: nbviewer.org/github/devitocodes/devito/blob/master/examples/seismic/abc_methods/03_pml.ipynb

19

nbviewer.org/github/devitocodes/devito/blob/master/examples/seismic/abc_methods/03_pml.ipynb


5.2 Computational performance

Devito uses Python as frontend, to allow ease of code development, and C/C++ as backend language for optimized computa-

tional runtime. Architecture dependent optimizations are possible, and parallel distribution of task also. To date, Devito allows

parallelization with OpenMP (DEVITO_LANGUAGE=openmp), MPI (DEVITO_MPI=n, where n is the number of nodes) and485

some GPGPU compilation support.

In this work, simulations have been executed on the Mintrop HPC cluster, at the University of São Paulo. The computational

executions were carried out on an AMD node, which has dual sockets AMD EPYC 7601 clocked at 2.2 GHz with 64 cores and

512GB of memory DDR4.

In FWI executions, the sources of shot waves
:::::::::
shot-waves

:
ran in parallel with computing library Dask (docs.dask.org/en/490

latest/), where the number of tasks was equal to the number of sources. OpenMP-only was activated to solve the partial

differential equations (PDEs) in parallel in the Devito framework.
:::
The

:::::::::
executions

::::
were

:::::::::
performed

:::
by

::::
using

::
C
::::::::
compiler

:::::
GCC

:::::
8.3.0.

Computational performance (wall-clock run time and memory usage) was measured using the Dask diagnostic performance

tool.495
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Acoustic Wave Equation with PML

Input Parameters

– Velocity Model

– Domain Properties

– Sub-domain Properties

– Damping Properties

– Frequency Peak

– Source Properties

– Receivers Properties

Devito Data Objects

– u= T imefunction

– vel = Function

– dampx = Function

– dampz = Function

– ϕ1 = T imefunction

– ϕ2 = T imefunction

– src=RickerSource

– rec=Receivers

– src_term= src.inject

– rec_term= rec.interpolate

PDE’s Equation with PML method

pde1 = u.dt2− vel2(u.laplace)

pde2 = u.dt2+ (dampx + dampz)u.dt+ dampxdampzu− vel2(u.laplace+ϕ1.dx+ϕ2.dz)

pde3 = ϕ1.dt+ dampxϕ1 − vel2(dampz − dampx)u.dx

pde4 = ϕ2.dt+ dampzϕ2 − vel2(dampx − dampz)u.dz

Stencil for PDE’s

stencil1 = [Eq(u.forward,solve(pde1,u.forward), subdomain= grid.subdomains[sub1] ]

stencil2 = [Eq(u.forward,solve(pde2,u.forward),subdomain= grid.subdomains[sub2]]

stencil3 = [Eq(ϕ1.forward,solve(pde3,ϕ1.forward),subdomain= grid.subdomains[sub3]

stencil4 = [Eq(ϕ2.forward,solve(pde4,ϕ2.forward),subdomain= grid.subdomains[sub4]]

Natural ABC for PDE

bc= [Eq(u[t+1,0,z],0.),Eq(u[t+1,nptx− 1,z],0.),Eq(u[t+1,x,nptz− 1],0.),Eq(u[t+1,x,0],u[t+1,x,1])]

Devito Operator: op=Operator([stencil1, stencil2 ]+ src_term+ bc + [ stencil3 , stencil4 ]+ rec_term)

Devito Propagator: op(time= number of steps, dt=∆t)

Devito Compiler: GCC - Clang - Intel

Figure 4. Example of logical implementation of PML method in the Devito coding framework. The diagram is similar to that of the original

Devito development paper (Louboutin et al., 2019), but we highlight in blue boxes the kind of changes required for a PML implementation.
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(a) (b)

(c) (d)

Figure 5. Velocity models: (a) circle; (b) horizontal layers; (c) part of Marmousi; (d) 2D SEG/EAGE. The red points illustrate the source

positions, and the green points illustrate the receiver positions.

6 Analysis of ABCs

In this section, we assess the performance of the ABCs methods on the forward and adjoint wave equations. In the literature,

analyses of ABCs are usually limited to the homogeneous velocity model (Gao et al., 2017; Grote and Sim, 2010; Liu and Sen,

2012). Also, to the best of our knowledge, those conditions have not yet been assessed for their role in the adjoint problem. In

the present work, we propose to do precisely that: to evaluate ABCs for heterogeneous velocity models and to do so for the500

adjoint problem, as well.

The objective is to carry out the ABCs analysis for the usual setup adopted in a FWI problem, e.g., on considering hetero-

geneous velocity models. These are illustrated in Figure 5, they are respectively referred to as circle, horizontal layers, part

of Marmousi (Martin et al., 2006) and a 2D SEG/EAGE salt (Aminzadeh and Brac, 1997). The placement of receivers and

sources follows the usual configuration adopted in the literature to run a FWI case (Virieux and Operto, 2009). That is, sources505

and receivers located closer to the free surface. Tables 1 present the numerical setup that was used to run the analyses of both

forward and adjoint solutions with the ABCs.
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Velocity models Part of Marmousi

Physical domain size Lx = 5.0Km, Lz = 3.5Km

Total time t= 6.4s

Source number (ns) 5

Receiver number (nr) 350

Source positions [x,z](m) [(100+ i× 960),0.125], i= 0, ...,ns

Receiver positions [x,z](m) [(100+ i× 48),0.225], i= 0, ...,nr

Mesh spacing (m) ∆x=∆z = 10m

Velocity models Circle and Horizontal layers

Physical domain size Lx = Lz = 1Km

Total time t= 1.0s

Source number (ns) 3

Receiver number (nr) 100

Source positions [x,z](m) [(100+ i× 266),20], i= 0, ...,ns

Receiver positions [x,z](m) [(100+ i× 9.8),30], i= 0, ...,nr

Mesh spacing (m) ∆x=∆z = 10m

Velocity models 2D SEG/EAGE salt

Physical domain size Lx = 8.0Km, Lz = 3.5Km

Total time t= 6.4s

Source number ((ns)) 8

Receiver number (nr) 550

Source positions [x,z](m) [(100+ i× 960),0.2], i= 0, ...,ns

Receiver positions [x,z](m) [(100+ i× 15),0.5], i= 0, ...,nr

Mesh spacing (m) ∆x= 15m, ∆z = 10m

Table 1. Setup used in the ABCs analyses.

The reference fields used in all tests are
:::::::::
evaluations

::
of

:::
the

::::::
ABCs’

:::::::::::
effectiveness

::
in
::::::::::
attenuating

:::
the

:::::::::
reflections

::::
used

::::::::
reference

::::
fields

:
designed to keep boundary reflections from ever reaching the actual domain of interest. To achieve this, the computational

domain for the reference solution is extended, and the simulated time is set in such a way that neither the forward nor the510

backward waves have enough time to reach the outermost boundaries. Figures 6 and 7 show the reference solutions of the

forward and adjoint solvers, respectively. In none of the cases, the waves have had time to reach the truncated boundaries
:
,

∂Ωi0 , i0 = 1,2,3
::
as

::::::::
illustrated

:::
in

:::::
Figure

::
1. Therefore, the reference fields that are used as a base for comparisons are free of

reflections. These extended regions should not be confused with the absorbing layers used for the boundary schemes tested

here. The goal of this particular very large extended region is solely to define adequate reference solutions with no inbound515

reflected waves. The quantitative error evaluation is
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:::
The

::::::::
reference

::::::::
solutions

::::
used

:::
to

:::::::
evaluate

:::
the

::::::
ABCs’

:::::::::::
effectiveness

::
in

::::::::::
attenuating

:::
the

:::::::::
reflections

:::
are

:::::::
referred

::
to

::::
here

:::
as

:::
the

:::::::
accuracy

:::::::::
references

:::
and

:::::
these

::::
will

::
be

::::
used

::
to

::::::::
compute

:::
the

:::::::::
quantitative

:::::
error,

:
given by the expression

E(sref ,s) =
||sref (x, tf )− s(x, tf )||2

||sref (x, tf )||2
, (32)

which computes the relative error of the forward/adjoint solution (u/u†) using ABC, with the corresponding one in the reference520

field on the physical (inner) domain of interest (Ω0). The variables sref (x, tf ) and s(x, tf ) represent respectively the
:::::::
accuracy

reference solution and that which has made use of a particular ABC. The value tf is the final time of simulation.

(a) (b)

(c) (d)

Figure 6. Reference solutions of the forward wave equation (u): (a) circle velocity model at t= 1s; (b) horizontal layers velocity model at

t= 1s; (c) part o Marmousi velocity model at t= 6.4s; (d) 2D SEG/EAGE salt velocity model at t= 6.4s. The regions inside the red square

are the physical domains, with the red lines indicating the boundaries (∂Ω0), and the regions outside are the extended domains.

