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Abstract. This study develops an ensemble Kalman filter (EnKF)-based regional ocean data assimilation system, in which 

the local ensemble transform Kalman filter (LETKF) is implemented with the Stony Brook Parallel Ocean Model (sbPOM) 

version 1.0 to assimilate satellite and in-situ observations at a daily frequency. A series of sensitivity experiments are 15 

performed with various settings of the incremental analysis update (IAU) and covariance inflation methods, for which the 

relaxation-to-prior perturbations and spread (RTPP and RTPS, respectively) and multiplicative inflation (MULT) are 

considered. We evaluate the geostrophic balance and the analysis accuracy compared with the control experiment in which 

the IAU and covariance inflation are not applied. The results show that the IAU improves the geostrophic balance, degrades 

the accuracy, and reduces the ensemble spread, and that the RTPP and RTPS have the opposite effect. The experiment using 20 

the combination of the IAU and RTPP results in significant improvement for both balance and analysis accuracy when the 

RTPP parameter is 0.8–0.9. The combination of the IAU and RTPS improves the balance when the RTPS parameter is ≤0.8 

and increases the analysis accuracy for the parameter values between 1.0 and 1.1, but the balance and analysis accuracy are 

not improved significantly at the same time. The experiments with MULT inflating forecast ensemble spread by 5 % do not 

demonstrate sufficient skill in maintaining the balance and reproducing the surface flow field regardless of whether the IAU 25 

is applied or not. 11-day-long ensemble forecast experiments show consistent results. Therefore, the combination of the IAU 

and RTPP with the parameter of 0.8–0.9 is found to be the best setting for the EnKF-based ocean data assimilation system. 
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Short summary (493 character). We develop an ensemble Kalman filter-based regional ocean data assimilation system, in 

which satellite and in-situ observations are assimilated at a daily frequency. We find the best setting for dynamical balance 30 

and analysis accuracy based on sensitivity experiments on how to inflate the ensemble spread and how to apply the analysis 

update to the model evolution. This study has a broader impact on more general data assimilation systems in which the initial 

shocks are a significant issue. 

 

1. Introduction 35 

The ensemble Kalman filter (EnKF; Evensen, 1994, 2003) estimates optimal analyses using model forecasts and 

observations with their error covariance. The EnKF has advantages in including flow-dependent forecast errors from an 

ensemble of model forecasts and in its relative ease of implementation with various models. Therefore, various EnKF-based 

ocean data assimilation systems have been developed thus far (cf. Table 1). 

The number of observations has increased dramatically with enhanced observations of temperature and salinity in 40 

the ocean interior by Argo profiling floats, and measurements of sea surface temperature, salinity, and height (SST, SSS, and 

SSH, respectively) by satellites. The geostationary satellite Himawari-8 (Bessho et al., 2016; Kurihara et al., 2016) has an 

infrared sensor observing SSTs in the Pacific region since July 2015, although there are missing values where cloud obscures 

the sea surface. The geostationary orbit and short observation interval allow Himawari-8 to provide better daily coverage 

within the observation area than a polar orbiting satellite with a microwave sensor, such as the Global Change Observation 45 

Mission-Water (GCOM-W; https://gportal.jaxa.jp/gpr), which can capture SSTs even in cloudy regions. Satellite SSS 

observations by Soil Moisture and Ocean Salinity (SMOS) started in June 2010, and previous studies demonstrated their 

positive impacts with their ocean data assimilation systems to better represent the ocean interior structure such as mixed and 

barrier layers, low salinity water caused by river discharge, and prediction of the El Niño-Southern Oscillation (ENSO; 

Chakraborty et al., 2014; Hackert et al., 2014; Toyoda et al., 2015). The Surface Water and Ocean Topography (SWOT; 50 

https://swot.jpl.nasa.gov/) satellite that has a new type of altimeter observing SSH anomalies (SSHAs) in two dimensions 

over a 120 km wide swath is scheduled for launch in 2022. 

To take advantage of such enhanced observations, frequent data assimilation is important. Here, dynamical 

imbalances in the analysis field may cause an initial shock with high-frequency gravity waves and may degrade the analysis 

accuracy. He et al. (2020) described the relationship between the assimilation interval and accuracy using an atmospheric 55 

data assimilation system. As seen in Table 1, most of the recent ocean data assimilation systems have an assimilation interval 

longer than 5 days: in particular, 5- and 7-day assimilation intervals are employed in the existing ocean reanalysis datasets of 

the Predictive ocean atmosphere model for the Australia Ensemble Ocean Data Assimilation System (PEODAS; Yin et al., 
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2011) and TOPAZ4 (Sakov et al., 2012), respectively. The PEODAS assimilates only in-situ temperature and salinity data, 

whereas the TOPAZ4 uses all types of observations but with inflation of observation errors. Although ocean data 60 

assimilation systems constructed by Karspeck et al. (2013) and Miyazawa et al. (2012) have short assimilation intervals of 1 

and 2 days, respectively, the former assimilates only in-situ temperature and salinity data, and the latter conducts a data 

assimilation experiment for a short period of 20 days because unrealistic fields are detected if the experiment is performed 

over several months (Y. Miyazawa 2022 personal communications). Although Brüning et al. (2021) recently established 

regional data assimilation systems for the North Sea and Baltic Sea at a frequent interval of 12 hours, only satellite SSTs are 65 

assimilated. Therefore, the existing systems might mitigate the effects of the initial shock by using the longer assimilation 

interval, inflating observation errors, and reducing the number of assimilated observations. This is also the case for 

atmosphere-ocean coupled data assimilation systems (e.g. Brune et al., 2015; Chang et al., 2013; Counillon et al., 2016; Tang 

et al., 2020). To provide accurate analyses in EnKF-based ocean data assimilation system in which satellite and in-situ 

observations are assimilated at a frequent interval, it is necessary to investigate an optimal setting for both dynamical balance 70 

and accuracy. 

The incremental analysis update (IAU; Bloom et al., 1996; see Sect. 2.1) has been proposed to reduce noise from 

high-frequency gravity waves associated with the initial shock. Covariance relaxation methods such as relaxation-to-prior 

perturbations and spread [RTPP (Zhang et al., 2004) and RTPS (Whitaker and Hamill, 2012), respectively; see Sect. 2.3], in 

which the analysis ensemble perturbations are relaxed towards the forecast ensemble perturbations, would also mitigate the 75 

initial shock (Houtekamer and Zhang, 2016; Ying and Zhang, 2015). In EnKF-based ocean data assimilation system, how to 

apply the analysis update to the model evolution and how to inflate the ensemble spread could make significant differences 

for the dynamical balance and accuracy. However, the IAU and RTPP/RTPS have not been widely used in an EnKF-based 

ocean data assimilation systems (Table 1). Therefore, this study aims to develop an EnKF-based ocean data assimilation 

system with a frequent assimilation interval of 1 day for taking advantage of frequent satellite observations, and to explore 80 

the optimal settings by performing sensitivity experiments with various settings of the IAU and covariance inflation 

methods. 

