We thank the reviewers for their thoughtful responses. We have updated the manuscript to reflect
their comments and address the individual comments below in red. Updated text from the manuscript
is quoted in blue.

Reviewer 1:

This paper describes the application of a gradient boosted regression tree machine learning approach to
derive a parameterization for tropospheric OH based on CCM simulations. The approach is shown to
reproduce simulated OH well under current conditions even for cases it has not been trained on, and it
behaves acceptably, albeit with increasing errors, when applied to future conditions outside the
standard training set. There is substantial novelty in the approach taken, and the results offer a degree
of interpretability that is very interesting. The paper is generally well structured, clearly written, and
appropriately illustrated. The authors have been thorough in evaluating their approach, and it is
particularly good to see robust testing of input variable choice and hyperparameter value selection.

The main weakness of the paper is that the potential applications of the approach are not clearly
identified. What does the parameterization add beyond the simulated climatology that was used to
generate it? The chemical inputs used for the parameterization are dependent on OH, and hence a full
model simulation is required to capture the feedbacks. In its present form, the parameterization is not
sufficient to replace CCM chemistry, and can only reproduce OH from existing simulations. If a full CCM
simulation is required to generate the inputs to the parameterization, then what does the
parameterization add? If the approach is to be used as a simplified chemistry, like ECCOH, how will the
oxidised inputs such as MHP and H202 be adjusted? A clear description of the application or purpose of
the parameterization is needed, ideally with an example. Could the approach be applied with aircraft or
satellite measurements to estimate OH concentrations? What is its value beyond simply reproducing
existing simulations?

We have added a new discussion to the introduction (Lines 84 — 103, copied below) that more fully
describes the ECCOH module for which this parameterization was designed and more explicitly
highlights the applications for the parameterization and module than the previous manuscript.

Building on the CO-OH studies of Duncan et al. (2007a) and Duncan and Logan (2008),
Elshorbany et al. (2016) developed the computationally Efficient CH4—CO—OH (ECCOH)
chemistry module, which captures many of the nonlinearities and feedbacks of the CHs-
CO-OH system without the computational expense of a full chemistry simulation. ECCOH
calculates 24-hour averaged OH from a combination of archived (e.g., multiple VOCs, NOx)
and online (e.g., pressure, temperature, cloud albedo) chemical, meteorological, and
solar irradiance variables. Despite the partial reliance of the parameterization of OH in
ECCOH on archived fields, its strength lies in the ability to calculate OH at a significantly
reduced computational expense (Duncan et al., 2000;Elshorbany et al., 2016). ECCOH
has been successfully implemented in the NASA Goddard Earth Observing System (GEQS)
general circulation model (GCM).

Through manipulation of the input parameters (i.e., chemical, meteorological, and solar
irradiance variables) to the parameterization of OH, as well as emissions and dynamics,
ECCOH can help deconvolve the causes of local to global trends and variations in OH, CO,
and CH4. For example, Strode et al. (2015) used the ECCOH module to investigate the
effects of different model biases in GEOS on simulated OH. To do this, they performed
multiple sensitivity simulations, adjusting tropospheric water vapor, ozone, and NOy to
match satellite observations, to understand the impacts on OH and CH, lifetime. Similarly,



Elshorbany et al. (2016) investigated the impacts of varying CH, and CO emissions on the
growth rate of atmospheric methane concentrations through multiple sensitivity runs.
One limitation of ECCOH in the configuration used in Strode et al. (2015) and Elshorbany
et al. (2016), however, is the difficulty in updating the parameterization to reflect
advances in atmospheric chemistry.

The approach described here could indeed be used to estimate OH concentrations from in situ and/or
satellite observations. We are actively preparing a separate manuscript on this topic to be submitted for
publication in the near future. As such, we don’t wish to discuss that here. We do now reference the
work of Zhu et al. who use a somewhat similar approach to estimate surface OH in urban areas of the US
(Lines 110 - 112):

In particular, GBRT models (Elith et al., 2008;Chen and Guestrin, 2016) use an ensemble
of decision trees to predict the value of a target based on multiple inputs and have been
used to predict surface OH using a combination of satellite observations and output from
3-dimensional models (Zhu et al., 2022).

