1 Spatial heterogeneity effects on land surface modeling of

water and energy partitioning

1

3	Lingcheng Li, Gautam Bisht, L. Ruby Leung,	(Deleted: 1
4		(Deleted: 1
4	Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory,	$ \geq $	Deleted: 1
5	Richland, WA, USA		Deleted: 1
6		· · · · ·)
7	Correspondence to: Lingcheng Li (lingcheng.li@pnnl.gov)		

12 Abstract

13	Understanding the influence of land surface heterogeneity on surface water and energy fluxes is	
14	crucial for modeling earth system variability and change. This study investigates the effects of four	
15	dominant heterogeneity sources on land surface modeling, including atmospheric forcing (ATM),	
16	soil properties (SOIL), land use and land cover (LULC), and topography (TOPO). Our analysis	
17	focused on their impacts on the partitioning of precipitation (P) into evapotranspiration (ET) and	
18	runoff (R), partitioning of net radiation into sensible heat and latent heat, and corresponding water	
19	and energy fluxes. An initial set of 16 experiments were performed over the continental U.S.	
20	(CONUS) using the E3SM land model (ELMv1) with different combinations of heterogeneous	
21	and homogeneous datasets. The Sobol' total and first-order sensitivity indices were utilized to	
22	quantify the relative importance of the four heterogeneity sources. Sobol' total sensitivity index	
23	measures the total heterogeneity effects induced by a given heterogeneity source, consisting of the	
24	contribution from its own heterogeneity (i.e., the first-order index) and its interactions with other	
25	heterogeneity sources, ATM and LULC are the most dominant heterogeneity sources in	
26	determining spatial variability of water and energy partitioning, mainly contributed by their own	
27	heterogeneity and slightly contributed by their interactions with other heterogeneity sources. Their	
28	heterogeneity effects are complementary both spatially and temporally. The overall impacts of	
29	SOIL and TOPO are negligible, except TOPO dominates the spatial variability of R/P across the	
30	transitional climate zone between the arid western and humid eastern CONUS. Accounting for	
31	more heterogeneity sources improves the simulated spatial variability of water and energy fluxes	
32	when compared with ERA5-Land reanalysis dataset. An additional set of 13 experiments identified	
33	the most critical components within each heterogeneity source, which are precipitation,	\leq
1		1

Deleted: The Sobol' total sensitivity analysis is utilized to quantify the relative importance of the four heterogeneity sources.

Deleted: Results show that Deleted: , and t

Deleted: Comparison with ERA5-Land reanalysis reveals that a...

-(Deleted: the
~(Deleted: sources
\geq	Deleted: :

44	temperature and longwave radiation for ATM, soil texture and soil color for SOIL, and maximum	
45	fractional saturated area parameter for TOPO,	Deleted: ¶

47	-1. Introduction	Deleted: ¶
48	Land surface heterogeneity plays a critical role in the terrestrial water, energy, and	
49	biogeochemical cycles from local to continental and global scales (Giorgi and Avissar, 1997;	
50	Chaney et al., 2018; Zhou et al., 2019; Liu et al., 2017). As the land component of global Earth	
51	System Models (ESMs) and Regional Climate Models (RCMs), land surface models (LSMs) are	
52	used to simulate the exchange of momentum, energy, water, and carbon between land and	Deleted: heat
53	atmosphere. LSMs have been widely utilized in studies focused on climate projection, weather	
54	forecast, flood and drought forecast, and water resources management (Clark et al., 2015;	
55	Lawrence et al., 2019). At the resolutions typically applied in ESMs and RCMs, LSMs have	
56	limited ability to resolve land surface heterogeneity to skillfully represent its impacts on the surface	
57	fluxes and subsequent effects on earth system and climate simulations through land-atmosphere	
58	interactions. Singh et al. (2015) demonstrated that increasingly capturing topography and soil	
59	texture heterogeneity at finer resolutions improves the land surface modeling of soil moisture,	
60	terrestrial water storage anomaly, sensible heat, and snow water equivalent. Therefore, better	
61	representing spatial heterogeneity in LSMs may be crucial to reliably simulate water and energy	Deleted: representing
62	exchange between land and atmosphere (Essery et al., 2003; Jr. et al., 2017; Fan et al., 2019; Fisher	Deleted: land surface modeling
63	and Koven, 2020).	
64		
65	Several approaches have been developed to resolve land surface heterogeneity in LSMs. The	
66	most common class of method is the tile approach that subdivides each grid into several tiles to	
67	account for heterogeneous surface properties (Avissar and Pielke, 1989). The Community Land	

69 utilize a nested subgrid hierarchy in which each grid cell is composed of multiple land units, soil

68

4

Model version 5 (CLM5) and the Energy Exascale Earth System Model (E3SM) land model (ELM)

74 columns, and plant functional types. Tesfa et al. (2017; 2020) developed a topography-based 75 subgrid structure based on topographic properties such as surface elevation, slope, and aspect to 76 better represent topographic heterogeneity in ELM. Swenson et al. (2019) introduced hillslope 77 hydrology in CLM5 where each grid cell is decomposed into one or more multicolumn hillslopes. 78 The second class of method to account for land surface heterogeneity is called the "continuous 79 approach" in which subgrid heterogeneity is described via analytical or empirical probability 80 density functions (PDFs) instead of dividing a grid cell into subgrid units. For example, He et al. 81 (2021) developed the Fokker-Planck Equation subgrid snow model in the Rapid Update Cycle 82 Land-Surface Model, which uses dynamic PDFs to represent the variability of snow in each grid 83 cell. The third class of method to better account for land surface heterogeneity is by developing 84 parameterizations for subgrid processes. For example, Hao et al. (2021) implemented a sub-grid 85 topographic parameterization in the ELM to represent topographic effects on insolation, including 86 the shadow effects and multi-scattering between adjacent terrains. Besides these three classes of 87 approach dealing with subgrid heterogeneity, the fourth class is to directly increase the grid 88 resolution. Previous studies have demonstrated the benefits of increasing resolution in simulating 89 precipitation, temperature, and related extreme events over multiple spatial scales (Torma et al., 90 2015; Lindstedt et al., 2015; Cuesta-Valero et al., 2020; Koster et al., 2002; Vegas-Cañas et al., 91 2020; Rummukainen, 2016). The proposed hyperresolution land surface modeling by Wood et al. 92 (2011) to model land surface processes at a horizontal resolution of 1 km globally and 100 m or 93 finer continentally or regionally has been gaining attention as supported by increasing availability 94 of high-performance computing resources (Singh et al., 2015; Rouf et al., 2021; Ko et al., 2019; 95 Xue et al., 2021; Yuan et al., 2018; Chaney et al., 2016; Naz et al., 2018; Vergopolan et al., 2020; 96 Garnaud et al., 2016; Bierkens et al., 2014).

98	There are several <u>heterogeneity</u> sources in LSMs but their impact on water and energy	Deleted: of heterogeneity
99	simulations at different spatial resolutions has not been systematically examined. Four types	
100	of heterogeneity sources are commonly categorized in land surface modeling, including	
101	atmospheric forcing, soil properties, land use and land cover, and topography characteristics	
102	(Singh et al., 2015; Ji et al., 2017). Singh et al. (2015) showed that including more detailed	
103	heterogeneity of soil and topography at high resolutions improved the water and energy	
104	simulations over the Southwestern U.S. Xue et al. (2021) demonstrated that simulations over the	
105	High Mountain Asia region driven by high-resolution atmospheric forcing generally outperform	
106	simulations that used coarse-resolution atmospheric forcing. Simon et al. (2020) investigated the	
107	impacts of different heterogeneity sources (e.g., river routing and subsurface flow, soil type, land	
108	cover, and forcing meteorology) on coupled simulations using the Weather Research and	
109	Forecasting (WRF) model. They found that heterogeneous meteorology is the primary driver for	
110	the simulations of energy fluxes, cloud production, and turbulent kinetic energy. Chaney et al.	
111	(2016) conducted high-resolution simulations over a humid watershed and found that topography	
112	and soils are the main drivers of spatial heterogeneity of soil moisture. However, these studies	
113	generally focused either solely on one or a few heterogeneity sources, or were conducted over	
114	small domains with limited climate and hydrologic variations. Therefore, a comprehensive	
115	assessment of the contribution of different heterogeneity sources to heterogeneity in energy and	
116	water fluxes simulated by LSMs at continental scales is needed.	Deleted: land surface models
117		
118	The relative importance of heterogeneity sources on LSM simulations can be quantified by	

119 sensitivity analysis (SA), which has been commonly used to study parametric uncertainty

122	(Saltelli, 2002). In a quantitative sensitivity analysis, the assessed factors could include model	
123	parameters as well as any other types of uncertainty induced by varying the input data (Saltelli et	
124	al., 2019). The Sobol' SA is a variance-based SA approach and has been widely utilized by the	Deleted: glob
125	land surface modeling community (Rosolem et al., 2012; Nossent et al., 2011; Li et al., 2013b).	Deleted: meth
126	The most common application is the assessment of model parameters importance. Cuntz et al.	
127	(2016) comprehensively assessed the sensitivities of the Noah-MP land surface model to selected	
128	parameters over 12 U.S. basins. This method is also utilized to quantify the sensitivity of model	
129	outputs to the choice of parameterization schemes. Dai et al. (2017) proposed a method based on	
130	Sobol' variance analysis to conduct <u>SA</u> while simultaneously considering parameterizations and	Deleted: sens
131	parameters. Zheng et al. (2019) utilized the Sobol' method to quantify the sensitivity of	
132	evapotranspiration and runoff to different parameterizations in the Noah-MP land surface model	
133	over the CONUS. Given the demonstrated usefulness of the Sobol' sensitivity analysis method, it	
134	can be applied to quantify the relative importance of different heterogeneity sources on land	Deleted: it
135	surface water and energy simulations.	
136		
137	The overarching goal of this paper is to determine the relative importance of different	
138	heterogeneity sources on the spatial variability of simulated water and energy partitioning	
139	over CONUS. The four heterogeneity sources considered in this study, are atmospheric forcing	Deleted: F
140	(ATM), soil properties (SOIL), land use and land cover (LULC), and topography (TOPO). Our	Deleted: are Deleted: ,
141	analysis focuses on their impacts on the water partitioning of precipitation into evapotranspiration	Deleted: inclu
142	and runoff, the energy partitioning of net radiation into sensible heat and latent heat, and their	Deleted: and
143	corresponding fluxes. ELMv1 is used as the model testbed. Two sets of experiments are conducted	
144	with different combinations of homogeneous and heterogeneous inputs. A set of 16 experiments	

> ted: global sensitivity analysis ted: method

ted: sensitivity analysis

ted: F ted: are ted:, ted: including

154	are used to assess the impacts of the four heterogeneity sources on water and energy partitioning
155	using the Sobol' sensitivity analysis method. Subsequently, another set of 13 experiments are
156	conducted to analyze the heterogeneity effects from each component of atmospheric forcing, soil
157	properties, and topography. The remaining structure of this paper is organized as follows. Section
158	2 describes ELM, data processing, experimental design, and analysis method. Results are
159	examined in section 3, followed by discussions in section 4 and conclusions in section 5.

161 2. Methodology

162 2.1 ELM overview

The E3SM is a newly developed state-of-the-science Earth system model by the U.S. Department of Energy (Caldwell et al., 2019; Leung et al., 2020). ELMv1 started from the Community Land Model version 4.5 (CLM4.5; Oleson et al., 2013) and now includes more recently developed representations of soil hydrology and biogeochemistry, riverine water, energy and biogeochemistry, water management (Li et al., 2013a; Tesfa et al., 2014; Bisht et al., 2018; Yang et al., 2019; Zhou et al., 2020)

169

170 **2.2 ELM inputs**

171 2.2.1 Heterogeneity sources

ATM forcing for ELM consists of seven surface meteorological variables, including precipitation (PRCP), air temperature (TEMP), specific humidity (HUMD), shortwave radiation (SRAD), longwave radiation (LRAD), wind speed (WIND), and air pressure (PRES). Atmospheric forcing from the North American Land Data Assimilation System phase 2 (NLDAS) is used in this study (Xia et al., 2012b, a). SOIL consists of soil texture (STEX), organic matter content (SORG), and soil color (SCOL). STEX and SORG determine soil thermal and hydrologic properties, while **Deleted:** Further model developments after the ELMv1 release include subgrid topographic parameterizations for solar radiation (Hao et al., 2021), a subgrid topography structure (Tesfa and Leung, 2017) with subgrid downscaling of atmospheric forcing (Tesfa et al., 2020), and plant hydraulics (Fang et al., 2021). However, these new developments are not included in this study.