The ABCs were applied to domain extensions defined in terms of the physical domain length in x direction, lx = |xF −xI |.
The extension width lw was set as a percentage p of lx, i.e., lw = (p/100)×Lx. Moreover, the same extension lw applies to

the depth of the domain, in the z direction. The range of p was taken to be 1< p < 20. Previous works (Gao et al., 2017; Liu525

and Sen, 2018), have taken the number of points in the domain extension pne, instead, as a measure of its size. Then, pne

was picked between 5% and 10% of the number of points in the physical domain. Yet, that also meant an extension between

5% and 10% of the original domain length, since square domains with uniform grid spacing were usually adopted to carry out

the analyses (Gao et al., 2017; Liu and Sen, 2018). Therefore, the range of domain extensions here is consistent with that of

previous works.530

To exemplify the choice of lw, consider the domain of the circle velocity model (plotted in Figure 5(a)). In this case,

lx = 1Km and, at p= 2, the width lw = (p/100)× lx = (2/100)×1Km= 20m. At p= 2, the extended domain has the width

lw = 20m in x and z directions, which means pne = 2 for the mesh grid ∆x=∆z = 10m.
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(a) (b)

(c) (d)

Figure 7. Reference solutions of the adjoint u† wave equation related to the velocity models: (a) circle velocity model at t= 1s; (b) horizontal

layers at t= 1s; (c) part o Marmousi velocity model at t= 6.4s; and (d) 2D SEG EAGE salt at t= 5s. The regions inside the red square are

the physical domains, with the red lines indicating the boundaries (∂Ω0), and the regions outside are the extended domain.

In the extended domain, the velocity model c was built by employing a constant extrapolation of the physical values of c in

the boundary points x ∈ [xI ,xF ] and z = zF , x= xI and z ∈ [zI ,zF ], and x= xF and z ∈ [zI ,zF ].535

6.1 Forward Wave Equation

As a first step, a fixed lw and various frequency peaks f of a Ricker wavelet are considered for an error analysis. The extended

domain width was chosen to keep the major portion of the curves log10E(uref ,u) below 1, where E(uref ,u) is given by eq.

(32).

Figure 8 depicts log10E(uref ,u)× f . In essence, it shows that the frequency peak bears on the effectiveness of the ABCs540

methods. One notices in Figs. 8 (c) and (d) that, for more realistic velocity models (part of Marmousi and 2D SEG/EAGE

salt), the error grows with f for the PML, CPML and HABC-Higdon. For simpler models such as the circle and the horizontal

layers, the error also exhibits a slight growth, but only for the PML and CPML methods. It is also clear in Fig. 8 that the

HABC-Higdon incurs smaller errors. For the more realistic models, PML and CPML have gotten closer to HABC-Higdon.

Whereas the damping method consistently exhibits the highest errors.545

In order to ascertain whether similar behavior would be seen for different sizes of domain extension, the next test assesses

the ABCs performance as a function of lw. On accounting for the previous evidence of the peak frequency f effects upon

performance, this test only includes the more realistic models, namely, the part of Marmousi and the 2D SEG/EAGE salt.

Figure 9 depicts log10E(uref ,u) as a function of p, and the lw thereof. The errors decrease as p increases. Once again, the

relative errors grow with f for PML, CPML, and HABC-Higdon alike. This behavior is observed in both Marmousi and 2D550
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Figure 8. Error curves of the forward solution (u) with respect the frequency peak f of Ricker wavelet. The analyses considered the wave

solutions for the velocity models: circle (a); heterogeneous model built with horizontal layers (b); part of Marmousi model (c); 2D SEG/EAGE

salt velocity model (d).

SEG/EAGE salt velocity models. On the other hand, the errors decrease as f grows, for the Damping method. The Damping

and HABC-A1 errors approximate those of the other ABCs (PML, CPML and HABC-Higdon) as f grows, especially for the

part of Marmousi model. Figure 9 (a) shows the PML and CPML errors much closer to each other. Whereas in 2D salt model,

Figure 9 (b) shows PML lower error than that of the CPML. In all cases, the HABC-Higdon incurs errors that are either similar

or smaller than those of the PML and CPML, while those of the Damping method are the highest.555

6.2 Adjoint Wave Equation

The previous section presented analyses of the ABCs’ performance in the context of the forward wave equation. Here, we

consider their performance in the adjoint wave equation, which is referred to as the backward problem.

The adjoint forcing term is given by d= (uobs −u)δ(x− x̌). In that expression, uobs represents the observed, recorded,

data from the true velocity model, whereas u stands for an initial velocity model— henceforth termed guess velocity model.560

Any nonzero difference between them, and the forcing term, d, will give rise to a non-trivial solution. Hence, in the analysis
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Figure 9. Error curves of the forward solution (u) with respect to p (percent of Lx) for different peak of frequency f0. The analyses considered

the wave solutions for the velocity models: (a) part of Marmousi model; (b) 2D SEG/EAGE salt.
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Figure 10. Guess
::::
Initial

:::::
guess

::
of velocity model: (a) part o

:
of

:
Marmousi

:::::
(linear

:::::
initial

::::
guess

::::::
model); (b) circle and horizontal layers velocity

models
::::::
(constant

:::::
initial

::::::
velocity

::
of

:::::::::
2.5Km/s); and (c) 2D SEG/EAGE salt

::::::
(constant

:::::
initial

::::::
velocity

::
of

:::::::
3Km/s).
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that follows, uobs is based on the models shown in Figure 5 (true velocity), while u is computed from the models shown in

Figure 10 (guess velocity).

The following steps are taken to assess the adjoint ABCs performance: A reference adjoint solution is computed in the

reference enlarged domain, to avoid spurious reflections; next, adjoint solutions subject to the various ABCs are computed, and565

their errors with respect to the
:::::::
accuracy reference are evaluated by eq. (32). Figure 11 shows the curves of log10E(u†ref ,u

†)×f .

In 2D SEG/EAGE velocity model, the PML, CPML and HABC-Higdon errors grow with f . Somewhat surprisingly, the errors

get closer than that of the Damping method, for higher values of f , as shown in Fig. 11 (d). In circle velocity model, Fig. 11 (a)

shows only the PML and CPML errors growing with f. In several cases, HABC-Higdon errors are either close or smaller than

the PML errors. Figure 12 presents error curves with respect to the domain extension parameter p, for distinct frequency peaks570

f . In all cases, the error diminishes as p increases. For part of Marmousi velocity model, Figure 12 (a) shows the PML, HABCs

and Damping errors dropping as f grows, whereas CPML errors rise with f . For 2D SEG/EAGE, Figures 12 (b) shows the

ABCs errors going up with f .
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Figure 11. Error curves of the adjoint solution u† with respect to peak of frequency. The tests consider the wave solutions for the velocity

models: (a) circle; (b) heterogeneous model built with horizontal layers; (c) part of Marmousi model; and (d) 2D SEG/EAGE salt.

Similar to the forward problem, the frequency peak f bears on the adjoint ABCs’ effectiveness, as well. Moreover, the

HABC-Higdon error has shown to be either smaller than or close to that of the PML. It also appears that the CPML has not575
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Figure 12. Error curves of the adjoint solution u† with respect to p (percent of Lx) for different frequency peaks. The tests consider the wave

solutions for the velocity models: (a) part of Marmousi model; and (b) 2D SEG/EAGE salt.

been quite effective in the adjoint problem. That can be noted especially for the part of Marmousi velocity model, where its

errors are the highest for higher frequency peaks f .

::
In

::::::::::
conclusion,

:::
the

::::::
adjoint

:::::::
problem

::::::::::
experiences

:::
its

::::
own

:::::::
spurious

:::::::::
boundary

:::::::::
reflections,

:::
as

::::
well

::
as

:::::
those

:::::
from

:::
the

:::::::
forward

:::::::
solution,

:::::
which

:::
are

::::::
carried

::::
over

::::
into

:::
the

::::::
adjoint

:::::::
solution

:::
via

:::
the

:::::::
external

::::::
forcing

:::::
term.

:::
The

:::::
latter

:::::::
depends

::
on

:::
the

:::::::
forward

:::::
wave

::::::
solution

:::
(u)

::::::
stored

::
in

:::
the

::::::::
receivers,

::
as

:::
can

:::
be

::::::
verified

::
in
:::
the

::::::
adjoint

::::::::
equation

:::::
shown

:::
in

::
eq.

::::
(1).580

6.3 Computational cost: memory usage and time of simulation

Given the above diversity of ABC characteristics, a question naturally arises as to their computational costs and memory usage.