Overall, the methodological approaches developed here appear sound, and the parameterization has
substantial potential, but practical application of the approach is not described. The paper is not suitable
for publication in GMD until the authors have made the purpose and application clear to the reader.

Specific Comments:

Title: The paper describes a machine learning methodology, but does not convincingly demonstrate a
tool to improve computational efficiency, as independent application of the approach is not described.
The second half of the title should be dropped.

Based on this comment and a comment from the other reviewer, we have changed the title to “A
Machine Learning Methodology for the Generation of a Parameterization of the Hydroxyl Radical”.

The approach is trained on an existing near present-day CCM simulation. Why was the approach not
trained over a much wider range of conditions from preindustrial to possible future? A more thorough
and complete set of training data would permit generation of a much more robust parameterization
that was applicable to a wider range of conditions. Weaknesses in reproducing simulated future OH with
the same CCM and chemistry demonstrate the frailty of the approach.

Yes, the parameterization could be trained on a much longer simulation, but our aim here is to illustrate
the methodology on an existing multi-decadal simulation that we are currently using in our research.
That is, we are not presenting an “off the shelf” parameterization that we wanted users to immediately
integrate into their work. We have revised the text in multiple locations to make more explicit that we
are offering a “recipe” to generate a parameterization, and as such, the dataset we use for training is
just an example. For instance, we have added the following paragraph (Lines 197 - 210):

While we have used the publicly-available MERRA2 GMI dataset to train the sample
parameterization described in this manuscript, the training data could come from any
simulation or combination of self-consistent simulations that has output of the variables
outlined in Table 1. These training datasets could come from existing simulations, which
would greatly reduce computational expense, or from a training dataset tailored for the



purposes of a given study. Even though we use daily-averaged training data for ECCOH,
a user could train the parameterization with a dataset at any temporal resolution in order
to make the parameterization compatible with a specific modeling platform or research
goal. As discussed later, the parameterization performs best when applied to
photochemical environments analogous to those on which it was trained. Therefore,
users should carefully ensure that the training dataset reasonably encompasses the full
range of photochemical environments necessary for a given sensitivity test or
experiment. For example, as we will discuss further in Section 4, because the MERRA2
GMI training dataset only covers 1980 — 2018, it is inappropriate to use this for an
application exploring changes in CH, from the pre-industrial period to 2100. Instead, a

new training dataset covering that time period would be required.

Table 1 needs to be presented more tidily to conform to journal standards. Note also that isoprene
is included twice; the first occurance should be ethane. Does UV albedo refer to UV surface
albedo? Does cloud fraction apply to the column fraction above a given level or to the local
fraction at that level? Optical depth above and below are separate inputs, while C4/C5 alkanes
are combined; this is not clear from the Table, but is evident in Fig 5.

We have updated Table 1 (reproduced below) and the text to reflect these issues. The caption for Table

1 now reads:

Table 1: Inputs to the machine learning parameterization of OH. UV Albedo is the value
at the surface. Cloud fraction is the fraction at a given model level. C4 & C5 alkanes are
one input as they originate from a lumped variable in the GMI mechanism.

Chemical Inputs Meteorological/Radiative Inputs
NO> Formaldehyde (HCHO) Temperature Stratospheric O3 Column
co Hydrogen peroxide (H,0,) Cloud Fraction Aerosol Optical Depth above
CH, Me(tgmg\g:ll-r'?lﬁ):::)(ide Latitude Aerosol Optical Depth below
O3 Acetone (CH3COCH;3) UV Albedo Water Cloud Optical Depth above
Isoprene (CsHs) C4 & C5 Alkanes Water Vapor Water Cloud Optical Depth below
Propene (CsHeg) Ethane (C;He) Pressure Ice Cloud Optical Depth above

Propane (CsHs)

Solar Zenith Angle Ice Cloud Optical Depth below

In addition, we have updated the text to read (Lines 187 - 188):

For both ice and water cloud as well as aerosol optical depths, we include the optical
depth above and below each datapoint as separate inputs.

