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Abstract 13 
We present a methodology that uses gradient boosted regression trees (a machine learning 14 

technique) and a full-chemistry simulation (i.e., training dataset) from a chemistry climate model (CCM) 15 
to efficiently generate a parameterization of tropospheric hydroxyl radical (OH) that is a function of 16 
chemical, dynamical, and solar irradiance variables. This surrogate model of OH is designed to be 17 
integrated into a CCM and allow for computationally-efficient simulation of nonlinear feedbacks 18 
between OH and tropospheric constituents that have loss by reaction with OH as their primary sinks 19 
(e.g., carbon monoxide (CO), methane (CH4), volatile organic compounds (VOCs)). Such a model 20 
framework is advantageous for studies that require multi-decadal simulations of CH4 or multi-year 21 
sensitivity simulations to understand the causes of trends and variations of CO and CH4. To allow the 22 
user to easily target the training dataset towards a desired application, we are outlining a methodology 23 
to generate a parameterization of OH and not presenting an “off the shelf” version of a 24 
parameterization to be incorporated into a CCM.  This provides for the relatively easy creation of a new 25 
parameterization in response to, for example, changes in research goals or the underlying CCM 26 
chemistry and/or dynamics schemes. We show that a sample parameterization of OH generated from a 27 
CCM simulation is able to reproduce OH concentrations with a normalized root mean square error of 28 
approximately 5%, as well as capturing the global mean methane lifetime within approximately 1%.  Our 29 
calculated accuracy of the parameterization assumes inputs being within the bounds of the training 30 
dataset.  Large excursions from these bounds will likely decrease the overall accuracy.  However, we 31 
show that the sample parameterization predicts large deviations in OH for an El Niño event that was not 32 
part of the training dataset, and that the spatial distribution and strength of these deviations are 33 
consistent with the event. This result gives confidence in the fidelity of a parameterization developed 34 
with our methodology to simulate the spatial and temporal responses of OH to perturbations from large 35 
variations in the chemical, dynamical, and solar irradiance drivers of OH. In addition, we discuss how 36 
two machine learning metrics, Gain feature importance and SHAP values, indicate that the behavior of a 37 
parameterization of OH generally accords with our understanding of OH chemistry, even though there 38 
are no physics- or chemistry-based constraints on the parameterization.   39 
 40 
1.0 Introduction  41 

The hydroxyl radical (OH) is the dominant tropospheric oxidant.  It removes numerous species from 42 
the atmosphere, including carbon monoxide (CO) and methane (CH4), which are the largest OH sinks on 43 
a global scale (Spivakovsky et al., 2000;Spivakovsky et al., 1990).  Recent trends in CH4, the second most 44 
important anthropogenic greenhouse gas, can potentially be explained by changes in OH abundance 45 
(Rigby et al., 2017), although changes in emissions are also a likely contributor (Turner et al., 2017).  46 
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Likewise, the large increase in CH4 during 2020 has been attributed to decreases in OH resulting from 47 
COVID-19 related changes in NOX (NOX = NO + NO2) abundance (Laughner et al., 2021).  Understanding 48 
the non-linear chemistry of the drivers of OH and feedbacks among these species is therefore important 49 
for characterizing past and present changes in the atmosphere as well as in projecting future climate 50 
scenarios. 51 

 52 
Chemistry-climate models (CCMs) with detailed chemical mechanisms are used to investigate the 53 

complex, non-linear chemistry between these species and their impacts on the atmosphere (e.g.,Fiore et 54 
al., 2006;Voulgarakis et al., 2015;Gaubert et al., 2017;Holmes, 2018).  The utility of CCMs for this 55 
purpose is limited, however, by the large computational expense of a CCM with a full representation of 56 
O3 – NOX – VOC (Ozone, NOX, Volatile Organic Compound) chemistry combined with the need to model 57 
over decadal time scales in order to let CH4 perturbations fully evolve (Prather, 1996).  Because of this 58 
computational expense, simulations are necessarily limited to a short time frame, performed at coarse 59 
horizontal resolutions, and/or limited in the number of sensitivity runs that can be performed (e.g., Fiore 60 
et al., 2006;Holmes, 2018;Voulgarakis et al., 2015). 61 

 62 
There are several alternatives (i.e., surrogate models) to running a full chemical mechanism that 63 

capture some of the relationship between OH and trace gases, such as CO and CH4, and are less 64 
computationally expensive.  Prescribed OH fields, either static or annually-varying, from a full chemistry 65 
simulation or a climatology have been used for decades to simulate and understand trends in CO and 66 
CH4 in a computationally-efficient way (e.g., Saito et al., 2013;Wang et al., 2004).  However, this method 67 
linearizes CO and CH4 chemistry with OH, preventing the simulation of nonlinear feedbacks in changes in 68 
CO and CH4 on OH, and thus could bias, for instance, interannual CH4 changes (Chen and Prinn, 2006).   69 

 70 
Spivakovsky et al. (1990) developed a parameterization of OH, later updated by Duncan et al. (2000), 71 

that captures many of the nonlinear feedbacks between OH and tropospheric constituents (e.g., CO, 72 
CH4, VOCs) that have loss by reaction with OH as their primary sinks. The method to generate the 73 
parameterization uses higher order polynomials with various chemical species, meteorological variables, 74 
and variables related to solar irradiance as inputs.  The degree of the nonlinear impacts simulated by the 75 
parameterization of OH depends on the method used to populate these inputs. For instance, many of 76 
the meteorological and solar irradiance variables may be provided by the model at run time. The 77 
chemical variables that are not all simulated explicitly in the surrogate model may be provided as 78 
climatological or monthly means from a full chemistry simulation. Duncan et al. (2007a) and Duncan and 79 
Logan (2008) used this parameterization of OH in an atmospheric model of CO to elucidate the causes of 80 
trends and interannual variations in CO from 1988-1997 on regional to global scales as well as those 81 
observed by individual in situ monitors around the world.    82 

 83 
Building on the CO-OH studies of Duncan et al. (2007a) and Duncan and Logan (2008), Elshorbany et 84 

al. (2016) developed the computationally Efficient CH4–CO–OH (ECCOH) chemistry module, which 85 
captures many of the nonlinearities and feedbacks of the CH4-CO-OH system without the computational 86 
expense of a full chemistry simulation.  ECCOH calculates 24-hour averaged OH from a combination of 87 
archived (e.g., multiple VOCs, NOX) and online (e.g., pressure, temperature, cloud albedo) chemical, 88 
meteorological, and solar irradiance variables.  Despite the partial reliance of the parameterization of 89 
OH in ECCOH on archived fields, its strength lies in the ability to calculate OH at a significantly reduced 90 
computational expense (Duncan et al., 2000;Elshorbany et al., 2016).   ECCOH has been successfully 91 
implemented in the NASA Goddard Earth Observing System (GEOS) general circulation model (GCM).   92 