This section addresses precisely those topics. To that end, the range 1≤ p≤ 20 was adopted to run the forward solver, subject

to ABCs. Part of Marmousi was the chosen velocity model for the experiments, with the setup shown in Table 1. Section 5.2

describes the settings, as libraries and machines, used in the computational performance measures.585

Table 2 shows the average wall-clock runtime of simulations and the memory usage of a
:::::::::::
computational

:
reference case, which

used homogeneous Dirichlet boundary conditions (A3), and no ABCs were employed. That is, the tests were performed in the

physical domain Ω0 only, without any extensions. Such case is henceforth referred to as the no-ABC case, and it is used as a

reference for comparison with
:::::::::::
computational

::::::::
reference

::
to

:::::::
evaluate

:::
the

::::::
growth

::
of

:::
the

:::::::
memory

:::::
usage

::::
and

:::::::::
wall-clock

::::
time

::
of

:::
the

cases that are subjected to the various ABC methods.590

Figures 13(a) and 13(b) present results of such comparison, in the form of a relative increase in percentage of the time of

simulation tg and memory usage mg of the ABCs, as compared to the no-ABC reference. Figure 13(a) shows that the growth

of memory usage associated with the Damping method remains below 5% within the whole range of domain extensions, p.
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Peak of memory usage (GB) time of simulation (s)

0.36 16.6
Table 2. Computational cost related to the execution of the forward solver when there is no employment of any ABCs methods. The velocity

model was part of Marmousi with the settings shown in Table 1.
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Figure 13. The percent growth of memory usage (a) and time of simulation (b), as compared to the no-ABC case. The measures are related

to the execution of the forward solver. The velocity model was part of Marmousi with the settings shown in Table 1.

However, as noticed in Figures 14(a) and 14(b), curves of log10E(uref ,u)×mg and log10E(uref ,u)×tg presents the highest

errors when the Damping method is employed.595

The CPML method is far more expensive, due to the number of additional variables to be solved: at p≈ 1, Figures 13(a)

and 13(b) show the memory usage increasing more than 10%, while time of simulation grows more than 80%. On evaluating

log10E(uref ,u)×mg and log10E(uref ,u)× tg , Figures 14(a) and 14(b) show that the CPML errors are close to the PML

errors, but the CPML computational performance has been more expensive than the PML.

The HABCs methods are more expensive than the Damping, but they have shown to attain lower values of mg and tg than600

those of the CPML and PML. In all cases, HABC-Higdon requires more time and memory usage than HABC-A1. However,

Figures 14(a) and 14(b) depict the errors of HABC-Higdon smaller than that HABC-A1 errors for p > 1. Also, for p > 1,

HABC-Higdon demands less wall-clock time and memory usage than that of PML and CPML, whereas its performance in

decreasing the reflections (measured by log10E(uref ,u)) has been similar.

7 Analysis of ABCs in a FWI Problem605

Taking into account the effectiveness plus computational time and memory usage, one observes that HABC-Higdon is a proper

choice to be employed in an FWI execution. However, the Damping method has presented time of simulation and memory

usage much smaller than the other ABCs. Besides that, the PML method is commonly employed in FWI works (Abubakar
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Figure 14. Analyses of log10E(uref ,u)×mg (a), and log10E(uref ,u)× tg (b). The measures are related to the execution of the forward

solver. The velocity model was part of Marmousi with the settings shown in Table 1, and the peak of frequency f0 = 5Hz.

et al., 2009; Asnaashari et al., 2012; Aghamiry et al., 2019; Ben-Hadj-Ali et al., 2011). Therefore, this section proposes to

compare numerical results and the computational cost in FWI using Damping, PML and HABC-Higdon.610

The FWI applications take the Marmousi as the true model. True receivers signals are obtained in the
:::::::
accuracy reference

field, where the domain was extended to avoid spurious reflections.

The setup used to run this FWI case is presented in Table 3. The Marmousi velocity model and the initial model are re-

spectively illustrated in Figures 16 (a) and (b). The first case evaluates the ABCs performance in FWI for a fixed peak of

frequency f0 = 7Hz.
:::
The

::::::::::
simulations

:::::
were

:::::::
executed

:::::
using

::::
the

::::::::
time-step

::
of

:::::
0.001

::::::::
seconds.

:
A sub-sampling approach with615

ratio
::::::::
sampling

::::
ratio

::
of

:
r = 5 (which meets

:::
was

:::::::::
employed,

:::::
which

:::::::
satisfies

:
the Nyquist criterion ) was employed

::
for

::::
peak

:::
of

::::::::
frequency

:::::::::
f0 = 7Hz

:::
and

::::::::
time-step

::
of

:::::
0.001

:::::::
seconds. The search algorithm has been the L-BFGS-B (Byrd et al., 1995), where

the stop condition was the number of iterations. The extended domain width lw was set according to Kaltenbacher et al. (2013),

i.e., lw =max(c)/f = 4.7/7≈ 0.67Km (equivalent to p≈ 4).

Figure 15 shows the misfit and the error of the velocity model Ec of the FWI runs. In particular, the error Ec was computed620

by the expression:

Ec =
||ctrue − ccomp.||2

||ctrue||2
,

where ctrue is the true velocity model, and ccomp is the computed velocity model provided by the FWI run. To evaluate Ec,

the velocity models ctrue and ccomp were both defined in the same mesh setup.

On comparing the performance of the HABC-Higdon to that of the PML, the results in Figures 15 show smaller values of625

I(m) and Ec for the former. Furthermore, Table 4 shows that the percent growth of memory usage and the wall-clock time

related to the HABC-Higdon required significant less time and a slightly small memory usage compared with the PML. The

reason for this better performance is basically due to the fact that the HABC-Higdon does not require additional variables and

equations to be solved, which incur in both added computational time and memory usage. Therefore, it is proper to conclude

that HABC-Higdon has shown better overall performance compared to PML.630
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Velocity models Marmousi

Physical domain size Lx = 17.0Km, Lz = 3.5Km

Mesh spacing ∆x=∆z = 10m

Total time t= 5s

Source number (ns) 40

Receiver number (nr) 850

Sources positions [x,z](m) [(100+ i× 420),0.125], i= 0, ...,ns

Receiver positions [x,z](m) [(100+ i× 20),0.225], i= 0, ...,nr

Table 3. Setup used to carry out the numerical FWI simulations, which are used to compute the velocity models that are then matched with

Marmousi.

Comparing the HABC-Higdon with respect to the Damping scheme, we note that the damping scheme with the same

damping layer size as used in the HABC-Higdon (lw = 0.67Km) is considerably faster and uses less memory (see Table 4).

This is mainly due to the computational overhead of HABC-Higdon having to successively apply boundaries conditions in

nested domains, with added memory use due to a few auxiliary variables used in this nesting procedure. However, Figure 15

shows that I(m) and Ec of the HABC-Higdon (with lw = 0.67Km) are lower than those of the Damping, with the Damping635

scheme requiring a much larger damping layer to reduce the error. Particularly in Fig. 15 (b), it is clear that, even on increasing

lw, the Damping error Ec is still higher than that of the HABC-Higdon. Moreover, Table 4 shows that the percent growth of

wall-clock time of simulation and memory usage of the Damping method with lw = 2.5Km is significantly larger than that of

the HABC-Higdon results with lw = 0.67Km. Therefore, HABC-Higdon advantages seem twofold, in that it combines a good

performance in mitigating spurious reflections with a relatively low computational cost.640
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Figure 15. Comparisons of the misfit values I(m)/I0(m) (a) and of the velocity model errors Ec/(Ec)0 (b) for velocity model computation

that is then matched with Marmousi, where I0(m) and (Ec)0 are the values obtained at the first iteration.
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ABC method Time Memory

Damping (lw = 0.67Km) 14.6% 25.2 %

Damping (lw = 2.5Km) 94.6% 112%

PML (lw = 0.67Km) 108% 29.2%

HABC-Higdon (lw = 0.67Km) 44% 27%
Table 4. The percent growth of wall-clock time and RAM memory usage, as compared to the no-ABC case (lw = 0.0Km). The measures

are related to a source of a single shot wave of the FWI execution for the velocity model that is matched with Marmousi. In this case, the

execution of FWI with no-ABC required 75 seconds of wall clock time, and 5GB of memory usage.

(a) True model

0.0 km 5.0 km 10.0 km 15.0 km

0.0 km

1.0 km

2.0 km

3.0 km 1.8
2.4
3.0
3.6
4.2

Ve
lo
cit

y 
[k
m
/s
]

(b) Initial model

0.0 km 5.0 km 10.0 km 15.0 km

0.0 km

1.0 km

2.0 km

3.0 km 1.6
2.4
3.2
4.0

Ve
lo
cit

y 
[k
m
/s
]

(c) Computed model - HABC-Higdon

Figure 16. Velocity models comparisons.