Line 232: What is the likely origin of the biases poleward of 30 degrees? Could this be related to
averaging of cloud cover over the diurnal cycle, a factor lost when using daily-mean input variables?

There are multiple possible sources of error. Clouds are one, as a 24-hour averaged cloud fraction is
likely not representative of the average photochemical environment. Another possible source of error is



transport of OH chemical drivers from different latitudes and pressures. Because the parameterization
strongly weights inputs that indicate location, regions that demonstrate strong vertical or horizontal
mixing on a given day might also have larger errors. Unfortunately, given the nature of GBRT models, it
is difficult to isolate one particular error source. Omitting individual species does not remove the bias
nor does the inclusion of additional species. In addition, as the other reviewer points out, GBRTs do
tend to have higher bias for smaller values. Because the primary application of the parameterization for
our purposes is understanding feedbacks in the OH/CO/CH4 cycle, we feel this level of error is
acceptable as it averages out on longer time scales. For an application exploring interactions between
OH and shorter-lived species, a new parameterization or likely different methodology to ascertain those
interactions would need to be developed.

We have updated the text as follows (Line 285 - 286):

For July 15, there are notable regions of bias, particularly poleward of 30° S where OH is
low (Fig. S2). While the source of this error is unknown, it could result from a tendency
of regression tree models to have larger bias for lower values (Nowack et al., 2021).

The methane lifetime is matched well, but the small bias high is systematic throughout the year and
indicates a consistent underestimate of mass- or methane-weighted OH (as also seen in Fig S5). Can the
authors suggest why this arises?

This is a good point and not limited to 2005, as demonstrated in Table S1, where the parameterized OH
methane lifetime is also consistently biased high. As with the larger errors poleward of 30S in Figure 1a,
it is difficult to isolate the cause of the systematic bias given the “black box” nature of the machine
learning model. The systematic bias is present when each individual input is removed successively from
the parameterization and is also present independent of the tuning chosen for the hyperparameters.
The systematic nature of the bias, however, does not invalidate the utility of the parameterization as the
magnitude of the error is, as noted in the paper, generally on the order of 1%.
We have updated the text as follows (Line 338 - 340):

Agreement varies slightly by month, differing by only 0.8% in January and up to 2.5% in

August, although the bias is systematically low for 2005 and the other validation years

(Table S1).

Typos and Minor Issues
Lines 74-76: Sentence grammar needs revision (or remove "Though")

We have removed “Though”.

Line 174: "balance" would be clearer as "remainder" (or a similar word)

We have made this change.

Lines 35, 219 and 436: "comports" is somewhat archaic; "accords with" would be clearer

We have changed all uses of the word “comport” to “accord”.



Fig 3: Red percentage labels are difficult to read over color backgrounds. Please adjust the font color so
that they are legible.

We have updated this figure so that the panels are larger and that the numbers are easier to read.
Fig 5: What do the colors represent?

Colors here have no specific meaning. We colored the bars to help the reader more quickly identify the
same species between figure panels and between Figures 5 & 6 since the ordering of species changes.
The figure caption now reads:

Figure 1: The feature importance (gains) of the January (a) and July (b) parameterizations
as calculated by XGBoost. Variables are sorted by their relative importance. WCLD =
Water cloud; ICLD = Ice Cloud; OD = Optical Depth. “Above” and “below” for the optical
depth variables indicate the optical depth above and below a particular model grid box.
Colors have no specific meaning but are specific to individual inputs for all panels of
Figures 5 and 6.

Line 457: The citation for Shi et al. is missing the publication date (2018)

Thanks for pointing this out. We have made this correction.

There is a Section 4.1 (with subsections) but no Section 4.2, so renumbering of sections is needed here.
We have updated the numbering of this section.

Reviewer 2:

The study ‘A machine learning methodology for the generation of a parameterization of the hydroxyl
radical: ... by Anderson et al. presents the results of training boosted regression trees on the output of a
chemistry-climate model simulation. Specifically, the goal is to predict OH concentrations as a function
of meteorological and chemical variables, which could thereafter be used as a parameterization.