 This paper is organized as follows. Section 2 describes data and methods about IAU, RTPP, and other schemes and 

how to evaluate geostrophic balance and accuracy relative to observations. The details of the EnKF-based ocean data 

assimilation system and sensitivity experiment are described in Sect. 3. Section 4 presents the results for geostrophic balance 85 

and accuracy in the sensitivity experiments. Section 5 compares the prescribed multiplicative inflation (MULT) parameter 

with the sensitivity experiment with RTPP and IAU. Finally, Sect. 6 provides a summary. 
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2. Data and Methods 

In this section, we provide details of the methods used to alleviate some of the problems associated with high frequency 90 

assimilation. Section 2.1 presents the IAU designed to cut off noise from high-frequency gravity waves, and Sect. 2.2 

describes perturbed boundary conditions. Covariance inflation methods to prevent underestimation of ensemble-based 

forecast error covariance by various factors such as the limited ensemble size and model imperfections are introduced in 

Sect. 2.3, and the methods used to evaluate geostrophic balance and accuracy relative to observations in Sect. 2.4. 

 95 

2.1. IAU 

In this study, we implement the IAU (Bloom et al., 1996) based on existing ocean data assimilation systems (Balmaseda et 

al., 2015; Martin et al., 2015). The procedure for one assimilation cycle is as follows: (i) conduct model integration up to the 

middle of an assimilation window; (ii) assimilate observations within the window and save the analysis increments in 

temperature, salinity, and horizontal velocity; and (iii) conduct model integration over the assimilation window adding the 100 

increments equally distributed to each timestep. The IAU reduces noise from high-frequency gravity waves associated with 

the initial shock, but the computational costs for the model integration are 1.5 times those for the standard method where the 

analyses performed at the beginning of the window are used for the model initial conditions. Following Miyazawa et al. 

(2012), all analysis variables (SSH, temperature, salinity, and horizontal velocities) are used for initial conditions in the 

standard method. Although there are various IAU methods, the SSH increments are not included in most of the existing 105 

ocean data assimilation systems (table 2 of Martin et al., 2015) mainly because the SSH increments tend to cause initial 

shocks. Even without the SSH increments, the SSH would be modified properly in response to the temperature and salinity 

increments. Therefore, we adopt the analysis increments of temperature, salinity, and horizontal velocity except for SSH.  

 

2.2. Perturbed boundary conditions 110 

Following previous studies (Kunii and Miyoshi, 2012; Penny et al., 2013; Torn et al., 2006), atmospheric and lateral 

boundary conditions are artificially perturbed for each ensemble member. Atmospheric forcing of the ith ensemble member 

at a time 𝑡, 𝒘(")	(𝑡), is given by  

 

𝒘(")(𝑡) = 𝒘(𝑡) + 𝛼 )𝒘(𝑡 + 𝛿𝑡") −
$
%∑ 𝒘(𝑡 + 𝛿𝑡")

%
"&$ -,        (1) 115 
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where 𝒘(𝑡) is atmospheric forcing at a time 𝑡, 𝛼	(= 0.2) is an arbitrary constant, 𝒘(𝑡 + 𝛿𝑡") is atmospheric forcing at the 

same time as 𝒘(𝑡) but in a different year, and 𝑛 (=100) is the ensemble size. Here, the year in 𝒘(𝑡 + 𝛿𝑡") is changed every 

month. As is clear from Eq. (1), the ensemble mean of the atmospheric forcing 𝒘(")(𝑡) is equivalent to 𝒘(𝑡). 

Lateral boundary conditions for each ensemble member are obtained from a monthly-mean global ocean reanalysis 125 

dataset for different years. Namely, the ensemble mean of the lateral boundary condition corresponds to a monthly 

climatology. These perturbed atmospheric and lateral boundary conditions play a role equivalent to additive inflation 

(Houtekamer and Zhang, 2016). 

 

2.3. Covariance inflation methods 130 

 Three covariance inflation methods [MULT, RTPP, and RTPS] are adopted in this study. MULT inflates forecast 

error covariance 𝑃' by a factor of 𝜌	(> 1):  

 

𝑃"%'
' = 𝜌𝑃()"*

' ,             (2) 

 135 

where the subscripts 𝑖𝑛𝑓 and 𝑜𝑟𝑖𝑔 denote inflated and original (i.e., before inflation), respectively. Both RTPP and RTPS 

restore the analysis ensemble perturbation towards the forecast ensemble perturbations maintaining the analysis ensemble 

mean, as represented by 

 

𝑿𝒊𝒏𝒇𝒂 = 𝛼/011𝑿𝒇 + (1 − 𝛼/011)𝑿𝒐𝒓𝒊𝒈𝒂  and          (3) 140 

𝑿𝒊𝒏𝒇
𝒂(𝒊) =

5!"#$6%(')7($85!"#$)6)*'+
,(')

6)*'+
,(') 𝑿𝒐𝒓𝒊𝒈

𝒂(𝒊) .          (4) 

 

Here, 𝑿[= (𝒙(𝟏) − 𝒙?,… , 𝒙(𝒊) − 𝒙?,… , 𝒙(𝒏) − 𝒙?)]  is the ensemble perturbation matrix whose ith column consists of the 

perturbations of the ith ensemble member, where 𝒙(𝒊) and 𝒙? are the state vector of the ith ensemble member and ensemble 

mean, the superscripts 𝑎 and 𝑓 denote analysis and forecast, and 𝛼/011 and 𝛼/01: are the relaxation parameters in the RTPP 145 

and RTPS, respectively. 𝜎(") is the ensemble spread of ith variable of state vector 𝒙, as represented by 

 

𝜎(") = D(𝑛 − 1)
8$𝑿(𝒊)(𝑿(𝒊))0 .           (5) 
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In the RTPP and RTPS, the relaxation parameters are generally defined between 0 and 1, where 𝛼/011 = 𝛼/01: = 0 150 

corresponds to no inflation, and 𝛼/011 = 𝛼/01: = 1  corresponds that the analysis ensemble spread is inflated to be 

equivalent to the forecast ensemble spread. The RTPP and RTPS are thought to have side effects in maintaining the dynamic 

balance (Houtekamer and Zhang, 2016; Ying and Zhang, 2015). 