187	SCOL regulates the so	il albedo and hence surface energy related process	es. LULC consists of the		
188	glacier, lake, and urba	in fractions, the fractional cover of each plant fur	nctional type (PFT), and		
189	monthly leaf area inde	ex (LAI) and stem area index (SAI) for each PFT	T. The LULC datasets at	****	Deleted: The high-resolution datasets of land use land cover,
100	0.050.0.050.1.1				leaf area index, and stem area index
190	0.05°×0.05° developed	by Ke et al. (2012) are used in this study. TOPC	consists of the standard		Deleted: for LULC
191	deviation of elevation	(SD_ELV), maximum fractional saturated area	(Fmax), and topography		
192	slope. TOPO is used i	n snow cover parameterization, surface runoff ge	neration and infiltration	*****	Deleted: , etc
193	SOIL and TOPO datas	sets are obtained from the NCAR dataset pool for	CLM5 (Lawrence et al.,		
194	2019; Lawrence and	Chase, 2007; Bonan et al., 2002; Batjes, 2009	; Hugelius et al., 2013;		
195	Lawrence and Slater, 2	2008). Table 1 summarizes these heterogeneity cor	nponents and resolutions		
196	of the source data. All	datasets were prepared over the entire CONUS.			
197	Table	1 Summary of heterogeneity sources in ELM mod	el inputs		
	Heterogeneity source	Components	Source data resolution		
	ATM	Precipitation, air temperature, specific humidity,	0.125°, hourly		
		shortwave radiation, longwave radiation, wind speed, air			
	SOIL	Soil texture, soil organic matter	0.083°, static		
		Soil color	0.5°, static		
	ТОРО	Slope, Standard deviation of elevation, maximum	0.125°, static		
		fractional saturated area	0.059 -+-+-		
	LULC	and glacier	0.05 ⁻ , static		
	LOLO	LAI for each PFT	0.05°, monthly		Deleted: Leaf area index (LAI)
198		h			
199	2.2.2 Heterogeneous	and homogeneous inputs			
200	We prepared heteroge	neous and homogeneous inputs at 0.125°×0.125°.	The difference between		
201	the two datasets is w	hether the input values within each 1°×1° region	on of ELM are spatially		
202	heterogeneous or hon	nogeneous. The SOIL, TOPO, and LULC, were	first mapped from their	*****	Deleted: four
			1	1	Deleted: types of datasets
203	original resolutions to	0.125°×0.125° resolution, using the Earth System	m Modeling Framework	11	Deleted: listed in Table 1
				//	Deleted: resampled
204	(ESMF) regridding to	ool. Specifically, the first-order conservative inter-	erpolation was used for	/	Deleted: from their original resolutions
205	upscaling dataset (e.g	s., soil texture), while the nearest neighbor into	erpolation was used for		

values of the 64 $0.125^{\circ} \times 0.125^{\circ}$ grids within each $1^{\circ} \times 1^{\circ}$ region by the mean of the 64 grids (see

219 Figure 1b vs. 1d). The temporally varying datasets (e.g., hourly ATM and monthly climatology

220 LAI) were processed at each time interval. As an example, Figure 1 compares the annual

Deleted: ,

Deleted: which

225	Figure 1. Annual climatology of (a) heterogeneous and (c) homogeneous precipitation over
226	CONUS. The corresponding (b) heterogeneous and (d) homogeneous precipitation over a $1^{\circ}\!\!\times\!\!1^{\circ}$
227	region (latitude: 37° N \sim 38° N, longitude: 111° W \sim 110° W, the blue marker in (a)) is also shown.

229 2.3 Experimental design and analysis

230 We conducted two sets of ELM experiments over CONUS. The first set contains 16 experiments 231 with different combinations of heterogeneous and homogeneous inputs from the four heterogeneity 232 sources (Table 2). These experiments were used to quantify the influence of different heterogeneity 233 sources on the ELM simulations. The second set of 13 experiments were further conducted to 234 analyze the impact of heterogeneity from individual components of three heterogeneity sources 235 (Table 3). As LULC has no explicit individual component, we only analyzed the components of 236 ATM with seven experiments, SOIL with three experiments, and TOPO with three experiments. 237 Each experiment only contains one heterogeneous input while other components are homogeneous. 238 Both the first and second set of experiments were configured at 0.125°×0.125° spatial resolution. 239 The 40-year NLDAS-2 forcing from 1980-2019 was cycled twice to drive the ELM run for 80 240 years. The first 50-year run was used as model spin-up, and the last 30-year simulation 241 (corresponding to atmospheric forcing from 1990-2019) was used for further analysis.

242

Table 2. The first set of 16 experiments with inputs from ATM, SOIL, LULC, and TOPO.

(0 and 1 denote homogeneous and heterogeneous input from the four heterogeneity sources,
 respectively)

No.	Abbr.	ATM	SOIL	LULC	ТОРО
EXP1	A0S0L0T0	0	0	0	0
EXP2	A0S0L0T1	0	0	0	1
EXP3	A0S0L1T0	0	0	1	0
EXP4	A0S0L1T1	0	0	1	1
EXP5	A0S1L0T0	0	1	0	0
	No. EXP1 EXP2 EXP3 EXP4 EXP5	No. Abbr. EXP1 A0S0L0T0 EXP2 A0S0L0T1 EXP3 A0S0L1T0 EXP4 A0S0L1T1 EXP5 A0S1L0T0	No. Abbr. ATM EXP1 A0S0L0T0 0 EXP2 A0S0L0T1 0 EXP3 A0S0L1T0 0 EXP4 A0S0L1T1 0 EXP5 A0S1L0T0 0	No. Abbr. ATM SOIL EXP1 A0S0L0T0 0 0 EXP2 A0S0L0T1 0 0 EXP3 A0S0L1T0 0 0 EXP4 A0S0L1T1 0 0 EXP5 A0S1L0T0 0 1	No. Abbr. ATM SOIL LULC EXP1 A0S0L0T0 0 0 0 EXP2 A0S0L0T1 0 0 0 EXP3 A0S0L1T0 0 0 1 EXP4 A0S0L1T1 0 0 1 EXP5 A0S1L0T0 0 1 0

EXP6	A0S1L0T1	0	1	0	1
EXP7	A0S1L1T0	0	1	1	0
EXP8	A0S1L1T1	0	1	1	1
EXP9	A1S0L0T0	1	0	0	0
EXP10	A1S0L0T1	1	0	0	1
EXP11	A1S0L1T0	1	0	1	0
EXP12	A1S0L1T1	1	0	1	1
EXP13	A1S1L0T0	1	1	0	0
EXP14	A1S1L0T1	1	1	0	1
EXP15	A1S1L1T0	1	1	1	0
EXP16	A1S1L1T1	1	1	1	1

247 Table 3. The second set of 13 experiments with inputs from each component of the heterogeneity

248

No.	Sole heterogeneity input
ATM	
ATM1	Precipitation
ATM2	Air temperature
ATM3	Specific humidity
ATM4	Shortwave radiation
ATM5	Longwave radiation
ATM6	Wind speed
ATM7	Air pressure
SOIL	
SOIL1	Soil texture of sand, silt, and clay
SOIL2	Soil organic matter
SOIL3	Soil color
ТОРО	
TOPO1	Fmax
TOPO2	Standard deviation of elevation
ТОРОЗ	Slope

249

Our analysis focused on water partitioning, energy partitioning, and related flux variables. The water partitioning is quantified as the ratio between evapotranspiration (ET) and precipitation (P), i.e., ET/P, and the ratio between runoff (R) and precipitation (P), i.e., R/P. The energy partitioning is quantified using the evaporative fraction (EF), which equals the ratio between latent heat (LH) and the sum of latent heat and sensible heat (SH), i.e., $EF = \frac{LH}{LH+SH} * 100$ (%). First, the 30-year

Deleted: Based on outputs from each experiment,

256	monthly, seasonal, and annual climatological means were calculated for each experiment at	 Deleted: first	
257	0.125°×0.125° resolution for the five variables of interest (i.e., P, ET, R, LH, and SH). Second, the		
258	water and energy partitioning variables (i.e., ET/P, R/P, EF) were computed at 0.125°×0.125°		
259	resolution. Third, the standard deviations (SDs) of these variables' climatological mean were		
260	calculated for each $1^{\circ}\times1^{\circ}$ region from <u>its embedded 64</u> 0.125°×0.125° grids. These $1^{\circ}\times1^{\circ}$	 Deleted: ×	
261	resolution SDs of the first and second set of experiments were used in following analysis.	Deleted: the	
201		Deleted: x	
262	For the first set of 16 experiments, we utilized the Sobol' sensitivity analysis to quantify the relative		
263	importance of the four heterogeneity sources on water and energy simulations. Detail of Sobol'	 Deleted: the	
264	sensitivity analysis is described in section 2.4.		
265	The Sobol' method was not used for the second set of 13 experiments because a comprehensive		
266	Sobol' analysis needs 213 experiments, which is computationally infeasible. Instead, the calculated		
267	SD of each experiment is used to quantify the impact of heterogeneity of each component, as each		
268	experiment only contains one heterogeneous input. Therefore, we compared the SDs between each		
269	experiment to determine the relative importance of each component with heterogeneous input		
270	(without considering interactions between different components).		
271			
272	2.4 The Sobol' sensitivity ind <u>ices</u>	 Deleted: total	
273	The Sobol' sensitivity analysis (Sobol', 1993) was applied to quantify the sensitivity of spatial	Deleted: ex	
274	variation (i.e., SD) of water and energy partitioning to the four heterogeneity sources based on the		
275	first set of 16 experiments. Here, Sobol' first-order sensitivity index measures the direct		
276	contribution of a single heterogeneity source to the target variable's spatial variability (e.g., EF's		
277	SD). Sobol' higher-order (i.e., second or higher order) sensitivity indices quantify the contribution		
278	by the interactions between a given heterogeneity source with other heterogeneity sources. The		

287	sum of all higher-order indices quantifies the overall interaction effects. Sobol' total sensitivity	
288	index measures the total contribution of a given heterogeneity source, which considers both the	
289	first-order and the interaction effects (Zhang et al., 2015; Saltelli et al., 2010). Specifically, the	
290	Sobol' total sensitivity index (ST_{X_i}) and the first-order sensitivity index (S_{X_i}) are given as (Saltelli	
291	et al., 2010) _a	
292	$ST_{X_i} = \frac{E_{X_{\sim i}}(V_{X_i}(Y X_{\sim i}))}{V(Y)} $ (1)	
293	$S_{X_i} = \frac{V_{X_i}(E_{X_{\sim i}}(Y X_i))}{V(Y)} $ (2)	
294	where X_i is the <i>i</i> -th heterogeneity source (e.g., ATM, SOIL, LULC, and TOPO); $X_{\sim i}$ denotes the	Deleted: The Sobol' total sensitivity index, , is given as,
295	other heterogeneity sources except X_i : Y is the SD of a given simulated variable for a given	
296	experiment, and $V(Y)$ is the total variance of the given variable's SDs across all 16 experiments.	
297	Figure 2 illustrates the calculation of Sobol' total and first-order sensitivity indices for LULC (i.e.,	
298	$X_i = LULC)$ as follows:	
299	(1) For the calculation of ST_{X_i} : First, following Zheng et al. (2019), the SDs of the 16 experiments	
300	are reformed into 8 subgroups based on experiments with different combinations of $X_{\sim i}$.	
301	Second, the variance of SD for each subgroup is computed. Third, the mean of SD variances	
302	across 8 subgroups is computed. Fourth, ST_{X_i} is calculated using equation (1).	
303	(2) For the calculation of S_{X_i} : First, the SDs of the 16 experiments are reformed into 2 subgroups	
304	based on the experiments either with heterogeneous or homogeneous X_i . Second, the mean of	
305	SDs for each subgroup is computed. Third, the variance of mean SD across 2 subgroups is	
306	calculated. Fourth, S_{X_i} is computed using equation (2).	
307	The Sobol' sensitivity indices for ATM, TOPO, and SOIL can be computed similarly.	

$$SI_{X_i} = ST_{X_i} - S_{X_i} \tag{3}$$

319	The corresponding fraction of first-order index $(f_{S_{X_i}})$ and interaction effect index $(f_{S_{I_{X_i}}})$	
320	contributing to the total sensitivity index for X_i can be given as,	
321	$f_{S_{X_i}} = \frac{S_{X_i}}{S_{T_{X_i}}} \times 100 $ (4)	
322	$f_{SI_{X_i}} = 100 - f_{S_{X_i}}$ (5)	
323	A more detailed demonstration for the calculation of Sobol' total sensitivity index, first-order	
324	sensitivity index, and the interaction effect index is presented in Appendix A. In this paper, the	
325	Sobol' total sensitivity index is mainly contributed by Sobol' first-order sensitivity index (see	
326	details in section 3.1). Therefore, to make this paper concise, our analysis is based chiefly on Sobol'	
327	total sensitivity index if not explicitly pointed out otherwise.	
328		
329	2.5 ERA5-Land reanalysis dataset	
330	We further compared the first set of experiments with ERA5-land reanalysis (the land component	
331	of the fifth generation of European Centre of Medium-range Weather Forecast reanalysis) (Muñoz-	
332	Sabater et al., 2021) to demonstrate the added value in ELM simulations with consideration of	
333	heterogeneity sources. ERA5-Land provides a consistent view of terrestrial water and energy	
334	cycles at high spatial and temporal resolutions. The monthly ERA5-Land data at $0.1^{\circ} \times 0.1^{\circ}$	
335	resolution was used in this study. First, the monthly data was regridded using the ESMF regridding	
336	tool via the first-order conservative interpolation to 0.125°×0.125° resolution, which is consistent	
337	with the resolution of our sensitivity experiments. Second, the annual and seasonal climatological	
338	means for related variables (e.g., ET, R, SH) were computed. Third, SD for each variable was	
339	calculated within each 1°×1° region for further comparisons with the ELM simulations.	
340		

Deleted: resampled

342 3. Results

343 3.1. CONUS overall heterogeneity sensitivities

- 344 The inclusion of more heterogeneity sources leads to larger spatial variability in the simulated
- 345 ET/P, R/P, and EF (Figure 3). For example, comparing experiment A0S0L0T0 with A1S0L0T0
- that includes the ATM heterogeneity, the CONUS averaged SD for ET/P increases from 0 to 4.7%
- 347 (Figure 3a). By further comparing experiments in the first and third rows with the second and

fourth rows, ATM always increases the spatial variability of water and energy partitioning. Similarly, LULC heterogeneity also shows large impacts on the spatial variability for the partitioning variables as indicated by comparing experiments in the first and third columns with the second and fourth columns. However, heterogeneity in SOIL and TOPO show negligible impact. The effects of the heterogeneity sources on the spatial variability of water and energy partitioning are mainly located in western and central CONUS (Figure S1), which is consistent

- 354 with the spatial variability of the heterogeneity inputs, for variables such as precipitation, air
- 355 temperature, and longwave radiation (Figure S2).