Mostly, this is a solid, well-written paper. In particular, most of the technical choices (following the initial
choice of algorithm) are well-reasoned. However, I still have a few major and minor technical and
scientific concerns, which | would like to see addressed before | would recommend publication. In
particular, | am not sure how helpful such a parameterization would be if most of the chemical inputs
cannot be simulated interactively. At the very least, this will help to clarify points that other readers will
likely find confusing as well.

Major comments:

o My main concern relates to the motivation of building a standalone OH parameterization. | see
that the authors cite several studies that used and developed OH parameterizations before and that
certain inputs to those parameterizations are themselves simplified (e.g. simply time-varying
climatologies). However, given the inputs for the parameterization here (e.g. NO2, ozone, VOCs) would
this not pre-determine OH variations hugely, i.e. most of the expected variance in nature would not be
included anyway? Is this then really just about capturing OH trends that scale with changes in CO,
methane, 037 It seems to me that this is not the variance you primarily learn here, cf. your Gain values
which show low contributions from e.g. CO, or CH4. If one only cares about the effect of OH on CH4,



would a simpler way not be to predict long-term CH4 changes as a function of the anyway prescribed
changes in CO and 03?

As we state in our response to the first reviewer, there is likely a misunderstanding here of the
applications that we have in mind for the parameterization and its intended purposes. We have clarified
this by adding a new discussion of the ECCOH module and its applications (Lines 84 — 103 and
reproduced above in response to the first comment of the other reviewer).

o The title is longer than necessary. Maybe consider shortening it? For example, are both
‘methodology’ and ‘tool’ needed in the same title? | am also not sure the main application of this tool
would actually be in chemistry-climate model simulations. Surely, if you already run an interactive
chemistry scheme it would not make a big difference to just replace OH by a parameterization? Maybe
you mean something different, but it could confuse potential readers.

Based on this comment and a comment from the other reviewer, we have changed the title to “A
Machine Learning Methodology for the Generation of a Parameterization of the Hydroxyl Radical”.

o Training and evaluating a parameterization offline is a completely different animal from
predicting ‘online’ ie in operational mode, especially if suddenly the inputs won’t be provided by a
consistent interactive chemistry model anymore. By now this is a well-known fact about machine
learning parameterizations. This must be highlighted somewhere, i.e. that the study here is an offline
test of the principle that requires further validation before being used operationally, especially if the OH
feedbacks onto the system itself somehow (which | guess it ultimately should according to your paper
title).

We agree that further evaluation of the parameterization is needed once it has been integrated into a
CCM. Because we are offering a methodology to generate a parameterization, instead of a
parameterization that can be directly integrated into a CCM, we felt that it was better to evaluate the
parameterization itself, as the behavior once run online will likely vary depending on the CCM and the
methodology used to integrate it into the CCM framework. We have added the following to the paper
(Line 269 - 273):

Finally, we note that we evaluate an offline version of the parameterization of OH and
not one integrated with the ECCOH framework. However, the performance will be similar
based on preliminary testing and similarities in implementation to the previous
parameterization, which has been extensively evaluated (Elshorbany et al., 2016) in the
GEOS GCM.

Minor comments:

o 1.94-98: Please also cite Nowack et al. Using machine learning to build temperature-based ozone
parameterizations for climate sensitivity simulations. Environmental Research Letters 13, 104016 (2018).
https://iopscience.iop.org/article/10.1088/1748-9326/aae2be Since this was the first study to suggest
machine learning parameterizations in atmospheric chemistry. Note that the authors found that ridge
regression outperformed random forest regression in their case, which might have to do with ridge
regression allowing for some degree of extrapolation, which you find is a potential issue here (e.g. see
also Nowack et al. AMT 2021 https://amt.copernicus.org/articles/14/5637/2021/amt-14-5637-
2021.pdf). Only trying out one algorithm is actually one of the main shortcomings of this study, given the
aim to publish in GMD. Why not try at least a few different methods to compare their performance?