 

2.4 Validation 155 

2.4.1 Nonlinear balance equation (NBE) 

Surface horizontal velocity can be represented as the sum of surface geostrophic and ageostrophic velocities under the 

geostrophic approximation. Here, the ageostrophic velocity is defined to be caused by the surface wind stress curl except for 

the vertical geostrophic shear according to the classical Ekman theory (Cronin and Tozuka, 2016). In this study, the 

atmospheric field is not included in the model state vector, and therefore, there are no differences between the forecast and 160 

analysis ageostrophic velocities. Consequently, writing the geostrophic balance equation in terms of analysis increments, we 

obtain 

 

𝑓𝒌 × 𝛿𝒖 = −𝑔𝛁𝒉𝛿𝜂,            (6) 

 165 

where 𝑓 is the vertical component of the Coriolis parameter, 𝒌 is a unit vector in the vertical upward direction, 𝛿 is the 

analysis increment, 𝒖 is the horizontal velocity at the sea surface, 𝑔	(= 9.8	𝑚	𝑠8<) is the gravitational acceleration, 𝛁𝒉 =

(𝜕 𝜕𝑥⁄ , 𝜕 𝜕𝑦⁄ ) is the horizontal gradient operator, and 𝜂 is the SSH. By taking 𝜕 𝜕𝑥⁄  of the x-component of Eq. (6) plus 

𝜕 𝜕𝑦⁄  of the y-component, Eq. (6) can be reduced to the nonlinear balance equation (NBE; Shibuya et al., 2015; Zhang et al., 

2001): 170 

 

−𝑓𝛿𝜁 + 𝛽𝛿𝑢 + 𝑔𝛁𝒉𝟐𝛿𝜂 = 0,          (7) 

 

where 𝜁(= 𝜕𝑣 𝜕𝑥⁄ − 𝜕𝑢 𝜕𝑦⁄ ) is the relative vorticity at the sea surface and 𝛽(= 𝜕𝑓 𝜕𝑦⁄ ) is the planetary vorticity gradient. 

If geostrophic balance is not satisfied in the analysis field, there is an absolute residual of the NBE, ∆𝑁𝐵𝐸: 175 

 

∆𝑁𝐵𝐸 ≡ [−𝑓𝛿𝜁 + 𝛽𝛿𝑢 + 𝑔𝛁𝒉
𝟐𝛿𝜂[,          (8) 
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where |	∙	| denotes taking the absolute value. Smaller (larger) ∆𝑁𝐵𝐸 indicates more (less) geostrophic balance in the analysis 

field. Little initial shock would occur if the analysis increments of SSH and surface horizontal velocity satisfy the 

geostrophic balance. 

 185 

2.4.2 Improvement ratio (IR) 

To compare the geostrophic balance and accuracy among sensitivity experiments using a statistical method, we calculate 

improvement ratios (IRs) of area-averaged ∆𝑁𝐵𝐸 and root mean square deviations (RMSDs) relative to observations as 

represented by 

 190 

𝐼𝑅> = (∆>@A)-".8(∆>@A)/0#
(∆>@A)-".

× 100  and         (9) 

𝐼𝑅/ = (/B:C)-".8(/B:C)/0#
(/B:C)-".

× 100,           (10) 

 

respectively. The subscripts 𝐶𝑇𝐿  and 𝐸𝑋𝑃  indicate control and sensitivity experiments, respectively. Significant 

improvement and degradation of the dynamical balance and accuracy are detected by applying the bootstrap method, where 195 

the IRs of the area-averaged ∆𝑁𝐵𝐸 and RMSDs are resampled for 10,000 cycles and a 99% confidence level is used to 

detect the significance in all sensitivity assimilation experiments. 

 

2.4.3 Observations 

To validate the accuracy of a sensitivity experiment, we use observational gridded SSH and SSHA datasets from Archiving 200 

Validation and Interpretation of Satellite Oceanographic data (AVISO; Ducet et al., 2000) with horizontal resolution of 

0.25°, in-situ surface horizontal velocity from surface drifting buoys of the Global Drifter Program (Elipot et al., 2016), in-

situ temperature and salinity in the depth range 1–525 m, and horizontal velocity in the depth range 8–36 m at 144.6°E, 

32.3°N south of the Kuroshio Extension (KE) from the Kuroshio Extension Observatory (KEO) buoy 

(https://www.pmel.noaa.gov/ocs/; see Fig. 5a). The AVISO dataset is not an independent observational dataset because 205 

satellite SSHAs are used for the assimilation in this study, whereas the surface drifter and KEO buoys are independent. 

Although validation in the ocean interior might not be sufficient, this is due to the limitation of available independent 

observations. 

 

3. EnKF-based ocean data assimilation system 210 
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3.1. Ocean model 215 

The sigma-coordinate regional ocean model used in this study is based on the Stony Brook Parallel Ocean Model (sbPOM; 

Mellor, 2002; Jordi and Wang, 2012) version 1.0, and constructed for the northwestern Pacific region [117°E–180°, 15°–

50°N] with horizontal resolution of 0.25° and 50 σ-layers (Table 2). The bottom topography is derived from ETOPO1, a 1 

arc-minute global relief model of Earth’s surface (Amante and Eakins, 2009). We apply a Gaussian filter with e-folding 

scales of 200 km to the topography to reduce the pressure gradient errors in sigma coordinate models caused by steep bottom 220 

slopes (Mellor et al., 1994) and fulfill the condition |𝐻"7$ −𝐻"| |𝐻"7$ +𝐻"|⁄ < 0.2 , where 𝐻"  and 𝐻"7$  are bottom 

topographies at adjacent grids. Monthly (Seasonal) temperature and salinity climatologies from World Ocean Atlas 2018 

(WOA18; Locarnini et al., 2019; Zweng et al., 2019) with horizontal resolution of 1° and 57 (102) layers are used for an 

initial condition over depths shallower (deeper) than 1500 m. Lateral boundary conditions for temperature, salinity, and 

horizontal velocity are obtained from Simple Ocean Data Assimilation (SODA; Carton et al. 2018) version 3.7.2 with 225 

horizontal resolution of 0.5° and 50 layers. Here, to satisfy volume conservation, flow relaxation (Guo et al., 2003) is applied 

to the horizontal velocity at the lateral boundary. The Japanese 55-year Reanalysis (JRA55; Kobayashi et al. 2015) with 

horizontal and temporal resolution of 1.25° and 6 hours, respectively, is adopted for the atmospheric boundary conditions 

including air temperature and specific humidity at 2 m, wind velocity at 10 m, shortwave radiation, total cloud fraction, sea 

level pressure, and precipitation. We also use river discharge from the Japan Aerospace Exploration Agency (JAXA)’s land 230 

surface and river simulation system, Today’s Earth (TE)-Global (https://www.eorc.jaxa.jp/water/), with horizontal and 

temporal resolution of 0.25° and 3 hours, respectively. The atmospheric and lateral boundary conditions are perturbed as 

described in Sect. 2.2, except for the rainfall and river discharge. 

 The model is driven by wind stresses and heat and freshwater fluxes using bulk formulae in which bulk coefficients 

are estimated from the Coupled Ocean-Atmosphere Response Experiment (COARE) version 3.5 bulk algorithm (Brodeau et 235 

al., 2017; Edson et al., 2013). The horizontal diffusivity coefficient is calculated by a Smagorinsky type formulation with a 

coefficient of 0.1 (Smagorinsky et al., 1965) and is assumed to be one-fifth of the horizontal viscosity coefficient. The 

vertical diffusivity coefficient is estimated by the Level 2.5 version of Nakanishi and Niino (2009). The model is spun up 

from 1 January 2011 to 6 July 2015 using the initial condition with no motion. During the spin-up period, simulated 

temperatures and salinity are nudged towards the monthly and seasonal climatologies from WOA18 with a 90-day timescale 240 

to damp northward overshooting of the Kuroshio. We have confirmed that the perturbed boundary conditions substantially 

increase the ensemble spread even with the nudging (figure not shown). 

