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Abstract 12 

Understanding the influence of land surface heterogeneity on surface water and energy fluxes is 13 

crucial for modeling earth system variability and change. This study investigates the effects of four 14 

dominant heterogeneity sources on land surface modeling, including atmospheric forcing (ATM), 15 

soil properties (SOIL), land use and land cover (LULC), and topography (TOPO). Our analysis 16 

focused on their impacts on the partitioning of precipitation (P) into evapotranspiration (ET) and 17 

runoff (R), partitioning of net radiation into sensible heat and latent heat, and corresponding water 18 

and energy fluxes. An initial set of 16 experiments were performed over the continental U.S. 19 

(CONUS) using the E3SM land model (ELMv1) with different combinations of heterogeneous 20 

and homogeneous datasets. The Sobol' total and first-order sensitivity indices were utilized to 21 

quantify the relative importance of the four heterogeneity sources. Sobol' total sensitivity index 22 

measures the total heterogeneity effects induced by a given heterogeneity source, consisting of the 23 

contribution from its own heterogeneity (i.e., the first-order index) and its interactions with other 24 

heterogeneity sources. ATM and LULC are the most dominant heterogeneity sources in 25 

determining spatial variability of water and energy partitioning, mainly contributed by their own 26 

heterogeneity and slightly contributed by their interactions with other heterogeneity sources. Their 27 

heterogeneity effects are complementary both spatially and temporally. The overall impacts of 28 

SOIL and TOPO are negligible, except TOPO dominates the spatial variability of R/P across the 29 

transitional climate zone between the arid western and humid eastern CONUS. Accounting for 30 

more heterogeneity sources improves the simulated spatial variability of water and energy fluxes 31 

when compared with ERA5-Land reanalysis dataset. An additional set of 13 experiments identified 32 

the most critical components within each heterogeneity source, which are precipitation, 33 
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temperature and longwave radiation for ATM, soil texture and soil color for SOIL, and maximum 44 

fractional saturated area parameter for TOPO.  45 Deleted: ¶46 
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1. Introduction 47 

Land surface heterogeneity plays a critical role in the terrestrial water, energy, and 48 

biogeochemical cycles from local to continental and global scales (Giorgi and Avissar, 1997; 49 

Chaney et al., 2018; Zhou et al., 2019; Liu et al., 2017). As the land component of global Earth 50 

System Models (ESMs) and Regional Climate Models (RCMs), land surface models (LSMs) are 51 

used to simulate the exchange of momentum, energy, water, and carbon between land and 52 

atmosphere. LSMs have been widely utilized in studies focused on climate projection, weather 53 

forecast, flood and drought forecast, and water resources management (Clark et al., 2015; 54 

Lawrence et al., 2019). At the resolutions typically applied in ESMs and RCMs, LSMs have 55 

limited ability to resolve land surface heterogeneity to skillfully represent its impacts on the surface 56 

fluxes and subsequent effects on earth system and climate simulations through land-atmosphere 57 

interactions. Singh et al. (2015) demonstrated that increasingly capturing topography and soil 58 

texture heterogeneity at finer resolutions improves the land surface modeling of soil moisture, 59 

terrestrial water storage anomaly, sensible heat, and snow water equivalent. Therefore, better 60 

representing spatial heterogeneity in LSMs may be crucial to reliably simulate water and energy 61 

exchange between land and atmosphere (Essery et al., 2003; Jr. et al., 2017; Fan et al., 2019; Fisher 62 

and Koven, 2020). 63 

 64 

Several approaches have been developed to resolve land surface heterogeneity in LSMs. The 65 

most common class of method is the tile approach that subdivides each grid into several tiles to 66 

account for heterogeneous surface properties (Avissar and Pielke, 1989). The Community Land 67 

Model version 5 (CLM5) and the Energy Exascale Earth System Model (E3SM) land model (ELM) 68 

utilize a nested subgrid hierarchy in which each grid cell is composed of multiple land units, soil 69 
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columns, and plant functional types. Tesfa et al. (2017; 2020) developed a topography-based 74 

subgrid structure based on topographic properties such as surface elevation, slope, and aspect to 75 

better represent topographic heterogeneity in ELM. Swenson et al. (2019) introduced hillslope 76 

hydrology in CLM5 where each grid cell is decomposed into one or more multicolumn hillslopes. 77 

The second class of method to account for land surface heterogeneity is called the "continuous 78 

approach" in which subgrid heterogeneity is described via analytical or empirical probability 79 

density functions (PDFs) instead of dividing a grid cell into subgrid units. For example, He et al. 80 

(2021) developed the Fokker-Planck Equation subgrid snow model in the Rapid Update Cycle 81 

Land-Surface Model, which uses dynamic PDFs to represent the variability of snow in each grid 82 

cell. The third class of method to better account for land surface heterogeneity is by developing 83 

parameterizations for subgrid processes. For example, Hao et al. (2021) implemented a sub-grid 84 

topographic parameterization in the ELM to represent topographic effects on insolation, including 85 

the shadow effects and multi-scattering between adjacent terrains. Besides these three classes of 86 

approach dealing with subgrid heterogeneity, the fourth class is to directly increase the grid 87 

resolution. Previous studies have demonstrated the benefits of increasing resolution in simulating 88 

precipitation, temperature, and related extreme events over multiple spatial scales (Torma et al., 89 

2015; Lindstedt et al., 2015; Cuesta-Valero et al., 2020; Koster et al., 2002; Vegas-Cañas et al., 90 

2020; Rummukainen, 2016). The proposed hyperresolution land surface modeling by Wood et al. 91 

(2011) to model land surface processes at a horizontal resolution of 1 km globally and 100 m or 92 

finer continentally or regionally has been gaining attention as supported by increasing availability 93 

of high-performance computing resources  (Singh et al., 2015; Rouf et al., 2021; Ko et al., 2019; 94 

Xue et al., 2021; Yuan et al., 2018; Chaney et al., 2016; Naz et al., 2018; Vergopolan et al., 2020; 95 

Garnaud et al., 2016; Bierkens et al., 2014). 96 
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 97 

There are several heterogeneity sources in LSMs but their impact on water and energy 98 

simulations at different spatial resolutions has not been systematically examined. Four types 99 

of heterogeneity sources are commonly categorized in land surface modeling, including 100 

atmospheric forcing, soil properties, land use and land cover, and topography characteristics 101 

(Singh et al., 2015; Ji et al., 2017). Singh et al. (2015) showed that including more detailed 102 

heterogeneity of soil and topography at high resolutions improved the water and energy 103 

simulations over the Southwestern U.S. Xue et al. (2021) demonstrated that simulations over the 104 

High Mountain Asia region driven by high-resolution atmospheric forcing generally outperform 105 

simulations that used coarse-resolution atmospheric forcing. Simon et al. (2020) investigated the 106 

impacts of different heterogeneity sources (e.g., river routing and subsurface flow, soil type, land 107 

cover, and forcing meteorology) on coupled simulations using the Weather Research and 108 

Forecasting (WRF) model. They found that heterogeneous meteorology is the primary driver for 109 

the simulations of energy fluxes, cloud production, and turbulent kinetic energy. Chaney et al. 110 

