Towards variance-conserving reconstructions of climate indices with Gaussian Process Regression in an embedding space

Marlene Klockmann¹, Udo von Toussaint², and Eduardo Zorita¹

¹Institute for Coastal Systems - Analysis and Modelling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
²Max Planck Institute for Plasma Physics, Garching, Germany

Correspondence: M. Klockmann (marlene.klockmann@hereon.de)

Abstract. We present a new framework for the reconstruction of climate indices based on proxy data such as tree rings. The framework is based on the supervised learning method Gaussian Process Regression (GPR) and designed to preserve the amplitude of past climate variability and to adequately handle noise-contaminated proxies and variable proxy availability in time. To this end, the GPR is performed in a modified input space, termed embedding space. We test the new framework for the reconstruction of the Atlantic Multi-decadal Variability (AMV) in a controlled environment with pseudoproxies derived from coupled climate-model simulations. In this test environment, the GPR outperforms benchmark reconstructions based on multi-linear Principle Component Regression. On AMV-relevant timescales, i.e., multi-decadal timescales, the GPR is able to reconstruct the true magnitude of variability even if the proxies contain a non-climatic noise signal and become sparser back in time. Thus, we conclude that the embedded GPR framework is a highly promising tool for climate-index reconstructions.

1 Introduction

Climate indices are important measures to describe the evolution of climate on regional, hemispheric or global scales in a condensed way. They reveal relevant timescales of climate variability and in some cases also relevant subspaces that are important for predictability. Paramount examples are the El Niño-Southern Oscillation, the North Atlantic Oscillation and the Atlantic Multi-decadal Variability (AMV). To understand whether the typical timescales and magnitude of climate variability have been stationary over time or whether they have changed, e.g., with anthropogenic climate change, we need a long-term perspective on these climate indices. The index-timeseries must not only cover the historical period of the past 150 years but also the preindustrial period, i.e., the past 1000 to 2000 years. To obtain these long timeseries we need information from so-called climate proxies (e.g. tree rings, sediment cores) in combination with sophisticated statistical models to reconstruct the climate indices from the proxy data. We present a new machine-learning framework for climate-index reconstructions and test its skill for reconstructing the AMV.

The AMV is an important index that describes the North Atlantic climate variability on decadal and longer timescales. Different definitions of the AMV have been developed over time, but the basic definition relies on the low-pass filtered spatial average of sea surface temperature anomalies over the North Atlantic. Observations starting in about 1850 indicate that the AMV varies on typical timescales of 30 to 60 years. The state of the AMV plays a key role for many relevant climate phenomena...
such as Arctic sea-ice anomalies (Miles et al., 2014), North American and European summer climate, Hurricane seasons and Sahel rainfall (Zhang and Delworth, 2006; Zhang et al., 2007).

The origin of the AMV remains a topic of active debate (see Zhang et al., 2019, for a recent review). One of the main questions is whether the variability is mainly induced by oceanic or atmospheric processes. Atmospheric simulations coupled to a slab ocean produced very similar spectra to the observed AMV, suggesting that the AMV could be generated purely from atmospheric variability (Clement et al., 2015). This is also called the red noise hypothesis, according to which the AMV is the red-noise response to atmospheric white-noise forcing. This hypothesis, however, is not compatible with other AMV features, as described in Zhang et al. (2019). A multi-variate AMV index suggests that the observed AMV is mainly driven by changes in the ocean circulation, especially the Atlantic Meridional Overturning Circulation (AMOC, Yan et al., 2019). This does, however, not exclude a contribution of atmospheric processes because ocean-driven variability also includes coupled air-sea feedbacks (e.g., Garuba et al., 2018; Zhang et al., 2019).

A second main question is how much of the variability is due to internal variability and how much results from the response to external changes in radiative forcing, i.e., through volcanic aerosols, solar insolation and greenhouse gas changes. On the one hand, analyses of 20th century SST observations (Haustein et al., 2019) as well as preindustrial control simulations with coupled climate models (Mann et al., 2021) suggested a limited role for internally generated variability but rather advocate that the AMV is the result of competing anthropogenic forcing (aerosols and greenhouse gases) and volcanic forcing. On the other hand, the dominant role of the AMOC (Garuba et al., 2018) indicated that a large part of the observed AMV is due to internally generated oceanic variability.

Given the dominant multi-decadal timescales of the AMV, the observational period of approximately 150 years is not sufficient to provide a long-term perspective on the AMV and finally address its relationship to external forcing. Therefore, longer timeseries of the AMV are needed. Long AMV timeseries are typically derived from climate reconstructions based on climate proxies such as tree rings, bivalves or coral skeletons (e.g. Gray et al., 2004; Mann et al., 2008; Svendsen et al., 2014; Wang et al., 2017; Singh et al., 2018). However, these existing reconstructions disagree on the amplitude and timing of AMV variations, especially prior to the beginning of the 18th century (Wang et al., 2017). In addition, many reconstruction methods are known to underestimate the true magnitude of low-frequency variability (Zorita et al., 2003; Esper et al., 2005; Von Storch et al., 2004; Christiansen et al., 2009).

The exact reasons for the disagreement between previous AMV reconstructions are still unclear, but in general, the reconstructed variability will depend on the predictor data, i.e. the number, types and locations of the proxies, as well as on the reconstruction method itself. Obvious differences can be found in the employed proxy networks, which were either based purely on terrestrial records (Gray et al., 2004; Mann et al., 2008; Wang et al., 2017) or included also marine records (Svendsen et al., 2014; Singh et al., 2018). Including marine records seems to be important to correctly capture the AMV in reconstructions (e.g., Saenger et al., 2009; Mette et al., 2021). From the methodological side, limitations of linear methods could play a role. Linear methods might not capture the link between proxies and the target climate index correctly; in this context some non-linear methods have already proved promising (e.g. Hanhijärvi et al., 2013; Michel et al., 2020).
As a consequence of the disagreements between the existing AMV reconstructions, their analysis provided conflicting views on the AMV response to external forcing (Knudsen et al., 2014). For instance, a reconstruction of the AMV during the past 600 centuries indicated that the combined contribution of solar and volcanic forcing explain only less than a third of the AMV variance (Wang et al., 2017; Zhang et al., 2019). Another recent study, however, called into question whether external and internal AMV variability could at all be estimated reliably from reconstructions given the uncertainty in both the radiative forcing and the reconstructed AMV indices (Mann et al., 2022). The presence of noise, i.e., non-climatic or mutually unrelated variability, in the statistical predictors may result in biased estimations of parameters of the statistical models such as regression coefficients. This biased estimation in turn leads to a biased amplitude of reconstructed variability when the predictors are proxy records, or biased estimation of forced variability when the predictor is the uncertain external forcing (Zorita et al., 2003; Von Storch et al., 2004; Christiansen et al., 2009).