 

3.2. Data assimilation 
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We implement the three-dimensional local ensemble transform Kalman filter (3D-LETKF; Hunt et al. 2007; Miyoshi and 245 

Yamane 2007) with 100 ensemble members to assimilate the following observations on a 1 day assimilation interval (Table 

3): satellite SSTs from Himawari-8 and GCOM-W, SSS from the SMOS 

(http://www.esa.int/Applications/Observing_the_Earth/SMOS) and Soil Moisture Active Passive (SMAP) version 4.3 

(Meissner et al., 2018), SSH consisting of satellite SSH anomalies from the Copernicus Marine Environment Monitoring 

Service (CMEMS; http://marine.copernicus.eu/) and mean dynamic ocean topography estimated from simulated SSH 250 

averaged in 2012–14, and in-situ temperature and salinity from the Global Temperature and Salinity Profile Programme 

(GTSPP; Sun et al., 2010) and Advanced automatic QC (AQC) Argo Data version 1.2a 

(http://www.jamstec.go.jp/ARGO/argo_web/argo/?page_id=100&lang=en). We exclude satellite SSS within 100 km of the 

coasts, SSH for bottom topography shallower than 200 m, in-situ temperature and salinity duplicated between the GTSPP 

and AQC Argo, and observations without the best quality flags or whose differences from the forecasts are larger than the 255 

values in the gross error check in Table 3. Following Miyazawa et al. (2012) and Penny et al. (2013), the localization scales 

based on a Gaussian function are chosen to be 300 km and 100 m in the horizontal and vertical directions, respectively. An 

observational error covariance matrix is assumed to be diagonal using the observation errors in Table 3. 

 

3.3. Sensitivity experiments 260 

We conduct sensitivity experiments with combining the IAU and covariance inflation methods [No inflation (NO INFL), 

RTPP, RTPS, and MULT] to investigate their impacts on the geostrophic balance and accuracy. We set the relaxation 

parameters in the RTPP and RTPS experiments to 𝛼/011 = 𝛼/01: = 0.9  without the IAU and 𝛼/011 = 𝛼/01: =

0.5, 0.6, … , 1.2 with the IAU, and the inflation parameter to 𝜌 = 1.05< (inflating the forecast ensemble spread by 5%) in the 

MULT experiments, regardless of the application of the IAU. In this study, we do not explore all values of the relaxation and 265 

inflation parameters because of the limitations of computational resources. Hereafter, we refer to the RTPP experiments 

implemented with and without the IAU as the RTPP+IAU and RTPP experiments, respectively, and the RTPP+IAU 

experiment with a relaxation parameter of 0.5 as the RTPP05+IAU experiment. Kotsuki et al. (2017) indicated that the RTPP 

and RTPS do not consider the model error explicitly and that the optimal relaxation parameter may be larger than 1.0. 

Therefore, we perform experiments with the relaxation parameter >1. To clarify the effects of the IAU and covariance 270 

inflation methods, the NO INFL experiment is defined as a control experiment in this study [See Eqs. (9) and (10)]. 

 We integrate the LETKF-based ocean data assimilation system from 7 July 2015 at the start date of the Himawari-8 

observations to 31 December 2016, applying the SSS nudging with 90-day timescale to damp a surface freshening drift as in 

the model spin-up described in subsection 3.1. Furthermore, we conduct 11-day ensemble forecast experiments initialized on 
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the 1st day of each month in 2016 by the forecasts from the NO INFL, NOINFL+IAU, RTPP09, RTPP09+IAU, RTPS09, 275 

RTPS09+IAU experiments, with the SSS nudging applied with 90-dat time scale. We estimate ∆𝑁𝐵𝐸 from the ensemble 

analysis increments on days 1 and 16 of each month, the RMSDs from the daily averaged ensemble mean analyses and 

forecasts, and the ensemble spread from the daily-mean ensemble analyses. As described in subsection 2.4.2, the statistical 

analyses are applied to IRs of area-averaged ∆𝑁𝐵𝐸 and analysis RMSDs in all analysis experiments. The results in the 

RTPP11+IAU and RTPP12+IAU experiments are not shown because numerical instability developed. 280 

 

4. Results 

4.1 Geostrophic balance 

We first compare the geostrophic balance for the various sensitivity experiments using spatiotemporally averaged ∆𝑁𝐵𝐸 

over the whole system domain for 2016 (Fig. 1). The NO INFL+IAU experiment has the best geostrophic balance with 285 

significant improvement relative to the NO INFL experiment, and thus the IAU plays a role in enhancing the balance, 

probably because the IAU reduces noise of the high-frequency gravity waves associated with initial shocks. This result is 

consistent with Yan et al. (2014) who demonstrated that the IAU reduces spurious oscillation of vertical velocity in twin 

experiments using a relatively idealized EnKF-based ocean data assimilation system. In contrast, since the RTPP09 and 

RTPS09 experiments show significantly larger ∆𝑁𝐵𝐸 than the NO INFL experiment, the RTPP and RTPS contribute to 290 

breaking the balance. The MULT+IAU and MULT experiments give such large ∆𝑁𝐵𝐸 of 2.11× 10−10 and 5.22 × 10−10 s−2, 

respectively, that the MULT breaks the balance considerably even if the IAU is applied. 

The RTPP+IAU and RTPS+IAU experiments provide significant improvement when the relaxation parameters are 

𝛼/011 ≤ 0.9 and 𝛼/01: ≤ 0.8, respectively. The RTPP11+IAU experiment becomes numerically unstable in December 2015 

and the RTPS11+IAU experiment also significantly degrades the balance, and thus relaxation parameters larger than 1.0 do 295 

not appear to be appropriate for an EnKF-based ocean data assimilation system. The combinations of the IAU and 

RTPP/RTPS, in which the relaxation parameters are set to 𝛼/011 ≤ 0.9 and 𝛼/01: ≤ 0.8, appear to maintain geostrophic 

balance, likely because the IAU counteracts the RTPP/RTPS by improving the balance. 