358 Combining the X-axis label for LULC and TOPO and the Y-axis label for ATM and SOIL

indicates the names of the experiments listed in Table 2, highlighting the use of heterogeneous

360

(1) and homogeneous (0) inputs for each heterogeneity source.

Deleted: Figure 2

Deleted: Figure 2

Deleted: Figure 2

ATM, with the largest Sobol' total sensitivity index, is the most important heterogeneity source to		
determine the spatial variability of water and energy partitioning (ET/P, R/P, EF in Figure 4a).		Deleted: Figure 3
LULC is the second most important heterogeneity source (Figure 4a). Even though ATM		Moved down [2]: However, the heterogeneity of SOIL and TOPO marginally contribute to the spatial variability of
dominates the spatial heterogeneity of total ET, LULC is the main contributor to the spatial		water and energy partitioning.
variability of the ET components of transpiration, canopy evaporation, and ground evaporation.		
The first-order sensitivity indices show similar patterns as the total sensitivity indices (Figure 4b		Moved down [1]: TOPO shows larger impacts on the spatial variabilities of the runoff components than the total runoff
vs. Figure 4a). For the ATM and LULC, their first-order sensitivity indices contribute more than		
60% of the total sensitivity indices in determining the spatial variability of water and energy		
partitioning (ET/P, R/P, EF in Figure 4c). Therefore, the total heterogeneity effects of ATM or		
LULC are mainly due to their own heterogeneity rather than their interactions with other		
heterogeneity sources. The small proportion of the rest of the total heterogeneity effects of ATM		
and LULC is contributed by their interactions with other heterogeneity sources (Figure S3b).		
The heterogeneity of SOIL and TOPO marginally contributes to the spatial variability of water		Moved (insertion) [2]
and energy partitioning (Figure 4a). Their effects contributed from their own heterogeneity and		Deleted: However, t
their interactions with other heterogeneity sources are relatively small (Figures 4b and S3a). TOPO		(Moved (insertion) [1]
shows larger impacts on the spatial variabilities of the runoff components than the total runoff		
(Figure 4a). TOPO's impact on the total runoff is mainly due to its interaction effects with other		
heterogeneity sources, but its impacts on surface and subsurface runoff are primarily contributed		
by its own heterogeneity (Figure 4c).		
Generally, high values of total sensitivity indices are mostly contributed by the first-order		
sensitivity index (Figures 4a, 4b, and Figure S5). Since our main goal is to analyze the major		
heterogeneity sources with a large Sobol' total sensitivity index, the results presented in the		
subsequent sections are based chiefly on Sobol' total sensitivity index.		
	ATM, with the largest Sobol' total sensitivity index, is the most important heterogeneity source to determine the spatial variability of water and energy partitioning (ET/P, R/P, EF in Figure 4a). LULC is the second most important heterogeneity source (Figure 4a). Even though ATM dominates the spatial heterogeneity of total ET, LULC is the main contributor to the spatial variability of the ET components of transpiration, canopy evaporation, and ground evaporation. The first-order sensitivity indices show similar patterns as the total sensitivity indices (Figure 4b) vs. Figure 4a). For the ATM and LULC, their first-order sensitivity indices (Figure 4b) vs. Figure 4a). For the ATM and LULC, their first-order sensitivity indices of ATM or total sensitivity indices in determining the spatial variability of water and energy partitioning (ET/P, R/P, EF in Figure 4c). Therefore, the total heterogeneity effects of ATM or LULC are mainly due to their own heterogeneity rather than their interactions with other heterogeneity sources (Figure S3b). The heterogeneity of SOIL and TOPO marginally contributes to the spatial variability of water and energy partitioning (Figure 4a). Their effects contributed from their own heterogeneity and their interactions with other heterogeneity small (Figures 4b and S3a). TOPO shows larger impacts on the spatial variabilities of the runoff components than the total runoff (Figure 4a). TOPO's impact on the total runoff is mainly due to its interaction effects with other heterogeneity (Figure 4c). Generally, high values of total sensitivity indices are mostly contributed by the first-order sensitivity index, the results presented in the subsequent sections are based chiefly on Sobol' total sensitivity index.	ATM, with the largest Sobol' total sensitivity index, is the most important heterogeneity source to determine the spatial variability of water and energy partitioning (ET/P, R/P, EF in Figure 4a). LULC is the second most important heterogeneity source (Figure 4a). Even though ATM dominates the spatial heterogeneity of total ET, LULC is the main contributor to the spatial variability of the ET components of transpiration, canopy evaporation, and ground evaporation. The first-order sensitivity indices show similar patterns as the total sensitivity indices (Figure 4b vs. Figure 4a). For the ATM and LULC, their first-order sensitivity indices (Figure 4b vs. Figure 4a). For the ATM and LULC, their first-order sensitivity indices of ATM or LULC are mainly due to their own heterogeneity rather than their interactions with other heterogeneity sources. The small proportion of the rest of the total heterogeneity effects of ATM and LULC is contributed by their interactions with other heterogeneity sources (Figure 53b). The heterogeneity of SOIL and TOPO marginally contributes to the spatial variability of water and energy partitioning (Figure 4a). Their effects contributed from their own heterogeneity and their interactions with other heterogeneity small (Figures 4b and S3a). TOPO shows larger impacts on the spatial variabilities of the runoff components than the total runoff (Figure 4a). TOPO's impact on the total runoff is mainly due to its interaction effects with other heterogeneity sources, but its impacts on surface and subsurface runoff are primarily contributed by its own heterogeneity (Figure 55). Since our main goal is to analyze the major heterogeneity sources with a large Sobol' total sensitivity index.

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.00

торо

over central CONUS (Figure 5j). SOIL has negligible impacts over most regions of CONUS for

427

The impacts of ATM and LULC on the spatial variability of water and energy fluxes show more
seasonal variations than the impacts of SOIL and TOPO (Figure 6, SOIL and TOPO are not shown

442 here). This is because ATM and LULC consist of time-varying inputs to the ELM simulations, but

Deleted: Figure 4

Deleted:

Deleted: Figure 4

Deleted: to Deleted: 1

To further explain the spatial patterns of the Sobol' index for the two most dominant heterogeneity sources of ATM and LULC, we further analyzed EXP9 (A1S0L0T0) and EXP3 (A0S0L1T0) listed in Table 2. EXP9 and EXP3 only include heterogeneous inputs from ATM and LULC, respectively. Let us consider ET/P as the quantity of interest for the following discussion. First, the SD of ET/P is computed from the annual climatology (see section 2.3). Next, the SD ratio of ET/P, denoted as $SDR_{ET/P}$, is computed as the ratio between the SD of ET/P in EXP9 and EXP3. SDR_{ET/P} represents the relative spatial variability induced by ATM compared to LULC (Figure S3a). The spatial pattern of the ATM Sobol' index for the ET/P spatial variability shows a positive relationship with the spatial pattern of $SDR_{ET/P}$ (purple circles in Figure 5a, corresponding to Figure 4a vs. Figure S3a). Therefore, a higher value of SDR_{ET/P} indicates that relative to LULC, ATM induces larger ET/P spatial variability, and hence has a higher ATM Sobol' index. Similarly, a lower value of SDR_{ET/P} indicates LULC induces larger ET/P spatial variability than ATM, and hence has a higher LULC Sobol' index (green circles in Figure 5a). Similarly, SDR_{R/P} and SDR_{EF} were calculated for R/P and EF, and they also show a positive (negative) relationship with the corresponding ATM (LULC) Sobol' index (Figures 5b and 5c, and Figures S3b and S3c). We can also see that the ATM Sobol' index has opposite spatial patterns compared to that of the LULC Sobol' index. Therefore, ATM and LULC show complementary contributions to the spatial variability of water and energy partitioning across CONUS.

Figure 5. CONUS spatial relationship between the ATM and LULC Sobol' sensitivity index and the SD ratio for (a) ET/P, (b) R/P, (c) EF. The y-axis values correspond to the spatial patterns of the Sobol' index for ATM (purple) and LULC (green) in Figure 4 (i.e., each circle corresponds to each 1°×1° region in Figure 4). The x-axis corresponds to the spatial pattern of the SD ratio in Figure S3.

503 The spatial patterns of dominant regions by the four heterogeneity sources vary over different 504 seasons. Compared with spring and winter, ATM dominates the ET spatial variability in more 505 regions than in summer and fall when ATM is more dominant over eastern CONUS (Table 5 and 506 Figures <u>\$6</u>a~d). LULC shows opposite seasonal spatial patterns with more dominant regions in Deleted: Figure 6a

Deleted: S4a	
Deleted: c	
Deleted: Figure 6	
Deleted: S4d	

Deleted:

To further explain the seasonal variations of the Sobol' index for ATM and LULC, the SD of ET for each month was calculated as an example from monthly mean climatology and the SD ratio for each month was computed as the ratio between the SD of ET in EXP9 and EXP3. For each 1°×1° region, the 12 monthly SD ratios were normalized to [0, 1] using minimum and maximum values. Finally, the CONUS average of the normalized SD ratios was computed for each month, denoted as NSDRET. A higher value of NSDRET denotes ATM induces more ET spatial variability than LULC. Therefore, NSDR_{ET} shows similar seasonal variations with the ATM Sobol' index for ET spatial variability (black curve vs. purple curve in Figure 6a), but opposite seasonal variations with the LULC Sobol' index (black curve vs. green curve in Figure 6a). Similarly, NSDR_R and NSDR_{SH} were calculated for R and SH, and they also show a similar (opposite) seasonal variation with the corresponding seasonal ATM (LULC) Sobol' index (Figures 6b and 6c).