Thus, robust reconstruction methods are needed in order to produce more reliable estimates of the amplitude of the past variability of the AMV in order to better quantify its response to external forcing. This is also a precondition for an unbiased detection of any 'unusual' observed trends and for the subsequent attribution of those trends to a particular forcing, e.g., anthropogenic greenhouse gases. To this end, we need to design reconstruction methods which are more robust against noise and, importantly, do not strongly 'regress to the mean' when the predictors become more noisy or scarce back in time.

To fully judge the methodological performance and related uncertainties, reconstruction methods need to be tested in so-called pseudoproxy experiments (Smerdon, 2012). Many methods have already been tested in such controlled environments, but the evaluation often lacks a thorough assessment of the method’s capability to reconstruct the magnitude of the variability on different timescales. In particular, a reconstruction method must be able to capture extreme phases, again to ascertain whether the AMV is sensitive to sudden changes in the external forcing, e.g., after volcanic eruptions, but also to capture possible large internally generated variations, which could occur independent of external forcing.

In this study, we present and test a new method for climate-index reconstructions in order to address the methodological issues outlined above. The method is based on the non-linear supervised learning method Gaussian Process Regression (GPR). As in many disciplines, machine learning methods have started to gain traction in the climate reconstruction community (e.g., Michel et al., 2020). GPR itself finds growing use in climate applications such as climate model emulators (Mansfield et al., 2020) or reconstructions of sea level (Kopp et al., 2016) and global mean surface temperature (Büntgen et al., 2021). We have developed a modified input space for the GPR-based reconstructions, which is designed to adequately handle proxy-related uncertainties and variable proxy availability in time and to correctly capture the magnitude of multi-decadal variability. We test the method in a pseudoproxy environment and place special emphasis on the method’s skill of reconstructing extreme phases and the magnitude of variability.
2 Methods and Data

2.1 Pseudoproxies and simulated AMV index

We generate the pseudoproxies from a simulation of the Common Era (i.e., the past 2000 years) with the Max Planck Institute Earth System Model (MPI-ESM). The model version corresponds to the MPI-ESM-P LR setup used in the 5th phase of the Coupled Model Intercomparison Project (CMIP5, Giorgetta et al., 2013). A detailed description of the simulation can be found in Zhang et al. (2022). The target of the pseudo-reconstructions is the simulated AMV index (AMVI). We define the AMVI as the spatial mean of annually averaged sea surface temperature anomalies (SST) in the North Atlantic (0 to 70°N and 80°W to 0°E). The SST anomalies are calculated against the mean over the entire simulation period. We do not further detrend the AMVI because it is difficult to define a meaningful trend period in the paleo context. In the case of real reconstructions, all proxies and the AMVI would be available for overlapping periods with different length, and it is not possible to define a meaningful common trend which could be subtracted from all records. The pseudoproxies are defined as timeseries of the simulated surface air temperature at the model grid points closest to existing proxy sites in the PAGES2k database (PAGES2k, 2017). We do not use all available proxy sites from the PAGESk database but only subset thereof. We limit our selection of proxy sites to those within the North Atlantic domain (10 to 90°N and 100°W to 30°E) with a temporal resolution of five years or higher. Out of these, we further select only those locations at which the pseudoproxies have a correlation of 0.35 or higher with the AMVI during the last 150 simulation years (in this case, both the AMVI and the pseudoproxies are detrended before calculating the correlation). The final proxy network consists of 23 pseudoproxies (Fig.1a).

We test the embedded Gaussian Process Regression (emGP) in three test cases to account for different sources of uncertainty: In the first test case (TCppp), we use perfect pseudoproxies, i.e., the pseudoproxies contain only the temperature signal. In the second test case (TCnpp), we use noisy pseudoproxies, i.e., the pseudoproxies contain additional non-climatic noise. The non-climatic noise is generated by adding white noise to the perfect pseudoproxy. The amplitude of the white noise is defined such that the correlation between the noisy and the perfect pseudoproxies is 0.5; i.e., the amplitude of the white noise corresponds to the standard deviation of the perfect pseudoproxy times \(\sqrt{3} \). To ensure that the performance with noisy data is independent of the specific noise realisation, we create an ensemble of 30 noise realisations. In both TCppp and TCnpp we assume that all records are available at every point in time, i.e., that the network size remains constant in time. In reality, different proxy records cover different periods and the network size is not constant (Fig.1b). Therefore, we set up a third test case (TCp2k) with realistic temporal proxy availability from the PAGES2k database and both perfect and noisy pseudoproxies. The reconstruction period corresponds to the last 500 simulation years for TCppp and TCnpp, and to the entire 2000 simulation years for TCp2k.

To test the sensitivity of the method to the underlying climate-model simulation, we repeat the test cases TCppp and TCnpp with an analogously derived set of 25 pseudoproxies and AMVI from simulations with the Community Climate System Model (CCSM4, Gent et al., 2011). We combine the 'past1000' simulation (Landrum et al., 2013; Otto-Bliesner, 2014) and one 'historical' simulation (Gent et al., 2011; Meehl, 2014) from the CMIP5 suite and use the last 500 years of the combined data set. From the historical simulations, we used the ensemble member r1i1p1. The results are displayed in Appendix C.
Figure 1. The selected pseudoproxy records and resulting distance metrics based on the MPIESM simulation. (a) the locations of the records, colour-coded with the correlation between the records and the AMVI during the last 150 simulation years (after detrending); (b) the number of available proxy records at the selected locations within the PAGES2k dataset over time; (c) cross-correlation; (d) standard deviation ratio and (e) the resulting embedding distances from the combination of both. Matrix indexes 1 to 23 are the selected pseudo proxy records as labeled in (a), index 24 is the simulated AMVI. The diagonal entries in (e) are left empty because zero cannot be displayed on the logarithmic color scale.
2.2 Gaussian Process Regression

2.2.1 The Concept

Gaussian Process Regression (GPR) is a Bayesian, non-parametric, supervised learning method (Rasmussen and Williams, 2006). Just like a probability distribution describes random variables, a Gaussian Process (GP) describes a distribution over functions with certain properties. A GP is described by a mean function and a covariance function

\[
f(x) \sim \text{GP}(\mu(x), k(x, x'))
\]

(1)

The mean function \(\mu(x)\) describes the mean of all functions within the GP at location \(x\). In the absence of other knowledge, it is typically assumed that the mean of all functions within the prior GP is zero everywhere. The covariance function \(k(x, x')\) describes the statistical dependence between the function values at two different points in the input space. The exact covariance structure is defined by a kernel function. Kernel functions range from very simple (e.g., linear, radial basis functions) to very complex (e.g., Matern functions, periodic). In principle there is no limit to the kernel complexity and finding the right kernel can be considered an art in itself (e.g., Duvenaud et al., 2013). Once a general functional form of the kernel has been chosen (e.g. radial basis function), the specific form is determined by the kernel hyperparameters. These hyperparameters are either prescribed apriori if they are known, or learned from the data through optimisation (e.g. maximum likelihood estimation) if they are unknown. Based on the so-determined kernel, a covariance matrix is created by evaluating the kernel function for all pairs of available observations in the training data.