(2016) conducted high-resolution simulations over a humid watershed and found that topography 111 

and soils are the main drivers of spatial heterogeneity of soil moisture. However, these studies 112 

generally focused either solely on one or a few heterogeneity sources, or were conducted over 113 

small domains with limited climate and hydrologic variations. Therefore, a comprehensive 114 

assessment of the contribution of different heterogeneity sources to heterogeneity in energy and 115 

water fluxes simulated by LSMs at continental scales is needed. 116 

 117 

The relative importance of heterogeneity sources on LSM simulations can be quantified by 118 

sensitivity analysis (SA), which has been commonly used to study parametric uncertainty 119 
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(Saltelli, 2002). In a quantitative sensitivity analysis, the assessed factors could include model 122 

parameters as well as any other types of uncertainty induced by varying the input data (Saltelli et 123 

al., 2019). The Sobol' SA is a variance-based SA approach and has been widely utilized by the 124 

land surface modeling community (Rosolem et al., 2012; Nossent et al., 2011; Li et al., 2013b). 125 

The most common application is the assessment of model parameters importance. Cuntz et al. 126 

(2016) comprehensively assessed the sensitivities of the Noah-MP land surface model to selected 127 

parameters over 12 U.S. basins. This method is also utilized to quantify the sensitivity of model 128 

outputs to the choice of parameterization schemes. Dai et al. (2017) proposed a method based on 129 

Sobol' variance analysis to conduct SA while simultaneously considering parameterizations and 130 

parameters. Zheng et al. (2019) utilized the Sobol' method to quantify the sensitivity of 131 

evapotranspiration and runoff to different parameterizations in the Noah-MP land surface model 132 

over the CONUS. Given the demonstrated usefulness of the Sobol' sensitivity analysis method, it 133 

can be applied to quantify the relative importance of different heterogeneity sources on land 134 

surface water and energy simulations. 135 

 136 

The overarching goal of this paper is to determine the relative importance of different 137 

heterogeneity sources on the spatial variability of simulated water and energy partitioning 138 

over CONUS. The four heterogeneity sources considered in this study are atmospheric forcing 139 

(ATM), soil properties (SOIL), land use and land cover (LULC), and topography (TOPO). Our 140 

analysis focuses on their impacts on the water partitioning of precipitation into evapotranspiration 141 

and runoff, the energy partitioning of net radiation into sensible heat and latent heat, and their 142 

corresponding fluxes. ELMv1 is used as the model testbed. Two sets of experiments are conducted 143 

with different combinations of homogeneous and heterogeneous inputs. A set of 16 experiments 144 
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are used to assess the impacts of the four heterogeneity sources on water and energy partitioning 154 

using the Sobol' sensitivity analysis method. Subsequently, another set of 13 experiments are 155 

conducted to analyze the heterogeneity effects from each component of atmospheric forcing, soil 156 

properties, and topography. The remaining structure of this paper is organized as follows. Section 157 

2 describes ELM, data processing, experimental design, and analysis method. Results are 158 

examined in section 3, followed by discussions in section 4 and conclusions in section 5. 159 

 160 
2. Methodology 161 

2.1 ELM overview 162 

The E3SM is a newly developed state-of-the-science Earth system model by the U.S. Department 163 

of Energy (Caldwell et al., 2019; Leung et al., 2020). ELMv1 started from the Community Land 164 

Model version 4.5 (CLM4.5; Oleson et al., 2013) and now includes more recently developed 165 

representations of soil hydrology and biogeochemistry, riverine water, energy and 166 

biogeochemistry, water management (Li et al., 2013a; Tesfa et al., 2014; Bisht et al., 2018; Yang 167 

et al., 2019; Zhou et al., 2020). 168 

 169 

2.2 ELM inputs  170 

2.2.1 Heterogeneity sources 171 

ATM forcing for ELM consists of seven surface meteorological variables, including precipitation 172 

(PRCP), air temperature (TEMP), specific humidity (HUMD), shortwave radiation (SRAD), 173 

longwave radiation (LRAD), wind speed (WIND), and air pressure (PRES). Atmospheric forcing 174 

from the North American Land Data Assimilation System phase 2 (NLDAS) is used in this study 175 

(Xia et al., 2012b, a). SOIL consists of soil texture (STEX), organic matter content (SORG), and 176 

soil color (SCOL). STEX and SORG determine soil thermal and hydrologic properties, while 177 
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SCOL regulates the soil albedo and hence surface energy related processes. LULC consists of the 187 

glacier, lake, and urban fractions, the fractional cover of each plant functional type (PFT), and 188 

monthly leaf area index (LAI) and stem area index (SAI) for each PFT. The LULC datasets at 189 

0.05°´0.05° developed by Ke et al. (2012) are used in this study. TOPO consists of the standard 190 

deviation of elevation (SD_ELV), maximum fractional saturated area (Fmax), and topography 191 

slope. TOPO is used in snow cover parameterization, surface runoff generation and infiltration. 192 

SOIL and TOPO datasets are obtained from the NCAR dataset pool for CLM5 (Lawrence et al., 193 

2019; Lawrence and Chase, 2007; Bonan et al., 2002; Batjes, 2009; Hugelius et al., 2013; 194 

Lawrence and Slater, 2008). Table 1 summarizes these heterogeneity components and resolutions 195 

of the source data. All datasets were prepared over the entire CONUS. 196 

Table 1 Summary of heterogeneity sources in ELM model inputs 197 
Heterogeneity source Components Source data resolution 
ATM Precipitation, air temperature, specific humidity, 

shortwave radiation, longwave radiation, wind speed, air 
pressure 

0.125°, hourly 

SOIL Soil texture, soil organic matter 0.083°, static 
Soil color 0.5°, static 

TOPO Slope, Standard deviation of elevation, maximum 
fractional saturated area  

0.125°, static 

LULC 
Fractions of PFTs, wetland, lake, urban characteristics, 
and glacier 

0.05°, static 

LAI for each PFT 0.05°, monthly 
 198 

2.2.2 Heterogeneous and homogeneous inputs  199 

We prepared heterogeneous and homogeneous inputs at 0.125°´0.125°. The difference between 200 

the two datasets is whether the input values within each 1°´1° region of ELM are spatially 201 

heterogeneous or homogeneous. The SOIL, TOPO, and LULC were first mapped from their 202 

original resolutions to 0.125°´0.125° resolution, using the Earth System Modeling Framework 203 

(ESMF) regridding tool. Specifically, the first-order conservative interpolation was used for 204 

upscaling dataset (e.g., soil texture), while the nearest neighbor interpolation was used for 205 
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downscaling dataset (e.g., soil color). These 0.125° resolution datasets are used as the 216 

heterogeneous inputs (Figures 1a and 1b). Then, for each dataset, we replaced the heterogeneous 217 

values of the 64 0.125°´0.125°  grids within each 1°´1° region by the mean of the 64 grids (see 218 

Figure 1b vs. 1d). The temporally varying datasets (e.g., hourly ATM and monthly climatology 219 

LAI) were processed at each time interval. As an example, Figure 1 compares the annual 220 

climatology of the heterogeneous and homogeneous precipitation. 221 

 222 
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Figure 1. Annual climatology of (a) heterogeneous and (c) homogeneous precipitation over 225 