This should be computationally feasible and it is well known that there is ‘no free lunch’ in machine
learning, so just arguing that a method is chosen because others did the same before, often in very
different applications, is certainly the (too) easy way out. Another random forest application in
atmospheric chemistry worth mentioning is Sherwen et al. ESSD (2019):
https://essd.copernicus.org/articles/11/1239/2019/

[ )

We have added a reference to Nowack et al (2018) (Line 107) and Sherwen et al (2019) (Line 108).

Yes, this is an interesting question, but our main criteria in choosing a machine learning algorithm to
generate the parameterization of OH were accuracy, speed, and interpretability. We were reluctant to
use linear methods, such as ridge regression, because of the highly non-linear nature of OH chemistry
and felt that GBRTS more appropriately suited this particularly application. We did perform some initial
testing with neural networks, and while the accuracy of the resultant parameterization was similar to
that of the GBRT parameterization, the amount of time required to train one parameterization was
significantly longer for neural networks. Because we wanted a methodology that allowed for the quick
and easy regeneration of new parameterizations, we felt that neural networks would not be
appropriate. And as we indicated in the text, we wanted to use an algorithm with interpretable metrics
to ensure that the model is at least roughly mimicking our process-level understanding. As for
extrapolating beyond the bounds of the training dataset, it is likely inadvisable to use any machine
learning algorithm for this purpose, unless the user has thoroughly tested the resultant
parameterization for the specific purposes of a given study. This would therefore likely not result in a
methodology more efficient than the one we outline here. Finally, we note that, as described in the
manuscript, the machine learning parameterization presented here can capture monthly-averaged OH
within 5% with a NMB on the order of 1% for much of the troposphere, which is more than sufficient for
the intended uses of the parameterization, now described in more detail in the new Introduction of the
text.

We have updated the text as follows (Lines 114 - 119):

Unlike some other machine learning algorithms, such as neural networks, regression tree
methods have easily interpretable metrics that help highlight the influence of the
different input variables (Yan et al., 2016). These metrics can help further understanding
of the model behavior in ways other machine learning techniques cannot. GBRT models
are also relatively quick to generate and can capture the highly non-linear relationships
that describe tropospheric chemistry (lvatt and Evans, 2020).

And (Lines 213- 215):

While other machine learning methods could likely produce parameterizations with
similar performance as the one we describe here, we use GBRTs because of the speed in
training a new parameterization, their accuracy, and the interpretability of the
parameterization itself.

o I. 101-104: yes, although the SHAP values could also be used for other methods, of course.
Linear machine learning models such as ridge and Lasso are of course even more interpretable.

That is correct, although we were, as described above, reluctant to use linear techniques for such a
nonlinear system. Also, given that the SHAP value calculations were too computationally expensive for a



tuned GBRT model, it is unlikely that we could have successfully applied that method to an algorithm
like a neural network. A neural network with similar performance as the GBRT parameterization
required a complex architecture, which would make SHAP calculations even more computationally
expensive.

. I. 106-113: my main concern here is that you train your parameterization on a single simulation
and mention, correctly, that the parameterization cannot extrapolate outside the training domain. Given
that we are usually interested in transient climate change scenarios, | would strongly recommend
training the parameterization on a wide range of simulations (ideally at least one extremely strong
forcing and one strong mitigation scenario). This would mean that re-training is expensive, unless the
data already exists. Maybe that should be highlighted instead, i.e. that you could usually learn from
existing simulations that will be run anyway?