 93 
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Through manipulation of the input parameters (i.e., chemical, meteorological, and solar irradiance 94 
variables) to the parameterization of OH, as well as emissions and dynamics, ECCOH can help 95 
deconvolve the causes of local to global trends and variations in OH, CO, and CH4.  For example, Strode 96 
et al. (2015) used the ECCOH module to investigate the effects of different model biases in GEOS on 97 
simulated OH.  To do this, they performed multiple sensitivity simulations, adjusting tropospheric water 98 
vapor, ozone, and NOx to match satellite observations, to understand the impacts on OH and CH4 99 
lifetime.  Similarly, Elshorbany et al. (2016) investigated the impacts of varying CH4 and CO emissions on 100 
the growth rate of atmospheric methane concentrations through multiple sensitivity runs.  One 101 
limitation of ECCOH in the configuration used in Strode et al. (2015) and Elshorbany et al. (2016), 102 
however, is the difficulty in updating the parameterization to reflect advances in atmospheric chemistry. 103 
 104 

Machine learning algorithms are one potential method to quickly and accurately generate a new 105 
parameterization of OH.  A variety of machine learning techniques, such as neural networks (Nicely et 106 
al., 2017;Nicely et al., 2020;Kelp et al., 2020), ridge regression (Nowack et al., 2018), random forest 107 
regression (Keller and Evans, 2019;Sherwen et al., 2019), and gradient boosted regression trees (GBRTs) 108 
(Ivatt and Evans, 2020;Stirnberg et al., 2020) have been successfully used in atmospheric chemistry 109 
applications. In particular, GBRT models (Elith et al., 2008;Chen and Guestrin, 2016) use an ensemble of 110 
decision trees to predict the value of a target based on multiple inputs and have been used to predict 111 
surface OH using a combination of satellite observations and output from 3-dimensional models (Zhu et 112 
al., 2022).  Decision trees are created sequentially, with each new tree minimizing a cost function based 113 
on the results of the previous tree (Elith et al., 2008;Stirnberg et al., 2020).  Unlike some other machine 114 
learning algorithms, such as neural networks, regression tree methods have easily interpretable metrics 115 
that help highlight the influence of the different input variables (Yan et al., 2016).  These metrics can 116 
help further understanding of the model behavior in ways other machine learning techniques cannot.  117 
GBRT models are also relatively quick to generate and can capture the highly non-linear relationships 118 
that describe tropospheric chemistry (Ivatt and Evans, 2020).   119 

 120 
We present a new method for the efficient generation of a parameterization of OH using GBRTs and 121 

a full chemistry simulation from a CCM, which serves as the training dataset.  We illustrate our method 122 
by generating a parameterization of OH for the ECCOH module (Elshorbany et al., 2016), which captures 123 
many of the nonlinearities and feedbacks of the CH4-CO-OH system, as implemented into the NASA 124 
GEOS GCM. Our methodology allows for the parameterization to be easily and rapidly regenerated in 125 
response to changes in, for instance, the underlying model chemical mechanism (e.g., updates to the 126 
chemical rate constants or absorption cross-sections) or model dynamics, which affect many of the 127 
variables that influence OH (e.g., Anderson et al., 2021).  Likewise, the parameterization can be modified 128 
to include new input variables.  Users can and should retrain the parameterization with datasets that are 129 
appropriate for the intended application.  That is, we are not offering a parameterization for “off the 130 
shelf” use but a methodology by which a user can easily create a parameterization suitable for their 131 
needs.  In Section 2, we outline the methodology used to develop the parameterization of OH, while in 132 
Section 3, we evaluate performance of the parameterization.  Finally, in Section 4, we summarize the 133 
results and discuss implications for scientific research. 134 
 135 
2.0 Description of the Methodology to Generate a Parameterization of OH 136 

In this section, we outline the methodology to generate a parameterization of OH that may be used 137 
in research studies as discussed above.  Specifically, we illustrate the methodology by describing the 138 
creation of a sample parameterization of OH for the ECCOH module that predicts daily averaged OH.  In 139 
Section 2.1, we present the creation of the training dataset, and in Section 2.2, we outline the 140 
methodology used to create the parameterization of OH. 141 
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 142 
2.1  Creation of the Training Dataset for a Parameterization 143 

We created the training dataset using output from a 40-year (1980 -2019) GEOS CCM simulation, 144 
consistent with our intent to integrate the parameterization into the ECCOH modeling framework.  This 145 
simulation, called MERRA2 GMI (https://acd-ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/), was 146 
run in replay mode (Orbe et al., 2017) with MERRA2 (Modern Era Retrospective analysis for Research 147 
and Applications) meteorology (Gelaro et al., 2017) and the Global Modeling Initiative (GMI) chemical 148 
mechanism (Duncan et al., 2007b;Strahan et al., 2007).  Aerosols were calculated with the Goddard 149 
Chemistry Aerosol Radiation and Transport (GOCART) module (Chin et al., 2002;Colarco et al., 2010). 150 
The model was run at a resolution of c180 on the cubed sphere (approximately 0.625° longitude by 0.5° 151 
latitude) with 72 vertical layers.  In this analysis, we use only tropospheric output at daily and monthly 152 
resolutions. The GMI chemical mechanism includes approximately 120 species and 400 reactions, 153 
characterizing the photochemistry of the troposphere and stratosphere. Further simulation details, 154 
including a description of the emissions, are available elsewhere (Anderson et al., 2021;Strode et al., 155 
2019).   156 

 157 
We created a dataset of training targets, representing the full range of simulated OH values, for 158 

each month.  We generate parameterizations for each month instead of one, yearly parameterization to 159 
increase computational efficiency of the generation of the parameterization.  The spatiotemporal 160 
variability in the abundance and emissions of OH drivers on the yearly scale would necessitate a far 161 
larger dataset and more complicated sampling procedures to ensure representativeness of both OH and 162 
the input variables.  As demonstrated in Section 3.0, the adopted monthly approach accurately captures 163 
OH while limiting the size of the training dataset. 164 

 165 
We generated the training dataset using daily averaged data.  For each day of a month, we divided 166 

all simulated tropospheric OH concentrations from the 40-year simulation into 20 equally-sized 167 
percentile bins (i.e., 0 – 5th percentile, 5th – 10th percentile, etc.).  Then, we randomly selected 200,000 168 
values from each bin, resulting in 4,000,000 training targets for each day of the month.  We also 169 
included the maximum and minimum OH values of the entire dataset to represent the full range of 170 
values.  We then combined training targets to form one large dataset with 120,000,000 values (for a 30-171 
day month), encompassing the full range of OH concentrations from each day of the month.  To limit the 172 
size of the training dataset, we then subsampled these targets, again randomly selecting 200,000 values 173 
from equally-sized percentile bins of OH concentration. The procedure resulted in a dataset with 174 
4,000,000 training targets that span all days within a given month.  A schematic of this process is shown 175 
in Figure S1.  We omitted data from 4 years (1985, 1995, 2005, 2015) from the training dataset for 176 
model evaluation and from an additional year, 2016, for an El Niño case study discussed in Section 3.3. 177 
We also created a training dataset for monthly-averaged output, discussed in Sect. 4.0, using an 178 
analogous process. 179 