538	eastern CONU	US over spring a	and winter. As	for the R spati	al variability, T	OPO shows l	arge spatial				
539	variation of it	ts dominant reg	gions over dif	ferent seasons	(Figures <u>S6</u> f~	i). Besides it	s dominant		eleted: S5		
540	contribution i	n central CONI	IS over all sea	sons TOPO al	lso dominates t	he R cnatial v	ariahility in				
540	contribution in			sons, 1010 al	iso dominates ti	ne it spatial vi	anaonny m				
541	parts of easter	rn US in the su	ummer and au	tumn (Figures	<mark>"S6</mark> g~h). For tl	he EF spatial	variability,		eleted: S5		
542	ATM has mor	re contributions	in the fall and	winter but sma	aller contributio	ons in spring a	and summer				
543	than LULC (7	Table 5). LULC	C shows more	dominant regi	ons over easter	m CONUS, es	specially in				
544	spring and s	summer (Figure	es <mark>"S6</mark> k~i). <u>T</u> e	o understand	the seasonal	variations of	<u>f_dominant</u>		eleted: S5	 	 _
545	heterogeneity	sources, the sea	asonal variatio	ns of Sobol' to	tal sensitivity in	ndex and indu	ced R's SD				
546	are demonstra	ated at one gride	cell over easter	n US (Figure)	S7). Compared	with other he	terogeneity				
547	sources, ATM	1 induced R's S	D shows an a	pparent seasor	nal variation, w	rith high value	es in spring				
				• •							
548	and winter bu	it small values	in summer an	d fall (Figure	S7b). Therefor	e, ATM is th	e dominant				
549	heterogeneity	source in sprin	g and winter.	Even though T	TOPO and SOI	L induced R's	s SDs show				
549	heterogeneity	source in sprin	g and winter.	Even though 1	OPO and SOI	L induced R's	s SDs show				
549 550	<u>heterogeneity</u> <u>slight seasona</u>	source in sprin al variations (Fi	g and winter. gure S7), they	Even though T 7 dominate R's	TOPO and SOI s spatial variab	L induced R's ility in summ	s SDs show her and fall,				
549 550 551	heterogeneity slight seasona respectively.	source in sprin al variations (Fi	g and winter.	Even though T	FOPO and SOF	L induced R's	s SDs show her and fall,				
549 550 551	heterogeneity slight seasona respectively. Table 5 C	source in sprin al variations (Fi	g and winter. gure S7), they of the domina	Even though 7 7 dominate R's	<u>FOPO and SOL</u> s spatial variab	L induced R's ility in summ termining the	s SDs show her and fall,		Peleted : ¶		
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C	source in sprin al variations (Fi Grid percentage variability of E	g and winter. gure S7), they of the domina T. R. and SH f	Even though 7 dominate R': nt heterogenei or four season	TOPO and SOI s spatial variab ty source in det s and annual m	L induced R's ility in summ termining the ean (ANN)	s SDs show her and fall, spatial		eleted: ¶		
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C	source in sprin al variations (Fi Grid percentage variability of E	g and winter. gure S7), they of the domina T, R, and SH f ATM	Even though 7 dominate R's nt heterogenei for four season SOIL	TOPO and SOI s spatial variab ty source in det s and annual m LULC	L induced R's ility in summ termining the ean (ANN) TOPO	s SDs show her and fall, spatial	D	Peleted: ¶	 	
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C	source in sprin al variations (Fi Grid percentage variability of E easons	g and winter. gure S7), they of the domina T, R, and SH f ATM	Even though 7 dominate R's nt heterogenei for four season SOIL	TOPO and SOI s spatial variab ty source in det s and annual m LULC	L induced R's ility in summ termining the ean (ANN) TOPO	s SDs show eer and fall, spatial	D	Peleted: ¶	 	
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C	source in sprin al variations (Fi Grid percentage variability of E easons F oring (MAM)	g and winter. gure S7), they of the domina T, R, and SH f ATM 51	Even though 7 2 dominate R's 2 dominate R's 2 nt heterogenei 2 four season SOIL 4	TOPO and SOI s spatial variab ty source in det s and annual m LULC 46	L induced R's ility in summ termining the ean (ANN) TOPO 0	s SDs show eer and fall, spatial		eleted: ¶	 	
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C	source in sprin al variations (Fi Grid percentage variability of E ⁷ asons F oring (MAM) ummer (JJA)	g and winter. gure S7), they of the domina T, R, and SH f ATM 51 63	Even though 7 a dominate R's nt heterogenei for four season SOIL 4 3	TOPO and SOI s spatial variab ty source in det s and annual m LULC 46 34	L induced R's ility in summ termining the ean (ANN) TOPO 0 0	s SDs show eer and fall, spatial		Deleted: ¶	 	
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C Se ET Sp Su Fa	source in sprin al variations (Fi Grid percentage variability of E' asons F oring (MAM) ummer (JJA) all (SON)	g and winter. gure S7), they of the domina T, R, and SH f ATM 51 63 57	Even though 7 a dominate R's nt heterogenei for four season SOIL 4 3 2	TOPO and SOI s spatial variab ty source in det s and annual m LULC 46 34 42	L induced R's ility in summ termining the ean (ANN) TOPO 0 0 0	s SDs show eer and fall, spatial		Deleted: ¶	 	
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C Se ET Sp Su Fa W	source in sprin al variations (Fi Grid percentage variability of E' casons F oring (MAM) ummer (JJA) all (SON) 'inter (DJF)	g and winter. gure S7), they of the domina T, R, and SH f ATM 51 63 57 49	Even though 1 7 dominate R's nt heterogenei ior four season SOIL 4 3 2 0	TOPO and SOI s spatial variab ty source in det s and annual m LULC 46 34 42 51	L induced R's ility in summ termining the ean (ANN) TOPO 0 0 0 0 0	s SDs show eer and fall, spatial		Deleted: ¶	 	
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C Table 5 C Se ET Sp Su Fa W AT	source in sprin al variations (Fi Grid percentage variability of E ^r asons Γ oring (MAM) ummer (JJA) all (SON) (inter (DJF) NN	g and winter. gure S7), they of the domina T, R, and SH f ATM 51 63 57 49 66	Even though 1 v dominate R's nt heterogenei or four season SOIL 4 3 2 0 2	ty source in det s and annual m LULC 46 34 42 51 31	L induced R's ility in summ termining the ean (ANN) TOPO 0 0 0 0 0 0 0	s SDs show eer and fall, spatial		Deleted: ¶		
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C Table 5 C Se ET Sp Su Fa W AN R	source in sprin al variations (Fi Grid percentage variability of E asons F oring (MAM) ummer (JJA) all (SON) 'inter (DJF) NN	g and winter. gure S7), they of the domina T, R, and SH f ATM 51 63 57 49 66	Even though 1 7 dominate R's nt heterogenei ior four season SOIL 4 3 2 0 2	ty source in det s and annual m LULC 46 34 42 51 31	L induced R's ility in summ termining the ean (ANN) TOPO 0 0 0 0 0 0 0	s SDs show er and fall, spatial		Deleted: ¶	 	
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C Table 5 C Se ET Sp Su Fa W AN R Sp	source in sprin al variations (Fi Grid percentage variability of E asons F oring (MAM) ammer (JJA) all (SON) Vinter (DJF) NN	g and winter. gure S7), they of the domina T, R, and SH f ATM 51 63 57 49 66 81	Even though 7 7 dominate R's nt heterogenei ior four season SOIL 4 3 2 0 2 2	ty source in det s and annual m LULC 46 34 42 51 31 13	L induced R's ility in summ termining the ean (ANN) TOPO 0 0 0 0 0 0 0 5	s SDs show eer and fall, spatial		eleted: ¶	 	
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C Se ET Sp Su Fa W AT R Sp Su	source in sprin al variations (Fi Grid percentage variability of E' asons F oring (MAM) ammer (JJA) all (SON) 'inter (DJF) NN oring (MAM) ammer (JJA)	g and winter. gure S7), they of the domina T, R, and SH f ATM 51 63 57 49 66 81 67	Even though 7 v dominate R's nt heterogeneii or four season SOIL 4 3 2 0 2 4 3 2 4 4 3 2 4 4 4 3 2 4 4 3 2 4 4 4 4 4 4 3 2 4 4 4 4 4 4 4 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4	ty source in det s and annual m LULC 46 34 42 51 31 13 17	L induced R's ility in summ termining the ean (ANN) TOPO 0 0 0 0 0 0 0 5 11	s SDs show eer and fall, spatial		eleted: ¶		
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C Se ET Sp Su Fa W AN R Sp Su Fa	source in sprin al variations (Fi Grid percentage variability of E' easons F oring (MAM) immer (JJA) all (SON) 'inter (DJF) NN oring (MAM) immer (JJA) all (SON)	g and winter. gure S7), they of the domina T, R, and SH f ATM 51 63 57 49 66 81 67 66	Even though 1 2 dominate R's nt heterogeneii or four season SOIL 4 3 2 0 2 4 6	ty source in det s and annual m LULC 46 34 42 51 31 13 17 18	L induced R's ility in summ termining the ean (ANN) TOPO 0 0 0 0 0 0 0 0 0 1 1 1	s SDs show ter and fall, spatial	D	eleted: ¶		
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C Se ET Sp Su Fa W AT R Sp Su Fa W AT R Sp Su K K Sp Su K K Su K K K K K K K K K K K K K K K	source in sprin al variations (Fi Grid percentage variability of E' easons F oring (MAM) immer (JJA) all (SON) Vinter (DJF) NN oring (MAM) immer (JJA) all (SON) Vinter (DJF)	g and winter. gure S7), they of the domina T, R, and SH f ATM 51 63 57 49 66 81 67 66 75	Even though 1 2 dominate R's nt heterogeneii or four season SOIL 4 3 2 0 2 4 6 2	ty source in det s and annual m LULC 46 34 42 51 31 13 17 18 12	L induced R's ility in summ termining the ean (ANN) TOPO 0 0 0 0 0 0 0 0 0 0 0 0 1 1 11 10	s SDs show ter and fall, spatial	D	eleted: ¶		
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C Se ET Sp Su Fa W AT R Sp Su Fa W AT	source in sprin al variations (Fi Grid percentage variability of E' easons F oring (MAM) immer (JJA) all (SON) Vinter (DJF) NN oring (MAM) immer (JJA) all (SON) finter (DJF) NN	g and winter. gure S7), they of the domina T, R, and SH f ATM 51 63 57 49 66 81 67 66 75 77	Even though 1 v dominate R's nt heterogeneii for four season SOIL 4 3 2 0 2 4 6 2 1	ty source in dee s and annual m LULC 46 34 42 51 31 13 17 18 12 15	L induced R's ility in summ termining the ean (ANN) TOPO 0 0 0 0 0 0 0 0 5 11 11 10 7	s SDs show ter and fall, spatial	D	eleted: ¶		
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C Se ET Sp Su Fa W Al R Sp Su Fa W Al Sf Su Su Fa	source in sprin al variations (Fi Grid percentage variability of E' casons F oring (MAM) ummer (JJA) all (SON) Vinter (DJF) NN oring (MAM) ummer (JJA) all (SON) linter (DJF) NN	g and winter. gure S7), they of the domina T, R, and SH f ATM 51 63 57 49 66 81 67 66 75 77	Even though 1 v dominate R's nt heterogeneii for four season SOIL 4 3 2 0 2 4 6 2 1	ty source in det s and annual m LULC 46 34 42 51 31 13 17 18 12 15	L induced R's ility in summ termining the ean (ANN) TOPO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s SDs show ter and fall, spatial	D	eleted: ¶		
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C Se ET Sp Su Fa W AN R Sp Su Fa W AN Fa Sp Su Su Fa Sp Su Su Fa Sp Su Su Fa Sp Su Su Fa Sp Su Su Fa Sp Su Su Fa Sp Su Su Su Su Su Su Su Su Su Su Su Su Su	source in sprin al variations (Fi Grid percentage variability of E' casons F oring (MAM) ummer (JJA) all (SON) 'inter (DJF) NN oring (MAM) ummer (JJA) all (SON) 'inter (DJF) NN H oring (MAM)	g and winter. gure S7), they of the domina T, R, and SH f ATM 51 63 57 49 66 81 67 66 75 77 44	Even though 1 v dominate R's nt heterogeneii or four season SOIL 4 3 2 0 2 4 6 2 1 5	ty source in det s and annual m LULC 46 34 42 51 31 13 17 18 12 15	L induced R's ility in summ termining the ean (ANN) TOPO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s SDs show ter and fall, spatial	D	eleted: ¶		
549 550 551 552 553	heterogeneity slight seasona respectively. Table 5 C Se E1 Sp Su Fa W A1 R Sp Su Fa W M A1 SF Sp Su Su Fa Su Su Su Su Su Su Su Su Su Su Su Su Su	source in sprin al variations (Fi Grid percentage variability of E' easons F oring (MAM) ummer (JJA) all (SON) 'inter (DJF) NN oring (MAM) ummer (JJA) all (SON) 'inter (DJF) NN H oring (MAM) ummer (JJA)	g and winter. gure S7), they of the domina T, R, and SH f ATM 51 63 57 49 66 81 67 66 75 77 44 45	Even though T v dominate R's nt heterogeneii or four season SOIL 4 3 2 0 2 4 6 2 1 5 2	ty source in det s and annual m LULC 46 34 42 51 31 13 17 18 12 15 51 53	L induced R's ility in summ termining the ean (ANN) TOPO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s SDs show eer and fall, spatial	D	eleted: ¶		

Winter (DJF)	69	2	29	0
ANN	49	4	47	0

559 3.4 Effects of ATM heterogeneity components

560 Based on the second set of 13 experiments, we analyzed the heterogeneity effects by each 561 component of ATM, SOIL, and TOPO (Figure 7), respectively. Precipitation is the largest ATM 562 heterogeneity source in determining the spatial variability of water fluxes (Figures 7a~b), 563 especially over western and central CONUS for ET (Figure 7a) and almost the entire CONUS for 564 R (Figure 7b). Air temperature dominates the spatial variability of ET in eastern CONUS (Figure 7a). The spatial variability of SH is mainly dominated by the incoming longwave radiation in 565 566 western CONUS and by the air temperature in eastern CONUS (Figure 7c). Longwave radiation provides more energy input and contributes more to the SH spatial variability than shortwave 567 568 radiation (Figure 8c). Among the SOIL components, soil texture, which can influence soil moisture 569 and runoff generation, shows the largest effects on the ET and R spatial variability over most 570 CONUS regions (Figures 7d, 7e, 8d, and 8e). Soil color, affecting the surface albedo and energy 571 balance, shows the largest impacts on the SH spatial variability over central CONUS (Figures 7f 572 and 8f). Fmax is the most essential TOPO component, offering the largest effects on the spatial 573 variability of ET, R, and SH over most CONUS regions (Figures 7g~i and Figures 8g~i). Fmax 574 regulates surface runoff generation and infiltration, and therefore influences the soil moisture, ET, 575 and SH. SD ELV and slope can affect surface water and snow cover fraction, and consequently, 576 they show the largest impacts over northwestern CONUS regions with mountains and snowpack.