CONUS. The corresponding (b) heterogeneous and (d) homogeneous precipitation over a 1°´1° 226 

region (latitude: 37° N ~ 38° N, longitude: 111° W ~ 110° W, the blue marker in (a)) is also shown. 227 

 228 

2.3 Experimental design and analysis 229 

We conducted two sets of ELM experiments over CONUS. The first set contains 16 experiments 230 

with different combinations of heterogeneous and homogeneous inputs from the four heterogeneity 231 

sources (Table 2). These experiments were used to quantify the influence of different heterogeneity 232 

sources on the ELM simulations. The second set of 13 experiments were further conducted to 233 

analyze the impact of heterogeneity from individual components of three heterogeneity sources 234 

(Table 3). As LULC has no explicit individual component, we only analyzed the components of 235 

ATM with seven experiments, SOIL with three experiments, and TOPO with three experiments. 236 

Each experiment only contains one heterogeneous input while other components are homogeneous. 237 

Both the first and second set of experiments were configured at 0.125°´0.125° spatial resolution. 238 

The 40-year NLDAS-2 forcing from 1980–2019 was cycled twice to drive the ELM run for 80 239 

years. The first 50-year run was used as model spin-up, and the last 30-year simulation 240 

(corresponding to atmospheric forcing from 1990–2019) was used for further analysis. 241 

 242 

Table 2. The first set of 16 experiments with inputs from ATM, SOIL, LULC, and TOPO. 243 
(0 and 1 denote homogeneous and heterogeneous input from the four heterogeneity sources, 244 

respectively) 245 
No. Abbr. ATM SOIL LULC TOPO 

EXP1 A0S0L0T0 0 0 0 0 
EXP2 A0S0L0T1 0 0 0 1 
EXP3 A0S0L1T0 0 0 1 0 
EXP4 A0S0L1T1 0 0 1 1 
EXP5 A0S1L0T0 0 1 0 0 
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EXP6 A0S1L0T1 0 1 0 1 
EXP7 A0S1L1T0 0 1 1 0 
EXP8 A0S1L1T1 0 1 1 1 
EXP9 A1S0L0T0 1 0 0 0 
EXP10 A1S0L0T1 1 0 0 1 
EXP11 A1S0L1T0 1 0 1 0 
EXP12 A1S0L1T1 1 0 1 1 
EXP13 A1S1L0T0 1 1 0 0 
EXP14 A1S1L0T1 1 1 0 1 
EXP15 A1S1L1T0 1 1 1 0 
EXP16 A1S1L1T1 1 1 1 1 

 246 

Table 3. The second set of 13 experiments with inputs from each component of the heterogeneity 247 

sources. 248 

No. Sole heterogeneity input 
ATM  

ATM1 Precipitation 
ATM2 Air temperature  
ATM3 Specific humidity  
ATM4 Shortwave radiation 
ATM5 Longwave radiation 
ATM6 Wind speed 
ATM7 Air pressure 

SOIL  
SOIL1 Soil texture of sand, silt, and clay 
SOIL2 Soil organic matter 
SOIL3 Soil color  

TOPO  
TOPO1 Fmax 
TOPO2 Standard deviation of elevation 
TOPO3 Slope 

 249 

Our analysis focused on water partitioning, energy partitioning, and related flux variables. The 250 

water partitioning is quantified as the ratio between evapotranspiration (ET) and precipitation (P), 251 

i.e., ET/P, and the ratio between runoff (R) and precipitation (P), i.e., R/P. The energy partitioning 252 

is quantified using the evaporative fraction (EF), which equals the ratio between latent heat (LH) 253 

and the sum of latent heat and sensible heat (SH), i.e., 𝐸𝐹 = !"
!"#$"

∗ 100	(%). First, the 30-year 254 Deleted: Based on outputs from each experiment, 255 
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monthly, seasonal, and annual climatological means were calculated for each experiment at 256 

0.125°´0.125° resolution for the five variables of interest (i.e., P, ET, R, LH, and SH). Second, the 257 

water and energy partitioning variables (i.e., ET/P, R/P, EF) were computed at 0.125°´0.125° 258 

resolution. Third, the standard deviations (SDs) of these variables’ climatological mean were 259 

calculated for each 1°´1° region from its embedded 64 0.125°´0.125° grids. These 1°´1° 260 

resolution SDs of the first and second set of experiments were used in following analysis. 261 

For the first set of 16 experiments, we utilized the Sobol' sensitivity analysis to quantify the relative 262 

importance of the four heterogeneity sources on water and energy simulations. Detail of Sobol' 263 

sensitivity analysis is described in section 2.4. 264 

The Sobol' method was not used for the second set of 13 experiments because a comprehensive 265 

Sobol' analysis needs 213 experiments, which is computationally infeasible. Instead, the calculated 266 

SD of each experiment is used to quantify the impact of heterogeneity of each component, as each 267 

experiment only contains one heterogeneous input. Therefore, we compared the SDs between each 268 

experiment to determine the relative importance of each component with heterogeneous input 269 

(without considering interactions between different components). 270 

 271 

2.4 The Sobol' sensitivity indices 272 

The Sobol' sensitivity analysis (Sobol', 1993) was applied to quantify the sensitivity of spatial 273 

variation (i.e., SD) of water and energy partitioning to the four heterogeneity sources based on the 274 

first set of 16 experiments. Here, Sobol' first-order sensitivity index measures the direct 275 

contribution of a single heterogeneity source to the target variable’s spatial variability (e.g., EF’s 276 

SD). Sobol' higher-order (i.e., second or higher order) sensitivity indices quantify the contribution 277 

by the interactions between a given heterogeneity source with other heterogeneity sources. The 278 
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sum of all higher-order indices quantifies the overall interaction effects. Sobol' total sensitivity 287 

index measures the total contribution of a given heterogeneity source, which considers both the 288 

first-order and the interaction effects (Zhang et al., 2015; Saltelli et al., 2010). Specifically, the 289 

Sobol' total sensitivity index (𝑆𝑇%!) and the first-order sensitivity index (𝑆%!) are given as (Saltelli 290 

et al., 2010), 291 

𝑆𝑇%! =
&"~!(("!()|%~!))

(())
                                                          (1) 292 

𝑆%! =
("!(&"~!()|%!))

(())
                                                             (2) 293 

where 𝑋, is the i-th heterogeneity source (e.g., ATM, SOIL, LULC, and TOPO); 𝑋~, denotes the 294 

other heterogeneity sources except 𝑋, ; 𝑌  is the SD of a given simulated variable for a given 295 

experiment, and 𝑉(𝑌) is the total variance of the given variable’s SDs across all 16 experiments.  296 

Figure 2 illustrates the calculation of Sobol' total and first-order sensitivity indices for LULC (i.e., 297 

𝑋, = 𝐿𝑈𝐿𝐶) as follows: 298 

(1) For the calculation of 𝑆𝑇%!: First, following Zheng et al. (2019), the SDs of the 16 experiments 299 

are reformed into 8 subgroups based on experiments with different combinations of 𝑋~, . 300 

Second, the variance of SD for each subgroup is computed. Third, the mean of SD variances 301 

across 8 subgroups is computed. Fourth, 𝑆𝑇%! is calculated using equation (1). 302 

(2) For the calculation of 𝑆%!: First, the SDs of the 16 experiments are reformed into 2 subgroups 303 

based on the experiments either with heterogeneous or homogeneous 𝑋,. Second, the mean of 304 