 180 
Finally, for each OH target, we extracted the inputs for the regression tree parameterization from 181 

the MERRA2 GMI simulation from the corresponding model grid box.  We list parameterization inputs in 182 
Table 1.  The parameterizations of Spivakovsky et al. (2000), Duncan et al. (2007a) and Elshorbany et al. 183 
(2016), along with expert knowledge of OH chemistry, informed our choice of inputs.  The relative 184 
location of a particular OH target is indicated with the latitude and pressure variables.  As discussed in 185 
the next section, NO2 serves as a sufficient proxy for the impact of NOX and NOy on OH, so NO2 is the 186 
only reactive nitrogen species included as an input parameter.  For both ice and water cloud as well as 187 
aerosol optical depths, we include the optical depth above and below each datapoint as separate inputs.  188 
We use aerosol optical depth (AOD) at 550 nm, calculated from the GOCART aerosol module.  We took 189 
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all 27 inputs from the MERRA2 GMI simulation except surface UV albedo, which we took from the Ozone 190 
Monitoring Instrument (OMI) climatology of Kleipool et al. (2008).  191 
 192 
Table 1: Inputs to the machine learning parameterization of OH.  UV Albedo is the value at the surface.  Cloud fraction 193 
is the fraction at a given model level.  C4 & C5 alkanes are one input as they originate from a lumped variable in the 194 
GMI mechanism. 195 

Chemical Inputs Meteorological/Radiative Inputs 
NO2 Formaldehyde (HCHO) Temperature Stratospheric O3 Column 

CO Hydrogen peroxide (H2O2) Cloud Fraction Aerosol Optical Depth above 

CH4 Methyl hydroperoxide 
(CH3OOH; MHP) Latitude Aerosol Optical Depth below 

O3 Acetone (CH3COCH3) UV Albedo Water Cloud Optical Depth above 

Isoprene (C5H8) C4 & C5 Alkanes Water Vapor Water Cloud Optical Depth below 

Propene (C3H6) Ethane (C2H6) Pressure Ice Cloud Optical Depth above 

Propane (C3H8)  Solar Zenith Angle Ice Cloud Optical Depth below 

 196 
While we have used the publicly-available MERRA2 GMI dataset to train the sample 197 

parameterization described in this manuscript, the training data could come from any simulation or 198 
combination of self-consistent simulations that has output of the variables outlined in Table 1.  These 199 
training datasets could come from existing simulations, which would greatly reduce computational 200 
expense, or from a training dataset tailored for the purposes of a given study.  Even though we use 201 
daily-averaged training data for ECCOH, a user could train the parameterization with a dataset at any 202 
temporal resolution in order to make the parameterization compatible with a specific modeling platform 203 
or research goal.  As discussed later, the parameterization performs best when applied to 204 
photochemical environments analogous to those on which it was trained.  Therefore, users should 205 
carefully ensure that the training dataset reasonably encompasses the full range of photochemical 206 
environments necessary for a given sensitivity test or experiment.  For example, as we will discuss 207 
further in Section 4, because the MERRA2 GMI training dataset only covers 1980 – 2018, it is 208 
inappropriate to use this for an application exploring changes in CH4 from the pre-industrial period to 209 
2100.  Instead, a new training dataset covering that time period would be required. 210 
 211 
2.2 Creation of the GBRT Parameterization 212 

While other machine learning methods could likely produce parameterizations with similar 213 
performance as the one we describe here, we use GBRTs because of the speed in training a new 214 
parameterization, their accuracy, and the interpretability of the parameterization itself. We refer to the 215 
GBRT models as parameterizations to prevent confusion when referring to 3-dimensional models.   216 

We used the XGBoost package (Chen and Guestrin, 2016) version 0.81 in Python version 3.6 to 217 
create 12 parameterizations of OH (one for each month), training the parameterizations on the MERRA2 218 
GMI datasets described in Sect. 2.1.  Each parameterization outputs 24-hour averaged OH.  For each 219 
month, we used 80% of the dataset (3.2 million datapoints) for model training and the remainder for 220 
model validation.  In addition, as outlined in-depth in Sections 2.1 and 3.0, we also evaluated the model 221 
on 5 years of data not included in the model training.  Increasing the size of the training dataset did not 222 
improve model performance but did increase model training time, so the training set was restricted to a 223 
size that represented the full ranges of OH values. 224 

 225 
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To maximize parameterization performance while also balancing the potential of overfitting, we 226 
tuned hyperparameters, including the learning rate, the maximum tree depth, and the number of trees.  227 
We chose hyperparameter values that minimized the parameterization normalized root mean square 228 
error (NRMSE) (Eq. 1.) of the training dataset. In Eq. 1, N is the number of samples, y is the MERRA2 GMI 229 
OH, 𝑦" is the parameterized OH, and IQR is the interquartile range of the dataset.  We set the learning 230 
rate, which controls the magnitude of change when adding a new tree, to 0.1, while we varied the 231 
maximum tree depth and number of trees from 6 to 22 and from 10 to 150, respectively.  For both 232 
maximum tree depth and number of trees, NRMSE initially dropped significantly with increasing value, 233 
representing sharp improvement in parameterization performance.  NRMSE values eventually 234 
plateaued, increasing parameterization runtime without noticeably improving performance.  A 235 
combination of a maximum tree depth of 18 and 100 trees balanced performance with model training 236 
and run time. 237 

𝑁𝑅𝑀𝑆𝐸 =	
!!
"
∑ ($%#&$#)$"
#%!

()*
              (1) 238 

We also evaluated inputs into the parameterization to ensure that each did not lead to decreased 239 
performance, finding that no single variable dominates model performance and no variable reduces 240 
performance.  We retrained the parameterization 27 times for July, removing each input successively, to 241 
determine its impact on the NRMSE.  When we applied the resultant models to the July 2005 validation 242 
dataset, the percentage change in the NRMSE generally increased by less than 1%. The small differences 243 
in NRMSE indicate that there are likely variables that provide duplicate information to the 244 
parameterization.  As will be discussed in Sect. 3.2, however, the relative importance of inputs varies by 245 
month, and some variables, though not important on average, have a large influence in specific chemical 246 
environments.  Because of these factors and a desire to use a consistent set of input variables across all 247 
months, we did not remove any inputs from the parameterization as a result of this analysis.   248 

 249 
Finally, we omit NOX and NOy as parameterization inputs because we find that NO2 is sufficient as an 250 

input to capture the impact of reactive nitrogen on OH in the parameterization.  Because of the 251 
importance of NOX in OH production (Spivakovsky et al., 2000;Anderson et al., 2021), we tested 252 
performance by substituting different reactive nitrogen species for NO2 as inputs to the 253 
parameterization. We trained three additional parameterizations, including ones with NOX, NOy (NOy = 254 
NO + NO2 + PAN + 2N2O5 + HNO3 + alkyl nitrates), and the individual NOy species.  Parameterization 255 
performance did not improve noticeably with the inclusion of NOX or the individual NOy species.  256 
Including NOy as a group actually decreased performance.   257 

 258 
3.0 Evaluation of the parameterization of OH for the ECCOH module 259 

We now evaluate the performance of the parameterization of OH for the ECCOH module created 260 
with the machine learning methodology.  In Section 3.1, we compare the OH calculated with the 261 
parameterization to that from the MERRA2 GMI simulation, showing agreement in both local OH 262 
concentrations as well as in global metrics, such as CH4 lifetime (τCH4).  In Section 3.2, we investigate the 263 
parameterization Gain feature importance and SHapley Additive Explanations (SHAP) values to 264 
understand the relative contributions of inputs to parameterization performance and to demonstrate 265 
that, even though there are no physics- or chemistry-based constraints, parameterization behavior 266 
accords with our understanding of OH chemistry.  We explore the ability of the parameterization to 267 
predict OH in response to strong deviations in its drivers from the climatological mean in Section 3.3, by 268 
examining two El Niño events.  Finally, we note that we evaluate an offline version of the 269 
parameterization of OH and not one integrated within the ECCOH framework.  However, the 270 
performance will be similar based on preliminary testing and similarities in implementation to the 271 