To investigate spatial characteristics of the geostrophic balance, ∆𝑁𝐵𝐸 is temporally averaged over the whole year 

2016 (Fig. 2). Here, the RTPP09+IAU and RTPS11+IAU experiments are shown from the RTPP+IAU and RTPS+IAU 300 

experiments, because they have the best accuracy as seen in Sect. 4.2. The NO INFL, RTPP09, and RTPS09 experiments 

produce less balanced fields in the mid-latitude region, especially around the KE (Fig. 2a, c, e). In the RTPS11+IAU 

experiment, the balance is also lost in higher latitude regions (Fig. 2f). In the MULT and MULT+IAU experiments, there are 

almost no balanced regions with ∆𝑁𝐵𝐸  smaller than 1.5×10−10 s−2 (figure not shown). The NO INFL+IAU and 
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RTPP09+IAU experiments show substantial improvement around the KE region, although the relatively large ∆𝑁𝐵𝐸 305 

remains along the KE in the RTPP09+IAU experiment (Fig. 2b, d). Thus, in general, although the balance in the analysis 

field is not maintained around the KE region, this imbalance is substantially reduced in the NO INFL+IAU and 

RTPP09+IAU experiments. 

 

4.2 Accuracy 310 

4.2.1 Surface flow field 

We evaluate the accuracy of the surface flow field in the sensitivity experiments, calculating the analysis RMSDs relative to 

the AVISO observational SSH and SSHA gridded datasets as well as surface zonal and meridional velocity from the drifter 

buoys. We also estimate the ensemble spread in observational space. As described in Sect. 2.4.3, the AVISO dataset is not 

independent because it uses satellite SSHAs assimilated in our system, whereas the drifter buoys are independent. The 315 

analysis RMSDs and ensemble spreads are averaged over the whole domain for 2016 in the SSH and SSHA fields (Fig. 3) 

and the surface zonal and meridional velocity fields (Fig. 4). Compared with the NO INFL experiment, the NO INFL+IAU 

experiment has significantly larger RMSDs and smaller ensemble spreads in most of the variables, whereas the RTPP09 and 

RTPS09 experiments show significantly smaller RMSDs and larger spreads. This indicates that the IAU has a significant 

effect on reducing the accuracy in the surface flow field because the relatively small ensemble spread leads to small analysis 320 

increments and because the IAU does not use the SSH analysis increments. Small analysis increments result in a better 

dynamical balance as shown in subsection 4.1. The result is consistent with Yan et al. (2014) who demonstrated that the IAU 

degrades accuracy of SSH, temperature, and horizontal velocities using twin experiments. In contrast, the RTPP and RTPS 

lead to significant improvement by inflating the ensemble spread. The large analysis increments caused by the large 

ensemble spread might reduce the dynamical balance. The MULT and MULT+IAU experiments yield poor accuracy and 325 

very large ensemble spreads in the flow fields; for example, the averaged SSH RMSDs of 0.22 and 0.24 m and the averaged 

SSH and SSHA ensemble spreads of 0.41 and 0.74 m, respectively. Thus, the MULT does not have sufficient skill in 

reproducing the flow field. 

In both RTPP+IAU and RTPS+IAU experiments, the ensemble spreads are increased in all of the variables for the 

larger relaxation parameters. It appears that the larger relaxation parameters maintain the large ensemble spread induced by 330 

the perturbed boundary conditions. In the RTPP+IAU experiments, the accuracy of SSH and SSHA is the highest for 

𝛼/011 = 0.8, although there is no significant improvement relative to the NO INFL experiment. The accuracy in both zonal 

and meridional velocity improves with larger relaxation parameter, and significantly improves for 𝛼/011 = 0.8– 1.0 . 

Deleted:  might
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Consequently, 𝛼/011 = 0.8– 0.9  in the RTPP+IAU experiment may be appropriate to represent the flow field more 335 

accurately. 

In the RTPS+IAU experiment, the accuracy of the SSH, SSHA, and horizontal velocity tends to improve as the 

relaxation parameter increases, and then significant degradation suddenly occurs for 𝛼/01: = 1.2. For 𝛼/01: = 1.1, the 

RTPS+IAU experiment has the best accuracy for SSH and SSHA but significant improvement only in SSHA. For 𝛼/01: =

1.0, the accuracy in both zonal and meridional velocity is significantly higher. Therefore, 𝛼/01: = 1.0 − 1.1  seems to be the 340 

best among the RTPS+IAU experiments. We note that the accuracy of the SSH and SSHA in the RTPP+IAU and 

RTPS+IAU experiments does not surpass the RTPP09 and RTPS09 experiments, probably because the IAU method does not 

use the SSH analyses. Furthermore, the comparison between the RTPP+IAU and RTPS+IAU experiments suggests that the 

combination of the IAU and RTPP has higher skill in reproducing the flow field.  

To examine spatial features of the analysis accuracy and ensemble spread, the analysis RMSDs and ensemble 345 

spreads in the SSHA are also averaged over 2016 (Figs. 5 and 6, respectively). In most experiments, large RMSDs and 

ensemble spreads are distributed around the KE region where there are abundant fronts and eddies. Compared with the NO 

INFL experiment, the ensemble spreads become smaller in the mid-latitude region in the NO INFL+IAU experiment, and 

thus the accuracy around the KE region is degraded. The RTPP09, RTPS09, RTPP09+IAU, and RTPS11+IAU experiments 

show larger ensemble spreads leading to improvement of the accuracy around the KE region. However, the larger ensemble 350 

spread is also seen in the subtropical region in the RTPS11+IAU experiment. This does not seem reasonable because a free 

ensemble experiment does not demonstrate such spread even if the perturbed atmospheric and lateral boundary conditions 

are applied (figure not shown). 

  To investigate the forecast accuracy, we calculate the spatiotemporally averaged forecast RMSDs of the 11-day 

ensemble forecast experiments for each month in 2016 (i.e., total 12 cases) relative to AVISO and the drifter buoys, and the 355 

12 cases are averaged to obtain the forecast RMSDs over 2016 (Fig. 7). As shown in Figs. 3, 4 and 7, the results of the 

forecast RMSDs generally agree with those of the analysis RMSDs, except for the RTPP09+IAU and RTPS09+IAU 

experiments showing smaller forecast SSHA RMSDs than the NO INFL experiment. Overall, the combination of the IAU 

and RTPP09 seems to be the most suitable for not only constructing analysis products but also conducting ensemble forecast. 

 360 

4.2.2 The KEO buoy 

We also calculate the analysis RMSDs relative to independent observations of temperature, salinity, and horizontal velocity 

from the KEO buoy located south of the KE (Fig. 5a). Here, only the temperature and salinity results are shown, as there is 

almost no significant improvement and even degradation in the horizontal velocity. There is hardly any difference between 

Commented [SO10]: Referee #3: Comment #2 
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the NO INFL+IAU and NO INFL experiments in the temperature accuracy, whereas the salinity accuracy is significantly 365 

degraded around 0–200 m depth in the NO INFL+IAU experiment (Fig. 8). Thus, the IAU may reduce the accuracy, 

although this is not as obvious as for the flow field shown in Sect. 4.2.1. The RTPP and RTPS experiments give significantly 

better accuracy than the NO INFL experiment in both temperature and salinity, and thus the RTPP and RTPS play a role in 

enhancing the accuracy. 