We understand your concern with the training dataset. As you note below, we are offering a “recipe”
for the reader to generate their own parameterization using a training dataset more appropriate for
their particular use. So, the training dataset we use in this paper does not need to and cannot possibly
reflect all possible scenarios under which the parameterization could be applied. As indicated
elsewhere in the response to reviewers, we have updated the manuscript in multiple locations to
indicate that we are presenting a methodology to generate a parameterization, not necessarily an off-
the-shelf version of a parameterization. In addition, we have also added the following paragraph in
Section 3.1 (Line 197 - 210):

While we have used the publicly-available MERRA2 GMI dataset to train the sample
parameterization described in this manuscript, the training data could come from any
simulation or combination of self-consistent simulations that has output of the variables
outlined in Table 1. These training datasets could come from existing simulations, which
would greatly reduce computational expense, or from a training dataset tailored for the
purposes of a given study. Even though we use daily-averaged training data for ECCOH,
a user could train the parameterization with a dataset at any temporal resolution in order
to make the parameterization compatible with a specific modeling platform or research
goal. As discussed later, the parameterization performs best when applied to
photochemical environments analogous to those on which it was trained. Therefore,
users should carefully ensure that the training dataset reasonably encompasses the full
range of photochemical environments necessary for a given sensitivity test or
experiment. For example, as we will discuss further in Section 4, because the MERRA2
GMI training dataset only covers 1980 — 2018, it is inappropriate to use this for an
application exploring changes in CH, from the pre-industrial period to 2100. Instead, a
new training dataset covering that time period would be required.

o I. 122: that’s a key concern: | doubt your current parameterization would work under climate
change conditions, which makes it less useful. | think this point should be made very clear and
highlighted prominently in the paper, ie that this is just a recipe to learn a parameterization but not a
read-to-go product. Not all readers will be aware of this issue.

We have updated the manuscript in multiple locations to make it more explicitly clear that we are
offering a methodology to generate a parameterization, not a ready to use version. For instance, the
final paragraph of Section 1 (Line 129 - 132) now reads:



Users can and should retrain the parameterization with datasets that are appropriate for
the intended application. That is, we are not offering a parameterization for “off the
shelf” use but a methodology by which a user can easily create a parameterization
suitable for their needs.

o I. 152: why not 2019? To avoid maximum extrapolation? | think it is good that you left out five
years from the training data completely, this will reduce the risk of inflating performance measures due
to spatial or temporal autocorrelation. | assume | understand your motivation correctly?

That is correct. We did not use 2019 as a validation year because we did not want to extrapolate
beyond the time frame on which we trained the parameterization. Testing performed before settling on
the final training time range suggests that extrapolating to 1 year outside of the training range does not
affect performance, however.

. Table 1: at this point it is still unclear to me how you consider the vertical dimension, so this
should be clarified earlier on (unless | overread it somehow). Do you predict OH in each tropospheric
grid box (from the near-surface to the upper troposphere)? Do you include only ozone, CO etc values
from the same grid box you are trying to predict, or would, for monthly-mean training data, it not be
best to include at least surrounding spatial predictors? | am also not sure if, especially for surface OH, it
makes sense to build one parameterization that predicts all grid points simultaneously? Wouldn’t there
be a spatial dependency of how e.g. ozone and OH relate, or do you think this will be sufficiently
conditioned out by the other variables you include?

The parameterization calculates OH for each model grid box. The input parameters for a particular grid
box are the corresponding values of the variables listed in Table 1. While we do not explicitly tell the
parameterization where a particular model grid box is located, variables such as latitude and pressure
generally constrain the horizontal and vertical dimensions. We have updated the text as follows to
highlight these points (Line 181 - 185):

Finally, for each OH target, we extracted the inputs for the regression tree
parameterization from the MERRA2 GMI simulation from the corresponding model grid
box. We list parameterization inputs in Table 1. The parameterizations of Spivakovsky et
al. (2000), Duncan et al. (2007a) and Elshorbany et al. (2016), along with expert
knowledge of OH chemistry, informed our choice of inputs. The relative location of a
particular OH target is indicated with the latitude and pressure variables.

While we have a separate parameterization for each month, the parameterization is trained on daily-
averaged data, so the parameterization output is 24-hour averaged OH. As a result, we don’t find it
necessary to use values in neighboring grid cells as additional input parameters. While there is most
definitely a spatial dependency on the relationship between OH and the input variables, both in the
horizontal and vertical, the inclusion of variables indicating relative location, such as pressure, latitude,
and SZA, along with variables that indicate photochemical regime (NO, O3, isoprene, various VOCs)
provide a means for the machine learning model to distinguish among these different regimes.

o I. 170: why separate by month and not by location? Should not June at a SH grid location be
more different from June in the NH than, say, from July at the same grid point in the SH?