SDs for each subgroup is computed. Third, the variance of mean SD across 2 subgroups is 305 

calculated. Fourth, 𝑆%! is computed using equation (2).  306 

The Sobol' sensitivity indices for ATM, TOPO, and SOIL can be computed similarly. 307 
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 309 

Figure 2. Schematic flowchart for the calculation of Sobol' total and first-order indices for LULC 310 

(i.e., 𝑋, = 𝐿𝑈𝐿𝐶). The notation (e.g., A0, S0, L0, T0) in each box corresponds to the experiment 311 

abbreviation listed in Table 2. A box with (without) mosaic represents heterogeneous 312 

(homogeneous) input. The Sobol' total sensitivity index is computed by dividing the 16 313 

experiments into 8 subgroups, such that in each subgroup ATM, SOIL and TOP are fixed except 314 

for LULC. The Sobol' first-order sensitivity index is computed by dividing the 16 experiments into 315 

2 subgroups, such that in each subgroup LULC is fixed. 316 

The interaction effect index, 𝑆𝐼%!, can be computed as, 317 

𝑆𝐼%! = 𝑆𝑇%! − 𝑆%!                                                              (3) 318 
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The corresponding fraction of first-order index ( 𝑓$"! ) and interaction effect index ( 𝑓$."! ) 319 

contributing to the total sensitivity index for 𝑋, can be given as,  320 

𝑓$"! =
𝑆%!

𝑆𝑇%!8 × 100                                                      (4) 321 

𝑓$."!  = 100 − 𝑓$"!                                                              (5) 322 

A more detailed demonstration for the calculation of Sobol' total sensitivity index, first-order 323 

sensitivity index, and the interaction effect index is presented in Appendix A. In this paper, the 324 

Sobol' total sensitivity index is mainly contributed by Sobol' first-order sensitivity index (see 325 

details in section 3.1). Therefore, to make this paper concise, our analysis is based chiefly on Sobol' 326 

total sensitivity index if not explicitly pointed out otherwise. 327 

 328 

2.5 ERA5-Land reanalysis dataset 329 

We further compared the first set of experiments with ERA5-land reanalysis (the land component 330 

of the fifth generation of European Centre of Medium-range Weather Forecast reanalysis) (Muñoz-331 

Sabater et al., 2021) to demonstrate the added value in ELM simulations with consideration of 332 

heterogeneity sources. ERA5-Land provides a consistent view of terrestrial water and energy 333 

cycles at high spatial and temporal resolutions. The monthly ERA5-Land data at 0.1°´0.1° 334 

resolution was used in this study. First, the monthly data was regridded using the ESMF regridding 335 

tool via the first-order conservative interpolation to 0.125°´0.125° resolution, which is consistent 336 

with the resolution of our sensitivity experiments. Second, the annual and seasonal climatological 337 

means for related variables (e.g., ET, R, SH) were computed. Third, SD for each variable was 338 

calculated within each 1°×1° region for further comparisons with the ELM simulations. 339 

  340 

Deleted: resampled 341 



 17 

3. Results 342 

3.1. CONUS overall heterogeneity sensitivities 343 

The inclusion of more heterogeneity sources leads to larger spatial variability in the simulated 344 

ET/P, R/P, and EF (Figure 3). For example, comparing experiment A0S0L0T0 with A1S0L0T0 345 

that includes the ATM heterogeneity, the CONUS averaged SD for ET/P increases from 0 to 4.7% 346 

(Figure 3a). By further comparing experiments in the first and third rows with the second and 347 

fourth rows, ATM always increases the spatial variability of water and energy partitioning. 348 

Similarly, LULC heterogeneity also shows large impacts on the spatial variability for the 349 

partitioning variables as indicated by comparing experiments in the first and third columns with 350 

the second and fourth columns. However, heterogeneity in SOIL and TOPO show negligible 351 

impact. The effects of the heterogeneity sources on the spatial variability of water and energy 352 

partitioning are mainly located in western and central CONUS (Figure S1), which is consistent 353 

with the spatial variability of the heterogeneity inputs, for variables such as precipitation, air 354 

temperature, and longwave radiation (Figure S2). 355 

 356 

Figure 3. CONUS averaged SD of the annual climatology of (a) ET/P, (b) R/P, and (c) EF. 357 

Combining the X-axis label for LULC and TOPO and the Y-axis label for ATM and SOIL 358 

indicates the names of the experiments listed in Table 2, highlighting the use of heterogeneous 359 

(1) and homogeneous (0) inputs for each heterogeneity source. 360 
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ATM, with the largest Sobol' total sensitivity index, is the most important heterogeneity source to 364 

determine the spatial variability of water and energy partitioning (ET/P, R/P, EF in Figure 4a). 365 

LULC is the second most important heterogeneity source (Figure 4a). Even though ATM 366 

dominates the spatial heterogeneity of total ET, LULC is the main contributor to the spatial 367 

variability of the ET components of transpiration, canopy evaporation, and ground evaporation. 368 

The first-order sensitivity indices show similar patterns as the total sensitivity indices (Figure 4b 369 

vs. Figure 4a). For the ATM and LULC, their first-order sensitivity indices contribute more than 370 

60% of the total sensitivity indices in determining the spatial variability of water and energy 371 

partitioning (ET/P, R/P, EF in Figure 4c). Therefore, the total heterogeneity effects of ATM or 372 

LULC are mainly due to their own heterogeneity rather than their interactions with other 373 

heterogeneity sources. The small proportion of the rest of the total heterogeneity effects of ATM 374 

and LULC is contributed by their interactions with other heterogeneity sources (Figure S3b).  375 

The heterogeneity of SOIL and TOPO marginally contributes to the spatial variability of water 376 

and energy partitioning (Figure 4a). Their effects contributed from their own heterogeneity and 377 

their interactions with other heterogeneity sources are relatively small (Figures 4b and S3a). TOPO 378 

shows larger impacts on the spatial variabilities of the runoff components than the total runoff 379 

(Figure 4a). TOPO’s impact on the total runoff is mainly due to its interaction effects with other 380 

heterogeneity sources, but its impacts on surface and subsurface runoff are primarily contributed 381 

by its own heterogeneity (Figure 4c). 382 

Generally, high values of total sensitivity indices are mostly contributed by the first-order 383 

sensitivity index (Figures 4a, 4b, and Figure S5). Since our main goal is to analyze the major 384 

heterogeneity sources with a large Sobol' total sensitivity index, the results presented in the 385 

subsequent sections are based chiefly on Sobol' total sensitivity index. 386 
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 394 

Figure 4. CONUS averaged (a) Sobol' total sensitivity index, (b) Sobol' first-order sensitivity 395 

index, and (c) the fraction of first-order effect for the sensitivity of spatial variability of different 396 

variables (rows) to the four heterogeneity sources (columns). 397 

 398 
3.2 Spatial patterns of heterogeneity sensitivities 399 

The sensitivity of the four heterogeneity sources shows different spatial patterns over CONUS 400 

(Figure 5). The water partitioning components, ET/P and R/P, exhibit similar spatial patterns of 401 

Sobol' sensitivity index for any given heterogeneity source (Figures 5a-d, 4f-i). ATM shows high 402 