Without being constrained by data, the prior GP is a distribution of all functions with the given mean and covariance (Eq. 1). In order to use the GP for regression and prediction, the prior GP is combined with the additional information from the training data through Bayes theorem (Rasmussen and Williams, 2006). Thus, the posterior GP is obtained, conditional on the data. Predictions at unseen input points can then be made by calculating the joint posterior distribution conditional on the training data and the unseen input points (see Appendix A and Rasmussen and Williams (2006) for a more detailed description).

In the simplest way of using GPR for AMV reconstructions, analogous to classical climate-index reconstruction methods, the AMVI would be the target function \(f(x)\) and the proxy data the input data \(x\). Once a suitable kernel is selected, its hyperparameters are estimated through training with the available values of \(x\) and \(f(x)\). With the trained GP model, the probability distribution of the AMVI for past times can be estimated conditioned on the proxy data \(x\) for these past times.

One known drawback of GPs is the bad scaling behaviour of the computing time required to estimate the hyperparameters with respect to the number of available observations, also called batch size. The training time of a GP scales with \(n^3\), where \(n\) is the batch size. This is mainly due to the necessity to invert the covariance matrix (e.g., Rasmussen and Williams, 2006). Regression problems with more than 1000-10000 observations become difficult to handle with the original GP formulation (hereafter full GP) due to time and computing memory limitations. Even though paleo data sets are not what we would typically call Big Data, they can already become challenging for GPs if the reconstruction period spans thousand years or more.
Various GP variants have been proposed to overcome this limitation (e.g., Särkkä, 2013; Hensman et al., 2013). One variant is the so-called stochastic variational GP (SVGP, Hensman et al., 2013). The SVGP combines stochastic gradient descent (i.e., training with minibatches), variational inference (i.e., inference through optimisation) and a low-rank approximation of the covariance matrix based on so-called inducing points. Put simply, the inducing points are a small subset of the original dataset that represents the properties of the complete dataset. In other words, the true GP posterior is approximated by a GP that is conditioned on the inducing points. The location of the inducing points in input space can either be prescribed manually (e.g., randomly) or they can be optimised along with the kernel hyperparameters. The training time of the SVGP scales with m^3, where m is the number of inducing points (Hensman et al., 2013).

We test the suitability of both the full GP as well as the SVGP (hereafter sparse GP) for climate-index reconstructions. Our scripts are based on the python package GPflow (Matthews et al., 2017). The hyperparameters are learned through optimisation with the Adam Optimiser (Kingma and Ba, 2014), which is provided with GPflow. For the full GP, we repeat the optimisation step 1000 times. For the sparse GP, we initialise the inducing points as every tenth point in time and optimise the locations along with the hyperparameters. We use minibatches with a size of 2000 and repeat the optimisation step 4000 times. The respective number of optimisation steps is sufficient for the estimated likelihood to reach an equilibrium.

2.2.2 Embedding Space

As described above, classical climate-index reconstruction methods formulate their underlying statistical model in a way that the climate index is assumed to be a function of temperature, the proxy values or e.g. principal components thereof. In other words, the regression is performed in temperature/proxy/PC space; the proxies/PCs are the predictors and the climate index is the predictand. Initially, we tested the GPR in proxy space. In this setup, the GP did not perform better than the PCR; the underestimation of variability was as strong as with the PCR (not shown). One possible explanation is that GPs cannot extrapolate well to ranges unseen during training. In regions of the input space where available predictors are sparse, the GP will fall back to the prior mean function (regression to the mean). Instead they are very good interpolators. In order to make use of this, we tried to approach the problem differently and set up the GP in a modified input space, which we denote here as embedding space. We will refer to this setup as embedded GPR (emGPR).

We embed the entire available data set (the selected proxy records and AMVI at all points in time where observations are available) in a virtual space. Time is considered as an additional dimension of the embedding space. Each timeseries is assigned a constant location in this virtual space so that the positions of the temporal sequence of data of one particular proxy series form a straight line parallel to the time axis. To adequately reflect the distances between the proxy records and the AMV, the embedding space needs to have a dimension of $(q - 1) + t$, where q is the number of proxies including the AMVI timeseries and $t = 1$ for the time dimension. In case of the MPIESM-based proxy network, the embedding space has thus 24 dimensions (23 proxy records, 1 AMVI). In the following, we will use r to refer to a point in space and time, and x and t to refer to points in space and time only, respectively.

The prescribed distance between the virtual locations x_i reflects the similarity between the respective timeseries, e.g. the similarity between a proxy record and the AMVI, or the similarity between two proxy records. We then use the GP to fit the
entire dataset in this virtual space and to interpolate the AMVI at the virtual locations \(x_{AMV} \) for points in time where we do not have observations. By performing the regression/interpolation in the embedding space, the coordinates of the embedding space become the predictors/inputs and both the proxies and the climate index become the predictands/targets. This allows for a much bigger training data set and increases the range of climate variability seen during training. Because time is an additional dimension, and the kernel is also a function of time separation, this approach also takes temporal auto-correlation and cross-correlations between the different timeseries into account.

In the interpolation process, a data point in the embedding space at time \(t_m \) is affected by all other surrounding points in the embedding space at time \(t_m \) and to a smaller extent also at times \(t_n > t_m \) and \(t_k < t_m \). The degree of influence is determined by the distance between the points in the embedding space and the typical length- and timescale of the kernel function. The closer two points are, the larger the influence.

Finding the right position \(x \) for each proxy record and the target index in the embedding space is an important and non-trivial step. Since we care only about the relative distance in the embedding space and not the absolute location, we can specify the distance between each pair of \(q \) records (proxies and AMVI) in a distance matrix \(D \) and determine the coordinates via multi-dimensional scaling. The problem then reduces to specifying the distance matrix.

2.2.3 Defining the distance matrix

We define the distance matrix based on an appropriate distance metric. This metric could in principle be any distance metric such as the Euclidian distance or similar. We chose to define the distance based on the cross correlation (CC, Fig. 1c) and the standard deviation ratio (SR, Fig. 1d) of the respective records. Assuming that the records are all positively correlated, the distance measure between two timeseries \(p_i \) and \(p_j \) is defined as

\[
D_{ij} = (1 - CC_{ij}) \times SR_{ij},
\]

i.e., the distance will be small when the CC is high and the records have similar amplitudes of variability, and larger, when the CC is low and/or the records have very different amplitudes of variability (Fig. 1e). This choice of distance metric outperforms equidistant coordinates and a metric based solely on CC (not shown). The SR of two timeseries \(p_i \) and \(p_j \) is defined as

\[
RA_{ij} = \begin{cases}
\frac{\text{std}(p_i)}{\text{std}(p_j)}, & \text{if } \text{std}(p_i) > \text{std}(p_j) \\
\frac{\text{std}(p_j)}{\text{std}(p_i)}, & \text{if } \text{std}(p_i) < \text{std}(p_j)
\end{cases}
\]

this way, the SR is symmetric - a necessary condition for a distance measure. The so determined unitless distances in the embedding space range from 0.02 to 3.91 for the MPIESM-based network (Fig. 1e).