Other parameterizations, including the previous one used in the ECCOH module and described in
Duncan et al (2000), do break up the atmosphere into photochemical regimes. While this is one



possibility, the machine learning methodology described here does not require us to pre-determine
atmospheric regimes. Instead, the XGBoost algorithm does this implicitly by, for example, creating
different branches based on isoprene concentration. As demonstrated by Fig. 1b, this results in OH
predictions with relatively small bias that is mostly randomly distributed. It is therefore likely that
breaking the atmosphere up into photochemical regimes would not significantly improve performance.
Additionally, there is substantial OH seasonal variability in OH abundance, even for a specific region, due
to variability in insolation, emissions (e.g. biomass burning), etc. A parameterization based on specific
locations would still either need to be broken up into monthly parameterizations, or be trained with a
dataset that encompassed the full seasonal variability of OH for that region. Because we use daily
averaged data for training and the parameterization performs best when data are taken across all
available days, this could result in overly large training datasets that would reduce the efficiency of
generating new parameterizations, one of the goals of our methodology.

. I. 224: Random forests are known to often overpredict small values. Still wondering if this might
partly be a result of throwing all data points independent of locations in one training basket?

Because the regression tree model places so much weight on the latitude and SZA variables, it is unlikely
that training a separate model for these high latitude data points would change the results substantially.
We did perform a run where we omitted high latitude data from the training dataset and model
performance was essentially identical to the run we present here for the rest of the globe. We have
added the following text (Line 285 — 286):

While the source of this error is unknown, it could result from a tendency of regression
tree models to have larger bias for lower values (Nowack et al., 2021).

o Figure 1: is this now tropospheric column-averaged OH? Surface OH? Please clarify. | read on: |
now see that you say in the text that his is the PBL-500hPa average. Still, would add that info to the
figure caption, too. Any particular reason to avoid the boundary layer? Is the spatial invariance not a
good assumption there?

We have added the definition of LFT to the figure caption. We separated the PBL from the lower free
troposphere in case there were significant differences in parameterization performance due to the
potentially larger impacts of emissions (e.g. biomass burning) in the PBL. As demonstrated in Figure S3,
performance in the PBL is similar to that for other levels of the atmosphere.

o At this point: do | understand correctly that you train and predict monthly-mean data? Your
description in the data section was eventually somewhat confusing. So, do you train on monthly-mean
data but use those functions to also predict daily OH? Might be worth highlighting again in the figure
caption, for clarity.

We train on daily-averaged data, so the parameterization outputs 24-hour averaged OH. For the
monthly values, we average these daily OH values over each day of the month. We have made this
more explicitly clear in the methodology section (Line 166):

We generated the training dataset using daily averaged data.

And also Lines 138 — 139:
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Specifically, we illustrate the methodology by describing the creation of a sample
parameterization of OH for the ECCOH module that predicts daily averaged OH.

o |.250-253: implies that you tried both, ie training on daily and monthly data. Here you say that
daily performs better, but above you seem to imply that daily suffers from other problems with
extrapolation. What would you recommend then? Please clarify.

We have removed the reference to the model trained on monthly averaged data. As for the accuracy of
the daily model, we point out in Lines 289 - 291 that, for the purposes of understanding OH interactions
with CO and CH4, the accuracy of the parameterization averaged over the monthly scale is more
relevant. So, although the NRMSE for an individual day is on the order of 14%, that error is acceptable,
because averaged over a month, it drops to ~5%.

. Figure 2: clarify that this is based on daily predictions (ie based on the model trained on daily
data).