 When the relaxation parameter is 𝛼/011 = 0.7– 1.0 in the RTPP+IAU experiment, the temperature accuracy is 370 

significantly enhanced around 200–500 m depth, although there is a slight degradation around 50–150 m depth (Fig. 9a). For 

the parameter values in that range, the salinity accuracy is also significantly improved in almost all depths (Fig. 9c). Since 

the temperature accuracy is the best at 𝛼/011 = 0.8 − 0.9  and salinity accuracy improves as the relaxation parameter 

increases, the appropriate relaxation parameter would be 𝛼/011 = 0.8 − 0.9 in the RTPP+IAU experiment. 

 In the RTPS+IAU experiments, the temperature accuracy below 200 m depth is significantly improved for 𝛼/01: =375 

0.8 − 1.1, whereas that above 200 m depth is significantly degraded for 𝛼/01: = 0.5 − 0.8 and 𝛼/01: = 1.2 (Fig. 9b). The 

salinity accuracy improves over almost the whole depth when the relaxation parameter is 𝛼/01: = 1.0– 1.2, whereas there is 

significant degradation around 0–200 m depth when the relaxation parameter is 𝛼/01: = 0.5– 0.9 (Fig. 9d). Therefore, the 

suitable relaxation parameter is 𝛼/01: = 1.0 − 1.1 in the RTPS+IAU experiment. As shown in Fig. 8, both RTPP09+IAU 

and RTPS11+IAU experiments have higher accuracy than the NO INFL, NO INFL+IAU, RTPP09, and RTPS09 380 

experiments. 

 

5. Comparison of the prescribed MULT parameter with the RTPP09+IAU experiment  

 To investigate how much the inflation in the RTPP09+IAU experiment corresponds to the MULT parameter, we 

estimate the MULT parameter 𝜌DEF corresponding to the RTPP09+IAU experiment using the following equation: 385 

 

𝛼/011𝑿𝒇 + (1 − 𝛼/011)𝑿𝒐𝒓𝒊𝒈𝒂 = D𝜌DEF𝑿
𝒇.          (11) 

 

By multiplying 𝑿𝒇(𝑿𝒇)𝑻k𝑿
𝒇(𝑿𝒇)𝑻l

8𝟏
 from the RHS of Eq. (11), 

 390 

𝜌DEF𝐼 = m𝛼/011𝐼 + (1 − 𝛼/011)𝑿𝒐𝒓𝒊𝒈
𝒂 (𝑿𝒇)𝑻k𝑿

𝒇(𝑿𝒇)0l
8$
n
<
,       (12) 

 

where 𝐼 denotes the identity matrix. In scalar format, the estimated parameter 𝜌DEF
(")  at ith variable might be represented as  
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Using the outputs from the RTPP09+IAU experiment, we calculate the estimated MULT parameter for the SST, SSS, and 

SSH fields (Fig. 10). The estimated MULT parameter is large around the mid-latitude region, especially around the Kuroshio 

Extension region. The estimated MULT parameters averaged over the whole domain and analysis period are 1.08 (1.11) for 

the SST and SSS (SSH) fields, and these values correspond well to the prescribed MULT parameter 𝜌 = 1.05< ≈ 1.10.  400 

 As shown in Fig.10, the MULT parameter might have the spatial dependency, and therefore adaptive MULT 

(Miyoshi, 2011) may be useful. However, Ohishi et al. (in review) demonstrated that the adaptive observation error inflation 

(AOEI; Minamide and Zhang, 2017; Zhang et al., 2016), with opposite effects to the adaptive MULT, significantly improves 

dynamical balance and the accuracy of the temperature, salinity, and surface horizontal velocities. This is because the AOEI 

suppresses the erroneous temperature and salinity analysis increments associated with the representation errors around the 405 

Kuroshio Extension region, which result in strong vertical salinity diffusion through weakening density stratification and 

therefore degrade the low-salinity structure in the intermediate layer. This implies that the adaptive MULT would increase 

the analysis increments and degrade the dynamical balance and accuracy. Therefore, it is difficult to find an appropriate 

MULT parameter. 

 410 

6. Summary 

In this study, we have developed an EnKF-based ocean data assimilation system with an assimilation interval of 1 day to 

take advantage of frequent satellite observations, and we have conducted sensitivity experiments to explore the best 

combination of the IAU and covariance inflation methods by evaluating the geostrophic balance and analysis accuracy. 

Table 4 summarizes the overall evaluation in this study. The IAU and RTPP/RTPS have opposite effects to each other; 415 

namely, the IAU improves the balance but degrades the accuracy, reducing the ensemble spread, whereas the RTPP and 

RTPS degrade balance and improve accuracy by inflating the ensemble spread. Large RTPP and RTPS parameters maintain 

large ensemble spread inflated by the perturbed boundary conditions, and the resulting large analysis increments degrade 

balance but improve accuracy. The RTPP+IAU experiment provides significantly better balance for the relaxation 

parameters of 𝛼/011 ≤ 0.9 as well as better accuracy when the relaxation parameter is 𝛼/011 = 0.8– 1.0. Therefore, this 420 

study demonstrates that the appropriate parameter is 𝛼/011 = 0.8– 0.9 when the IAU and RTPP are combined. In contrast, 

the RTPS+IAU experiment does not significantly improve balance and accuracy at the same time, because the balance is 
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significantly better for a relaxation parameter of 𝛼/01: ≤ 0.8, and the accuracy is significantly higher when the relaxation 

parameter is 𝛼/01: = 1.0– 1.1. Therefore, this study demonstrates that the combination of the IAU and RTPP with the 

relaxation parameter of 𝛼/011 = 0.8– 0.9 is the most suitable for the EnKF-based ocean data assimilation system. This is 425 

confirmed by the 11-day ensemble forecast experiments. In the combination of the IAU and RTPP, the large relaxation 

parameter of 𝛼/011 = 0.8– 0.9 maintains the ensemble spread induced by perturbed boundary conditions and leads to the 

improvement of accuracy but degradation of dynamical balance, and at the same time, the IAU improves the degradation of 

dynamical balance by the RTPP. As a result, this would lead to further improvement of the accuracy by reducing the initial 

shocks in frequent data assimilation.  430 

 The MULT with a 5% inflation of the forecast ensemble spread does not have sufficient skill in maintaining the 

balance and accurately reproducing the flow field, regardless of whether or not the IAU is applied. Although it is difficult to 

find an appropriate MULT parameter as described in Section 5, it might be possible that MULT produces analyses with good 

balance and accuracy by tuning the inflation parameter. However, since the computational cost of tuning the parameters in 

all covariance inflation methods is high, this study focuses on the combination of the RTPP/RTPS and IAU with good 435 

balance and accuracy. This system still contains other tuning parameters in the perturbed atmospheric forcing, ensemble size, 

localization scale, and observation errors. We note that the suitable RTPP parameter in the RTPP+IAU experiment would be 

different depending on those parameter settings. Further experiments are required to determine the best settings for a given 

computational resource, and we will address this issue in future studies. 