Sobol' sensitivity index over most CONUS regions for water and energy partitioning. It dominates 403 

the spatial variability of ET/P and R/P over eastern and western CONUS but not central CONUS 404 

(Figures 5e and 5j). For the spatial variability of EF, ATM mostly shows dominant effects over 405 

central and western CONUS (Figures 5o). LULC is the second most dominant heterogeneity 406 

source and dominates most regions over eastern CONUS, although LULC also dominates smaller 407 

regions for the spatial variability of ET/P and R/P over central and southeastern CONUS (Figures 408 

5e and 5j). Overall, ATM Sobol' total sensitivity index has opposite spatial patterns compared to 409 

LULC Sobol' total sensitivity index (Figure B1 in Appendix B). Therefore, ATM and LULC show 410 

complementary contributions to the spatial variability of water and energy partitioning across 411 

CONUS. Although TOPO overall has low Sobol' index, it dominates the spatial variability of R/P 412 

Deleted: .¶413 

414 
Deleted: Figure 3415 
Deleted: Sobol'416 
Deleted:  sensitivity 417 
Deleted:  418 

Deleted: Figure 4419 

Deleted: Figures 4420 

Deleted: Figures 4421 
Deleted: 4422 
Deleted: Figures 4423 

Deleted:  (Figure 4o)424 

Deleted: Figures 4425 

Deleted: 4426 



 20 

over central CONUS (Figure 5j). SOIL has negligible impacts over most regions of CONUS for 427 

the spatial variability of both water and energy partitioning. The spatial distributions of Sobol' 428 

first-order sensitivity indices for the four heterogeneity sources are similar to the Sobol' total 429 

sensitivity indices (Figure 5 vs. Figure S4). First-order sensitivity indices contribute dominantly 430 

to the total sensitivity indices (Figure S5). Therefore, most of the heterogeneity effects on water 431 

and energy partitioning by each heterogeneity source come from its own heterogeneity, with small 432 

proportions from its interaction effects with other heterogeneity sources. 433 

 434 

Figure 5. Spatial patterns of Sobol' total sensitivity index for the four heterogeneity sources 435 

(column 1-4) and the corresponding dominant sources (column 5) for the spatial variability of 436 

water (ET/P and R/P) and energy (EF) partitioning. 437 

 438 

3.3 Seasonal variation of heterogeneity sensitivities 439 

The impacts of ATM and LULC on the spatial variability of water and energy fluxes show more 440 

seasonal variations than the impacts of SOIL and TOPO (Figure 6, SOIL and TOPO are not shown 441 

here). This is because ATM and LULC consist of time-varying inputs to the ELM simulations, but 442 
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SOIL and TOPO are time-invariant inputs. Even though the spatial distribution of LULC is 487 

temporally static, the monthly variations in LAI and SAI of different land cover types could affect 488 

the seasonal variation of sensitivity. The heterogeneity impacts of ATM and LULC on the spatial 489 

variability of water and energy fluxes show complementary seasonal variations. The effect of 490 

ATM on the ET spatial variability is larger in July–September than in other months (Figure 6a), 491 

while LULC shows smaller Sobol' index in July–September. The sensitivity of transpiration and 492 

canopy evaporation shows the same seasonal variations (Figures C1d~f in Appendix C). The 493 

spatial variability of R is more sensitive to ATM in the cold season (December–April, Figure 6b), 494 

especially for its component of surface runoff (Figure C1g). The sensitivity of SH spatial 495 

variability to ATM is larger in the non-growing season (i.e., November–March) than in the 496 

growing season (i.e., April–October), with the LULC Sobol' index showing opposite seasonal 497 

variations (Figure 6c). 498 

 499 

Figure 6. Monthly variations of CONUS averaged ATM and LULC Sobol' index for (a) ET, (b) 500 

R, and (c) SH. 501 

 502 

The spatial patterns of dominant regions by the four heterogeneity sources vary over different 503 

seasons. Compared with spring and winter, ATM dominates the ET spatial variability in more 504 

regions than in summer and fall when ATM is more dominant over eastern CONUS (Table 5 and 505 

Figures S6a~d). LULC shows opposite seasonal spatial patterns with more dominant regions in 506 
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eastern CONUS over spring and winter. As for the R spatial variability, TOPO shows large spatial 538 

variation of its dominant regions over different seasons (Figures S6f~i). Besides its dominant 539 

contribution in central CONUS over all seasons, TOPO also dominates the R spatial variability in 540 

parts of eastern US in the summer and autumn (Figures S6g~h). For the EF spatial variability, 541 

ATM has more contributions in the fall and winter but smaller contributions in spring and summer 542 

than LULC (Table 5). LULC shows more dominant regions over eastern CONUS, especially in 543 

spring and summer (Figures S6k~i). To understand the seasonal variations of dominant 544 

heterogeneity sources, the seasonal variations of Sobol' total sensitivity index and induced R’s SD 545 

are demonstrated at one gridcell over eastern US (Figure S7). Compared with other heterogeneity 546 

sources, ATM induced R’s SD shows an apparent seasonal variation, with high values in spring 547 

and winter but small values in summer and fall (Figure S7b). Therefore, ATM is the dominant 548 

heterogeneity source in spring and winter. Even though TOPO and SOIL induced R’s SDs show 549 

slight seasonal variations (Figure S7), they dominate R’s spatial variability in summer and fall, 550 

respectively. 551 

Table 5 Grid percentage of the dominant heterogeneity source in determining the spatial 552 
variability of ET, R, and SH for four seasons and annual mean (ANN) 553 

Seasons ATM SOIL LULC TOPO 
ET     
Spring (MAM) 51 4 46 0 
Summer (JJA) 63 3 34 0 
Fall (SON) 57 2 42 0 
Winter (DJF) 49 0 51 0 
ANN 66 2 31 0 
R     
Spring (MAM) 81 2 13 5 
Summer (JJA) 67 4 17 11 
Fall (SON) 66 6 18 11 
Winter (DJF) 75 2 12 10 
ANN 77 1 15 7 
SH     
Spring (MAM) 44 5 51 0 
Summer (JJA) 45 2 53 0 
Fall (SON) 52 5 44 0 
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Winter (DJF) 69 2 29 0 
ANN 49 4 47 0 

 558 

3.4 Effects of ATM heterogeneity components  559 

Based on the second set of 13 experiments, we analyzed the heterogeneity effects by each 560 

component of ATM, SOIL, and TOPO (Figure 7), respectively. Precipitation is the largest ATM 561 

heterogeneity source in determining the spatial variability of water fluxes (Figures 7a~b), 562 

especially over western and central CONUS for ET (Figure 7a) and almost the entire CONUS for 563 

R (Figure 7b). Air temperature dominates the spatial variability of ET in eastern CONUS (Figure 564 

7a). The spatial variability of SH is mainly dominated by the incoming longwave radiation in 565 

western CONUS and by the air temperature in eastern CONUS (Figure 7c). Longwave radiation 566 

provides more energy input and contributes more to the SH spatial variability than shortwave 567 

radiation (Figure 8c). Among the SOIL components, soil texture, which can influence soil moisture 568 

and runoff generation, shows the largest effects on the ET and R spatial variability over most 569 