_	
(1	Deleted: Figure
(I	Deleted: 7
Œ	Deleted: Figures S6a
(1	Deleted: Figure
(I	Deleted: 7
(I	Deleted: Figure
(I	Deleted: 7
(I	Deleted: Figure
(I	Deleted: 7
(I	Deleted: Figure 7c
(1	Deleted: Figure S6
(1	Deleted: Figures 7
(I	Deleted: and
Í	Deleted: 7
G	Deleted: Figures 7

Deleted: Figures 7 Deleted: Figures S6

654	contributor.
653	difference between the NLDAS and ERA5 atmosphere forcing as ATM is the major heterogeneity
652	is usually larger over MAM and JJA than SON and DJF, probably due to the heterogeneity
651	experiments in the first and third columns with the second and fourth columns. The SD difference
650	and third rows with the second and fourth rows, than the LULC induced improvements, comparing

- 655 Improvements of the spatial variability of model simulations are primarily distributed over western
- and eastern CONUS for ET, R, and SH (e.g., Figures S8 and S9, 1st column vs. 4th column). Overall,
- the ELM simulated ET and SH have smaller SDs than those of ERA5_Land (Figures S9d and S9l).
- 658 Meanwhile the simulated R has larger SD especially in the western US than that of ERA5_Land,
- 659 probably mainly due to ATM's heterogeneity effects (Figures S9e vs. S9g). For ET and R, ATM
- 660 mainly <u>increases</u> their spatial variability over western and eastern CONUS (Figures <u>\$8a</u> vs. <u>\$8c</u>,
- and <u>\$8e</u> vs. <u>\$8g</u>), and LULC mostly shows <u>changes</u> over eastern CONUS (Figures <u>\$8a</u> vs. <u>\$8b</u>,
- and <u>S8e vs. S8f</u>). Both ATM and LULC <u>increase</u> SH spatial variability over western and eastern
- 663 CONUS (Figure S8i vs. <u>\$8j</u>, and <u>\$8j</u> vs. <u>\$8k</u>).

Deleted: Deleted: and R, and western CONUS for Deleted: S Deleted: 7

Deleted: improvesDeleted: SDeleted: 7Deleted: S7cDeleted: S7gDeleted: improvementsDeleted: SDeleted: SDeleted: SDeleted: SDeleted: S7cDeleted: S7cDeleted: S7fDeleted: S7fDeleted: S7fDeleted: SDeleted: 7Deleted: SDeleted: S		
Deleted: SDeleted: 7Deleted: S7cDeleted: S7cDeleted: S7gDeleted: S7gDeleted: SDeleted: SDeleted: SDeleted: S7bDeleted: S7cDeleted: S7fDeleted: S7fDeleted: Figure S7Deleted: Figure S7Deleted: SDeleted: SDeleted: SDeleted: SDeleted: 7Deleted: SDeleted: 7Deleted: 7Deleted: 7Deleted: 7Deleted: SDeleted: 7Deleted: 7	Deleted: improves	
Deleted: 7Deleted: S7cDeleted: S7eDeleted: S7gDeleted: S7gDeleted: SDeleted: SDeleted: SDeleted: S7bDeleted: S7cDeleted: S7fDeleted: S7fDeleted: S7fDeleted: S7gDeleted: S0Deleted: S0	Deleted: S	
Deleted: S7cDeleted: S7eDeleted: S7gDeleted: SDeleted: SDeleted: SDeleted: S7bDeleted: S7cDeleted: S7fDeleted: S7fDeleted: Sigure S7Deleted: Figure S7Deleted: SDeleted: S	Deleted: 7	
Deleted: S7eDeleted: S7gDeleted: improvementsDeleted: SDeleted: SDeleted: S7bDeleted: S7cDeleted: S7fDeleted: S7fDeleted: Sigure S7Deleted: SDeleted: SDeleted: SDeleted: SDeleted: SDeleted: SDeleted: SDeleted: SDeleted: 7Deleted: 7Deleted: 7Deleted: 7Deleted: 7	Deleted: S7c	
Deleted: S7gDeleted: improvementsDeleted: SDeleted: 7Deleted: S7bDeleted: S7cDeleted: S7fDeleted: sow improvements in theDeleted: Figure S7Deleted: SDeleted: 7Deleted: 7Deleted: 7Deleted: 7Deleted: 7Deleted: 7Deleted: 7	Deleted: S7e	
Deleted: improvementsDeleted: SDeleted: 7Deleted: S7bDeleted: S7cDeleted: S7fDeleted: sonw improvements in theDeleted: Figure S7Deleted: FDeleted: SDeleted: 7Deleted: 7Deleted: 5Deleted: 7Deleted: 7Deleted: 7Deleted: 7	Deleted: S7g	
Deleted: SDeleted: 7Deleted: S7bDeleted: S7cDeleted: S7fDeleted: show improvements in theDeleted: Figure S7Deleted: FDeleted: SDeleted: 7Deleted: 7Deleted: 7Deleted: 5Deleted: 7Deleted: 7Deleted: 7Deleted: 5Deleted: 7	Deleted: improvements	
Deleted: 7 Deleted: S7b Deleted: S7c Deleted: S7f Deleted: show improvements in the Deleted: Figure S7 Deleted: S Deleted: 7 Deleted: 7 Deleted: S Deleted: 7 Deleted: 7	Deleted: S	
Deleted: S7b Deleted: S7c Deleted: S7f Deleted: show improvements in the Deleted: Figure S7 Deleted: S Deleted: 7 Deleted: 7 Deleted: S Deleted: 7 Deleted: 7	Deleted: 7	
Deleted: S7e Deleted: S7f Deleted: show improvements in the Deleted: Figure S7 Deleted: S Deleted: S Deleted: 7 Deleted: 7 Deleted: 5 Deleted: 7 Deleted: 7 Deleted: 7 Deleted: 5 Deleted: 7	Deleted: S7b	
Deleted: S7f Deleted: show improvements in the Deleted: Figure S7 Deleted: S Deleted: 7 Deleted: S Deleted: 7 Deleted: 5 Deleted: 7 Deleted: 7	Deleted: S7e	
Deleted: show improvements in the Deleted: Figure S7 Deleted: S Deleted: 7 Deleted: 5 Deleted: 7 Deleted: 5 Deleted: 7 Deleted: 7	Deleted: S7f	
Deleted: Figure S7 Deleted: S Deleted: 7 Deleted: 7 Deleted: 7 Deleted: S Deleted: 7 Deleted: 7	Deleted: show improvements	in the
Deleted: S Deleted: 7 Deleted: 7 Deleted: 7 Deleted: S Deleted: 7	Deleted: Figure S7	
Deleted: 7 Deleted: S Deleted: 7 Deleted: S Deleted: 7	Deleted: S	
Deleted: S Deleted: 7 Deleted: S Deleted: 7	Deleted: 7	
Deleted: 7 Deleted: S Deleted: 7	Deleted: S	
Deleted: S Deleted: 7	Deleted: 7	
Deleted: 7	Deleted: S	
	Deleted: 7	

Figure 9. CONUS averaged absolute difference of SD between 16 ELM experiments and ERA5 Land reanalysis for the annual (1st column) and seasonal (2nd – 5th column) climatological mean

- 691 of ET (top panel), R (middle panel), and SH (bottom panel).
- 692

693 **4. Discussions**

694 ATM and LULC are the two most essential heterogeneity sources contributing to the spatial 695 variability of water and energy partitioning. Their total heterogeneity effects are mostly 696 contributed by their own heterogeneity, with small proportions are contributed by their interactions 697 with other heterogeneity sources. Simon et al. (2020) also found that the heterogeneous 698 meteorological forcing is the primary driver for the spatial variability of latent heat and sensible 699 heat in WRF simulations. The Sobol' sensitivity index averaged over the same region (a 100 km \times 700 100 km domain centered at 36.6° N, 97.5° W) as Simon et al. (2020) also indicates that ATM is 701 the dominant heterogeneity source. Therefore, better representation of ATM heterogeneity in Deleted: Figure 8

Deleted: Our results are consistent with **Deleted:** , who

705	climate models is crucial for modeling the water and energy partitioning, especially for the three
706	major components of precipitation, air temperature, and longwave radiation. Tesfa et al. (2020) Deleted: One approach of capturing ATM heterogeneity has been developed by
707	compared several simple approaches to capturing ATM heterogeneity for downscaling the grid
708	mean precipitation to topography-based subgrids for land surface modeling. Besides ATM, LULC
709	is the second most crucial heterogeneity source. Notably, anthropogenic land use and land cover
710	change has been shown to have large impacts on land-atmosphere interaction, land surface
711	hydrology, and associated extreme events (Findell et al., 2017; Li et al., 2018, 2015; Swann et al.,
712	2010; Zeng et al., 2017; Yuan et al., 2021; PIELKE et al., 2007). Therefore, the heterogeneity of
713	LULC should also be well considered in climate modeling.
714	
715	ATM and LULC show complementary contributions to the spatial variability of water and energy
716	partitioning spatially over CONUS and temporally in different seasons. Sobol' sensitivity analysis
717	is a standardized quantification of the relative importance of different heterogeneity sources. The
718	sum of the Sobol' <u>indices</u> for the four heterogeneity sources roughly equals one. As the two Deleted: indexes
719	dominant heterogeneity sources, ATM Sobol index and LULC Sobol' index dominate the sum of
720	all Sobol' indices. Hence, they show complementary patterns spatially (Figure B1) and temporally Deleted: indexes
721	(Figure 6). In addition, ATM and LULC show complementary contributions across different Deleted: 5 Deleted: 5 Deleted: Figure 6
722	climate zones. The Budyko's aridity index (BAI, Budyko 1974), which is the ratio of annual net
723	radiation to the product of the latent heat of water vaporization and the annual precipitation, was
724	calculated using the outputs from EXP16. From humid (low BAI) to arid climate (high BAI), a
725	decreasing fraction of the CONUS region is dominated by ATM in determining the ET/P spatial
726	variability (Figure 10a). At the same time, LULC shows an increasing contribution to the ET/P Deleted: Figure
727	spatial variability with BAI. The spatial variability of energy partitioning exhibits even more

resolution. Additionally, exclusion of lateral subsurface flow in ELMv1 could also lead tounderestimation of the contributions from SOIL and TOPO.

766

767 The current study excluded a few land surface processes that have been included in LSMs in the 768 last decade, limiting our ability to assess the role of land surface heterogeneity in spatiotemporal 769 variability of energy and water partitioning. For example, the hillslope processes of lateral ridge-770 valley flow and the insolation contrasts between sunny and shady slopes are crucial for land surface 771 modeling (Fan et al., 2019; Taylor et al., 2012; Clark et al., 2015; Scheidegger et al., 2021), but 772 they are neglected in this study. Sean et al. (2019) incorporated the representative hillslope concept 773 into the CLM5, and they found that subgrid hillslope process induced large differences in 774 evapotranspiration between upland and lowland hillslope columns in arid and semiarid regions. 775 Krakauer et al. (2014) suggested that the magnitude of between-grid groundwater flow becomes 776 significant over larger regions at higher model resolution. Xie et al. (2020) also demonstrated the 777 importance of groundwater lateral flow in offsetting depression cones caused by intensive 778 groundwater pumping. Fang et al. (2017) compared the ACME Land Model (the earlier version of 779 ELM) and the three-dimensional ParFlow variably saturated flow model (Maxwell et al., 2015), 780 underscoring ELM limitation in capturing topography's influence on groundwater and runoff. 781 Additionally, topography also significantly influences insolation, including the shadow effects and 782 multi-scattering between adjacent terrain. Hao et al. (2021) implemented a sub-grid topographic 783 parameterization in ELM, which improves the simulated surface energy balance, snow cover, and 784 surface air temperature over the Tibetan Plateau. The inclusion of plant hydraulics has also shown 785 essential improvements in water and carbon simulations under drought conditions (Li et al., 2021; Fang et al., 2021), which should also be considered in future research, especially as vegetation 786

may experience more hydroclimate drought stress in projected future climate conditions (Yuan et
al., 2019; Xu et al., 2019; Li et al., 2020). The subgrid downscaling of atmospheric forcing (Tesfa
et al., 2020), which could further enhance the representation of heterogeneity effects on water and
energy simulations, is also unaccounted for in this study.