The distance matrix is then transformed into coordinates of a \((q - 1)\) dimensional space via multi-dimensional scaling. Time becomes an additional dimension of this new space, and the determined coordinates for each record are constant in time. The distance between the time steps is normalised to be of the same order of magnitude as the distances between the records.
We rescale the time axis so that the distance between time steps equals the mean of the distance matrix D. In the case of the MPIESM-based network (Fig. 1), the mean of the distance matrix is 1.44. For the CCSM-based network (Fig. C1), the mean of the distance matrix is 1.10.

The embedding distance reflects the actual geographical distance to a certain degree. Records that are close in actual space tend to be close also in the embedding space, as they have higher cross-correlations and similar standard deviations (Fig. 1e).

2.2.4 Kernel Design and Hyperparameters

We choose a very simple kernel function, the radial basis function (RBF), because we have no prior information that would justify the use of a more complex kernel. Complex kernels would introduce additional uncertainty and reduce the interpretability of the results. We define the kernel k as an additive kernel of two RBF components, $k = k1 + k2$:

$$k1(t_i, t_j) = \sigma_{f,t}^2 \exp\left(\frac{1}{2} \left(\frac{|t_i - t_j|}{l_{f,t}} \right)^2 \right)$$ \hspace{1cm} (4)$$

$$k2(r_i, r_j) = \sigma_{f,r}^2 \exp\left(\frac{1}{2} \left(\frac{|r_i - r_j|}{l_{f,r}} \right)^2 \right)$$ \hspace{1cm} (5)$$

where $|*|$ is the Euclidian distance between two points t_i and t_j or r_i and r_j. The l_f and σ_f^2 are the hyperparameters of the respective kernels. l_f denotes a typical lengthscale of the target function, while σ_f^2 describes the signal variance, e.g., a function with small l_f and large σ_f^2 will be very wiggly. A third additional hyperparameter σ_n^2 denotes the likelihood or noise variance (see also Appendix A). If σ_n^2 is small, the fitted function will be very strongly constrained by the training data. If σ_n^2 is larger, the fitted function is less constrained by the training data and more robust against overfitting. $k1$ operates on the time dimension only, i.e. it controls, how much the neighbouring time steps at one embedding location influence the value at time t_j. This could be considered as a mean typical timescale of the dataset. $k2$ operates on all dimensions of the embedding space, including the time dimension. This enables interaction between locations at time t_j and neighbouring time steps. This kernel setup outperforms a kernel that consisted only of $k2$ and one where $k2$ did not include the time dimension (not shown).

2.3 Training and Testing

In the real world, SST measurements are only available since approximately 1850. Therefore, AMV observations are also only available from 1850 to today. We use this criterion to divide our pseudo-data set into training and testing data. The relationship between the pseudoproxies and the simulated AMVI can be inferred only from the last 150 years of the simulation, the remaining years of the simulated AMVI are used for testing. This may not be the most effective way of splitting a data set in the machine-learning context, but it best reflects the actual data availability in the paleo-context.

For the emGPR reconstructions, the training input data consists of the time steps t_j and the embedding coordinates x_i of the pseudoproxies and the AMVI. For the pseudoproxies, all time steps are used for training; for the AMVI only the time steps
corresponding to the last 150 simulation years are used for training, i.e. the years 1850 to 2000 (left matrix in Eq. 6). The training target data is thus the entire available data set, i.e., the values of the 23 proxy records \(p_i \) over 500 years and the AMVI record over the last 150 years (right matrix in Eq. 6). During testing, the AMVI is reconstructed by evaluating the trained emGP at the embedding location of the AMVI \(x_{AMV} = x_{24} \) and the timesteps corresponding to the remaining 350 simulation years (Eq. 7).

\[
\begin{bmatrix}
 t_1 & x_{1,1} & \ldots & x_{1,23} \\
 \vdots & \vdots & \ddots & \vdots \\
 t_m & x_{1,1} & \ldots & x_{1,23} \\
 \vdots & \vdots & \ddots & \vdots \\
 t_1 & x_{23,1} & \ldots & x_{23,23} \\
 \vdots & \vdots & \ddots & \vdots \\
 t_m & x_{23,1} & \ldots & x_{23,23} \\
 \vdots & \vdots & \ddots & \vdots \\
 t_{m-150} & x_{24,1} & \ldots & x_{24,23} \\
 \vdots & \vdots & \ddots & \vdots \\
 t_m & x_{24,1} & \ldots & x_{24,23} \\
\end{bmatrix}
\begin{bmatrix}
p_1(t_1) \\
p_1(t_m) \\
p_2(t_1) \\
p_2(t_m) \\
AMVI(t_{m-150}) \\
AMVI(t_m)
\end{bmatrix}
\]

(6)

\[
\begin{bmatrix}
 t_1 & x_{24,1} & \ldots & x_{24,23} \\
 \vdots & \vdots & \ddots & \vdots \\
 t_{m-151} & x_{24,1} & \ldots & x_{24,23} \\
\end{bmatrix}
\begin{bmatrix}
AMV(t_1) \\
AMV(t_m) \\
AMV(t_{m-151})
\end{bmatrix}
\]

(7)

where \(t_1 \) is the simulated year 1500, and \(t_m \) the simulated year 2000.

2.4 Principle Component Regression

To have a benchmark for the emGPR reconstruction in the cases TCppp and TCnpp, we use pseudo-reconstructions with a multi-linear Principle Component Regression (PCR). PCR is well established as a climate-index reconstruction method and has been used e.g., for reconstructions of the global mean surface temperature (PAGES2k, 2019) and the AMVI (Gray et al., 2004; Wang et al., 2017). For the PCR, the AMVI is expressed as a function of principal components of the original pseudoproxies. The selected proxy timeseries are first decomposed into principal components; the latter are then used as predictors in a linear least-squares regression to obtain the AMVI. We do not use all principal components but only the first \(q \) with a cumulative explained variance of 99.5%.

The PCR does not make use of the embedding space. In case of the PCR, the training inputs are the most recent 150 years of the \(q \) selected principal components and the training target is the corresponding simulated AMVI (Eq. 8). In the testing
period, the AMVI is reconstructed with the trained regression model with the remaining 350 years of the selected q principal components as inputs (Eq. 9).

$$
\begin{bmatrix}
p_{c1}(t_{m-150}) & \cdots & p_{cq}(t_{m-150}) \\
\vdots & \ddots & \vdots \\
p_{c1}(t_m) & \cdots & p_{cq}(t_m)
\end{bmatrix}
\begin{bmatrix}
AMV(t_{m-150}) \\
\vdots \\
AMV(t_m)
\end{bmatrix}
$$

(Eq. 8)

$$
\begin{bmatrix}
p_{c1}(t_1) & \cdots & p_{cq}(t_1) \\
\vdots & \ddots & \vdots \\
p_{c1}(t_{m-151}) & \cdots & p_{cq}(t_{m-151})
\end{bmatrix}
\begin{bmatrix}
AMVI(t_1) \\
\vdots \\
AMVI(t_{m-151})
\end{bmatrix}
$$