 The results of this study would also be useful for constructing EnKF-based data assimilation systems in other fields 440 

in which gravity waves have substantial impacts. Furthermore, this study may help improve the accuracy of existing EnKF-

based data assimilation systems. Table 1 shows that there are no eddy-resolving EnKF-based ocean reanalysis datasets in the 

Pacific region. We are now planning to construct such analysis datasets and real-time ensemble prediction systems. 

 

Code and data availability 445 

The source codes of the sbPOM and LETKF are available from https://zenodo.org/record/6482744 (last access: 10 

May 2022, Jordi and Wang, 2012, doi: 10.5281/zenodo.6482744) and https://github.com/takemasa-miyoshi/letkf (last 

access: 13 April 2021, Miyoshi and Yamane, 2007), respectively. The source code of the COARE version 3.5 is downloaded 

from https://github.com/brodeau/aerobulk (last access: 13 April 2021, Brodeau et al., 2017; Edson et al., 2013). 

We thank Dr. Kenshi Hibino for providing us with the earlier version of the TE-Global before the official release of 450 

the latest version (https://www.eorc.jaxa.jp/water/, last access: 13 April 2021). Details of the observational datasets are as 

follows: the surface drifter buoys from https://www.aoml.noaa.gov/phod/gdp/hourly_data.php (last access: 13 April 2021, 
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Elipot et al., 2016); the KEO buoy from https://www.pmel.noaa.gov/ocs/ (last access: 13 April 2021); the ETOPO1 from 

https://www.ngdc.noaa.gov/mgg/global/ (last access: 13 April 2021, Amante and Eakins, 2009); the WOA18 

https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/ (last access: 13 April 2021; Locarnini et al., 2019; Zweng et al., 455 

2019); the Himawari-8 satellite SSTs from https://www.eorc.jaxa.jp/ptree/index.html (last access: 13 April 2021; Bessho et 

al., 2016; Kurihara et al., 2016); the GCOM-W SSTs from https://gportal.jaxa.jp/gpr/?lang=en (last access: 13 April 2021); 

the satellite SSS from SMOS at http://www.esa.int/Applications/Observing_the_Earth/SMOS (last access: 13 April 2021) 

and SMAP version 4.3 from https://podaac.jpl.nasa.gov/ (last access: 13 April 2021, Meissner et al., 2018); the satellite 

SSHA and AVISO (Ducet et al., 2000) from the CMEMS (https://marine.copernicus.eu/, last access: 13 April 2021); and in-460 

situ temperature and salinity from the GTSPP (https://www.ncei.noaa.gov/products/global-temperature-and-salinity-profile-

programme, last access: 13 April 2021, Sun et al., 2010) and AQC Argo version 1.2a 

(http://www.jamstec.go.jp/ARGO/argo_web/argo/?page_id=100&lang=en, last access: 13 April 2021). The global JRA55 

atmosphere and SODA 3.7.2 ocean reanalysis datasets are from http://search.diasjp.net/en/dataset/JRA55 (last access: 13 

April 2021, Kobayashi et al., 2015) and https://www.soda.umd.edu/soda3_readme.htm (last access: 13 April 2021, Carton et 465 

al., 2018), respectively. 
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Table 1: Overview of EnKF-based ocean data assimilation systems developed after 2010. Abbreviations are 645 

PEODAS: Predictive Ocean Atmosphere Model for Australia (PAOMA) Ensemble Ocean Data Assimilation system; 

DEnKF: Deterministic EnKF (Sakov and Oke, 2008); LETKF: Local ensemble transform Kalman filter (Hunt et al., 

2007); EAKF: Ensemble adjustment Kalman filter (Anderson, 2001); LESKTF: Local Error Subspace Kalman 

Transform Filter (Nerger et al., 2012); T: Temperature; S: Salinity; SST: Sea surface temperature; SSH: Sea surface 

height; and MULT: Multiplicative inflation. Adaptive MULT was proposed by Miyoshi (2011). Dashes are used to 650 

indicate no application. “Inflated obs. error” in TOPAZ4 indicates that observation errors are inflated when 

ensemble analyses are calculated. 

Name PEODAS  
(Yin et al., 2011) 

TOPAZ4 
(Sakov et al., 2012) 

Miyazawa et al. 
(2012) 

Karspeck et al. 
(2013) 

Penny et al. 
(2013) 

Penny et al. 
(2015) 

Baduru et al. 
(2019) 

Brüning et al. 
(2021) 

Domain Global North Atlantic 
+Arctic (Release) South of Japan Global Quasi global Global Indian 

Ocean 
North Sea 

+Baltic Sea 

Horizontal resolution  
(longitude × latitude) 2° × 0.5–1.5° 12–16km × 

12–16km 1/36° × 1/36° 1° × 1° 1° × 0.58–1° 0.5° × 
0.25–0.5° 

1/12° × 
1/12° 

0.9–5km× 
0.9–5km 

Vertical resolution 25 z-levels 28 hybrid layers 31 σ-layers 60 z-levels 20 z-levels 40 z-levels 40 σ-layers 25–36 layers 

Perturbed boundary 
condition Atmosphere Atmosphere – – Atmosphere Atmosphere Atmosphere – 

EnKF Simplified EnKF DEnKF LETKF EAKF LETKF LETKF LETKF LESKTF 

Ensemble size 11 100 20 48 40 28 80 12 

Assimilation window 5 days 7 days 2 days 1 day 5 days 5 days 5 days 12 hours 

Assimilated data T, S SST, SSH, T, S, Ice SST, SSH, T, S T, S T, S T, S SST, T, S SST 

Covariance inflation Additive inflation – MULT – Adaptive 
MULT – MULT – 

IAU/Nudging – – – – – – – – 

Period 1979–2006 1991–2019 2010.02.08–28 1998–2005 1997–2003 1991–98 2016.08– 
2018.09 2021– 

Other  Inflated obs. error       
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Table 2: Overview of the regional ocean model in the ocean data assimilation system 

Ocean model sbPOM (Jordi and Wang, 2012) 

Model domain Northwestern Pacific [117°–180°E, 15°–50°N] 

Horizontal resolution 0.25°×0.25° 

Vertical layer 50 σ-layers 

Initial conditions WOA18 (Locarnini et al., 2019; Zweng et al., 2019) 

Atmospheric forcing JRA55 (Kobayashi et al., 2015) 

River discharge TE-Global (https://www.eorc.jaxa.jp/water/) 

Lateral boundary condition SODA version 3.7.2 (Carton et al., 2018) 

Spin-up period 2011.01.01–2015.07.06 
 655 
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Table 3: Overview of data assimilation in the ocean data assimilation system 

Assimilation method LETKF (Hunt et al., 2007; Miyoshi and Yamane, 2007) 
Ensemble size 100 
Assimilation cycle 1 day 
Observations   

     SST Himawari-8 (Bessho et al., 2016; Kurihara et al., 2016)  
GCOM-W (http://www.ghrsst.org) 

     SSS SMOS (https://earth.esa.int) 
SMAP (https://www.jpl.nasa.gov) 