A second case considers the peak of frequency f0 = 15Hz and applies the multiscale approach in frequency (Bunks et al.,

1995). The numerical setup is displayed in Table 3. The cut of frequencies are fc = 3Hz, fc = 5Hz and fc = 8Hz. The ex-

tended domain choice was based in the peak of frequency f0 = 15Hz. Therefore, the extended domain had lw =max(c)/f =

4.7/15≈ 0.32Km (equivalent to p≈ 2). The initial velocity model used in the FWI executions is displayed in Figure 16(b),

and r = 4 was set in the sub-sampling approach .645

::::
(also

::::::::
satisfying

:::
the

:::::::
Nyquist

::::::::
criterion

:::
for

::::
peak

:::
of

::::::::
frequency

::::::::::
f0 = 15Hz

::::
and

::::::::
time-step

:::::
0.001

::::::::
seconds).

:
Figures 17 and 18

present the misfit and the error of the velocity model. Once again, FWI with the Damping methods has shown the worst

performance, the misfit values and the velocity errors are the highest. FWI executions with HABC-Higdon and PML have

presented similar performance. Differences are observed in the velocity errorsEc, Figure 18(a) shows smaller errors associated

to HABC-Higdon for cut of frequency fc = 3Hz. Whereas for fc = 5Hz and fc = 8Hz, Ec associated to the PML method650

has been smaller.

Once again, on evaluating the performance in mitigating the reflections and the computational cost that is presented in

Table 5, one verifies the HABC-Higdon as a proper choice to be employed in an FWI execution.
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:::::
Figure

:::::
16(c)

:::::
shows

:::
the

:::::::::
computed

:::::::
velocity

::::::
models

:::::
when

:::
the

:::::::::::::
HABC-Higdon

:::
was

:::::::::
employed.

::::::::
However,

::::
FWI

:::::::::
executions

:::::
were

::::::::
performed

:::
for

:::
all

::::
ABC

::::::::
methods.

:::
The

:::::::::
computed

:::::::
velocity

::::::
models

::::
were

::::::
similar

::::::
mainly

:::::
when

:::::
PML,

::::::
CPML,

::::
and

::::::
HABCs

::::::::
methods655

::::
were

:::::::
applied.

::::
FWI

:::::
with

:::
the

:::::::
damping

:::::::
method

::::
was

:::::
more

:::::::
affected

:::
by

:::
the

:::::::::
reflections

:::::::::
originating

::
in
::::

the
::::::::
truncated

::::::::::
boundaries.

::
In

:::
this

:::::
case,

:::
the

::::
field

::
of

:::
the

:::::::::
computed

:::::::
velocity

:::::
model

::::
was

:::
the

:::::::
furthest

::::
from

:::
the

:::::::::
Marmousi

::::::
model.

:::::::::
Regarding

:::
the

::::::::::
quantitative

:::::::::::
comparisons,

:::
the

::::::::
computed

:::::::
velocity

:::::
model

::::::
errors

::::
(Ec)

::::::
related

::
to

:::
the

::::::::::::
HABC-Higdon

:::::
have

:::::::
remained

:::
the

::::::::
smallest.
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Figure 17. Comparisons of the misfit values I(m)/I0(m) for velocity model computation that is then matched with Marmousi, where the

peak of frequency is f0 = 15Hz and multiscale approach in frequency (Bunks et al., 1995) is employed. I0(m) is computed at the first

iteration, which is the minimal misfit value given by the employment of the Damping, HABC-Higdon and PML methods.

8 Conclusions

This work evaluates the effectiveness of the ABCs methods in mitigating spurious boundary reflections, by employing a setting660

that is usually adopted in FWI applications. The analyses were carried out for the forward and adjoint wave equations, and our

findings clearly show that the adjoint problem also experiences spurious boundary reflections. Indeed, that should be expected,

owing to the hyperbolic character those equations share with their physical counterparts. In view of such evidence, we have
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Figure 18. Comparisons of the misfit values Ec/(Ec)0 for velocity model computation that is then matched with Marmousi, where the peak

of frequency is f0 = 15Hz and multiscale approach in frequency (Bunks et al., 1995) is employed. (Ec)0 is computed at the first iteration,

which is the minimal velocity error given by the employment of the Damping, HABC-Higdon and PML methods.
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Figure 19. Velocity model computed by the FWI execution with HABC-Higdon and a multiscale approach (Bunks et al., 1995).

formally derived adjoint boundary conditions that correspond to each of the ABCs. This formulation of forward and adjoint

problems, along with their corresponding ABCs, have been extensively tested to assess the effectiveness of the latter. A number665

of application cases has been run for heterogeneous velocity models, ranging from the simplest models to realistic ones.

Code development was carried out in the domain specific language (DLS
::::
DSL) computational framework, Devito, which

allows an ease of implementation of the absorbing conditions described here. Furthermore, these schemes are readily available
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ABC method Time memory

Damping (lw = 0.32Km) 13.3% 12.3%

PML (lw = 0.32Km) 94.6% 14.9%

HABC-Higdon (lw = 0.32Km) 65% 13.2%
Table 5. The percent growth of wall-clock time and RAM memory usage, as compared to the no-ABC case (lw = 0.0Km). The measures

are related to a source of a single shot wave of the FWI execution with the multiscale approach, for the velocity model that is matched with

Marmousi. It this case, the execution of FWI with no-ABC required 75 seconds of wall clock time, and 6.11GB of memory usage.

in the Devito repository (see Devito tutorials on ABCs) to be used in more realistic problems, and they may be adapted to

three-dimensional problems by means of symbolic operations, alone.670

Analyses of the ABCs’ effectiveness in the forward and adjoint problems have shown that the PML and HABC-Higdon

are more effective for both of them. On the other hand, the Damping is the least efficient method in attenuating reflections.

Figures 17 and 18 depict it as being less effective than the HABC-Higdon, even when an effort is made to improve matters, by

increasing the size of the domain extension. The CPML method has presented higher errors than the PML and HABC-Higdon,

and it has not kept a pattern, with different effectiveness on the forward and adjoint problems. For instance, Figure 9 shows675

smaller errors for the CPML than for the HABC-A1 and Damping methods. Yet, for the adjoint problem, Figure 12(a) shows

CPML errors to be higher than those of the Damping, as the peak of frequency f increases.

On evaluating the computational cost of ABCs methods, HABC-Higdon has shown the best performance, since its errors

are either close to or smaller than those of the PML in several cases, and its computational cost is lower than the PML, or

Damping with larger extensions. A similar conclusion may be drawn for the FWI applications, where the HABC-Higdon has680

shown to require less memory usage and wall-clock time than the FWI with PML method. On accounting for computational

cost and effectiveness, the tests have indicated that the HABC-Higdon also performs better than the Damping method. To

be more specific, Table 4 shows the percent of growth of memory usage and wall-clock time of the Damping method to be

higher than those of HABC-Higdon, when the extended domain was increased from lw = 0.67Km to 2.5Km. In such case,

the HABC-Higdon with lw = 0.67Km was more effective in mitigating reflections than the Damping method with lw = 2.5.685

Regarding the extension to 3–D problems, previous works (Grote and Sim, 2010; Xie et al., 2014) on PML methods did

not report differences in attenuation effectiveness, on going from 2–D to 3–D domain. Owing to the symmetric nature of the

acoustic wave propagation, we also expect the effectiveness of the ABCs in 3–D problems to be similar to those shown here.

The computational cost, however, may be considerably different, which should, in principle, raise the differences between

them. The computational costs in the 3–D applications may be estimated by using data from Tables 4 and 5. For instance, take690

the computational cost from Table 5 as a basis, with the third additional dimension, the y direction of length of ly , which is

discretized for finite differences for a grid spacing of ∆y. In this case, the growth of computational costs of an FWI application

(and memory usage) becomes at least ly/∆y times larger than those of the 2–D using the no-ABC case, damping, and HABC-

Higdon. However, with the Damping scheme requiring a larger extension region, the memory savings of the HABC-Higdon

in 3–D problems become even more evident than in the 2–D. With both Damping and HABC-Hybrid schemes, no additional695
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variables or equations are required, on going from 2 to 3 dimensions, whereas the PML does entail two additional PDEs in that

case. This makes the rise in computational costs of the PML even higher when one adds the third dimension, when compared

to the corresponding cases of the no-ABC or the HABC-Higdon, as can be seen in Tables 4 and 5.