(Eq. 9)

3 Pseudo-reconstructions

3.1 TCppp: Perfect pseudoproxies

With perfect pseudoproxies, the best overall reconstruction is achieved by the full emGPR. The reconstructed AMVI closely follows the target AMVI except for the period from approximately 1630 to 1680 (Fig. 2a). This is reflected by the high correlation with the target AMVI (0.93 for the smoothed index). There is a weak negative mean bias, corresponding to 20% of the target standard deviation, which stems mainly from the 50 year period from 1630 to 1680. As expected, the GP related uncertainty is small for the years 1850 to 2000 where the AMVI has been constrained during training. The uncertainty increases for the reconstruction period. The full emGPR captures the magnitude of variability very well, the standard deviation ratio of 0.93 indicates only a small underestimation of 7%. Also the period of very low AMVI following several volcanic eruptions between 1800 and 1850 is well captured, the reconstructed and target AMVI are almost indistinguishable. The spectrum of the reconstructed AMVI agrees well with the spectrum of the target AMVI; the full emGPR captures the variability at all frequencies (Fig. 2b).

The sparse emGPR captures the main features of the target AMVI, but the reconstruction is less accurate (Fig. 2c). The correlation is lower (0.79 for the smoothed index), and there are more periods with larger deviations between the reconstruction and the target. Interestingly, the sparse emGPR has large mismatches during other periods than the full emGPR. The full emGPR has the largest mismatch in the years 1630 to 1680, the sparse emGPR has the largest mismatches in the years 1720 to 1830. The mismatches result in a positive mean bias corresponding to 33% of the target standard deviation. The GP related uncertainty is the same as the uncertainty from the full emGPR, but in the sparse case, the uncertainty is approximately constant over the entire period. The standard deviation ratio is 0.80, i.e., the variability is underestimated by 20%. This is e.g. visible for the years 1800 to 1850, where the very low AMVI is not captured as well as by the full emGPR. The spectrum of the reconstruction still agrees well with the target spectrum, but there is a slight overestimation of variability at the very high frequencies and an underestimation at lower frequencies at timescales of 80 to 100 years (Fig. 2d).
Figure 2. Reconstructions with perfect MPIESM-pseudoproxies based on (a,b) the full emGPR, (c,d) the sparse emGPR and (e,f) PCR. Left-hand panels show the smoothed reconstructed and target timeseries. The dashed line marks the separation between training and testing periods. Shading indicates the 95% confidence interval. The metrics r, R_{σ} and b denote correlation, the ratio of standard deviations and the bias relative to the target standard deviation, respectively. Subscripts sm and yr denote smoothed and unsmoothed data, respectively. The metrics are calculated for the reconstruction period (1500 to 1850). Right-hand panels show the Welch powerspectra of the target and reconstructed AMVI. Shading indicates the 95% confidence interval. The power spectral density (PSD) is given in K^2 yr.\(^{-1}\).
The PCR reconstruction achieves the highest correlation (0.95 for the smoothed index), but at the cost of a larger underestimation of variability and a systematic bias towards higher AMVI values, for periods during which the AMVI is outside of the range of the training period (Fig. 2e). This is especially apparent during the period of the very low AMVI from 1800 to 1850, where the target AMVI lies outside of the PCR uncertainty range. The mean bias corresponds to 79% of the target standard deviation. The standard deviation ratio of 0.65 indicates an underestimation of the variability by 35%. The underestimation occurs systematically at lower frequencies in the multi-decadal range; the high-frequency variability (timescales shorter than 30 years) is well captured (Fig. 2e).

With CCSM4-based pseudo proxies, the results for the full and sparse emGPR are consistent with the MPIESM-based reconstructions (cf. Fig. 2a-d and Fig. C2a-d). The PCR performs much better in the CCSM environment, both the underestimation of variability and the systematic bias to higher AMVI values are smaller in the CCSM4 case (cf. Fig. 2e and Fig. C2e). Also the low-frequency variability is better captured (Fig. C2f). While the full emGPR clearly outperforms the PCR in the MPIESM case, PCR and the full emGPR perform similarly well in the CCSM4 case.

3.2 TCnpp: Noisy pseudoproxies

With the noisy pseudoproxies, the best reconstruction is still achieved by the full emGPR (Fig. 3a,c). The mean of the 30 noisy reconstructions is remarkably similar to the AMVI based on perfect pseudoproxies. The characteristics of the ensemble mean likely gives a too positive evaluation of the reconstruction skill because some of the noise effects will cancel in the averaging process. But also the individual ensemble members are still in reasonably good agreement with the target AMVI (see thin lines in Fig. 3a and Fig. B1a for the distribution of skill metrics). The correlation of the smoothed ensemble mean AMVI with the target AMVI is 0.95 (ensemble range: 0.84 to 0.96). The mean bias is with 21% of the target standard deviation identical to the bias from the TCnpp case (ensemble range: -37 to -5%), and as before it mostly stems from the years 1630 to 1680, where the mismatch between the reconstructions and target is largest. The variability is still captured remarkably well. The standard deviation ratio for the ensemble mean of 0.95 indicates a slight underestimation of the variability by 5% (ensemble range: 0.86 to 1.16). The underestimation of variability occurs mainly at frequencies higher than decadal (Fig. 3b). The lower-frequency variability range, which is of main interest for studying the AMV, is well reconstructed.

The sparse emGPR also performs well with noisy pseudoproxies (Fig. 3c,d). The ensemble mean even has a higher reconstruction skill as the AMVI reconstructed from perfect pseudoproxies. The correlation of the smoothed ensemble mean AMVI with the target AMVI is 0.92 (ensemble range: 0.74 to 0.94, Fig. B1b). Also the mean bias is very small with 11% of the target standard deviation (ensemble range: -5 to 18%), only a third of the bias from the TCnpp case. The mean standard deviation ratio is 0.78 (ensemble range: 0.70 to 0.98), corresponding to an underestimation of the variability by 22%. This underestimation is due to a complete loss of power at frequencies higher than decadal (Fig. 3b). But as with the full emGPR, the frequency range of interest for the AMV is well reconstructed.

The PCR still achieves high correlations, but suffers a strong underestimation of variability and an increased systematic bias towards the mean of the AMVI over the training period. These deficiencies of the PCR reconstructions with noisy data have been well documented already (e.g., von Storch et al., 2009). The ensemble mean correlation with the smoothed target AMVI
Figure 3. Reconstructions with noisy MPIESM-pseudoproxies based on (a,b) the full emGPR, (c,d) the sparse emGPR and (e,f) PCR. Left-hand panels show the smoothed reconstructed and target timeseries. The dashed line marks the separation between training and testing periods. Thin lines show the individual ensemble members, the bold line indicates the ensemble mean. The metrics r, R_σ, and b denote correlation, ratio of standard deviations and the bias relative to the target standard deviation, respectively. Subscripts sm and yr denote smoothed and unsmoothed data, respectively. The metrics are calculated for the ensemble mean during the reconstruction period (1500 to 1850). Right-hand panels show Welch powerspectra of the target and reconstructed AMVI. Thin lines indicate the spectra of the individual ensemble members, the bold line indicates the spectrum of the ensemble mean. Shading indicates the 95% confidence interval of the ensemble mean spectrum. The power spectral density (PSD) is given in K2 yr.
is 0.87 (ensemble range: 0.71 to 0.88, Fig. B1c). The mean bias of 145% exceeds one standard deviation of the target AMVI (ensemble range: 115 to 172%). The mean standard deviation ratio is 0.46 (ensemble range: 0.41 to 0.59), corresponding to an underestimation of variability by 54%. The loss of variability occurs mainly in the range of frequencies lower than decadal, i.e., the frequencies of interest for the AMVI are underestimated.