The figure caption now reads:

Scatter density plot of tropospheric OH from the MERRA2 GMI simulation plotted against
OH calculated by the parameterization for July 15, 2005 (a). Panel (b) shows the 24-hour
averaged OH output by the parameterization averaged across all July days for 2005.
Colors indicate the number of data points in each bin. The r? of a linear least squares
regression and the NRMSE are also indicated.

o Figure 3 should be larger, otherwise this becomes hard to read.
We have increased the size of the figure and changed the font color to make the figure more readable.

o Figure 5 and I. 351: again is this based on the model trained on daily or monthly-mean data? In
any case, | would assume that CH4 has low predictability as it shows low variability on relatively short
daily and monthly timescales, where other factors driving internal variability (rather than trends) are
providing greater contributions to the predictions, thus showing greater feature importances. | suppose
that would explain your initially maybe somewhat surprising result. If you predicted longer-term
averages (e.g. decadal) | guess the picture would change dramatically. Anyway, this links to my major
comment above and if much of the variability you capture will be negated if chemical inputs are derived
from much simpler climatologies.

This figure, as with all the figures except those in Section 4, are based on a model trained on daily-
averaged data. As we describe above, the main application that we envision for the parameterization
once integrated into the ECCOH module, is for sensitivity simulations that could, for example, help us
understand the relative importance of different CO and CH4 drivers, which can easily be obtained with
the current parameterization configuration. Also, despite the low importance of CO and CH4 for the
parameterization, they can still strongly affect OH in some instances, as demonstrated by the SHAP
values, and the ECCOH module would still be able to capture the effects of OH on these species.

o I. 447: | see — was the motivation to exclude 2016 the specific El Nino event?

That is correct. We have updated the text in Lines 176 - 177:
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We omitted data from 4 years (1985, 1995, 2005, 2015) from the training dataset for
model evaluation and from an additional year, 2016, for an El Nifio case study discussed
in Section 4.3.

And also in Lines 503 - 506:

entire paper, also the abstract, in the sense that you present a way to learn relationships, i.e. to show

Evaluating how the parameterization responds to deviations from the climatological
mean of the inputs during a large-scale event on which it was not trained, such as the
2016 El Nifio, is a strong test of its ability to predict extremes in OH...

I. 542-583: | think this is a very important discussion. Random forests cannot extrapolate, so this
behaviour is not surprising (e.g. Nowack et al. AMT 2021). As a more general point, | would rephrase the

that this is possible, rather than a ready-to-go parameterization, see also my other points above.

We now explicitly state in multiple locations throughout the paper that we are presenting a “recipe” to
generate a parameterization and not an off-the-shelf version. We also have made clear throughout that
we are evaluating a sample parameterization. References can be found at Lines 204 - 210:

As discussed later, the parameterization performs best when applied to photochemical
environments analogous to those on which it was trained. Therefore, users should
carefully ensure that the training dataset encompasses the full range of photochemical
environments necessary for a given sensitivity test or experiment. For example, as we
will discuss further in Section 4, because the MERRA2 GMI training dataset only covers
1980 — 2018, it is inappropriate to use this for an application exploring changes in CH,
from the pre-industrial period to 2100. Instead, a new training dataset covering that time
period would be required.

And Line 582 - 585:

The new method uses GBRTs and a full-chemistry simulation from a CCM as the training
data to generate the parameterization of OH with a high degree of accuracy relative to
the full-chemistry simulation. We illustrated our methodology with a parameterization
designed for the ECCOH module of the GEOS CCM.

And Line 129 - 132:

Users can and should retrain the parameterization with datasets that are appropriate for
the intended application. That is, we are not offering a parameterization for “off the
shelf” use but a methodology by which a user can easily create a parameterization
suitable for their needs.

Finally, we have added the following to the abstract (Lines 22 - 25):

To allow the user to easily target the training dataset towards a desired
application, we are outlining a methodology to generate a parameterization of OH
and not presenting an “off the shelf” version of a 12parameterization to be
incorporated into a CCM.
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o Section 4.1.2: again, not surprising because random forests cannot extrapolate. So, if you
change the distribution mean, shape, and ranges, you will be in trouble. Again, selling your results as a
recipe rather than a ready product, would address this point immediately.

As described above, we have updated the paper in multiple locations to indicate that we are describing
a “recipe” to develop a parameterization rather than an out-of-the box version.
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