791

792 5. Conclusions

This study comprehensively investigated the impacts of different heterogeneity sources (i.e., ATM, 793 LULC, SOIL, TOPO) on the spatial variability of water and energy partitioning over CONUS. 794 795 Two sets of experiments were conducted based on different combinations of spatially 796 heterogeneous and homogeneous datasets. Based on the first set of 16 experiments, Sobol' total 797 and first-order sensitivity indices were utilized to identify the relative importance of the four 798 heterogeneity sources. The second set of 13 experiments were further used to assess the influence 799 from individual components of ATM, SOIL, and TOPO. Our results show that ATM and LULC 800 are the two dominant heterogeneity sources in determining the spatial variability of water and 801 energy partitioning, largely contributed by ATM's or LULC's own heterogeneity and slightly 802 contributed by their interactions with other heterogeneity sources. Their heterogeneity effects are 803 spatially complementary across CONUS, and temporally complementary across seasons. The complementary contributions of ATM and LULC reflect the overall negligible impacts of SOIL 804 805 and TOPO, but the complementarity also reflects physically the clear demarcation of climatic 806 zones across CONUS, featuring the arid, water-limited western CONUS dominantly influenced 807 by ATM (precipitation in particular) and the humid, energy-limited eastern CONUS dominantly 808 influenced by LULC. In the transitional climate zone of central CONUS, TOPO shows some 809 dominant influence on the R/P spatial variability. The overall most essential components for ATM

Deleted: sensitivity Deleted: analysis

812	(precipitation, temperature, and longwave radiation), SOIL (soil texture and soil color), and TOPO
813	(Fmax) were also identified. Comparison with ERA5-Land reanalysis reveals that accounting for
814	more sources of heterogeneity improved the simulated spatial variability of water and energy
815	fluxes, although such improvements tend to saturate as more heterogeneous sources were added.
816	The relative importance of different heterogeneity sources quantified in this study is useful for
817	prioritizing spatial heterogeneity to be included for improving land surface modeling. We note,
818	however, that the present assessment is limited by how well the input datasets capture the
819	spatiotemporal heterogeneity and how well the land surface model represents processes such as
820	hillslope hydrology and topographic effect on solar radiation that are influenced by land surface
821	heterogeneity. This motivates the use of more process-rich models such as distributed or three-
822	dimensional subsurface hydrology models to provide benchmarks of the relative importance of
823	heterogeneity sources to help prioritize future development of land surface models to improve
824	modeling of energy and water fluxes.

Deleted: represent

827 <u>Appendix A: demonstration of Sobol' index calculation</u>

828	Here we give an example for the calculation of Sobol' total, first-order and interaction effect
829	indices, ST_{LULC} , S_{LULC} , and SI_{LULC} to quantify the sensitivity of EF's spatial variability to LULC
830	in a $1^{\circ} \times 1^{\circ}$ region at 39.5N and 107.5W.
831	(1) Calculation of ST_{LULC} (Table A1): Following Zheng et al. (2019), and based on equation (1)
832	and Figure 2, the 16 experiments are grouped into 8 subgroups containing two experiments, where
833	the difference between the two experiments in a given subgroup is homogeneous vs. heterogeneous
834	LULC. The SDs of the 16-experiments are listed in C1. The variance of each subgroup is computed
835	in C2, which represents the influence of LULC heterogeneity. The average impact of LULC
836	heterogeneity from the eight subgroups in C3 is computed as the mean of the values in C2. The
837	total variance of these 16 SDs in C1 is computed in C4. Finally, the ratio between C3 and C4 is
838	calculated as Sobol' total sensitivity index in C5, which quantifies EF spatial variability sensitivity
839	to LULC heterogeneity.
840	(2) Calculation of S_{LULC} and SI_{LULC} : Similarly, based on the equations (2) and (3) and Figure 2,
841	we then compute the Sobol' first-order sensitivity index (Table A2) and the Sobol' interaction effect
842	index (Table A3), and their contribution fractions to the total sensitivity index (Table A3).
843	Table A1 Calculation of Sobol' total sensitivity index
	$\frac{\text{Experiments}}{C0} \frac{Y \sim LULC}{C1} \frac{V_{LULC}(Y X_{\sim LULC})}{C2} \frac{E_{\sim LULC}(V_{LULC}(Y X_{\sim LULC}))}{C3} \frac{V(Y)}{C4} \frac{ST_{LULC}}{C5}$

				_	
Experiments	$Y \sim LULC$	$V_{LULC}(Y X_{\sim LULC})$	$E_{\sim LULC}(V_{LULC}(Y X_{\sim LULC}))$	V(Y)	ST _{LULC}
<u>C0</u>	<u>C1</u>	<u>C2</u>	<u>C3</u>	<u>C4</u>	<u>C5</u>
A0S0L0T0	0.00	6.99			
A0S0L1T0	5.24	0.88			
A0S0L0T1	0.57	()9			
A0S0L1T1	5.58	0.28			
A0S1L0T0	0.32	(75	-		
A0S1L1T0	5.51	0.75	<u>3.32</u>	26.99	0.12
A0S1L0T1	0.69	6.64	-		
A0S1L1T1	5.84	0.04			
A1S0L0T0	12.88	0.01	-		
A1S0L1T0	12.67	0.01			
A1S0L0T1	12.80	<u>0.00</u>	-		

	A1S0L1T1	12.76				
	A1S1L0T0	12.71	0.01	-		
	A1S1L1T0	12.51	0.01			
	A1S1L0T1	12.63	0.00	_		
	<u>A1S1L1T1</u>	12.59	<u>0.00</u>			
44						
45	<u>Ta</u>	able A2 Ca	lculation of Sobo	l' first-order sensitivity i	ndex	
	Experiments	Y LULC	$E_{\rm vir} \left(Y X_{\rm vir} \right)$	$V_{\text{res}}(F_{\text{res}}(Y X_{\text{res}}))$	V(Y)	Suura
	C0	C1	C2	C3	C4	C5
	A0S0L0T0	0.00				
	A0S0L0T1	0.57				
	A0S1L0T0	0.32				
	A0S1L0T1	0.69	6.59			
	A1S0L0T0	12.88	<u>6.58</u>			
	A1S0L0T1	12.80				
	A1S1L0T0	12.71				
	A1S1L0T1	12.63		1.50	26.00	0.059
	A0S0L1T0	5.24		1.38	20.99	0.038
	A0S0L1T1	5.58				
	A0S1L1T0	5.51				
	A0S1L1T1	5.84	0.00			
	A1S0L1T0	12.67	9.09			
	A1S0L1T1	12.76				
	A1S1L1T0	12.51				
	<u>A1S1L1T1</u>	12.59				
46						
47	Table A3 Cal	culation of	f Sobol' interactio	n effect index and contr	ibuting fra	actions
			<i>ST_{LULC}</i>	S _{LULC}	SI _{LULC}	
	Index va	alue	0.12	0.058	0.065	
	Fraction to	o total		<u>47.5%</u>	<u>52.5%</u>	
48						

849 Appendix B: Spatial patterns of Sobol' total sensitivity index vs. SD ratio

850	To further understand the spatial patterns of the Sobol' total sensitivity index for the two most
851	dominant heterogeneity sources of ATM and LULC (Figure 5), we further analyzed EXP9
852	(A1S0L0T0) and EXP3 (A0S0L1T0) listed in Table 2. EXP9 and EXP3 only include
853	heterogeneous inputs from ATM and LULC, respectively. Let us consider ET/P as the quantity of
854	interest for the following discussion. First, the SD of ET/P is computed from the annual
855	climatology (section 2.3). Next, the SD ratio of ET/P, denoted as $SDR_{ET/P}$, is computed as the
856	ratio between the SD of ET/P in EXP9 and EXP3. SDR _{ET/P} represents the relative spatial
857	variability induced by ATM compared to LULC (Figure B1a). The spatial pattern of the ATM
858	Sobol' total sensitivity index for the ET/P spatial variability shows a positive relationship with the
859	spatial pattern of SDR _{ET/P} (purple circles in Figure B1d, corresponding to Figure 5a vs. Figure
860	B1a). Therefore, a higher value of SDR _{ET/P} indicates that relative to LULC, ATM induces larger
861	ET/P spatial variability, and hence has a higher ATM Sobol' total sensitivity index. Similarly, a
862	lower value of SDR _{ET/P} indicates LULC induces larger ET/P spatial variability than ATM, and
863	hence has a higher LULC Sobol' total sensitivity index (green circles in Figure B1d). Similarly,
864	SDR _{R/P} and SDR _{EF} were calculated for R/P and EF, and they also show a positive (negative)
865	relationship with the corresponding ATM (LULC) Sobol' total sensitivity index (Figures B1b, B1c.
866	B1e, and B1f). We can also see that the ATM Sobol' total sensitivity index has opposite spatial
867	patterns compared to the LULC Sobol' total sensitivity index. Therefore, ATM and LULC show
868	complementary contributions to the spatial variability of water and energy partitioning across
869	CONUS.

y-axis values correspond to the spatial patterns of the Sobol' total sensitivity index for ATM (purple)

874 and LULC (green) in Figure 5 (i.e., each circle corresponds to each 1°×1° region).

877	Appendix C: Seasonal variations of Sobol' total sensitivity index vs. normalized SD ratio
878	To further explain the seasonal variations of the Sobol' total sensitivity index for ATM and LULC,
879	the SD of ET for each month was calculated as an example from monthly mean climatology. The
880	SD ratio for each month was computed as the ratio between the SD of ET in EXP9 and EXP3. For
881	each 1°×1° region, the 12 monthly SD ratios were normalized to [0, 1] using minimum and
882	maximum values. Finally, the CONUS average of the normalized SD ratios was computed for each
883	month, denoted as NSDR _{ET} . A higher value of NSDR _{ET} denotes ATM induces more ET spatial
884	variability than LULC. Therefore, NSDR _{ET} shows similar seasonal variations with the ATM
885	Sobol' total sensitivity index for ET spatial variability (black curve vs. purple curve in Figure C1a),
886	but opposite seasonal variations with the LULC Sobol' total sensitivity index (black curve vs. green
887	curve in Figure C1a). Similarly, normalized SD ratios were calculated for R, SH, ET components
888	and R components, and they also show a similar (opposite) seasonal variation with the
889	corresponding seasonal ATM (LULC) Sobol' total sensitivity index (Figures C1).
890	
1	

,	Code and Data Availability. NLDAS-2 forcing is available from
	https://ldas.gsfc.nasa.gov/nldas/v2/forcing. SOIL and TOPO related datasets are downloaded
)	from https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/lnd/clm2/rawdata/. LULC related
	datasets are from Ke et al. (2012); ERA5-Land reanalysis is available from:
	https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-
	means?tab=overview. The ELM source code and surface data (e.g., SOIL, TOPO, LULC) used
	in this study are archived on Zenodo (https://doi.org/10.5281/zenodo.6484857).
	Author contributions. LCL designed and conducted the experiments, analyzed model outputs, and
	drafted the manuscript. GB designed the study, interpreted the results, and improved the
,	manuscript. LRL contributed to the interpretation and discussion of results and improvement of
	the manuscript.
	Acknowledgments. This research was conducted at Pacific Northwest National Laboratory,
	operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-
	AC05-76RL01830. This study is supported by the US Department of Energy (DOE) Office of
	Science Biological and Environmental Research as part of the Regional and Global Model
	Analysis (RGMA) program area through the collaborative, multi-program Integrated Coastal
	Modeling (ICoM) project. This study used DOE's Biological and Environmental Research Earth
	System Modeling program's Compy computing cluster located at Pacific Northwest National
,	Laboratory. We also want to thank the reviewers for their informative and constructive comments
	and suggestions.

920 Competing interests. The authors declare that they have no conflict of interest.

Deleted: Code and data availability. The source code of ELMv1 is available from (last access: September 2020); NLDAS-2 forcing is available from https://ldas.gsfc.nasa.gov/nldas/v2/forcing; SOIL and TOPO related datasets are downloaded from https://svn-ccsminputdata.cgd.ucar.edu/trunk/inputdata/Ind/elm2/rawdata/; LULC related datasets are from Ke et al. (2012); ERA5-Land reanalysis is available from: https://data.climate.cognernicus.eu/cdsapp#//dataset/reanalysis -era5-land-monthly-means?tab=overview.¶ 931 Reference