To conclude, while
:::::
While this work has adopted synthetic velocity models to generate the true seismogram data in the FWI

problems, our finds
:::::::
findings

:
regarding the ABCs are expected to hold for real seismograms just as well, since the spurious700

reflections arise on the computational solver, where artificial outer boundaries are imposed. Hence, they are just as prone to

exhibit spurious reflections,
:
as the above tests have shown. To the best of our knowledge, the effects the ABCs may have upon

the adjoint problem, and on the FWI thereof, have not yet received attention in the literature.In addition to that, this work

contributes to implementing further options of ABCs in Devito,
::
In

:::::::
addition,

:::
the

:::::::
velocity

::::::
model

::::::::
represents

:
a
:::::::
medium

::::::
where

:::
the

::::
wave

::::::::::
propagates.

:::::
Thus,

::
the

:::::::
velocity

::::
field

::::::
affects

:::
the

:::::
angle

::
of

::::::::
incidence

::
at

:::::
which

:::
the

::::
wave

:::::::
reaches

:::
the

:::::::
truncated

::::::::::
boundaries.

::::
The705

:::::
ABCs

::::
have

::
a

::::
good

:::::::::::
performance

:::::
when

::
the

:::::::::
incidence

:::::
angle

:
is
::::::
closer

::
to

:::
the

::::::
normal

::::::::
direction

::
to

:::
the

::::::::
truncated

::::::::
boundary,

:::
but

::::
lose

::::
their

::::::::::
effectiveness

::
at
::::::::
glancing

:::::
angles

:::
of

::::::::
incidence,

:::
i.e.

:::::
closer

::
to
:::
90

::::::
degrees

:::::::::::::::
(Gao et al., 2017)

:
.
::
In

::::::::
principle,

::::
then,

::::
any

::::::::
particular

:::::
model

:::::
poses

:::
its

::::
own

:::
set

::
of

:::::::::
challenges

::
to

:::::
those

::::::::::
techniques.

:::::
Here,

:::
we

:::::::
consider

::::::
widely

::::
used

:::::::
models,

:::::
such

::
as

::::::::::
SEG/EAGE

::::
and

::::::::
Marmousi

::::::
model,

::
as

::::::::
examples

::
of

:::::::
realistic

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chi et al., 2014; Sun and Demanet, 2020; Zhu et al., 2022; Buchatsky and Treister, 2021)

:
.710

::::
Since

::::
the

:::::
ABC

:::::::::::
formulations

::::::::
presented

:::::
here

:::
are

::::::::
available

:::
for

:::::::
general

:::::
wave

:::::::::
equations

::::
(e.g.

:::::::::::::::::::
elastic/viscouacoustic),

::::
the

:::::::
methods

:::
can

:::
be

::::::
applied

:::
for

:::::::
different

:::::::
physics

::::::::
problems

::
of

:::::
wave

::::::::::
propagation.

:::::::::::::::::::::::::
Komatitsch and Tromp (2003)

:::::::
verified

:::
that

:::::
PML

::::::::
condition

::
is

:::::::
efficient

:::
for

::::
both

::::::::
pressure

:
(
:
P
:
)
:::
and

:::::
shear

::
(
:
S)

::::::
waves.

:::
In

::
an

::::::::::
anisotropic

::::::::
medium,

:::::::::::::
Dimitri (2007)

::::::
showed

::::
that

:::
the

:::::
CPML

::::::::
methods

:::::
were

:::::::
efficient

::
to
:::::::

absorb
:::
the

::::::::::::
quasi-pressure

:::::
wave

::::
and

:::
the

::::::::::
quasi-shear

:::::
wave.

::::
The

::::::::::
HABC-A1 and presents

an HABC approach based on the Higdon method Higdon (1986), that has shown to be more effective, and computational715

more efficient, than the well-know and used PML method
::::::::::::
HABC-Higdon

:::
are

:::::
based

:::
on

:::
A1

::::::::
Clayton’s

::::
and

::::::
Higdon

::::::::::
conditions,

::::::::::
respectively.

:::::::::::::::::::::::
Engquist and Majda (1977)

:::
and

:::::::::::::
Higdon (1991)

::::::::
evaluated

:::
the

:::::::::::
effectiveness

:::
of

:::
the

::::::
ABCs

:::::::
methods

:::
for

::
P

:::
and

::
S

:::::
waves.

:::
So,

:::::
while

:::
not

::::::
shown

::::
here,

:::
the

:::::
ABCs

::::::::
presented

::
in
::::
this

::::
work

::::::
should

::
be

::::
able

::
to

::::::::
attenuate

:::
the

:::::::
spurious

:::::::::
reflections

::::::::
generated

::
in

::
the

::::::::
truncated

:::::::::
boundaries

:::
for

:::::
other

::::::
physics

::::::::
problems.

:::::::::::
Furthermore,

:::::::
previous

::::::
works

:::::::::::::::::::::::::::::::::::::::::::::::::
(Gao et al., 2017; Engquist and Majda, 1977; Higdon, 1991)

:::::::
indicated

::::
that

:::
the

::::::
angle

::
of

:::::::::
incidence

::
in

::::::
which

:::
the

::::::
waves

:::::
reach

:::
the

:::::::::
truncated

:::::::::
boundaries

::::
has

:::::
more

:::::
effect

:::
on

:::
the

:::::::
ABCs’720

::::::::::
performance

::::
than

:::
the

:::::
wave

::::::::::
propagation

::::::::::
properties.

:::::::::
Therefore,

:::
we

::::::
expect

::::
that,

:::::::
overall,

:::
our

::::::
results

::::::
should

::::
hold

:::
for

::::::::
different

::::::
physics,

:::
as

::::
long

::
as

::::
they

:::
still

::::
rely

::
on

:::::
wave

::::::::::
propagation

:::::::
physics.

Code availability. The reproducible code can be founded in the following Zenodo directory https://zenodo.org/record/6003038#.YgKWl3XMJhF.

Data availability. The velocities data sets used in this work were created synthetically (Circle) or obtained in a open data set repository

(Marmousi (Martin et al., 2006) and 2D/SEG EAGE (Aminzadeh and Brac, 1997) https://wiki.seg.org/wiki/Open_data.)725
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Appendix A:
:::::::::::
Formulation

::
of

:::
the

:::::::
adjoint

::::::::
equations

::::
This

:::::::
appendix

::::::::
presents

:::
the

::::::::::
formulation

::
of

:::
the

::::::
adjoint

::::::::
equations

:::
for

::::
each

::::::
ABCs

::::::::
methods.

::
To

:::
do

:::
so,

:::
the

:::::::::
augmented

:::::::::
functional

:
is
::::::::::
considered,

::
in

:::::
which

:::
the

::::::::::
constraints

::
are

:::::
given

:::
by

:::
the

::::
wave

::::::::
equation

:::
and

:::
by

:::
the

::::::::
equations

::::
used

::
in

::::::
ABCs.

::
As

::::::
shown

::::::
before,

:::
to

:::::
apply

:::
any

:::
of

:::
the

:::::
ABCs

:::
of

::::::
interest

:::
of

:::
this

::::::
study,

:::
the

:::::::
domain

:::::::::
considered

::
is

::::
built

:::
as

:::
the

:::::
union

:::
of

:::
the

:::::::
physical

::::::
domain

:::
Ω0::::

and
:::
the

:::::::
extended

:::::::
domain

:::::::::::
Ωe =Ω/Ω0.

::
In

:::::
FWI,

:::
the

::::
goal

:
is
:::

to
::::::::
minimize

:::
the

::::::::
objective

::::::::
functional

:::::
I(m)

:::
on730

::
the

::::::::
physical

::::::
domain

:::
Ω0.

:::::::::
Therefore,

:::
the

::::::::
objective

:::::::::
functional

::::::
remains

:::::
being

:::::::
defined

::
by

:::
the

:::::::::
expression

:::
(1),

:::
but

::::
now

:::::::
defined

::::
over

:::
Ω0.

A1
::::::::
Damping

:::
The

:::::::
acoustic

:::::
wave

::::::::
equation

::::
with

:::::::
damping

::::::::::
mechanism

::
is

:::::
given

:::
by

:::
(6).

::::
The

::::::::::::
corresponding

::::::
adjoint

::::::::
equations

::::
are

:::::::
obtained

:::
on

:::::::
pursuing

:::
the

:::::
same

:::::::
sequence

::::::::
presented

:::
by

::::::::::::
Plessix (2006).

::::
So,

::
the

::::
first

::::
step

::
is

::
to

::::
write

:::
the

:::::::::
augmented

:::::::::
functional

::::::::::
considering

:::
the735

::::::::
equations

::::::
defined

::
in

:::
the

:::::::
physical

::::
and

::
in

:::
the

:::::::
extended

::::::::
domains:

:

L(u,m,u†) = I(m)−
∫
τ

∫
Ω

u† ·
(
mutt −∇2u− ζut − f

)
dVdt,

:::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
where

:::::::::
u= u(x, t)

::::
and

::::::::
ζ = ζ(x).