 7 

previous parameterization, which has been extensively evaluated (Elshorbany et al., 2016) in the GEOS 272 
GCM. 273 

 274 
3.1 Ability of the parameterization to reproduce modeled OH and global OH metrics 275 

The parameterization is able to reproduce both the spatial distribution and concentration of 276 
daily-averaged OH, although with noticeable errors at high latitudes in the winter hemisphere, which is 277 
unimportant as OH is seasonally low.  Figure 1a shows the fractional difference between OH calculated 278 
with the parameterization and OH from the MERRA2 GMI simulation for July 15, 2005, a date omitted 279 
from the training dataset.  The parameterized and MERRA2 GMI OH fields are shown in Figure S2.  The 280 
OH in Figure 1 has been averaged over the lower free troposphere (LFT), defined as pressures between 281 
the top of the planetary boundary layer (PBL) and 500 hPa.  Agreement is similar throughout the 282 
troposphere, but we highlight this region because of its importance for CH4 and CO loss (Spivakovsky et 283 
al., 2000).  For July 15, there are notable regions of bias, particularly poleward of 30° S where OH is low 284 
(Fig. S2).  While the source of this error is unknown, it could result from a tendency of regression tree 285 
models to have larger bias for lower values (Nowack et al., 2021).  This results in a NRMSE for the entire 286 
troposphere of 13.9% (Fig. 2a).  At higher concentrations, the correlation between the MERRA2 GMI 287 
simulation and the parameterized OH is much tighter than at lower concentrations, although the highest 288 
density at all concentrations is centered around the 1:1 line.  Because the CO and CH4 lifetimes are much 289 
longer than one day, the accuracy of the parameterization on monthly timescales is more relevant to 290 
the applications of the parameterization than an individual day. 291 

 292 
Figure 1: Fractional difference between the parameterized and MERRA2 GMI OH averaged over the LFT (top of the 293 
PBL to 500 hPa) for July 15, 2005 (a) and averaged across all days for July 2005 (b).  Regions with low OH, defined 294 
as a mixing ratio of less than 0.005 pptv, are indicated with stippling. 295 

When we average the daily output to the monthly scale, the parameterization can reproduce 296 
the global OH distribution with little error (Fig. 1-2).  For July 2005, the percentage difference between 297 
the parameterized OH and output from the MERRA2 GMI simulation in the LFT (Fig. 1b) and throughout 298 
the troposphere (Fig. S3) is generally within 10%, outside of the Southern Hemispheric high latitudes, 299 
where it is polar night and OH concentrations are negligible.  The random errors evident in the daily data 300 
in Figure 1a average out on the monthly timescale, resulting in a tight correlation (r2 = 0.996) and a 301 
NRMSE of 4.94% for all tropospheric values (Fig. 2b).  Similar results are found for the July model when 302 
applied to other years (Table S1) and for parameterizations developed for other months (Fig. S3 and S4).  303 
Averaging the daily output over the monthly period yields a better NRMSE by more than a factor of two 304 
over climatology (NRMSE = 11%), defined as the mean OH from the MERRA2 GMI simulation averaged 305 
over 1980 to 2019. 306 

 307 
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 308 
Figure 2: Scatter density plot of tropospheric OH from the MERRA2 GMI simulation plotted against OH calculated by 309 
the parameterization for July 15, 2005 (a).  Panel (b) shows the 24-hour averaged OH output by the parameterization 310 
averaged across all July days for 2005.  Colors indicate the number of data points in each bin.  The r2 of a linear least 311 
squares regression and the NRMSE are also indicated. 312 
 313 

In regions where global CO and CH4 loss are most important, parameterization biases and errors 314 
are low.  For CO and CH4, tropospheric loss to OH maximizes in the LFT in the 0 - 30° latitude band of the 315 
summer hemisphere with near negligible loss in the winter hemisphere polar region (Fig. 3).  The 316 
comparatively large over- and underestimates over Antarctica evident in Figure 1 are irrelevant to the 317 
OH/CO/CH4 cycle because of the low loss rate in this region.  In contrast, in regions where CO and CH4 318 
loss maximize, the parameterization is biased low by only -0.3 to -1.4%.  The normalized absolute error 319 
varies between 2.2% and 4.6% in the tropics and Northern Hemispheric mid-latitudes for all 320 
tropospheric layers (MFT: pressures between 500 and 300 hPa, UFT: pressures between 300 hPa and the 321 
tropopause).  Results are similar for other months. 322 

 323 

 324 
Figure 3: (a) Percentage of total tropospheric CH4 lost to reaction with OH for July 2005 averaged over 30° zonal 325 
mean bins and 4 atmospheric layers is shown by the background colors.  The percentage loss values account for the 326 
mass of each region relative to the total atmospheric mass.  Percentages indicate the normalized mean bias of the 327 
parameterization with respect to the MERRA2 GMI simulation. Statistics for the polar UFT are omitted because low 328 
tropopause heights limit the data amount in these regions.  (b) Same as (a) except for tropospheric CO loss and the 329 
normalized absolute error.  330 

The parameterization is also able to reproduce global mean metrics of OH, such as τCH4, within 331 
1.3% on average.  For each month of 2005, we calculated the global, mean mass-weighted tropospheric 332 
OH as described in Lawrence et al. (2001) and the mean tropospheric τCH4 with respect to OH as 333 
described in Nicely et al. (2020) for the MERRA2 GMI simulation, the parameterization, and the 334 
climatological mean, defined as the average value from the MERRA2 GMI simulation between 1980 and 335 
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2019.  Results for τCH4 are shown in Figure 4, and for mass-weighted OH in Figure S5.  The 336 
parameterization captures the seasonality of the τCH4, with a minimum in boreal summer and a 337 
maximum in boreal winter.  Agreement varies slightly by month, differing by only 0.8% in January and up 338 
to 2.5% in August, although the bias is systematically low for 2005 and the other validation years (Table 339 
S1).  These values are reasonable and much smaller than the inter-model variability often seen in model 340 
intercomparison projects (e.g., Nicely et al., 2020;Voulgarakis et al., 2013). Similar results are found for 341 
the global, mean mass-weighted OH.  The Northern Hemispheric/Southern Hemispheric OH ratio (Fig. 342 
S5) also generally agrees within 0.5% for all months, again with the exception of August.  The 343 
comparatively weaker performance for August is limited to 2005, however, as performance of the 344 
August parameterization in the other validation years (1985, 1995, and 2015) is closer to the 1% 345 
difference shown by the parameterizations for the other months.  The parameterizations present a 346 
significant improvement over the climatological mean, which for 2005, consistently underestimates τCH4 347 
for all months and by up to 6% in March.   348 