Again, the reconstruction results with the noisy CCSM4-based pseudoproxies are broadly consistent with the MPIESM-based reconstructions. Still, some notable differences occur. The full emGPR has a larger negative mean bias of 74% of the target standard deviation and slightly overestimates the variability on multi-decadal timescales (Fig. C3a,b). The best reconstruction skill in the noisy CCSM4 case is achieved by the sparse emGPR, with high correlations, a small mean bias and a good estimation of the variability in the decadal to multi-decadal frequency range (Fig. C3c,d). With noisy pseudoproxies, the PCR shows the same deficiencies as in the MPIESM case: a strong systematic bias towards the mean of the AMVI during the training period and a strong underestimation of variability on timescales longer than decadal (Fig. C3e,f).

3.3 TCp2k: Realistic PAGES2k proxy availability

Until now, we have assumed that the proxy availability is constant in time. In the following, we assess the reconstruction skill of the two emGPR methods with realistic – i.e., varying – data availability and over the full 2000 years. We do this in three steps: First, we test how the emGPR performs over the full 2000 years with perfect pseudoproxies and constant data availability (i.e., the same as TCp2k but over 2000 years). Second, we reconstruct the AMVI with perfect pseudoproxies and realistically varying data availability. And third, we test the emGPR with noisy pseudoproxies and varying data availability. The third step, even though still idealised, is closest to representing realistic conditions for proxy-based reconstructions.

Because the full and sparse emGPR differ in the amount of computing memory, we use two different approaches to reconstruct the full 2000 years. In our current computing environment and with the selected MPIESM-based proxy network of 23 locations, the full emGPR cannot handle much more than 500 years at a time. We therefore train the full emGPR on the most recent 500 years and use the estimated hyperparameters to reconstruct the AMVI piece-wise in the remaining three blocks of 500 years. For the first step, we actually take the hyperparameters from TCp2k (red stars in Fig. 4). For the second step, we estimate the hyperparameters again, to see how much they differ when the data availability changes (red diamonds in Fig. 4). For the full emGPR, they turn out to be very similar, therefore, we use the hyperparameters from TCp2k in the third step in order to save computing time (red dots in Fig. 4). The sparse emGPR can be trained and evaluated over the whole 2000 years at once with reasonable computational effort. Therefore, we retrain the hyperparameters in each of the three steps.

3.3.1 Full emGPR

The first step with the full emGPR shows that our approach of piece-wise reconstruction works well. The reconstructed AMVI closely follows the target AMVI also in the years 0 to 1500 (Fig. 5a). This confirms that the hyperparameters estimated from the first 500 years are also representative for the remaining periods (at least in this MPIESM-based setting). The correlation of the smoothed reconstructed AMVI and the target AMVI is with 0.87 a bit lower as in the TCp2k case. The mean bias of 8% of
Figure 4. The hyperparameters of the two GPR versions for different training periods with perfect MPIESM-pseudoproxies (left halves of the panels) and the different white noise ensemble members (right halves of the panels). The hyperparameters are (a) the typical lengthscales $l_{f,t}$ and $l_{f,r}$, (b) the signal variance $\sigma_{f,t}^2$ and $\sigma_{f,r}^2$, and (c) the noise variance σ_n^2. The subscript t indicates that the kernel operates only on the time dimension; the subscript r indicates that the kernel operates on all dimensions, including time (see Eq. 4 and 5). The lengthscales are unitless, corresponding to the unitless distance of the embedding space. The lengthscale $l_{f,t}$ can be transformed into years through division by 1.44. The signal and noise variance are given in K2.

355 the target standard deviation is smaller than in the TCppp case. The variability is well reconstructed, as indicated by both the standard deviation ratio of 1.03 and and the power spectrum (Fig. 7a).

With variable data availability in the second step, the full emGPR still achieves a similarly high reconstruction skill (Fig. 5b). The correlation of the smoothed reconstructed AMVI and the target AMVI is 0.88 and the mean bias is negligible. Interestingly, the reduced data availability leads to an overestimation of variability in some periods (e.g., in the years 900 to 1100). This is also indicated by the standard deviation ratio of 1.19. The power spectrum also shows slightly higher power in the multi-decadal frequency range (Fig. 7b). On the other hand, there is a strong loss of power in the high frequency range ($> 1/10$ yr$^{-1}$).

The third step confirms that the full emGPR can achieve high reconstruction skill also under realistic conditions (Fig. 5c). The correlation of the smoothed ensemble mean AMVI reconstruction with the target AMVI is 0.80 (ensemble range: 0.59 to 0.74) and the mean bias amounts to 12% of the target standard deviation (ensemble range: 6 to 15%). Many periods of
Figure 5. The MPIESM-TCp2k reconstructions with the full emGPR. (a) first step with perfect pseudoproxies and constant proxy availability. (b) second step with perfect pseudoproxies and realistic proxy availability according to the PAGES2k database. (c) third step with white-noise added to the proxies and realistic proxy availability.
extreme high and low AMVI are well captured (e.g., around year 300 and 1150), but some of these extreme periods are also underestimated (e.g., around year 550). The standard deviation ratio of the mean is 0.88 (ensemble range: 0.90 to 1.22), indicating an underestimation of variability by 22%. The loss of variability mainly occurs again in the high-frequency range, and to some extent also in the very low-frequency range (Fig- 7c). The variability in the decadal to multi-decadal range is still well captured.

3.3.2 Sparse emGPR

In the first step, the sparse emGPR shows a slightly reduced reconstruction skill as compared with the TCppp case. The mean bias is very small, but the correlation is smaller and the underestimation of variability is stronger (Fig. 6a). The variability is underestimated both on interannual and multi-decadal to centennial timescales (Fig. 7,d).

With variable data coverage in the second step, the reconstruction skill of the sparse emGPR remains similar, only the underestimation of variability on multidecadal to centennial timescales increases (Fig. 6b and 7e).

In the third step, the correlation of the smoothed reconstructed ensemble mean AMVI with the target AMVI increases to 0.88 (ensemble range: 0.70 to 0.83), confirming again that the sparse emGPR seems to capture some details of the AMVI better in the presence of noise (Fig. 6c), and the greater flexibility that comes with a high estimate of noise variance in the GP hyperparameters (Fig. 4c). Still, the underestimation of variability remains large, both on interannual and multi-decadal to centennial timescales (Fig. 7f). The underestimation of variability on multi-decadal timescales is comparable to that of the PCR in the TCnpp case.