- 933 Avissar, R. and Pielke, R. A.: A Parameterization of Heterogeneous Land Surfaces for
- 934 Atmospheric Numerical Models and Its Impact on Regional Meteorology, Mon Weather Rev,
- 935 117, 2113–2136, https://doi.org/10.1175/1520-0493(1989)117<2113:apohls>2.0.co;2, 1989.
- 936 Batjes, N. H.: Harmonized soil profile data for applications at global and continental scales:
- 937 updates to the WISE database, Soil Use Manage, 25, 124–127, https://doi.org/10.1111/j.1475-
- 938 2743.2009.00202.x, 2009.
- 939 Bierkens, M. F. P., Bell, V. A., Burek, P., Chaney, N., Condon, L. E., David, C. H., Roo, A. de,
- 940 Döll, P., Drost, N., Famiglietti, J. S., Flörke, M., Gochis, D. J., Houser, P., Hut, R., Keune, J.,
- 941 Kollet, S., Maxwell, R. M., Reager, J. T., Samaniego, L., Sudicky, E., Sutanudjaja, E. H.,
- 942 Giesen, N. van de, Winsemius, H., and Wood, E. F.: Hyper-resolution global hydrological
- 943 modelling: what is next?, 29, 310–320, https://doi.org/10.1002/hyp.10391, 2014.
- 944 Bisht, G., Riley, W. J., Hammond, G. E., and Lorenzetti, D. M.: Development and evaluation of
- a variably saturated flow model in the global E3SM Land Model (ELM) version 1.0, Geosci
- 946 Model Dev, 11, 4085–4102, https://doi.org/10.5194/gmd-11-4085-2018, 2018.
- 947 Bonan, G. B., Levis, S., Kergoat, L., and Oleson, K. W.: Landscapes as patches of plant
- functional types: An integrating concept for climate and ecosystem models, Global Biogeochem
 Cy, 16, 5-1-5–23, https://doi.org/10.1029/2000gb001360, 2002.
- 950 Caldwell, P. M., Mametjanov, A., Tang, Q., Roekel, L. P. V., Golaz, J., Lin, W., Bader, D. C.,
- 951 Keen, N. D., Feng, Y., Jacob, R., Maltrud, M. E., Roberts, A. F., Taylor, M. A., Veneziani, M.,
- 952 Wang, H., Wolfe, J. D., Balaguru, K., Cameron-Smith, P., Dong, L., Klein, S. A., Leung, L. R.,
- 953 Li, H., Li, Q., Liu, X., Neale, R. B., Pinheiro, M., Qian, Y., Ullrich, P. A., Xie, S., Yang, Y.,
- 954 Zhang, Y., Zhang, K., and Zhou, T.: The DOE E3SM Coupled Model Version 1: Description and
- 955 Results at High Resolution, J Adv Model Earth Sy, 11, 4095–4146,
- 956 https://doi.org/10.1029/2019ms001870, 2019.
- 957 Chaney, N. W., Metcalfe, P., and Wood, E. F.: HydroBlocks: a field-scale resolving land surface
- 958 model for application over continental extents, Hydrol Process, 30, 3543-3559,
- 959 https://doi.org/10.1002/hyp.10891, 2016.
- 960 Chaney, N. W., Huijgevoort, M. H. J. V., Shevliakova, E., Malyshev, S., Milly, P. C. D.,
- 961 Gauthier, P. P. G., and Sulman, B. N.: Harnessing big data to rethink land heterogeneity in Earth
- 962 system models, Hydrol Earth Syst Sc, 22, 3311–3330, https://doi.org/10.5194/hess-22-3311963 2018, 2018.
- 964 Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., Hooper, R. P.,
- 965 Kumar, M., Leung, L. R., Mackay, D. S., Maxwell, R. M., Shen, C., Swenson, S. C., and Zeng,

- 966 X.: Improving the representation of hydrologic processes in Earth System Models, 51, 5929-967 5956, https://doi.org/10.1002/2015wr017096, 2015.
- 968 Cuesta-Valero, F. J., García-García, A., Beltrami, H., González-Rouco, F., and García-
- 969 Bustamante, E.: WRF v.3.9 sensitivity to land surface model and horizontal resolution changes
- 970 over North America, Geosci Model Dev, https://doi.org/10.5194/gmd-2021-243, 2020.
- 971 Dai, H., Ye, M., Walker, A. P., and Chen, X.: A new process sensitivity index to identify
- 972 important system processes under process model and parametric uncertainty, Water Resour Res, 973
- 53, 3476-3490, https://doi.org/10.1002/2016wr019715, 2017.
- 974 Essery, R. L. H., Best, M. J., Betts, R. A., Cox, P. M., and Taylor, C. M.: Explicit Representation
- 975 of Subgrid Heterogeneity in a GCM Land Surface Scheme, J Hydrometeorol, 4, 530-543,
- 976 https://doi.org/10.1175/1525-7541(2003)004<0530:eroshi>2.0.co;2, 2003.
- 977 Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., Brooks, P. D.,
- 978 Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W., Mackay, D. S., McDonnell, J. J., Milly, P.
- C. D., Sullivan, P. L., Tague, C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., 979
- McNamara, J., Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X., 980
- 981 Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B., Safeeq, M., Shen,
- 982 C., Verseveld, W., Volk, J., and Yamazaki, D.: Hillslope Hydrology in Global Change Research and Earth System Modeling, Water Resour Res, 55, 1737-1772, 983
- 984 https://doi.org/10.1029/2018wr023903, 2019.
- 985 Fang, Y., Leung, L. R., Duan, Z., Wigmosta, M. S., Maxwell, R. M., Chambers, J. Q., and
- 986 Tomasella, J.: Influence of landscape heterogeneity on water available to tropical forests in an 987 Amazonian catchment and implications for modeling drought response, 122, 8410-8426,
- 988 https://doi.org/10.1002/2017jd027066, 2017.
- 989 Fang, Y., Leung, L. R., Wolfe, B. T., Detto, M., Knox, R. G., McDowell, N. G., Grossiord, C.,
- Xu, C., Christoffersen, B. O., Gentine, P., Koven, C. D., and Chambers, J. Q.: Disentangling the 990
- 991 Effects of Vapor Pressure Deficit and Soil Water Availability on Canopy Conductance in a
- 992 Seasonal Tropical Forest During the 2015 El Niño Drought, J Geophys Res Atmospheres, 126,
- https://doi.org/10.1029/2021jd035004, 2021. 993
- 994 Findell, K. L., Berg, A., Gentine, P., Krasting, J. P., Lintner, B. R., Malyshev, S., Santanello, J.
- 995 A., and Shevliakova, E.: The impact of anthropogenic land use and land cover change on
- 996 regional climate extremes, 8, 989, https://doi.org/10.1038/s41467-017-01038-w, 2017.
- 997 Fisher, R. A. and Koven, C. D.: Perspectives on the Future of Land Surface Models and the 998 Challenges of Representing Complex Terrestrial Systems, J Adv Model Earth Sy, 12,
- https://doi.org/10.1029/2018ms001453, 2020. 999
- 1000 Garnaud, C., Bélair, S., Berg, A., and Rowlandson, T.: Hyperresolution Land Surface Modeling 1001 in the Context of SMAP Cal-Val, J Hydrometeorol, 17, 345-352, https://doi.org/10.1175/jhm-d-

- 1003 Giorgi, F. and Avissar, R.: Representation of heterogeneity effects in Earth system modeling:
- 1004 Experience from land surface modeling, Rev Geophys, 35, 413–437,
- 1005 https://doi.org/10.1029/97rg01754, 1997.
- 1006 Hao, D., Bisht, G., Gu, Y., Lee, W., Liou, K.-N., and Leung, L. R.: A Parameterization of Sub-
- grid Topographical Effects on Solar Radiation in the E3SM Land Model (Version 1.0):
 Implementation and Evaluation Over the Tibetan Plateau, Geoscientific Model Dev Discuss,
- 1009 2021, 1–23, https://doi.org/10.5194/gmd-2021-55, 2021.
- 1010 He, S., Smirnova, T. G., and Benjamin, S. G.: Single-Column Validation of a Snow Subgrid
- Parameterization in the Rapid Update Cycle Land-Surface Model (RUC LSM), Water Resour
 Res, 57, https://doi.org/10.1029/2021wr029955, 2021.
- 1013 Hugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P., and Swanson, D. K.: The
- 1014 Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and 1015 soil carbon storage in the northern permafrost regions, Earth Syst Sci Data, 5, 3–13,
- 1016 https://doi.org/10.5194/essd-5-3-2013, 2013.
- 1017 Ji, P., Yuan, X., and Liang, X.: Do Lateral Flows Matter for the Hyperresolution Land Surface
- 1018 Modeling?, J Geophys Res Atmospheres, 122, 12,077-12,092,
- 1019 https://doi.org/10.1002/2017jd027366, 2017.
- 1020 Jr., J. A. S., Dirmeyer, P. A., Ferguson, C. R., Findell, K. L., Tawfik, A. B., Berg, A., Ek, M.,
- 1021 Gentine, P., Guillod, B. P., Heerwaarden, C. van, Roundy, J., and Wulfmeyer, V.: Land-
- 1022 Atmosphere Interactions: The LoCo Perspective, B Am Meteorol Soc, 99, 1253–1272,
- 1023 https://doi.org/10.1175/bams-d-17-0001.1, 2017.
- Ke, Y., Leung, L. R., Huang, M., Coleman, A. M., Li, H., and Wigmosta, M. S.: Development of
 high resolution land surface parameters for the Community Land Model, Geosci Model Dev, 5,
- 1026 1341–1362, https://doi.org/10.5194/gmd-5-1341-2012, 2012.
- 1027 Ko, A., Mascaro, G., and Vivoni, E. R.: Strategies to Improve and Evaluate Physics-Based
- Hyperresolution Hydrologic Simulations at Regional Basin Scales, Water Resour Res, 55, 1129–
 1152, https://doi.org/10.1029/2018wr023521, 2019.
- 1030 Koster, R. D., Hahmann, A. N., Ijpelaar, R., Tyahla, L., Suarez, M. J., Dirmeyer, P. A.,
- 1031 Hahmann, A. N., Ijpelaar, R., Tyahla, L., Cox, P., and Suarez, M. J.: Comparing the Degree of
- Land–Atmosphere Interaction in Four Atmospheric General Circulation Models, 3, 363–375,
 https://doi.org/10.1175/1525-7541(2002)003<0363:ctdola>2.0.co;2, 2002.
- 1034 Krakauer, N. Y., Li, H., and Fan, Y.: Groundwater flow across spatial scales: importance for 1035 climate modeling, Environ Res Lett, 9, 034003, https://doi.org/10.1088/1748-9326/9/3/034003,
- 1036 2014.
- Lawrence, D. M. and Slater, A. G.: Incorporating organic soil into a global climate model, Clim
 Dynam, 30, 145–160, https://doi.org/10.1007/s00382-007-0278-1, 2008.

- 1039 Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G.,
- 1040 Collier, N., Ghimire, B., Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li,
- 1041 H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C.,
- 1042 Ali, A. A., Badger, A. M., Bisht, G., Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark,
- 1043 M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P.,
- 1044 Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W.
- 1045 H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson,
- 1046 B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Martin, M. V., and Zeng, X.: The
- 1047 Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of
- 1048 Forcing Uncertainty, J Adv Model Earth Sy, 11, 4245–4287,
- 1049 https://doi.org/10.1029/2018ms001583, 2019.
- 1050 Lawrence, P. J. and Chase, T. N.: Representing a new MODIS consistent land surface in the
- 1051 Community Land Model (CLM 3.0), J Geophys Res Biogeosciences 2005 2012, 112,
- 1052 https://doi.org/10.1029/2006jg000168, 2007.
- 1053 Leung, L. R., Bader, D. C., Taylor, M. A., and McCoy, R. B.: An Introduction to the E3SM
- Special Collection: Goals, Science Drivers, Development, and Analysis, J Adv Model Earth Sy,
 12, https://doi.org/10.1029/2019ms001821, 2020.
- 1056 Li, H., Wigmosta, M. S., Wu, H., Huang, M., Ke, Y., Coleman, A. M., and Leung, L. R.: A
- 1057 Physically Based Runoff Routing Model for Land Surface and Earth System Models, J
- 1058 Hydrometeorol, 14, 808–828, https://doi.org/10.1175/jhm-d-12-015.1, 2013a.
- 1059 Li, J., Duan, Q. Y., Gong, W., Ye, A., Dai, Y., Miao, C., Di, Z., Tong, C., and Sun, Y.:
- 1060 Assessing parameter importance of the Common Land Model based on qualitative and
- 1061 quantitative sensitivity analysis, Hydrol Earth Syst Sc, 17, 3279–3293,
- 1062 https://doi.org/10.5194/hess-17-3279-2013, 2013b.
- 1063 Li, L., Zhang, L., Xia, J., Gippel, C. J., Wang, R., and Zeng, S.: Implications of Modelled
- Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water
 Transfer Project in China, 29, 2563–2579, https://doi.org/10.1007/s11269-015-0957-3, 2015.
- 1066 Li, L., She, D., Zheng, H., Lin, P., and Yang, Z. L.: Elucidating Diverse Drought Characteristics
- 1067 from Two Meteorological Drought Indices (SPI and SPEI) in China, 21, 1513–1530,
- 1068 https://doi.org/10.1175/jhm-d-19-0290.1, 2020.
- 1069 Li, L., Yang, Z., Matheny, A. M., Zheng, H., Swenson, S. C., Lawrence, D. M., Barlage, M.,
- Yan, B., McDowell, N. G., and Leung, L. R.: Representation of Plant Hydraulics in the Noah MP Land Surface Model: Model Development and Multiscale Evaluation, J Adv Model Earth
 Sy, 13, https://doi.org/10.1029/2020ms002214, 2021.
- 1073 Li, Y., Piao, S., Li, L. Z. X., Chen, A., and Zhou, L.: Divergent hydrological response to large-
- scale afforestation and vegetation greening in China, 4, eaar4182,
- 1075 https://doi.org/10.1126/sciadv.aar4182, 2018.