CONUS regions (Figures 7d, 7e, 8d, and 8e). Soil color, affecting the surface albedo and energy 570 

balance, shows the largest impacts on the SH spatial variability over central CONUS (Figures 7f 571 

and 8f). Fmax is the most essential TOPO component, offering the largest effects on the spatial 572 

variability of ET, R, and SH over most CONUS regions (Figures 7g~i and Figures 8g~i). Fmax 573 

regulates surface runoff generation and infiltration, and therefore influences the soil moisture, ET, 574 

and SH. SD_ELV and slope can affect surface water and snow cover fraction, and consequently, 575 

they show the largest impacts over northwestern CONUS regions with mountains and snowpack.  576 
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 594 

Figure 7. The largest induced spatial variability for the annual climatological mean of ET (left 595 

column), R (middle column), and SH (right column) induced by each component of ATM (top 596 

panel), SOIL (middle panel), and TOPO (bottom panel) 597 

 598 
The spatial variability induced by all components (of ATM, SOIL, or TOPO) is larger than that 599 

induced by each individual component. However, it is smaller than the sum of the spatial 600 

variability induced by each component (Figure 8). For example, the CONUS averaged SD for ET 601 

caused by all SOIL components is 1.9 (10-7 mm/s), which is smaller than 2.5 (10-7 mm/s), the sum 602 

of the SD of ET induced by STEX, SORG, and SCOL (Figure 8d). Therefore, the additional SD 603 

induced by an additional heterogeneity component decreases, suggesting that the effect of 604 

heterogeneity on the spatial variability of water and energy fluxes saturates, due to the interaction 605 

effects between heterogeneity components on related water and energy processes. 606 
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 631 

Figure 8. CONUS averaged spatial variability for the annual climatological mean of ET (left 632 

column), R (middle column), and SH (right column) by each component and all components of 633 

ATM (top panel), SOIL (middle panel), and TOPO (bottom panel). 634 

 635 

3.5 Comparison with ERA5-Land reanalysis 636 

Higher consistency of the spatial variability between the simulations and ERA5-Land reanalysis 637 

(i.e., smaller SD difference) is obtained when more sources of heterogeneity are accounted for in 638 

the simulations for ET, R, and SH (Figure 9). ATM and LULC dominate the improvements in the 639 

spatial variability of model simulations. Generally, ATM heterogeneity leads to more or similar 640 

improvements than LULC heterogeneity for ET, R, and SH over all seasons. For example, in 641 

Figure 9a, ATM induced larger improvements, as shown by comparing experiments in the first 642 
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and third rows with the second and fourth rows, than the LULC induced improvements, comparing 650 

experiments in the first and third columns with the second and fourth columns. The SD difference 651 

is usually larger over MAM and JJA than SON and DJF, probably due to the heterogeneity 652 

difference between the NLDAS and ERA5 atmosphere forcing as ATM is the major heterogeneity 653 

contributor.  654 

Improvements of the spatial variability of model simulations are primarily distributed over western 655 

and eastern CONUS for ET, R, and SH (e.g., Figures S8 and S9 1st column vs. 4th column). Overall, 656 

the ELM simulated ET and SH have smaller SDs than those of ERA5_Land (Figures S9d and S9l). 657 

Meanwhile the simulated R has larger SD especially in the western US than that of ERA5_Land, 658 

probably mainly due to ATM’s heterogeneity effects (Figures S9e vs. S9g). For ET and R, ATM 659 

mainly increases their spatial variability over western and eastern CONUS (Figures S8a vs. S8c, 660 

and S8e vs. S8g), and LULC mostly shows changes over eastern CONUS (Figures S8a vs. S8b, 661 

and S8e vs. S8f). Both ATM and LULC increase SH spatial variability over western and eastern 662 

CONUS (Figure S8i vs. S8j, and S8i vs. S8k). 663 
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 688 

Figure 9. CONUS averaged absolute difference of SD between 16 ELM experiments and ERA5-689 

Land reanalysis for the annual (1st column) and seasonal (2nd – 5th column) climatological mean 690 

of ET (top panel), R (middle panel), and SH (bottom panel). 691 

 692 

4. Discussions 693 

ATM and LULC are the two most essential heterogeneity sources contributing to the spatial 694 

variability of water and energy partitioning. Their total heterogeneity effects are mostly 695 

contributed by their own heterogeneity, with small proportions are contributed by their interactions 696 

with other heterogeneity sources. Simon et al. (2020) also found that the heterogeneous 697 

meteorological forcing is the primary driver for the spatial variability of latent heat and sensible 698 

heat in WRF simulations. The Sobol' sensitivity index averaged over the same region (a 100 km × 699 

100 km domain centered at 36.6° N, 97.5° W) as Simon et al. (2020) also indicates that ATM is 700 

the dominant heterogeneity source. Therefore, better representation of ATM heterogeneity in 701 
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climate models is crucial for modeling the water and energy partitioning, especially for the three 705 

major components of precipitation, air temperature, and longwave radiation. Tesfa et al. (2020) 706 

compared several simple approaches to capturing ATM heterogeneity for downscaling the grid 707 

mean precipitation to topography-based subgrids for land surface modeling. Besides ATM, LULC 708 

is the second most crucial heterogeneity source. Notably, anthropogenic land use and land cover 709 

change has been shown to have large impacts on land–atmosphere interaction, land surface 710 

hydrology, and associated extreme events (Findell et al., 2017; Li et al., 2018, 2015; Swann et al., 711 

2010; Zeng et al., 2017; Yuan et al., 2021; PIELKE et al., 2007). Therefore, the heterogeneity of 712 

LULC should also be well considered in climate modeling.  713 

 714 

ATM and LULC show complementary contributions to the spatial variability of water and energy 715 

partitioning spatially over CONUS and temporally in different seasons. Sobol' sensitivity analysis 716 

is a standardized quantification of the relative importance of different heterogeneity sources. The 717 

sum of the Sobol' indices for the four heterogeneity sources roughly equals one. As the two 718 

dominant heterogeneity sources, ATM Sobol index and LULC Sobol' index dominate the sum of 719 

all Sobol' indices. Hence, they show complementary patterns spatially (Figure B1) and temporally 720 

(Figure 6). In addition, ATM and LULC show complementary contributions across different 721 

climate zones. The Budyko's aridity index (BAI, Budyko 1974), which is the ratio of annual net 722 

radiation to the product of the latent heat of water vaporization and the annual precipitation, was 723 

calculated using the outputs from EXP16. From humid (low BAI) to arid climate (high BAI), a 724 

decreasing fraction of the CONUS region is dominated by ATM in determining the ET/P spatial 725 

variability (Figure 10a). At the same time, LULC shows an increasing contribution to the ET/P 726 

spatial variability with BAI. The spatial variability of energy partitioning exhibits even more 727 
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complementarity between the ATM and LULC contributions from arid regions to humid regions 736 

(Figure 10c). In more arid regions limited by water, EF spatial variability is much more dominated 737 

by heterogeneity of ATM, likely through the heterogeneous precipitation, but in humid regions 738 

limited by energy, LULC dominates the EF spatial variability through its influence on surface 739 

albedo and surface roughness. 740 

 741 

Figure 10. The grid percentage of dominant heterogeneity sources along with Budyko's aridity 742 

index. A higher aridity index means more arid. 743 

 744 

SOIL and TOPO show relatively small impacts on the spatial variability of water and energy 745 

partitioning. However, TOPO has a dominant influence on the R/P spatial variability over the 746 

transitional zone (Figure 10b) of central CONUS located between the arid western CONUS and 747 

the humid eastern CONUS (Figure 5). TOPO’s impact on the total runoff is mainly due to its 748 

interaction effects with other heterogeneity sources (Figure 4). SOIL shows some dominant effects 749 

on the spatial variability of water and energy partitioning over a small proportion of humid regions 750 