     SSH  

          - SSHA DUACS multimission satellite data (https://marine.copernicus.eu/) 
         - MDOT Climatology of model outputs in a spin-up period (2012–14) 

     Temperature and Salinity 
GTSPP (Sun et al., 2010) 
AQC Argo data version 1.2a 
(http://www.jamstec.go.jp/ARGO/argo_web/argo/?page_id=100&lang=en) 

Horizontal localization scale 300 km 
Vertical localization scale 100 m 
Observation error   
     SST 1.5°C 
     SSS 0.3 
     SSH 0.2 m 
     Temperature 1.5°C 
     Salinity 0.3 
Gross error check  

     SST ±5 °C 
     SSS ±1 
     SSH ±1 m 
     Temperature ±5°C 
     Salinity ±2 
Assimilation period 2015.07.07–2016.12.31 
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Table 4: Schematic summarizing the evaluation of the geostrophic balance and accuracy of the AVISO SSH and 

SSHA, the surface zonal and meridional velocity from the drifter buoys, and the temperature and salinity at the KEO 

buoy in the sensitivity experiments. Open circles and crosses indicate improvement and degradation relative to the 660 

NO INFL experiment, and light red and blue shading denotes significant improvement and degradation, respectively. 

In rows two to four, symbols and color shading are used only if both variables have the same results; otherwise, 

dashes are used to indicate no significant difference from the NO INFL experiment. Parentheses in the RTPP+IAU 

and RTPS+IAU experiments denote the best relaxation parameter in the second row and the range of the relaxation 

parameter with significant improvement in the other rows. 665 

  IAU RTPP09 RTPS09 RTPP+IAU RTPS+IAU 

Geostrophic balance ○ × × ○ 
(Sig. at 𝛼/011 ≤ 0.9) 

○ 
(Sig. at 𝛼/01: ≤ 0.8) 

SSH and SSHA 
from the AVISO × ○ ○ – 

(Best at 𝛼/011 = 0.8) 
– 

(Best at 𝛼/01: = 1.1) 

Surface velocity 
from the drifter buoys × ○ ○ ○ 

(Sig. at 𝛼/011 = 0.8 − 1.0) 
○ 

(Sig. at 𝛼/01: = 1.0) 

T and S  
at the KEO buoy × ○ ○ ○ 

(Sig. at 𝛼/011 = 0.7 − 1.0) 
○ 

(Sig. at 𝛼/01: = 1.0 − 1.1) 
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Figure 1: Spatiotemporally averaged ∆𝑵𝑩𝑬 over the whole domain for 2016 in the NO INFL (black star), RTPP 

(red), RTPS (blue), NO INFL+IAU (gray), RTPP+IAU (orange), and RTPS+IAU (cyan) experiments as a function of 

the relaxation parameters. Open circles and triangles indicate significant improvement and degradation relative to 670 

the NO INFL experiment at a 99% confidence level, respectively, and closed circles and triangles denote 

improvement and degradation of NO INFL experiment with no significant differences. The RTPS12+IAU, 

MULT+IAU, and MULT experiments show significant degradation with average ∆𝑵𝑩𝑬 of 2.94, 2.11, and 5.22 × 10−10 

s−2, respectively (not shown). The RTPP+IAU experiments for the relaxation parameters of 𝜶𝑹𝑻𝑷𝑷 ≥ 𝟏. 𝟏 are not 

shown because numerical instability developed. 675 
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Figure 2: ∆𝑵𝑩𝑬 (colors) and SSH (white contours) averaged over 2016 in the (a) NO INFL, (b) NO INFL+IAU, (c) 

RTPP09, (d) RTPP09+IAU, (e) RTPS09, (f) RTPS11+IAU experiments. Thin (thick) contour intervals are 0.2 m (1.0 

m).  680 
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Figure 3: As in Fig. 1 but for the RMSDs of (a) SSH and (b) SSHA relative to the AVISO dataset. (c) 

Spatiotemporally averaged ensemble spreads of SSH and SSHA over the whole domain for 2016 in observational 

space (circles). The RMSDs of SSH and SSHA in the RTPS12+IAU experiment are 0.164 and 0.137 m, respectively 685 

(not shown). 
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Figure 4: As in Fig. 1 but for the RMSDs of the surface (a) zonal and (b) meridional velocity relative to the drifter 

buoys, and the ensemble spreads of the surface (c) zonal and (d) meridional velocity. The RMSDs of surface zonal 

and meridional velocity in the RTPS12+IAU experiment are 0.293 and 0.277 m s−1, respectively (not shown). The 690 

RMSD in (b) and ensemble spreads in (c) and (d) in the RTPP09 experiment are slightly offset for visualization. 
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Figure 5: As in Fig. 3, but for the RMSDs relative to the SSHA from the AVISO dataset (color). Black star in (a) 

indicates the KEO buoy location [144.6°E, 32.3°N]. 

 695 
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Figure 6: As in Fig. 3, but for the SSHA ensemble spread. 
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 700 

Fig. 7 Spatiotemporally averaged RMSDs of 11-day ensemble forecast in the NO INFL (black), RTPP09 (red), 

RTPS09 (blue), NO INFL+IAU (gray), RTPP09+IAU (orange), and RTPS09+IAU (cyan) experiments relative to 

surface (a) SSH and (b) SSHA from the AVISO and (c) zonal and (d) meridional velocities from the drifter buoys. 

The RMSDs in the RTPS09 in (b), (c), and (d) are slightly offset for visualization. 
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 710 
Figure 8: RMSDs of (a) temperature and (b) salinity relative to the KEO buoy averaged over 2016 in the NO INFL 

(black star), RTPP09 (red), RTPS09 (blue), NO INFL+IAU (gray), RTPP09+IAU (orange), RTPS11+IAU (cyan) 

experiments. Open circles and triangles denote significant improvement and degradation relative to the NO INFL 

experiment at a 99% confidence level, respectively. Closed circles and triangles indicate improvement and 

degradation with no significant differences, respectively. 715 
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Figure 9: Temperature RMSDs (black contours) and IRs (color shading and white contours) between the KEO buoy 

and (a) RTPP+IAU and (b) RTPS+IAU experiments averaged over 2016. (c) and (d) as in (a) and (b) but for salinity. 

Open circles and triangles indicate significant improvement and degradation relative to the NO INFL experiment at a 720 

99% confidence level, respectively. Thin (thick) black contour intervals are 0.2 °C (1.0 °C) in (a) and (b), and 0.1 (0.2) 

in (c) and (d); thin (thick) white contour intervals are 10% (100%). 
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Figure 10: Estimated MULT parameters [Eq. (13)] averaged over 2016 for (a) SST, (b) SSS, and (c) SSH fields using 725 

the outputs from the RTPP09+IAU experiment. Right bottom values indicate spatiotemporally averaged estimated 

MULT parameters. Thin (Thick) counter intervals are 0.02 (0.1). 