4 Discussion

We have tested two versions of GPR in a newly developed input space (embedding space) for climate-index reconstructions in pseudoproxy experiments with increasingly realistic conditions. As a benchmark we used a PCR-based reconstruction. Under perfect conditions (TCppp), all three methods – full and sparse emGPR and PCR – achieve high reconstruction skill. The full emGPR outperforms the sparse emGPR and performs at least as well as the PCR. With noise-contaminated pseudoproxies (TC-npp), the full emGPR has the highest reconstruction skill with a realistic estimate of variability on AMV-relevant timescales. The sparse emGPR achieves the second best reconstruction skill with a realistic mean but increased variance loss. The PCR-based reconstruction is systematically biased to the AMVI values of the training period and suffers a strong loss of variance on AMV-relevant timescales. With realistic proxy availability and noise contaminated pseudoproxies (3rd step of TCP2k), the full emGPR is still able to achieve a high reconstruction skill with a realistic (ensemble) mean and variability on AMV-relevant timescales.

Our results indicate that the emGPR (both full and sparse) is able to perform well in the presence of non-climatic noise. This property can most likely be explained by the hyperparameter of the noise variance (Fig. 4c). The noise variance describes the uncertainty in the regression targets. This concept can only be meaningfully applied here because we perform the GPR in the embedding space, where both the proxy timeseries and the AMVI are the regression targets. The noise variance can therefore...
Figure 6. The MPIESM-TCp2k reconstructions with the sparse emGPR. (a) first step with perfect pseudoproxies and constant proxy availability. (b) second step with perfect pseudoproxies and realistic proxy availability according to the PAGES2k database. (c) third step with white-noise added to the proxies and realistic proxy availability.
Figure 7. Welch power spectra of the MPIESM-TCp2k reconstructions for the full (red) and sparse (yellow) emGPR. (a,d) first step with perfect pseudoproxies and constant proxy availability. (b,e) second step with perfect pseudoproxies and realistic proxy availability according to the PAGES2k database. (c,f) third step with white-noise added to the proxies and realistic proxy availability. The power spectral density (PSD) is given in K^2 yr.
capture the non-climatic signal of the pseudoproxies and give the emGPR the necessary flexibility to filter the non-climatic part of the signal. Comparing the noise variance between the TCcppp and TCnpp cases illustrates this quite well. In the TCcppp case, the estimated noise variance (or likelihood) σ_n^2 lies between 0.1 and 0.4 K2. In the TCnpp case, the estimated σ_n^2 lies between 2 and 2.7 K2. This does reflect the actual mean magnitude of the noise which we added to the pseudoproxies. The mean variance of the noise of all 23 records is approximately 2.1 K2 (for the individual records, the variance of the added noise ranges from 0.3 K2 to 4.9 K2). Thus, the GPR training procedure seems to be able to learn a realistic magnitude of the added noise. Interestingly, the increased flexibility of the GP through the higher σ_n^2 not only yields robust reconstructions in the presence of uncertain pseudoproxies, it also seems to improve the performance of the sparse emGPR - at least for the cases with ideal proxy availability (TCnpp).

The full emGPR achieves generally higher reconstruction skill than the sparse emGPR (one exception is the TCnpp case with CCM4-based pseudoproxies). This could be expected, since the sparse emGPR approximates the covariance matrix based on only a tenth of the available training data, i.e. the subset of selected inducing points. Possibly, the hyperparameters are more accurately learned from the full dataset. Another possibility is that the location of the inducing points in non-optimal. We have initialised the inducing points as every tenth step in time and then optimised the location during training. We have not tested other setups of the inducing points. It is possible that a higher number or differently selected inducing points would result in a higher reconstruction skill.

The optimisation of the hyperparameters is an additional source of uncertainty. The learned set of hyperparameters may not always be the optimal set. We did not make any sensitivity tests regarding e.g. initialisation of the hyperparameters. But the fact that the training of the full emGPR resulted in similar hyperparameters for all three MPIESM-based test cases (TCcppp, TCnpp and TCp2k) gives us confidence that the estimated hyperparameters for the full emGPR are accurate. The hyperparameters that can be interpreted physically, i.e. the typical lengthscale of the kernel over the time dimension $l_{f,t}$ and the noise variance σ_n^2, also appear reasonable in their magnitudes in most cases. Based on the comparison of the hyperparameters across all experiments, we identify two possible cases of non-optimal hyperparameters: (1) the TCcppp case with the sparse emGPR, based on both MPIESM and CCSM4 pseudoproxies. Here, the estimated typical timescale $l_{f,t}$ is much shorter than that estimated from the full emGPR (left halves of Fig. 4a and Fig. C4a. (2) the TCnpp case with the full emGPR and CCSM4-based pseudoproxies. In this case, the noise variance was not identified correctly. Instead, the noise variance was attributed to the signal variance σ_f^2. The values of σ_n^2 and σ_f^2 appear switched compared to the other TCnpp experiments (compare right halves of Fig. C4b and c, and Fig. 4b and c).

The skill of all three methods, including the benchmark PCR, depends to some degree also on the climate model from which the pseudoproxies are derived. This is a known issue (Smerdon et al., 2011). The full emGPR performs better in the MPIESM-based experiments, the PCR performs better in the CCSM4-based experiments and the sparse emGPR performs about equally well in both model worlds. Source of the different skill could be the differences in the network size and location of the pseudoproxies and differences in the cross-correlation structure. It is of course difficult to say, whether a reconstruction with real proxies will behave more like the MPIESM-based experiments or more like the CCSM4-based experiments. But regardless of the differences in skill, the fact that the emGPR has higher reconstruction skill in the more realistic TCnpp case
and suffers from a much smaller variability loss than the PCR in both model worlds, makes us confident that emGPR will also improve the reconstructed variability in a real reconstruction.

A last source of uncertainty is the choice of the distance metric on which the creation of the embedding space is based. We have tested equidistant coordinates, cross-correlation and cross-correlation with standard deviation ratio and selected the latter metric. But of course other ways of constructing the embedding space could be possible. The optimal embedding space may differ for each proxy network and proxy properties. This is definitely worthy of further investigation.

The pseudoproxy experiments give a good first impression of how the reconstructions may behave with real proxies. Nonetheless, even though the third step of TCp2k (noise contamination and variable proxy coverage) is already quite realistic, it is still idealised. E.g. in the pseudoproxy setup, we calculate the distance matrix D based on the whole length of the simulation. With real proxies, each proxy record has a different length and covers a different period. In this case, the distance matrix could be calculated based either on a common time period where all records are available (this could be a very short period), or it could be the period of overlap for each individual pair of records. In the TCnpp cases, we created 30 different white noise realisations to estimate the noise-related uncertainty. With real proxies, we of course only have one realisation of the data and cannot run noise ensembles. But one could think of other ways of generating ensembles, e.g. with slightly different hyperparameters or slightly different ways of constructing the distance matrix. This would instead give insight into the other more methodological sources of uncertainty.