 349 

 350 
Figure 4: Global mean methane lifetime with respect to tropospheric OH from the parameterization (green squares) 351 
and MERRA2 GMI (orange circles) for 2005 and the climatological average (black triangles) calculated from MERRA2 352 
GMI for 1980 - 2019.  353 

3.2 Understanding the relative importance of input parameters  354 
While we have demonstrated that the parameterization is able to reproduce OH accurately, it is 355 

also instructive to understand the relative importance the parameterization places on each of the 356 
inputs.  Although this parameterization is not process-based, understanding how the parameterization 357 
responds to different inputs can help determine if the regression tree is responding in a way consistent 358 
with current understanding of OH chemistry, although there are limitations to the information that can 359 
be gleaned from these metrics.  We evaluate the regression tree parameterization using two metrics, 360 
the Gain feature importance as output by the XGBoost package, and SHAP values. 361 
 362 
3.2.1  Investigating the Gain feature importance 363 

The Gain feature importance (Chen and Guestrin, 2016) is a measure of the improvement in model 364 
accuracy achieved from adding branches in the model corresponding to a specific input variable. The 365 
Gain value therefore indicates the relative importance of each input for the model as a whole but not 366 
for individual datapoints.  The Gain values for each input for the January and July models are shown in 367 
Figure 5.  While there are differences between the two months, several features are similar.  Variables 368 
that indicate geographic location (e.g., SZA, latitude, and pressure) and chemical species that have 369 
previously shown to be dominant drivers of OH variability (e.g., NO2, O3, CO) and/or OH proxies (e.g., 370 
HCHO) (Wolfe et al., 2019;Murray et al., 2021) have some of the highest Gain values.  As we show 371 
below, caution should be used in extrapolating results from the Gain values to a process-based 372 
understanding of OH without prior knowledge of its response to chemical and dynamical drivers. 373 

 374 



 10 

 The relative importance of variables that indicate location is consistent with OH chemistry and 375 
previous parameterization studies.  Primary OH production is driven by the photolysis of O3 followed by 376 
the subsequent reaction of the O1D radical, produced from that photolysis, with water vapor (e.g., 377 
Spivakovsky et al., 2000).  Thus, the OH distribution is strongly dependent on SZA, latitude, and 378 
pressure.  This is consistent with the parameterization, where SZA and latitude have the highest Gain 379 
values for both months examined here, as well as with the results of Duncan et al. (2000), who 380 
highlighted the importance of latitude in their parameterization. 381 

 382 
Similarly, the chemical species that are most important for controlling OH distribution on the global 383 

scale also tend to have higher Gain values.  As discussed above, O3 and NOX chemistry is instrumental in 384 
controlling primary and secondary OH production on global scales (e.g., Spivakovsky et al., 385 
2000;Anderson et al., 2021), consistent with their comparatively high Gain values.  HCHO, an oxidation 386 
product of the reaction of OH with many VOCs, has been found to be a suitable proxy for OH in the 387 
remote atmosphere (Wolfe et al., 2019), consistent with its relative importance in both the July and 388 
January models.   389 

 390 
Figure 5: The feature importance (gains) of the January (a) and July (b) parameterizations as calculated by XGBoost.  391 
Variables are sorted by their relative importance.  WCLD = Water cloud; ICLD = Ice Cloud; OD = Optical Depth.  392 
“Above” and “below” for the optical depth variables indicate the optical depth above and below a particular model 393 
grid box.  Colors have no specific meaning but are specific to individual inputs for all panels of Figures 5 and 6.  394 
 395 

The relative importance of global OH sinks in the parameterization, however, demonstrates the 396 
limitations of using the Gains values to interpret the regression tree model in a process-based way.  CO, 397 
the dominant OH sink on a global scale (Spivakovsky et al., 2000), is the most important chemical input 398 
for the January parameterization, although it is relatively unimportant in the parameterizations for all 399 
other months.  While tropical CO variability in MERRA2 GMI and biomass burning emissions (Duncan, 400 
2003b) are larger in boreal winter than July, there is no process-based explanation for why CO should be 401 
different in January from December or February. Differences in the relative importance of CO between 402 
the two months does not imply that OH sensitivity to CO in MERRA2 GMI or the atmosphere varies in 403 
the same manner.  Instead, the differences simply indicate that the parameterization algorithm finds CO 404 
to be more useful in predicting OH in January than July.  Similarly, CH4, the second most important OH 405 
sink on the global scale, has low Gain values, suggesting it has little impact on model performance.  This 406 
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is likely because, in the MERRA2 GMI simulation, CH4 concentrations vary little within a given latitude 407 
band due to CH4 surface concentrations being set as a boundary condition.  The methane distribution 408 
therefore provides little additional information beyond that already contained in the variables that 409 
indicate location.   410 
 411 
3.2.2. Investigating parameterization SHAP values 412 

While the Gain values indicate the relative importance of species in the parameterization and can 413 
provide some information as to whether the parameterization behaves in a manner consistent with our 414 
understanding of OH chemistry, the metric only provides information about the dataset as a whole.  415 
Gain values can therefore obscure the importance of variables that only strongly impact the 416 
parameterization for a small subset of the data.  To better understand the relative importance of 417 
variables as well as the spatial variability in that importance, we also calculate the SHAP values 418 
(Lundberg and Lee, 2017), which provide information on the relative importance of each datapoint input 419 
into the model. 420 
 421 

In the context of machine learning, Shapley values, an idea first developed for game theory 422 
(Shapley, 1953), indicate the average contribution of an individual model input to all possible 423 
combinations of inputs.  For example, to calculate the Shapley value of the variable X for a hypothetical 424 
machine learning model with three input variables X, Y, and Z, first a model would be trained with all 425 
three variables.  A new model would then be retrained, omitting X, and the difference between the two 426 
models would be calculated to determine the contribution of X.  This process would then be repeated 427 
with different permutations of input variables (e.g., X and Y, X and Z) to determine the contribution of X 428 
in those instances.  The final Shapley value is the average of the contribution from these different 429 
models.  SHAP values use the same concept but in a manner that reduces the computation time 430 
(Lundberg and Lee, 2017), as this process could become prohibitive for a model, such as the 431 
parameterization of OH, that contains 27 inputs.   432 

 433 
We calculate SHAP values using the TreeExplainer API of the SHAP package available for Python.  434 

One limitation of the algorithm used to calculate SHAP values is that it is too computationally expensive 435 
to calculate the SHAP values for the tuned regression tree model.  Computational time to calculate SHAP 436 
values for the troposphere at the native model resolution for one day is several months.  Maximizing 437 
computational speed by degrading the model resolution and running the SHAP package with GPUs, 438 
would take approximately 4 days for one model day.  Calculating SHAP values for a model with default 439 
model hyperparameters, however, takes minutes.  This is due to the large reduction in the number of 440 
trees (100 to 10) and the maximum tree depth (18 to 6) in the parameterization, which significantly 441 
speeds up the creation of new regression trees needed in the SHAP value calculation. 442 