:

::
In

:::
the

::::::
current

:::::
case,

:::
the

::::
wave

::::::::
equation

::::
with

::::::::
damping

:::::::::
mechanism

::
is
:::::::
defined

::
in

:::
the

:::::::
domain

::
Ω

::::::::
illustrated

:::
by

:::
the

::::
blue

::::::
region

::
in

:::
Fig.

:::::
1(b).

::
To

::::::
obtain

:::
the

::::::
adjoint

::::::::
equation,

::::
their

:::::
initial

:::
and

:::::::::
boundary

:::::::::
conditions,

:::
the

:::::::
gradient

:::::::::::::::

∂

∂u
[L(u,u†,m)]u′

::
is
:::::::
written

::
as740

:::::::
follows:

lim
ϵ→0

L(u+ ϵu′,u†,m)−L(u,u†,m)

ϵ
=∇u

::::::::::::::::::::::::::::::::::

[L(u,u†,m)
:::::::::

]u′ =∇u
::::::

[I(m)
::::

]u′ −
∫
τ

∫
Ω

u† ·
(
mu′tt −∇2u′ + ζu′t

)
dVdt,

::::::::::::::::::::::::::::::::::

:::::
where

::
u′

::
is

:
a
:::::::::::
perturbation

::
of

:::
the

:::::::
variable

::
u.

:::::::::
Integration

::
by

:::::
parts

:
is
:::::::
applied

::
as

::::::
shown

::::::
below:

∇u
::

[L(u,u†,m)
:::::::::

]u′ =∇u
::::::

[I(m)
::::

]u′ −
∫
τ

∫
Ω

(
mu†tt −∇2u† − ζu†t

)
·u′ dVdt+B,

::::::::::::::::::::::::::::::::::::::

745

:::::
where

:::
the

:::::::
gradient

::::::::::
∇u[I(m)]u′

::
is

:::::
given

:::
by:

:

∇u
::

[I(m)
::::

]u′ =

∫
τ

∫
Ω

(u−uo)u′δ(x− x̌)dVdt.

:::::::::::::::::::::::::::::

(A1)

:::
The

::::
term

::
B

::
is

:::
the

::::::
bilinear

:::::::::::
concomitant,

:::::
which

:::
the

:::::::::
integration

:::
by

::::
parts

::::::
entails.

:::::
After

:::::::
applying

:::
the

::::::::::
Divergence

::::::::
Theorem,

::
B

:::::
reads:

B = B(u′,u†,m) =

∫
τ

∫
∂(Ω)

[
(−u†∇u′ +∇u†u′)

]
·ndSdt+

∫
Ω

[
m
(
u† ·u′t −u†tu

′
)
− ζu†u′

]
dV

∣∣∣∣∣∣
tf

t0

.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

750
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:::
The

::::::
adjoint

:::::
wave

::::::::
equation,

::::
their

:::::
initial

:::
and

::::::::
boundary

::::::::::
conditions,

:::
are

:::
then

:::::::
defined

::
by

::::::::
imposing

::::::::::::::::::::
∇u[L(u,u†,m)]u′ = 0.

::::
That

:::::
means

:::::::
defining

:::
the

::::::
adjoint

::::::::
equation

::
as

:::::::
follows:

mu†tt −∇2u† + ζu†t = (u−uo)δ(x− x̌) ∀x ∈ Ω.
:::::::::::::::::::::::::::::::::::::::

(A2)

::::
Also,

:::
on

::::::::::
considering

:::
the

::::::::
boundary

:::
and

:::::
initial

:::::::::
conditions

::
of

:::
the

:::::::
forward

:::::
wave

::::::::
equation,

:::
and

:::
by

::::::::
imposing

:::
the

::::::
adjoint

::::::::
boundary

::::::::
conditions

:::::
given

:::
by:

:
755

u†
:
= 0, ∀x ∈ ∂Ωi, i= 1,2,3,
::::::::::::::::::::::::

(A3)

∂u†

∂z
:::

= 0, ∀x ∈ ∂Ω4,
::::::::::::::

(A4)

:::
The

:::::::
bilinear

::::::::::
concomitant

::
is

:::::::
reduced

::
to:

:

B = B(u′,u†,m)
:::::::::::::

=

∫
Ω

[
m
(
u† ·u′t −u†tu

′
)
− ζu†u′

]
dV

∣∣∣∣∣∣
tf

t0

.

::::::::::::::::::::::::::::::::::

:::
The

::::::::::::
homogeneous

::::::
initial

:::::::::
conditions

::
of

:::
the

::::::::
forward

::::
wave

::::::::
equation

:::::
drive

:::
the

:::::::
domain

:::::::
integral

::
to
:::::

zero,
::::
that

::
is

::::::::
evaluated

:::
at760

::::::
t0 = 0.

::
In

:::::
order

::
to

::::::::
eliminate

::::
the

::::::::::::
corresponding

:::::::
domain

::::::
integral

::::
for

::::::
t= tf ,

:::
one

::::::
could

::::::
impose

:::
the

:::::::::
following

::::::::::::
homogeneous

::::
final

::::::::
conditions

:::
on

:::
the

::::::
adjoint

:::::::
variable:

:::
u†:

:

u†(x, tf ) = u†t(x, tf ) = 0
::::::::::::::::::::

(A5)

::
To

:::::
make

:::
the

::::::
algebra

:::::::
simpler

::::
with

::::::
respect

::
to

:::::
these

:::::::::
conditions,

:::
one

:::::
could

::::::
define

::
an

::::::
adjoint

::::
time

:::::::
variable

::
in

:::
the

::::
form

:

t† ≡ tf − t ⇒ dt† =−dt ⇒
::::::::::::::::::::::::::::

765

⇒

 t= 0 ⇔ t† = tf

t= tf ⇔ t† = 0
⇒ u†(x, tf ) = u†t(x, tf ) = 0 .

::::::::::::::::::::::::::::::::::::::::::::::::

::
As

::
a

:::::
result

::
of

:::
this

::::::
change

::
of

:::::::::
variables,

:::
the

::::::
adjoint

::::
wave

::::::::
equation

::::
(A2)

::::::::
becomes,

::
in

::
its

::::
final

:::::
form:

:

mu†tt −∇2u† − ζu†t = (u−uo)δ(x− x̌) ∀x ∈ Ω,
:::::::::::::::::::::::::::::::::::::::

(A6)

:::::
which

:::::
means

::
it
::
is

:
a
::::::::::
self-adjoint

:::::
wave

:::::::
equation.

:

A2
:::::
PML

::::
and

::::::
CPML770

:::
The

:::::
work

:::
of

::::::::::::::
Xie et al. (2014)

:::::::
presents

:
a
::::::::::::

mathematical
:::::::::::
development

:::
to

:::::
obtain

::::
the

::::::
adjoint

:::::
wave

:::::::
system

::::
with

:::
the

::::::::
refereed

::::::::::::::::::::::
complex-frequency-shifted

::::::::::
unsplit-field

:::::::
perfectly

:::::::
matched

:::::
layer

::::::::::::
(CFS-UPML).

::
In

:::::::
essence,

:::
the

::::::
Fourier

::::::::
transform

::::::::::::::::::
û=

∫∞
−∞ estu(x, t)dt

::
of

:::
the

:::::::::::
displacement

::::::
vector,

::
u,

:::::::
satisfies

::
the

:::::::::
Helmholtz

::::::::
equation:

:

s2û=∇(c2∇û)
:::::::::::::

(A7)
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:::::
where

:::::
s ∈ C.

:::::
Also,

:::
one

::::::::
considers

:::
the

:::::::::
transform

::
of

::::::
spatial

:::::::::
coordinates

:::
x:775

x̃ :=

∫
Ω

γ(x)dV.
:::::::::::::

:::::
where,

:::
for

:::
the

::::
2–D

:::::
case,

:::::::::::::::::::::::::::::
γ(x) = [γ1,γ2]

T = [γ1(x),γ2(x)]
T

:
is
:::
the

::::::::
complex

::::::::
stretching

::::::::
function,

γj = κj +
ζj

αj + is
, j = 1,2 for 2–D case

::::::::::::::::::::::::::::::::::::

:::
and

::::::::
i=

√
−1.

:

:::
The

::::
next

::::
step

:::::::
consists

::
in

:::::::::::
reformulating

:::
eq.

::::
(A7)

::
in

::::
time

:::::::
domain.