- 1076 Lindstedt, D., Lind, P., Kjellström, E., and Jones, C.: A new regional climate model operating at
- 1077 the meso-gamma scale: performance over Europe, Tellus, 67, 24138,
- https://doi.org/10.3402/tellusa.v67.24138, 2015. 1078
- 1079 Liu, S., Shao, Y., Kunoth, A., and Simmer, C.: Impact of surface-heterogeneity on atmosphere
- 1080 and land-surface interactions, Environ Modell Softw, 88, 35-47,
- 1081 https://doi.org/10.1016/j.envsoft.2016.11.006, 2017.
- 1082 Maxwell, R. M., Condon, L. E., and Kollet, S. J.: A high-resolution simulation of groundwater
- 1083 and surface water over most of the continental US with the integrated hydrologic model ParFlow 1084 v3, Geosci Model Dev, 8, 923-937, https://doi.org/10.5194/gmd-8-923-2015, 2015.
- 1085 Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G.,
- Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., 1086
- 1087 Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-
- of-the-art global reanalysis dataset for land applications, Earth Syst Sci Data, 13, 4349-4383, 1088
- 1089 https://doi.org/10.5194/essd-13-4349-2021, 2021.
- 1090 Naz, B. S., Kurtz, W., Montzka, C., Sharples, W., Goergen, K., Keune, J., Gao, H., Springer, A.,
- 1091 Franssen, H.-J. H., and Kollet, S.: Improving soil moisture and runoff simulations at 3 km over
- 1092 Europe using land surface data assimilation, Hydrol Earth Syst Sc, 23, 277-301,
- 1093 https://doi.org/10.5194/hess-23-277-2019, 2018.

1094 Nossent, J., Elsen, P., and Bauwens, W .: Sobol' sensitivity analysis of a complex environmental 1095 model, Environ Modell Softw, 26, 1515-1525, https://doi.org/10.1016/j.envsoft.2011.08.010, 1096 2011.

- PIELKE, R. A., ADEGOKE, J., BELTRÁN-PRZEKURAT, A., HIEMSTRA, C. A., LIN, J., 1097
- 1098 NAIR, U. S., NIYOGI, D., and NOBIS, T. E.: An overview of regional land-use and land-cover 1099 impacts on rainfall, Tellus B, 59, 587-601, https://doi.org/10.1111/j.1600-0889.2007.00251.x,
- 1100 2007.
- 1101 Rosolem, R., Gupta, H. V., Shuttleworth, W. J., Zeng, X., and Gonçalves, L. G. G.: A fully
- 1102 multiple-criteria implementation of the Sobol' method for parameter sensitivity analysis, J
- 1103 Geophys Res Atmospheres 1984 2012, 117, n/a-n/a, https://doi.org/10.1029/2011jd016355,
- 1104 2012.
- 1105 Rouf, T., Maggioni, V., Mei, Y., and Houser, P.: Towards hyper-resolution land-surface
- 1106 modeling of surface and root zone soil moisture, J Hydrol, 594, 125945,
- 1107 https://doi.org/10.1016/j.jhydrol.2020.125945, 2021.
- 1108 Rummukainen, M.: Added value in regional climate modeling, Wiley Interdiscip Rev Clim 1109 Change, 7, 145-159, https://doi.org/10.1002/wcc.378, 2016.
- 1110 Saltelli, A.: Sensitivity Analysis for Importance Assessment, Risk Anal, 22, 579-590, 1111
 - https://doi.org/10.1111/0272-4332.00040, 2002.

Deleted: Sobol'

- 1113 Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S.: Variance based 1114 sensitivity analysis of model output. Design and estimator for the total sensitivity index, Comput
- 1115 Phys Commun, 181, 259–270, https://doi.org/10.1016/j.cpc.2009.09.018, 2010.
- 1116 Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., and Wu, Q.:
- 1117 Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis
- 1118 practices, Environ Modell Softw, 114, 29–39, https://doi.org/10.1016/j.envsoft.2019.01.012,
- 1119 2019.
- 1120 Scheidegger, J. M., Jackson, C. R., Muddu, S., Tomer, S. K., and Filgueira, R.: Integration of 2D
- 1121 Lateral Groundwater Flow into the Variable Infiltration Capacity (VIC) Model and Effects on
- 1122 Simulated Fluxes for Different Grid Resolutions and Aquifer Diffusivities, Water-sui, 13, 663,
- 1123 https://doi.org/10.3390/w13050663, 2021.
- 1124 Simon, J. S., Bragg, A. D., Dirmeyer, P. A., and Chaney, N. W.: Semi-coupling of a Field-scale
- Resolving Land-surface Model and WRF-LES to Investigate the Influence of Land-surface
 Heterogeneity on Cloud Development, https://doi.org/10.1002/essoar.10507168.1, 2020.
- field generity on cloud Development, https://doi.org/10.1002/essbai.1050/106.1, 2020.
- 1127 Singh, R. S., Reager, J. T., Miller, N. L., and Famiglietti, J. S.: Toward hyper-resolution land-
- 1128 surface modeling: The effects of fine-scale topography and soil texture on CLM4.0 simulations
- 1129 over the Southwestern U.S., Water Resour Res, 51, 2648–2667,
- 1130 https://doi.org/10.1002/2014wr015686, 2015.
- 1131 Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B., and Doney, S. C.: Changes in Arctic
- 1132 vegetation amplify high-latitude warming through the greenhouse effect., 107, 1295–1300,
- 1133 https://doi.org/10.1073/pnas.0913846107, 2010.
- 1134 Swenson, S. C., Clark, M., Fan, Y., Lawrence, D. M., and Perket, J.: Representing Intrahillslope
- Lateral Subsurface Flow in the Community Land Model, J Adv Model Earth Sy, 11, 4044–4065,
 https://doi.org/10.1029/2019ms001833, 2019.
- 1137 Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Beek, R. van, Wada, Y., Longuevergne, L.,
- 1138 Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi,
- 1139 M., Bierkens, M. F., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen,
- 1140 D. M., Shamsudduha, M., Hiscock, K., Yeh, P., Holman, I., and Treidel, H.: Ground water and
- 1141 climate change, 3, 322–329, https://doi.org/10.1038/nclimate1744, 2012.
- 1142 Tesfa, T. K. and Leung, L.-Y. R.: Exploring new topography-based subgrid spatial structures for
- improving land surface modeling, Geosci Model Dev, 10, 873–888, https://doi.org/10.5194/gmd 10-873-2017, 2017.
- 1145 Tesfa, T. K., Leung, L. R., Huang, M., Li, H., Voisin, N., and Wigmosta, M. S.: Scalability of
- 1146 grid- and subbasin-based land surface modeling approaches for hydrologic simulations, J
- 1147 Geophys Res Atmospheres, 119, 3166–3184, https://doi.org/10.1002/2013jd020493, 2014.

- 1148 Tesfa, T. K., Leung, L. R., and Ghan, S. J.: Exploring Topography-Based Methods for
- 1149 Downscaling Subgrid Precipitation for Use in Earth System Models, J Geophys Res
- 1150 Atmospheres, 125, https://doi.org/10.1029/2019jd031456, 2020.
- Torma, C., Giorgi, F., and Coppola, E.: Added value of regional climate modeling over areas 1151
- 1152 characterized by complex terrain-Precipitation over the Alps, J Geophys Res Atmospheres, 1153 120, 3957-3972, https://doi.org/10.1002/2014jd022781, 2015.
- 1154 Vegas-Cañas, C., González-Rouco, J. F., Navarro-Montesinos, J., García-Bustamante, E., Lucio-
- 1155 Eceiza, E. E., García-Pereira, F., Rodríguez-Camino, E., Chazarra-Bernabé, A., and Álvarez-
- Arévalo, I.: An Assessment of Observed and Simulated Temperature Variability in Sierra de 1156
- 1157 Guadarrama, Atmosphere-basel, 11, 985, https://doi.org/10.3390/atmos11090985, 2020.
- 1158 Vergopolan, N., Chaney, N. W., Beck, H. E., Pan, M., Sheffield, J., Chan, S., and Wood, E. F.:
- 1159 Combining hyper-resolution land surface modeling with SMAP brightness temperatures to
- obtain 30-m soil moisture estimates, Remote Sens Environ, 242, 111740, 1160
- 1161 https://doi.org/10.1016/j.rse.2020.111740, 2020.
- 1162 Xia, Y., Mitchell, K., Ek, M., Cosgrove, B., Sheffield, J., Luo, L., Alonge, C., Wei, H., Meng, J.,
- 1163 Livneh, B., Duan, Q., and Lohmann, D.: Continental-scale water and energy flux analysis and
- 1164 validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. 1165
- Validation of model-simulated streamflow, J Geophys Res Atmospheres 1984 2012, 117,
- 1166 https://doi.org/10.1029/2011jd016051, 2012a.
- Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, 1167
- H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D.: 1168
- 1169 Continental-scale water and energy flux analysis and validation for the North American Land
- 1170 Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of 1171 model products: WATER AND ENERGY FLUX ANALYSIS, J Geophys Res Atmospheres,
- 1172 117, n/a-n/a, https://doi.org/10.1029/2011jd016048, 2012b.

1173 Xie, Z., Wang, L., Wang, Y., Liu, B., Li, R., Xie, J., Zeng, Y., Liu, S., Gao, J., Chen, S., Jia, B., 1174 and Qin, P.: Land Surface Model CAS-LSM: Model Description and Evaluation, J Adv Model

- 1175 Earth Sy, 12, https://doi.org/10.1029/2020ms002339, 2020.
- 1176 Xu, C., McDowell, N. G., Fisher, R. A., Wei, L., Sevanto, S., Christoffersen, B. O., Weng, E.,
- and Middleton, R. S.: Increasing impacts of extreme droughts on vegetation productivity under 1177 1178 climate change, Nat Clim Change, 9, 948-953, https://doi.org/10.1038/s41558-019-0630-6,
- 1179 2019.
- 1180 Xue, Y., Houser, P. R., Maggioni, V., Mei, Y., Kumar, S. V., and Yoon, Y.: Evaluation of High
- 1181 Mountain Asia-Land Data Assimilation System (Version 1) From 2003 to 2016, Part I: A Hyper-1182 Resolution Terrestrial Modeling System, J Geophys Res Atmospheres, 126,
- 1183 https://doi.org/10.1029/2020jd034131, 2021.

- 1184 Yang, X., Ricciuto, D. M., Thornton, P. E., Shi, X., Xu, M., Hoffman, F., and Norby, R. J.: The
- 1185 Effects of Phosphorus Cycle Dynamics on Carbon Sources and Sinks in the Amazon Region: A
- 1186 Modeling Study Using ELM v1, J Geophys Res Biogeosciences, 124, 3686–3698,
- 1187 https://doi.org/10.1029/2019jg005082, 2019.
- 1188 Yuan, K., Zhu, Q., Zheng, S., Zhao, L., Chen, M., Riley, W. J., Cai, X., Ma, H., Li, F., Wu, H.,
- 1189 and Chen, L.: Deforestation reshapes land-surface energy-flux partitioning, Environ Res Lett, 16,
- 1190 024014, https://doi.org/10.1088/1748-9326/abd8f9, 2021.
- 1191 Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong,
- 1192 W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J. E. M. S., Qin, Z.,
- 1193 Quine, T., Sitch, S., Smith, W. K., Wang, F., Wu, C., Xiao, Z., and Yang, S.: Increased
- atmospheric vapor pressure deficit reduces global vegetation growth, 5, eaax1396,
- 1195 https://doi.org/10.1126/sciadv.aax1396, 2019.
- 1196 Yuan, X., Ji, P., Wang, L., Liang, X., Yang, K., Ye, A., Su, Z., and Wen, J.: High-Resolution
- 1197 Land Surface Modeling of Hydrological Changes Over the Sanjiangyuan Region in the Eastern
- Tibetan Plateau: 1. Model Development and Evaluation, J Adv Model Earth Sy, 10, 2806–2828,
 https://doi.org/10.1029/2018ms001412, 2018.
- Zeng, Z., Piao, S., Li, L., Zhou, L., CIAIS, P., and Wang, T.: Climate mitigation from vegetation
 biophysical feedbacks during the past three decades, 2017.
- 1202 Zhang, X., Trame, M., Lesko, L., and Schmidt, S.: Sobol Sensitivity Analysis: A Tool to Guide
- the Development and Evaluation of Systems Pharmacology Models, Cpt Pharmacometrics Syst
 Pharmacol, 4, 69–79, https://doi.org/10.1002/psp4.6, 2015.
- 1205 Zheng, H., Yang, Z., Lin, P., Wei, J., Wu, W., Li, L., Zhao, L., and Wang, S.: On the Sensitivity
- of the Precipitation Partitioning Into Evapotranspiration and Runoff in Land Surface
 Parameterizations, Water Resour Res, 55, 95–111, https://doi.org/10.1029/2017wr022236, 2019.
- 1208 Zhou, T., Leung, L. R., Leng, G., Voisin, N., Li, H., Craig, A. P., Tesfa, T., and Mao, Y.: Global
- 1209 Irrigation Characteristics and Effects Simulated by Fully Coupled Land Surface, River, and
- 1210 Water Management Models in E3SM, J Adv Model Earth Sy, 12,
- 1211 https://doi.org/10.1029/2020ms002069, 2020.
- 1212 Zhou, Y., Li, D., and Li, X.: The Effects of Surface Heterogeneity Scale on the Flux Imbalance
- 1213 under Free Convection, J Geophys Res Atmospheres, 124, 8424–8448,
- 1214 https://doi.org/10.1029/2018jd029550, 2019.