 443 
We first evaluate the feasibility of using the SHAP values for the untuned model to explain the 444 

parameterization behavior.  To test this, we created a subset of 5000 OH values from the 445 
parameterization training dataset that spanned the full range of OH concentrations.  We then calculated 446 
the SHAP values for the July parameterization with tuned hyperparameters as well as for a July 447 
parameterization using the default XGBoost hyperparameters.  For the variables found to be most 448 
important for the parameterization (e.g., SZA, NO2, O3, isoprene, HCHO, latitude), there are strong 449 
correlations (r2 of 0.97 or higher) for the SHAP values between the tuned and untuned model, resulting 450 
in similar spatial distributions, although there are differences in the magnitude.   For other variables, 451 
correlation is much weaker, although the relative importance of variables is similar for the tuned and 452 
untuned parameterizations.  We therefore restrict our analysis primarily to variables that have highly 453 
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correlated SHAP values between the tuned and untuned models and discussion to the relative 454 
importance of the different variables. 455 

 456 
The distribution of SHAP values for the training dataset for July demonstrates the importance of 457 

including each of the variables as inputs to the parameterization as well as the large variability in their 458 
relative importance.  Figure 6 shows the distribution of the SHAP values for each input parameter of the 459 
approximately 3.2 million datapoints used to train the July parameterization.  The median SHAP values 460 
(Fig. 6) show similar ordering as the Gains feature importance (Fig. 5), with variables that indicate 461 
location as well as O3 and NO2 being the most important in both cases.  When looking at the distribution 462 
of the SHAP values, however, it becomes apparent that variables that appear to be unimportant for 463 
parameterization performance in the mean (e.g., propene and CH4) can have large importance for 464 
individual datapoints.  For example, although propene can be locally important for OH chemistry, due to 465 
its reactivity, concentrations in the remote atmosphere are low, making the species seem unimportant 466 
in the aggregate.  Similar results are found for the January parameterization (Fig. S6).  As discussed in 467 
Section 2.2, the SHAP values provide a rationale for including each of these species in the 468 
parameterization. 469 
 470 

 471 
Figure 6: Distribution of the absolute SHAP value for each parameterization input for July from an untuned version 472 
of the parameterization of OH.  Input parameters are sorted by order of relative importance.  The median is indicated 473 
with the black line, edges of the box represent the interquartile range, and whiskers represent the 5th and 95th 474 
percentile.  Values outside this range are indicated with circles.  Note that the SHAP value for propane is zero, 475 
indicating that it is not used by the untuned parameterization. 476 

   477 
The SHAP values also demonstrate the spatial distribution of the relative importance of the 478 

different chemical OH drivers.  Figure 7 shows the relative importance of NO2, as determined by the 479 
SHAP values for the untuned parameterization, for both the zonal mean and the LFT.  Note that the 480 
untuned parameterization has large errors for low OH concentrations, so SHAP values poleward of 45 °S 481 
should be viewed as more uncertain than those elsewhere.  In both the horizontal and vertical, the SHAP 482 
values demonstrate that the parameterization captures the spatial pattern of the relative importance of 483 
NOX for OH production.  The spatial pattern in Figure7a, for example, has the highest contribution of 484 
NO2 to the total SHAP value in the tropical UFT and in the northern hemisphere midlatitudes.  This is 485 
nearly identical to the spatial pattern of the relative contribution of the NO + HO2 reaction to overall OH 486 
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production in the MERRA2 GMI simulation (Anderson et al., 2021).  Likewise, in the LFT, the contribution 487 
from NO2 maximizes over continental regions with high emission and minimizes over the remote oceans.  488 
The spatial pattern of SHAP values of isoprene also agree with OH chemistry, maximizing in regions of 489 
strong biogenic emissions and minimizing over oceans (Fig. S7).  These SHAP values demonstrate that, 490 
although the parameterization is not process-based, its behavior at least partially accords with our 491 
understanding of OH chemistry.  492 
 493 

 494 
Figure 7: The fraction of the contribution of the NO2 SHAP value to the sum of the absolute SHAP value of all inputs 495 
in July is shown for the zonal mean (a) and the LFT (b).  Regions where mean OH mixing ratios are below 0.03 pptv, 496 
the point below which the untuned parameterization is unable to reasonably predict OH, are indicated by the 497 
stippling. 498 
 499 
3.3 Case Study: Testing the parameterization response to the 2016 El Niño Event 500 

While we have demonstrated that the parameterization can satisfactorily reproduce OH during all 501 
months of 2005, we now investigate its ability to capture OH accurately during the 2016 El Niño event. 502 
which we excluded from the training dataset.  Evaluating how the parameterization responds to 503 
deviations from the climatological mean of the inputs during a large-scale event on which it was not 504 
trained, such as the 2016 El Niño, is a strong test of its ability to predict extremes in OH as well as to 505 
respond to deviations from the climatological mean of the parameterization inputs.  The response of the 506 
parameterized OH to these extremes in inputs will also provide a further test of the ability of the 507 
parameterization to behave in a process-based way. 508 

 509 
El Niño events lead to dramatic changes in the concentrations and distributions of many OH 510 

drivers, including O3 (Oman et al., 2011;Oman et al., 2013), CO (Duncan, 2003a;Rowlinson et al., 2019), 511 
NOX (Murray et al., 2013;Murray et al., 2014) and water vapor (Shi et al., 2018;Anderson et al., 2021).  512 
As such, the El Niño Southern Oscillation (ENSO) is the dominant mode of OH variability throughout 513 
much of the troposphere and can result in localized changes in OH on the order of 40 – 50% from the 514 
climatological mean (Anderson et al., 2021;Turner et al., 2018).  Changes in secondary production from 515 
NOX in the UFT and changes in primary production from O3 in the PBL and LFT drive the ENSO related 516 
variability of OH (Anderson et al., 2021).   Methane emissions also vary strongly with the ENSO phase 517 
(Zhang et al., 2018;Worden et al., 2013).  In order to capture the OH/CH4/CO system correctly, the 518 
parameterization must be able to capture ENSO-related OH variability. 519 

 520 
Here, we investigate the ability of the parameterization to capture OH during the El Niño events of 521 

1997/98 and 2015/16, two of the largest such events during the period of the MERRA2 GMI simulation 522 



 14 

according to the Multivariate ENSO Index (Wolter and Timlin, 2011).  The 1997/98 event, which was 523 
included in the training dataset, was a prototypical example of an Eastern Pacific (EP) El Niño, 524 
characterized by sea surface temperature (SST) anomalies extending to the coast of South America.  In 525 
contrast, the 2015/16 event was a blend of an EP and a Central Pacific (CP) El Niño, also known as El 526 
Niño Modoki, where SST anomalies extend only to the international dateline (Paek et al., 2017).   These 527 
different “flavors” of El Niño affect atmospheric distributions of OH drivers, such as water vapor (Du et 528 
al., 2021), in different ways, suggesting different impacts on OH.  While we did include other blended El 529 
Niños (1986/87, 1987/88, and 1991/92) (Kug et al., 2009) in the training dataset, each had responses in 530 
the atmospheric distribution of OH and its drivers distinct from the 2015/16 event.  We focus our 531 
investigation on January and the MFT, the time and location of the strongest correlation between ENSO 532 
and OH (Anderson et al., 2021) in the MERRA2 GMI simulation.  We also restrict the analysis to the OH 533 
precursors, NO2, CO, and O3, as they have both a strong influence in the variability of ENSO-related OH 534 
production/loss and have comparatively large feature importance and SHAP values in the January 535 
parameterization. 536 