:::
In

:::
the

:::
2–D

:::::
case,

::
it

::::
leads

:::
to:780

mL(t) ∗u=
::::::::::

=
∂

∂x

(
F−1

(
γ2
γ1

)
∗ux

)
+

∂

∂z

(
F−1

(
γ1
γ2

)
∗uz

)
+ f,

::::::::::::::::::::::::::::::::::::::::::::::

(A8)

:::::
where

::::::::::::::::::
L(t) = F−1(s2γ1γ2),::::

F−1
::
is

:::
the

::::::
inverse

:::::::
Fourier

::::::::
transform,

::::
and

:
∗
:::::::::
represents

:
a
:::::::::::
convolution.

::
On

::::::
taking

:::
the

:::::
wave

:::::::
equation

::::
(A8)

::::
into

:::::::
account,

:::
the

::::::
adjoint

::::::
system

::
is

::::
then

::::::
defined

::
as

:::::::::::::::
(Xie et al., 2014):

:

mL(t) ∗u† = ∂

∂x

(
F−1

(
γ2
γ1

)
∗u†x

)
+

::::::::::::::::::::::::::::::::

785

+
∂

∂z

(
F−1

(
γ1
γ2

)
∗u†z

)
+(u−uo)δ(x− x̌),

:::::::::::::::::::::::::::::::::::::

(A9)

:::::
which

:::::::
satisfies

:::
the

::::::::
conditions

:::::
(A3),

:::::
(A4)

:::
and

:::::
(A5).

::
In

:::
the

:::::::
standard

:::::
PML

::::::::::
formulation,

:::::::
αj = 0,

::::::
κj = 1

:::::::::::::::::::
(Berenger et al., 1994).

:::::::::
Therefore,

:::
the

:::::::
adjoint

::::
wave

::::::::
equation

::::
with

:::::
PML

:
is
::
a
::::::::
particular

::::
case

::
of

:::
the

:::::::::::
methodology

::::::::
presented

:::
by

:::::::::::::
Xie et al. (2014)

:
.
::::::
Hence,

:::
for

:::
the

::::
2–D

::::
case

:::
the

:::::::::::
convolutions

:::
of

:::
the

::::::
adjoint

::::
wave

::::::::
equation

::::
(A9)

:::
are

:::::
given

:::
by:790

L(t) ∗u†
:::::::

= u†tt +(ζ1 + ζ2)u
†
t + ζ1ζ2u

†,
::::::::::::::::::::::::

(A10)

F−1

(
γ2
γ1

)
∗u†x

:::::::::::::

= u†x − (ζ1 − ζ2)
[
exp−ζ1tH(t)

]
∗u†x,

::::::::::::::::::::::::::::::
(A11)

F−1

(
γ1
γ2

)
∗u†z

:::::::::::::

= u†z − (ζ2 − ζ1)
[
exp−ζ2tH(t)

]
∗u†z,

::::::::::::::::::::::::::::::
(A12)

:::::
where

::::
H(t)

::
is
:::
the

:::::::::
Heaviside

:::::::::::
distributions.

:::
The

::::::::::
convolution

:::::
terms

::::::::::::::::::::::::
(ζ1 − ζ2)

[
exp−ζ1tH(t)

]
∗u†x:::

and
::::::::::::::::::::::::
(ζ2 − ζ1)

[
exp−ζ2tH(t)

]
∗u†z::::

may
:::
be

:::::
solved

::
by

::::::::::
considering

::::::::
auxiliary795

:::::::::
differential

::::::::
equations

::::::::::::::::::::::::::::::::
(Grote and Sim, 2010; Xie et al., 2014).

:::
On

:::::::
defining

:::
the

::::::::
auxiliary

::::::::
functions

::
as

ϕ†1
::

= (ζ1 − ζ2)
[
exp−ζ1tH(t)

]
∗u†x,

::::::::::::::::::::::::::

ϕ†2
::

= (ζ2 − ζ1)
[
exp−ζ2tH(t)

]
∗u†z,

::::::::::::::::::::::::::
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::
the

:::::
terms

::::::
(A11)

:::
and

:::::
(A12)

:::
are

::::::::
rewritten

:::
as:

F−1

(
γ2
γ1

)
∗u†x = u†x −ϕ†1, F−1

(
γ1
γ2

)
∗u†z = u†z −ϕ†2.

:::::::::::::::::::::::::::::::::::::::::::::::

800

::::::::
Therefore,

:::
the

::::::
adjoint

:::::
wave

:::::::
equation

:::::
(A9)

::::
with

:::
the

::::::::::
employment

::
of

:::::
PML

::::::
method

::::::
reads:

mu†tt +(ζ1 + ζ2)u
†
t + ζ1ζ2u

† =∇2u† +(ϕ†1)x +(ϕ†2)z +(u−uo)δ(x− x̌),
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A13)

:::::
where

:::
the

:::::::
auxiliary

::::::::
functions

:::
ϕ†1:::

and
:::
ϕ†2::::::

satisfy
:::
the

::::::::
respective

::::::::
auxiliary

:::::::::
differential

:::::::::
equations:

(ϕ†1)t
::::

=−ζ1ϕ†1 +(ζ2 − ζ1)u
†
x,

:::::::::::::::::::
(A14)

(ϕ†2)t
::::

=−ζ2ϕ†2 +(ζ1 − ζ2)u
†
z,

:::::::::::::::::::
(A15)805

:::
The

::::::
adjoint

:::::
wave

:::::::
equation

:::::
(A9)

::::
may

::
be

::::
also

::::::
written

::::::::
according

::
to

:::
the

::::::::::
formulation

::::::::
presented

:::
in

:::::::::::::::::::::::
Pasalic and McGarry (2010)

:
,
:::
i.e.,

::::::
CPML

:::::::::::
formulation.

::
In

:::
this

:::::
case,

::
αj::

is
::
a
:::::::
positive

:::::
value,

:::
and

::::::
κj = 1

::::::::::::::::::::::::
(Pasalic and McGarry, 2010)

:
.
::::::::
Therefore,

:::
to

::::
write

:::
an

::::::
adjoint

::::::
system

::::
with

::::::
CPML

:::::::
method,

:::
eq.

::::
(A9)

::
is

:::::::
rewritten

:::
as:

:

mF−1(s2) ∗u† = F−1

(
1

γ1

)
∗ ∂

∂x

(
F−1

(
1

γ1

)
∗u†x

)
+

::::::::::::::::::::::::::::::::::::::::::::::

+F−1

(
1

γ2

)
∗ ∂

∂z

(
F−1

(
1

γ2

)
∗u†z

)
+(u−uo)δ(x− x̌),

::::::::::::::::::::::::::::::::::::::::::::::::

(A16)810

:::::
where

::::::::::::::::
F−1(s2) ∗u† = utt::::

and,
::
on

:::::::::
following

:::::::::::::::::::::::
Pasalic and McGarry (2010),

:::
we

:::::
have:

F−1

(
1

γ1

)
∗ ∂

∂x

(
F−1

(
1

γ1

)
∗u†x

)
= u†xx +(ϕ†1)x +(ψ†

1)x
:::::::::::::::::::::::::::::::::::::::::::::::::

F−1

(
1

γ1

)
∗ ∂

∂z

(
F−1

(
1

γ1

)
∗u†z

)
= u†zz +(ϕ†2)z +(ψ†

2)z.

:::::::::::::::::::::::::::::::::::::::::::::::::

::::::::
Therefore,

:::
the

::::::
adjoint

:::::
wave

:::::::
equation

::::::
(A16)

::
is

:::
cast

::
in

:::
the

:::::
form:

:
815

mu†tt =∇2u† +(ψ†
1)x +(ψ†

2)z +ϕ†1 +ϕ†2 +(u−uo)δ(x− x̌),
::::::::::::::::::::::::::::::::::::::::::::::::::

(A17)

:::::
where

:::
the

:::::::
auxiliary

::::::::
functions

::::
(ψ†

1,
:::
ψ†
2,
::::
ϕ†1,

:::
ϕ†2)

:::
are

:::::::
obtained

:::
by

::::
using

:::
the

::::::::
auxiliary

::::::::
equations

:::::
given

:::
by:

:

ψ†
1(x, tn−1)

:::::::::
= a1(x)ψ

†
1(x, tn)+ b1(x,z)u

†
x(x, tn−1),

::::::::::::::::::::::::::::::::
(A18)

ψ†
2(x, tn−1)

:::::::::
= a2(x)ψ

†
2(x, tn)+ b2(x)u

†
z(x, tn−1),

:::::::::::::::::::::::::::::::
(A19)

ϕ†1(x, tn−1)
:::::::::

= a1(x)ϕ
†
1(x, tn)+ b1(x)

[
u†xx(x, tn−1)+ψ†

1,x(x, tn−1)
]
,

:::::::::::::::::::::::::::::::::::::::::::::::

(A20)820

ϕ†2(x, tn−1)
:::::::::

= a2(x)ϕ
†
2(x, tn)+ b2(x)

[
u†zz(x, tn−1)+ψ†

2,z(x, tn−1)
]
.