(Figure 10). The heterogeneity in SOIL and TOPO was derived from coarse resolution data at 751 

0.125°´0.125° spatial resolution, which could be a possible reason for the minor SOIL and TOPO 752 

effects. Singh et al. (2015) found that CLM4.0 did not show much improvement when model 753 

resolution increased from ~100 km to ~25 km but improvement was noticeable at finer 1 km 754 
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resolution. Additionally, exclusion of lateral subsurface flow in ELMv1 could also lead to 764 

underestimation of the contributions from SOIL and TOPO. 765 

 766 

The current study excluded a few land surface processes that have been included in LSMs in the 767 

last decade, limiting our ability to assess the role of land surface heterogeneity in spatiotemporal 768 

variability of energy and water partitioning. For example, the hillslope processes of lateral ridge-769 

valley flow and the insolation contrasts between sunny and shady slopes are crucial for land surface 770 

modeling (Fan et al., 2019; Taylor et al., 2012; Clark et al., 2015; Scheidegger et al., 2021), but 771 

they are neglected in this study. Sean et al. (2019) incorporated the representative hillslope concept 772 

into the CLM5, and they found that subgrid hillslope process induced large differences in 773 

evapotranspiration between upland and lowland hillslope columns in arid and semiarid regions. 774 

Krakauer et al. (2014) suggested that the magnitude of between-grid groundwater flow becomes 775 

significant over larger regions at higher model resolution. Xie et al. (2020) also demonstrated the 776 

importance of groundwater lateral flow in offsetting depression cones caused by intensive 777 

groundwater pumping. Fang et al. (2017) compared the ACME Land Model (the earlier version of 778 

ELM) and the three-dimensional ParFlow variably saturated flow model (Maxwell et al., 2015), 779 

underscoring ELM limitation in capturing topography's influence on groundwater and runoff. 780 

Additionally, topography also significantly influences insolation, including the shadow effects and 781 

multi-scattering between adjacent terrain. Hao et al. (2021) implemented a sub-grid topographic 782 

parameterization in ELM, which improves the simulated surface energy balance, snow cover, and 783 

surface air temperature over the Tibetan Plateau. The inclusion of plant hydraulics has also shown 784 

essential improvements in water and carbon simulations under drought conditions (Li et al., 2021; 785 

Fang et al., 2021), which should also be considered in future research, especially as vegetation 786 
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may experience more hydroclimate drought stress in projected future climate conditions (Yuan et 787 

al., 2019; Xu et al., 2019; Li et al., 2020). The subgrid downscaling of atmospheric forcing (Tesfa 788 

et al., 2020), which could further enhance the representation of heterogeneity effects on water and 789 

energy simulations, is also unaccounted for in this study. 790 

 791 

5. Conclusions 792 

This study comprehensively investigated the impacts of different heterogeneity sources (i.e., ATM, 793 

LULC, SOIL, TOPO) on the spatial variability of water and energy partitioning over CONUS. 794 

Two sets of experiments were conducted based on different combinations of spatially 795 

heterogeneous and homogeneous datasets. Based on the first set of 16 experiments, Sobol' total 796 

and first-order sensitivity indices were utilized to identify the relative importance of the four 797 

heterogeneity sources. The second set of 13 experiments were further used to assess the influence 798 

from individual components of ATM, SOIL, and TOPO. Our results show that ATM and LULC 799 

are the two dominant heterogeneity sources in determining the spatial variability of water and 800 

energy partitioning, largely contributed by ATM’s or LULC’s own heterogeneity and slightly 801 

contributed by their interactions with other heterogeneity sources. Their heterogeneity effects are 802 

spatially complementary across CONUS, and temporally complementary across seasons. The 803 

complementary contributions of ATM and LULC reflect the overall negligible impacts of SOIL 804 

and TOPO, but the complementarity also reflects physically the clear demarcation of climatic 805 

zones across CONUS, featuring the arid, water-limited western CONUS dominantly influenced 806 

by ATM (precipitation in particular) and the humid, energy-limited eastern CONUS dominantly 807 

influenced by LULC. In the transitional climate zone of central CONUS, TOPO shows some 808 

dominant influence on the R/P spatial variability. The overall most essential components for ATM 809 
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(precipitation, temperature, and longwave radiation), SOIL (soil texture and soil color), and TOPO 812 

(Fmax) were also identified. Comparison with ERA5-Land reanalysis reveals that accounting for 813 

more sources of heterogeneity improved the simulated spatial variability of water and energy 814 

fluxes, although such improvements tend to saturate as more heterogeneous sources were added.  815 

The relative importance of different heterogeneity sources quantified in this study is useful for 816 

prioritizing spatial heterogeneity to be included for improving land surface modeling. We note, 817 

however, that the present assessment is limited by how well the input datasets capture the 818 

spatiotemporal heterogeneity and how well the land surface model represents processes such as 819 

hillslope hydrology and topographic effect on solar radiation that are influenced by land surface 820 

heterogeneity. This motivates the use of more process-rich models such as distributed or three-821 

dimensional subsurface hydrology models to provide benchmarks of the relative importance of 822 

heterogeneity sources to help prioritize future development of land surface models to improve 823 

modeling of energy and water fluxes. 824 
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Appendix A: demonstration of Sobol' index calculation  827 

Here we give an example for the calculation of Sobol' total, first-order and interaction effect 828 

indices, 𝑆𝑇!/!0 , 𝑆!/!0 , and 𝑆𝐼!/!0  to quantify the sensitivity of EF’s spatial variability to LULC 829 

in a 1° ´ 1° region at 39.5N and 107.5W.  830 

(1) Calculation of 𝑆𝑇!/!0  (Table A1): Following Zheng et al. (2019), and based on equation (1) 831 

and Figure 2, the 16 experiments are grouped into 8 subgroups containing two experiments, where 832 

the difference between the two experiments in a given subgroup is homogeneous vs. heterogeneous 833 

LULC. The SDs of the 16-experiments are listed in C1. The variance of each subgroup is computed 834 

in C2, which represents the influence of LULC heterogeneity. The average impact of LULC 835 

heterogeneity from the eight subgroups in C3 is computed as the mean of the values in C2. The 836 

total variance of these 16 SDs in C1 is computed in C4. Finally, the ratio between C3 and C4 is 837 

calculated as Sobol' total sensitivity index in C5, which quantifies EF spatial variability sensitivity 838 

to LULC heterogeneity.  839 

(2) Calculation of 𝑆!/!0  and 𝑆𝐼!/!0: Similarly, based on the equations (2) and (3) and Figure 2, 840 

we then compute the Sobol' first-order sensitivity index (Table A2) and the Sobol' interaction effect 841 

index (Table A3), and their contribution fractions to the total sensitivity index (Table A3).  842 