 537 
For both the 1997/98 and 2015/16 El Niño events, each OH driver examined deviates strongly 538 

from the climatological mean, defined as the average value from the MERRA2 GMI simulation over all 539 
Januarys from 1980 – 2019.  Both O3 and NO2 have pronounced positive anomalies over the western 540 
Pacific and maritime continent and negative anomalies over the eastern Pacific (Fig. 8) that extend 541 
throughout much of the free troposphere (Fig. S8), likely associated with changes in the Walker 542 
Circulation as described in Oman et al. (2011).   The positive anomalies over Indonesia show a distinct 543 
westward shift during the 1997/98 event as compared to 2015/16, highlighting the variability in the 544 
effects of ENSO on emissions and transport.  CO has a large positive anomaly over much of the globe, 545 
attributable to the increases in biomass burning during El Niño events (e.g., Duncan, 2003a).  As with O3 546 
and NO2, there are large differences in the spatial pattern of the CO anomalies between the two events, 547 
particularly over the Indian Ocean, central Africa, and South America.  548 

 549 

 550 
Figure 8: Fractional difference of the indicated variable between January 1998 (left) and the climatological mean 551 
(1980 – 2019) calculated from the MERRA2 GMI simulation for the MFT. The same values but for January 2016 are 552 
indicated on the right.  Species shown are CO (a,b), NO2 (c,d) and O3 (e,f). 553 

 554 
The differences in anomalies of the OH drivers between the 1997/98 and 2015/16 El Niño events 555 

lead to distinct anomaly patterns in OH itself.  During the 1997/98 event, in the MFT, there are 556 
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noticeable positive anomalies in OH over much of the Indian Ocean basin, the southeastern Pacific, 557 
South America, and the western Atlantic Ocean (Fig. 9).  During 2015/16, the positive anomalies were 558 
more limited and most noticeable in the tropical western Pacific Ocean and southern Indian Ocean. 559 
Along the equator, the positive anomalies extended throughout a larger portion of the troposphere 560 
during January 1998 than 2016.  Both the parameterization inputs and the OH itself respond strongly 561 
and in different ways to each El Niño event, providing a strong test to determine the robustness of the 562 
parameterization. 563 

The parameterization reproduces the ENSO-related OH anomalies for both El Niño events with 564 
remarkable fidelity.  We ran the parameterization for all Januarys from 1980 to 2016 to calculate a 565 
climatology and calculated the deviations for 1998 and 2016 from that value.  For both events, the 566 
parameterization accurately captures the location and magnitude, as well as the spatial pattern, of the 567 
OH anomalies with a few minor exceptions in the horizontal and vertical (Figs. 9 and S8).  Correlation 568 
between the MERRA2 GMI and parameterized anomalies plotted in Figure 9 has an r2 of 0.93 or higher 569 
for both years.  The parameterization is therefore capable of reproducing both the climatological mean 570 
of OH as well as large deviations in the mean in response to strong climatological deviations in the 571 
model inputs, even for years excluded from the training dataset. 572 

 573 

 574 
Figure 9: Fractional difference of the indicated variable between January 1998 (left) and the climatological mean 575 
(1980 – 2019) calculated from the MERRA2 GMI simulation averaged over the MFT. The same values but for January 576 
2016 are indicated on the right.  Species shown are OH from the MERRA2 GMI simulation (a,b) and OH calculated by 577 
the parameterization (c,d). 578 

4.0 Discussion and Summary: The parameterization of OH as a tool for scientific research  579 
In this manuscript, we present a new methodology to generate a parameterization of OH that, as 580 

compared to previous methods (e.g., Spivakovsky et al., 1990; Duncan et al., 2000), is efficient and easy 581 
to use, allowing the user to rapidly update the parameterization of OH as necessary. The new method 582 
uses GBRTs and a full-chemistry simulation from a CCM as the training data to generate the 583 
parameterization of OH with a high degree of accuracy relative to the full-chemistry simulation.  We 584 
illustrated our methodology with a parameterization designed for the ECCOH module of the GEOS CCM.   585 
 586 

The parameterization of OH accurately reproduces OH from the full-chemistry simulation on 587 
which it was trained, but it may not produce the desired accuracy for a given time period or scenario 588 
outside the range represented in the training data.  Of course, the degree of degradation in accuracy 589 
depends on how far inputs exceed the ranges of the training dataset.  In addition, the parameterization 590 
of OH generated using inputs from one model may not be portable to another model or even a different 591 
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configuration of the same model as shown below.  The simulated relationships between OH and the 592 
input parameters may differ because of inter-model variations in the chemical, dynamical, and radiative 593 
schemes.  Ultimately, it is up to the user to determine an acceptable level of degradation for a specific 594 
research topic.  In this section, we give an example of the degree of degradation in accuracy for a 595 
parameterization of OH that uses 1) a different time period for the same model and 2) input parameters 596 
from a different model. 597 

 598 
4.1: Input parameters from a different time period for the same model setup 599 

Analysis of a separate model simulation, the Chemistry Climate Model Initiative (CCMI) GEOS 600 
simulation (Morgenstern et al., 2017), highlights possible limitations in extending the parameterization 601 
to years outside of those on which it was trained, particularly if there is a strong trend in one of the 602 
inputs.  The GEOS CCMI simulation has unconstrained meteorology, spans 1960 – 2100, and has a 603 
horizontal resolution of 2.0° latitude × 2.5° longitude.  Emissions for precursors of tropospheric O3 and 604 
aerosols are from the RCP6.0 scenario.  We trained two new parameterizations on the CCMI dataset, 605 
denoted CCMI2019 and CCMI2060, using data from 1980 – 2019 and 1980 – 2061, respectively.  We 606 
used the same methodology to create the training datasets as for the MERRA2 GMI parameterization.  607 
CCMI output are only available at monthly resolution, so we trained the CCMI parameterizations on 608 
monthly, instead of daily, averaged values.  Every 10th year, staring in 2000, was omitted from the 609 
training dataset for validation.   610 

 611 
While the CCMI2019 parameterization performed similarly to the MERRA2 GMI 612 

parameterization for years included in the training dataset, performance degraded significantly for years 613 
beyond 2019.  The CCMI2019 parameterization captured the τCH4 for 2000 and 2010 within 1% (Fig. 10, 614 
red line) and the NRMSE within 5% (not shown).  When we applied the parameterization to years 615 
outside of the training window, however, performance degraded quickly and, by 2060, underestimated 616 
τCH4 by about 4%. The CCMI2060 parameterization, on the other hand, captures the τCH4 lifetime within 617 
0.5% for all validation years.  618 

 619 
The reason for this performance degradation is likely due to input parameters that extend 620 

beyond the range used in the training dataset.   For example, there is a strong positive trend in the 621 
stratospheric O3 column (Fig. 10), which results in chemical environments in 2060 that did not exist in 622 
the 1980 – 2019 training dataset.  Other variables with strong trends, such as CH4 and temperature, as 623 
well as different large-scale dynamical patterns, could also decrease parameterization performance.  624 
These results strongly suggest caution when applying the parameterization to future scenarios outside 625 
of the training window.  For example, experiments investigating relative changes in a species (e.g., 626 
understanding how a 10% decrease in OH would affect tropospheric CH4 abundance) could likely be 627 
successfully implemented, while those trying to understand absolute differences in CH4 would require 628 
significant care to ensure valid results. 629 