:::::::::::::::::::::::::::::::::::::::::::::::

(A21)
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A3
:::::::
Hybrid

:::::::::
Absorbing

:::::::::
Boundary

:::::::::
Condition

::::::::
(HABC)

:::
The

::::::
HABC

::::::::
methods

:::::
apply

:::
the

::::::
discrete

:::::::
convex

::::::::::
combination

::::
(25)

::
to

::
a

::::::
discrete

::::::::::
transitional

::::
area

::
of

:::
Ωe.

:::
As

::::::::
explained

:::
in

::::::
section

:::
3.5,

::::
this

::::::::
approach

::::::::
combines

::::
the

:::::::
solution

::
of

::::
the

:::::
wave

:::::::
equation

:::::
with

:::
the

::::::::
boundary

:::::::::
conditions

::::
A1

::::::::
Clayton’s

:::::::::
condition

:::
for

:::::::::
HABC-A1,

::::
and

::::::
Higdon

:::
for

:::::::::::::
HABC-Higdon.

:::
So,

::
to

:::::
derive

:::
the

::::::
adjoint

:::::::::
equations,

::
let

:::
us

::::
start

::
by

::::::::::
considering

::::::::
boundary

:::::::::
conditions825

::
on

:::
the

::::::::
truncated

:::::::::
boundaries

::::::
(∂Ωi0 ,

:::::::::
i0 = 1,2,3)

::::
that

::::::
satisfy

:::
the

::
A1

:::::::::
Clayton’s.

::
In

::::
this

::::
case,

:::
the

:::::::::
augmented

:::::::::
functional

:
is
:::::
given

:::
by

:::
(3).

::
On

::::::::::
integrating

:
it
:::
by

:::::
parts,

:::
one

::::::
arrives

::
at:

:

∇u
::

[L(u,u†,m)
:::::::::

]u′ =∇u
::::::

[I(m)
::::

]u′ −
∫
τ

∫
Ω

(
mu†tt −∇2u†

)
·u′ dVdt+B,

:::::::::::::::::::::::::::::::::

:::::
where

:::
the

::::::
adjoint

::::
wave

::::::::
equation

::
is

::::::
defined

::
by

::::
(5),

:::::::
reaching

::::::::::::::::::::
∇u[L(u,u†,m)]u′ = B.

:::
On

:::::::
adopting

:::
the

::::::::
boundary

::::::::
condition

::
at

:::
the830

:::
free

::::::
surface

:::::
(A4),

::::
and

:::
zero

::::::
initial

::::::::
conditions

:::
of

:::
the

::::::
forward

::::
and

::::::
adjoint

::::::::
variables,

::
it

:::::
yields:

:

∇u
::

[L(u,u†,m)
:::::::::

]u′ =−
∫
τ

∫
∂Ωi0

[
−u†(∇u′)+∇u†u′

]
·ndSdt.

::::::::::::::::::::::::::::::::::::

(A22)

::
In

:::
the

::::::::
truncated

:::::::::
boundaries,

:::::
∂Ωi0 ,

:::
A1

:::::::::
Clayton’s

::::::::
boundary

::::::::
condition

::::
reads

:

1

c

∂u′

∂t
+∇u′ ·n= 0,

::::::::::::::::

:::::
which

::::::
implies

::::::::::::::::
∇u′ ·n=−1

c

∂u′

∂t
.
::::::
Hence,

:::
the

::::
right

::::
side

::::
term

::
of

:::
eq.

::::::
(A22)

:
is
::::::::
rewritten

:::
as:835

−
∫
τ

∫
∂Ωi0

−u†
(
−1

c

∂u′

∂t

)
+
(
∇u†u′

)
·n dSdt.

:::::::::::::::::::::::::::::::::::::

::::
Next,

:::
the

:::::::::
integration

:::
by

::::
parts

::::
with

:::::::
respect

::
to

::::
time

:::
can

::
be

:::::::
applied

:::
and

:::
eq.

:::::
(A22)

::::::::
becomes:

:

∂

∂u
::

[L(u,u†,m)
:::::::::

]u′ =−
∫
τ

∫
∂Ωi0

1

c

∂u†

∂t
u′ +

(
∇u†u′

)
·n dSdt,

:::::::::::::::::::::::::::::::::::

::::
since

:::::::::::::::::::::::::::
u(x,0) = u†(x, tf ) = 0.0 ∀x ∈ Ω

::
is

:::::::
satisfied.

::::::
Lastly,

:::
on

:::::::
imposing

::::::::::::::::::

1

c

∂u†

∂t
+∇u† ·n= 0,

:::
the

:::::::::
extremum

:::::::::::::::::::

∂

∂u
[L(u,u†,m)]u′ = 0

:
is
::::
then

::::::::
realized.840

:::
The

:::::
same

::::::::
approach

:::
may

:::
be

::::::::
employed

::
to

::::::
obtain

:::
the

::::::
adjoint

::::
wave

::::::::
equation

::
in

:::
the

::::
case

:::::
where

:::
the

:::::::
Higdon

::::::::
boundary

::::::::
condition

:
is
::::::::
imposed

::
on

:::
the

::::::::
truncated

::::::::::
boundaries

:::::
∂Ωi0 .

:::::::::
Therefore,

:::
the

::::::
adjoint

:::::
wave

::::::::
equation

::
is

::::::
defined

:::
by

:::
eq.

:::
(5).

:::::
Also,

:::
on

::::::::
imposing

::
the

:::::::::
boundary

::::::::
condition

::
at
:::

the
::::

free
:::::::

surface
:::::
(A4),

::::
zero

:::::
initial

::::::::::
conditions

:::
for

:::
the

:::::::
forward

:::
(u)

::::
and

::::::
adjoint

::::
(u†)

:::::::::
variables,

:::
the

:::::::
gradient

::
is

:::::::
reduced

::
to

:::
eq.

::::::
(A22).

:::
So,

::::::
based

::
on

:::::::::::::
Higdon (1986),

:::::::::
Higdon’s

::::::::
boundary

::::::::
condition

::::
was

::::::::
proposed

:::
by

::::::::::
considering
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::
the

:::::
wave

::::::::::
propagating

:::::::
outward

::
at
:::

an
:::::
angle

::
of

::::::::
incidence

:::
α.

::
In

:
a
::::::::::::::
two-dimensional

:::::::
domain,

:::
the

:::::
wave

:::::::
solution

::::
was

::::::::
described

:::
by845

::::::::::::::::::::::::
u= f(xcosα+ y sinα+ ct).

::::::
Hence,

:::
the

:::::::::
generalized

::::::::
boundary

:::::::::
condition

:
is
:

Πp
j=1

(
cos(αj)

(
1

c

∂

∂t
− (n · ∇)

)
u(x, t)

)
= 0,

::::::::::::::::::::::::::::::::::::::

(A23)

::::
such

:::
that

:::::::
|α| ≤ π

2:::
for

:::
all

:
j.
:::::
That

:::::
allows

::
to
:::::
write

::::::::::::::::::::
∇u′ ·n=−cosα

1

c

∂u′

∂t
,
:::
and

:::
the

:::
eq.

::::::
(A22)

::
as

:::::::
follows:

∂

∂u
::

[L(u,u†,m)
:::::::::

]u′ =−
∫
τ

∫
∂Ωi0

u†
(
cosα

1

c

∂u′

∂t

)
+
(
∇u†u′

)
·ndSdt.

::::::::::::::::::::::::::::::::::::::::::

::
On

::::::::::
integrating

:
it
:::
by

::::
parts

::
in

:::::
time,

:::
the

:::::
above

:::::::
equation

::::::::
becomes

:
:850

∂

∂u
::

[L(u,u†,m)u′ =−
∫
τ

∫
∂Ωi0

cosα
1

c

∂u†

∂t
u′ −

(
∇u†u′

)
·ndSdt.

:::::::::::::::::::::::::::::::::::::::::::::::::

::
As

::
a

:::::
result

::
of

::
it,

::
on

::::::::
imposing

::::::::::::::::::::
cosα

1

c

∂u†

∂t
−∇u† = 0,

:::
the

:::::::
extreme

:::::::::::::::::::

∂

∂u
[L(u,u†,m)]u′ = 0

::
is

:::::::
attained

:::
and

:::
the

::::::::::::
generalization

Πp
j=1

(
cos(αj)

(
1

c

∂

∂t
− (n · ∇)

)
u†(x, t)

)
= 0,

:::::::::::::::::::::::::::::::::::::::

(A24)

:::
may

:::
be

:::::::
imposed

::
as

::::::::
boundary

:::::::::
conditions

:::
on

:::
the

::::::
adjoint

::::
wave

::::::::
problem.
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