Table A1 Calculation of Sobol' total sensitivity index 843 

Experiments 𝑌|~𝐿𝑈𝐿𝐶 𝑉$%$&(𝑌|𝑋~$%$&) 𝐸~$%$&(𝑉$%$&(𝑌|𝑋~$%$&)) 𝑉(𝑌) 𝑆𝑇$%$& 
C0 C1 C2 C3 C4 C5 

A0S0L0T0 0.00 
6.88 

3.32 26.99 0.12 

A0S0L1T0 5.24 
A0S0L0T1 0.57 

6.28 
A0S0L1T1 5.58 
A0S1L0T0 0.32 

6.75 
A0S1L1T0 5.51 
A0S1L0T1 0.69 

6.64 
A0S1L1T1 5.84 
A1S0L0T0 12.88 

0.01 
A1S0L1T0 12.67 
A1S0L0T1 12.80 0.00 
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A1S0L1T1 12.76 
A1S1L0T0 12.71 

0.01 
A1S1L1T0 12.51 
A1S1L0T1 12.63 

0.00 
A1S1L1T1 12.59 

 844 

Table A2 Calculation of Sobol' first-order sensitivity index 845 

Experiments 𝑌|𝐿𝑈𝐿𝐶 𝐸~$%$&(𝑌|𝑋$%$&) 𝑉$%$&(𝐸~$%$&(𝑌|𝑋$%$&)) 𝑉(𝑌) 𝑆$%$& 
C0 C1 C2 C3 C4 C5 

A0S0L0T0 0.00 

6.58 

1.58 26.99 0.058 

A0S0L0T1 0.57 
A0S1L0T0 0.32 
A0S1L0T1 0.69 
A1S0L0T0 12.88 
A1S0L0T1 12.80 
A1S1L0T0 12.71 
A1S1L0T1 12.63 
A0S0L1T0 5.24 

9.09 

A0S0L1T1 5.58 
A0S1L1T0 5.51 
A0S1L1T1 5.84 
A1S0L1T0 12.67 
A1S0L1T1 12.76 
A1S1L1T0 12.51 
A1S1L1T1 12.59 

 846 

Table A3 Calculation of Sobol' interaction effect index and contributing fractions 847 
 𝑆𝑇$%$& 𝑆$%$& 𝑆𝐼$%$& 

Index value 0.12 0.058 0.065 
Fraction to total  47.5% 52.5% 

  848 
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Appendix B: Spatial patterns of Sobol' total sensitivity index vs. SD ratio 849 

To further understand the spatial patterns of the Sobol' total sensitivity index for the two most 850 

dominant heterogeneity sources of ATM and LULC (Figure 5), we further analyzed EXP9 851 

(A1S0L0T0) and EXP3 (A0S0L1T0) listed in Table 2. EXP9 and EXP3 only include 852 

heterogeneous inputs from ATM and LULC, respectively. Let us consider ET/P as the quantity of 853 

interest for the following discussion. First, the SD of ET/P is computed from the annual 854 

climatology (section 2.3). Next, the SD ratio of ET/P, denoted as 𝑆𝐷𝑅&1/3, is computed as the 855 

ratio between the SD of ET/P in EXP9 and EXP3. 𝑆𝐷𝑅&1/3  represents the relative spatial 856 

variability induced by ATM compared to LULC (Figure B1a). The spatial pattern of the ATM 857 

Sobol' total sensitivity index for the ET/P spatial variability shows a positive relationship with the 858 

spatial pattern of 𝑆𝐷𝑅&1/3 (purple circles in Figure B1d, corresponding to Figure 5a vs. Figure 859 

B1a). Therefore, a higher value of 𝑆𝐷𝑅&1/3 indicates that relative to LULC, ATM induces larger 860 

ET/P spatial variability, and hence has a higher ATM Sobol' total sensitivity index. Similarly, a 861 

lower value of 𝑆𝐷𝑅&1/3 indicates LULC induces larger ET/P spatial variability than ATM, and 862 

hence has a higher LULC Sobol' total sensitivity index (green circles in Figure B1d). Similarly, 863 

𝑆𝐷𝑅4/3  and 𝑆𝐷𝑅&5  were calculated for R/P and EF, and they also show a positive (negative) 864 

relationship with the corresponding ATM (LULC) Sobol' total sensitivity index (Figures B1b, B1c, 865 

B1e, and B1f). We can also see that the ATM Sobol' total sensitivity index has opposite spatial 866 

patterns compared to the LULC Sobol' total sensitivity index. Therefore, ATM and LULC show 867 

complementary contributions to the spatial variability of water and energy partitioning across 868 

CONUS. 869 
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 870 

Figure B1. Spatial patterns of SD ratios (top panel) and their spatial relationship with the ATM 871 

and LULC Sobol' total sensitivity index (bottom panel) for ET/P, R/P and EF, respectively. The 872 

y-axis values correspond to the spatial patterns of the Sobol' total sensitivity index for ATM (purple) 873 

and LULC (green) in Figure 5 (i.e., each circle corresponds to each 1°´1° region).  874 

 875 

  876 
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Appendix C: Seasonal variations of Sobol' total sensitivity index vs. normalized SD ratio  877 

To further explain the seasonal variations of the Sobol' total sensitivity index for ATM and LULC, 878 

the SD of ET for each month was calculated as an example from monthly mean climatology. The 879 

SD ratio for each month was computed as the ratio between the SD of ET in EXP9 and EXP3. For 880 

each 1°´1° region, the 12 monthly SD ratios were normalized to [0, 1] using minimum and 881 

maximum values. Finally, the CONUS average of the normalized SD ratios was computed for each 882 

month, denoted as 𝑁𝑆𝐷𝑅&1. A higher value of 𝑁𝑆𝐷𝑅&1 denotes ATM induces more ET spatial 883 

variability than LULC. Therefore, 𝑁𝑆𝐷𝑅&1  shows similar seasonal variations with the ATM 884 

Sobol' total sensitivity index for ET spatial variability (black curve vs. purple curve in Figure C1a), 885 

but opposite seasonal variations with the LULC Sobol' total sensitivity index (black curve vs. green 886 

curve in Figure C1a). Similarly, normalized SD ratios were calculated for R, SH, ET components 887 

and R components, and they also show a similar (opposite) seasonal variation with the 888 

corresponding seasonal ATM (LULC) Sobol' total sensitivity index (Figures C1). 889 

 890 
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 891 

Figure C1. Monthly variations of CONUS averaged ATM and LULC Sobol' total sensitivity index 892 

to ATM and normalized SD ratio for (a) ET, (b) R, and (c) SH, (d) Transpiration, (e) Canopy 893 

evaporation, (f) Ground evaporation, (g) Surface runoff, and (h) Subsurface runoff, respectively 894 

  895 
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 896 

Code and Data Availability. NLDAS-2 forcing is available from 897 

https://ldas.gsfc.nasa.gov/nldas/v2/forcing. SOIL and TOPO related datasets are downloaded 898 

from https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/lnd/clm2/rawdata/. LULC related 899 

datasets are from Ke et al. (2012); ERA5-Land reanalysis is available from: 900 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-901 

means?tab=overview. The ELM source code and surface data (e.g., SOIL, TOPO, LULC) used 902 

in this study are archived on Zenodo (https://doi.org/10.5281/zenodo.6484857). 903 
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