 630 
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 631 
Figure 10:  Time series showing the percent difference between τCH4 calculated from the CCMI simulation and from 632 
three separate parameterizations: one trained on MERRA2 GMI output from 1980 – 2019 (blue circle), one trained 633 
on CCMI output spanning 1980 – 2019 (red triangle), and one trained on CCMI output spanning 1980 – 2060 (purple 634 
square).  The stratospheric O3 column (orange star) from the CCMI simulation averaged over 30 S to 60 N, the region 635 
where tropospheric CH4 loss to OH maximizes (Fig. 3), is also shown.  All data are for July. 636 

4.2 Input parameters from a different model setup 637 
Similar to applying the parameterization outside of the timeframe on which it was trained, 638 

applying the parameterization to a different model setup also warrants caution, as the differences can 639 
result in new chemical environments on which the parameterization was not trained.  We now discuss 640 
parameterization performance when output from the CCMI simulation discussed in Section 4.1 is input 641 
into the MERRA2 GMI-trained parameterization.  Despite both simulations being from the GEOS 642 
framework, the CCMI simulation setup differs from the MERRA2 GMI simulation in emissions, time 643 
frame, resolution, and meteorology (unconstrained vs specified dynamics), among others.  Because 644 
CCMI output is only available at a monthly resolution, we created a separate parameterization, 645 
hereafter referred to as “M2GMI-monthly”, using MERRA2 GMI output with identical parameterization 646 
inputs as the daily parameterization but using monthly-averaged values.  Performance is similar to that 647 
of the parameterization trained on daily data and averaged over monthly timescales, with the NRMSE 648 
for the troposphere on the order of 6 -7% depending on the year. 649 

 650 
When output from the CCMI simulation is used as inputs to the M2GMI-monthly 651 

parameterization, performance degrades significantly.  For July 2000, for example, there are distinct 652 
regions of both positive and negative biases (Fig. 11a) in parameterized OH, resulting in a NRMSE of 653 
13%, on par with using climatology as an OH estimate.  Because the largest discrepancies are centered 654 
outside of the tropics and/or in regions with low concentrations, τCH4 for year 2000 is identical between 655 
the CCMI and parameterized OH.  When applied to 2060 (Fig. 11c), which is far outside the training 656 
period of the M2GMI-monthly parameterization, there is a near universal high bias in parameterized OH, 657 
resulting in a NRMSE of 16% and a τCH4 biased low by 4.5%.  This overestimate results in a negative trend 658 
in τCH4 from parameterized OH from 2000 to 2060 (Fig. 10, blue line), despite the trend in the CCMI 659 
simulation being positive.  Applying the MERRA2 GMI parameterization to a study using the CCMI setup 660 
would therefore misrepresent the OH/CH4 cycle. 661 

 662 
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 663 
Figure 11: Fractional difference between OH calculated by the M2GMI-monthly (left) and the CCMI2060 (right) 664 
parameterizations and OH output from the CCMI simulation.  Data are averaged between 850 and 500 hPa for July 665 
2000 (top) and July 2060 (bottom). Regions with low OH, defined as a mixing ratio of less than 0.005 pptv, are 666 
indicated with stippling. 667 

Through an analysis of the ranges of input parameters from both simulations, we found that the 668 
differences in parameterization performance for inputs from MERRA2 GMI and CCMI are likely largely 669 
attributable to differences in the stratospheric O3 distributions between the two simulations.  In 2060, 670 
for example, CCMI stratospheric O3 has a much higher frequency of values above 300 DU than the 671 
M2GMI-monthly training dataset (Fig. 12).  A smaller, but still noticeable, shift in the distribution is also 672 
found for the year 2000 (Fig. S9).  Likewise, the accuracy of the M2GMI-monthly parameterization 673 
decreases from 2000 – 2060 as the stratospheric O3 burden increases (Fig. 10, red line).  Mechanistically, 674 
higher stratospheric ozone in CCMI should result in lower tropospheric OH because the reduction in 675 
incoming ultraviolet radiation limits tropospheric O3 photolysis.  This could also lead to a higher CO 676 
burden, due to the smaller OH sink.  Comparisons between the OH and CO distributions from the two 677 
simulations are consistent with this hypothesis.  Even though the M2GMI-monthly training dataset 678 
spanned the full range of stratospheric O3 values from the CCMI simulation, the frequency of 679 
stratospheric O3 values at higher concentration likely creates chemical environments in the CCMI 680 
simulation distinct from those in MERRA2 GMI, forcing the parameterization to extrapolate to a 681 
chemical space on which it was not trained.  This highlights the need to compare the distribution of any 682 
parameterization inputs to that of the training dataset. 683 

 684 
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 685 
Figure 12: Histograms showing the distribution of stratospheric column O3 (a), tropospheric OH (b) and tropospheric 686 
CO (c) from the M2GMI-monthly parameterization training dataset (red) and from the CCMI simulation for 2060 687 
(blue).  Purple indicates areas of overlap between the two distributions. 688 

Again, performance improves significantly when we apply output from the CCMI simulation to the 689 
CCMI2060 parameterization.  The regions of consistent high bias notable when CCMI output was applied 690 
to the M2GMI-monthly parameterization are absent for both 2000 and 2060, and NRMSE shows a factor 691 
of three improvement over the previously discussed scenario.  Likewise, for all validation years, the 692 
parameterized OH resulted in a τCH4 that agreed with the CCMI simulation between 0 and -0.46% (purple 693 
line, Fig. 10). 694 

 695 
We conclude that for best performance, a separate parameterization should be created for each 696 

new modeling framework to capture OH variability accurately.  This will not create an undue 697 
computational expense on an experiment.  Because a full chemistry simulation is necessary to create the 698 
parameterization inputs of chemical species that are not calculated online, the necessary data to create 699 
a training dataset will already be available.  The only additional time will be that required to format the 700 
regression tree inputs and to train the model, which takes approximately 2 – 3 hours for each month.  701 
This process can be performed using previously created python scripts with minimal changes.  The 702 
flexibility that this modeling framework permits will facilitate its use even if there are major changes to 703 
the underlying model chemistry or dynamics. 704 
 705 
5.0 Code Availability 706 
The scripts used to create the training datasets and a sample script to create a parameterization have 707 
been archived by Zenodo at https://doi.org/10.5281/zenodo.6046037 (Anderson, 2022a).   A sample 708 
parameterization for the ECCOH module trained on MERRA2-GMI output is available at 709 
https://doi.org/10.5281/zenodo.6604130 (Anderson, 2022b). 710 
 711 
6.0 Data Availability 712 
Output from the MERRA2 GMI simulation are publicly available at https://acd-713 
ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/.  The training dataset and training targets for the 714 
July parameterization presented here are available at https://doi.org/10.5281/zenodo.6604130 715 
(Anderson, 2022b).  Output from the GEOSCCM simulation for CCMI is available at the Centre for 716 
Environmental Data Analysis (CED), the Natural Environment Research Council’s Data Repository for 717 
Atmospheric Science and Earth Observation, at http://data.ceda.ac.uk/badc/wcrp-ccmi/data/CCMI-718 
1/output.   719 
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