5 Conclusions

We have developed and tested a new method for proxy-based climate-index reconstruction. Our aim was to reduce the underestimation of variability on AMV-relevant timescales (decadal to multi-decadal), which is a common drawback of established reconstruction techniques such as PCR. To this end, we applied Gaussian Process regression and developed a modified input space, which we denoted embedding space. We tested two versions of GPR, a full version and a stochastic variational, i.e. sparse, version. The full version is generally more accurate but comes at high computational costs and can only handle a limited amount of data. As a benchmark comparison we also computed AMVI reconstructions with PCR.

Under ideal conditions (TCppp: pseudoproxies contain only the climate signal, all records available over the entire reconstruction period), the full embedded GPR performs at least as well as the PCR; in the pseudoproxy experiments based on MPIESM the embedded GPR achieves an even higher reconstruction skill and suffers almost no variance loss. Under more realistic conditions (TCnpp: pseudoproxies contaminated with non-climatic white noise, all records available over the entire reconstruction period), the reconstructions skill of the PCR strongly decreases, and both the full and the sparse embedded GPR clearly outperform the PCR. The GP-based reconstructions have an overall small mean bias and reconstruct the variability on AMV-relevant timescales much more accurately. Under even more realistic conditions (TCp2k: pseudoproxies contaminated with non-climatic white noise, records have different length and cover different periods), the sparse embedded GPR still has an overall small mean bias but suffers a strong variance loss, while the full embedded GPR is still capable of reconstructing the variability on the timescales of interest accurately.
Of course, it remains to be seen how the embedded GPR performs with real proxies. As a next step, we will perform a real AMVI reconstruction based on the PAGES2k proxy network. Based on the results presented in this study, we are confident that climate-index reconstructions can be significantly improved with embedded GPR. A more accurate reconstruction of the mean state and the magnitude of variability will help in advancing our understanding of AMV dynamics, e.g., especially during periods of extreme cooling following volcanic eruptions.

Code and data availability. The extracted pseudoproxy data and the simulated AMVI from the MPIESM and CCSM4 simulations as well as the python scripts for the preparation of the pseudoproxy network, the preparation of the embedding space and the GP regression are provided in the supplement of the paper. The used Python packages Scikit-learn (v.0.19.1), TensorFlow (v.1.12.0) and GPflow (v.1.3.0) are publicly available. The PAGES2k database can be downloaded here: https://doi.org/10.6084/m9.figshare.c.3285353. The CCSM4 past1000 and historical simulations can be obtained from the World Data Center for Climate (doi:10.1594/WDCC/CMIP5.NRS4pk and doi:10.1594/WDCC/CMIP5.NRS4hi, respectively).

Author contributions. MK and EZ conceptualised the study. UvT developed the concept of the embedding space. MK implemented the code, performed the pseudo-reconstructions, analysed the results and wrote the first draft of the manuscript. All authors discussed the results and contributed to writing the manuscript.

Competing interests. The authors declare no conflict of interests.

Acknowledgements. This study has been performed in the context of RedMod (redmod-project.de), a project funded by the Helmholtz Incubator initiative. The emGPR reconstruction code was run on the gpu nodes of the supercomputer Mistral at the German Climate Computing Centre (DKRZ). The MPIESM simulation was run by Sebastian Wagner (Helmholtz-Zentrum Hereon). The analysis was enabled and facilitated by the open-source Python packages Scikit-learn (Pedregosa et al., 2011), TensorFlow (Abadi et al., 2015) and GPyflow (Hensman et al., 2013). Figures were generated with Matplotlib (Hunter, 2007).
References

Otto-Bliesner, B.: CCSM4 coupled simulation for CMIP5 past 1000 years (850-1850) with natural forcings, World Data Center for Climate (WDCC) at DKRZ [dataset], https://doi.org/10.1594/WDC/CMIP5.NRS4pk, 2014.

Appendix A: Calculating the posterior predictive distribution

Given a set of observed data $y = y_i = f(x_i)$, the objective is to provide the probability distribution at a yet unobserved data point z, $f(z)$, conditional on the available observations. This is achieved by the application of the Bayes theorem. Before the application of Bayes theorem, the prior for $f(z)$ is just the assumed probability distribution for the Gaussian process, with mean $\mu_{prior}(z)$ and variance $\text{cov}_{prior} = k(z, z)$. Usually, μ_{prior} is assumed to be zero without loss of generality (e.g. by taking anomalies from the mean). It is also assumed that observations are a realisation of a noisy Gaussian process, which are contaminated by uncertainty in observations, i.e., $y_i = f(x_i) + \epsilon$. The noise ϵ is assumed to be Gaussian with variance σ_n^2 and uncorrelated across the locations x_i. After the application of Bayes theorem, the mean and variance can be calculated according to the following predictive equations (for a detailed derivation see Rasmussen and Williams, 2006):

$$
\mu_{post}(z) = k(z, x) \left[k(x, x) + \sigma_n^2 \mathbf{I} \right]^{-1} y
$$

(A1)

$$
\text{cov}_{post}(z) = k(z, z) - k(z, x) \left[k(x, x) + \sigma_n^2 \mathbf{I} \right]^{-1} k(x, z)
$$

(A2)

where \mathbf{I} is the identity matrix. These equations can be interpreted as follows. The posterior mean is a linear combination of observations Y and the process covariances between positions of the available observations and the new position $k(z, x)$. Usually, the kernel is assumed to decrease with increasing separation between locations. This implies that when the new position z is out of the range of available observations, the posterior mean will tend towards the prior mean. The posterior variance is smaller than the prior variance, since the available observations reduce the range of likely values of $f(z)$.

Appendix B: Metrics of TCnpp ensemble members

Figure B1. Distribution of skill metrics for the ensemble of reconstructions with noisy MPIESM-pseudoproxies with (a) the full emGPR, (b) the sparse emGPR and (c) PCR. The histograms show the respective distributions, the vertical lines correspond to the metric of the ensemble mean noted also in Fig. 3. The printed numbers denote the minimum and maximum of the respective metrics and correspond to the ensemble ranges given in the text.
Appendix C: CCSM4 pseudoproxies

Figure C1. The selected pseudoproxy records and resulting distance metrics based on the CCSM4 simulation. (a) the locations of the records, colour-coded with the correlation between the records and the AMV during the last 150 simulation years (after detrending); (b) cross-correlation; (c) standard deviation ratio and (d) the resulting embedding distances from the combination of both. Matrix indexes 1 to 25 are the selected pseudo proxy records as labeled in (a), index 26 is the simulated AMV index. The diagonal entries in (d) are left empty because zero cannot be displayed on the logarithmic color scale.
Figure C2. Reconstructions with perfect CCSM4-pseudoproxies based on (a,b) the full emGPR, (c,d) the sparse emGPR (e,f) PCR. Left-hand panels show the smoothed reconstructed and target timeseries. The dashed line marks the separation between training and testing periods. Shading indicates the 95% confidence interval. The metrics r, R_o and b denote correlation, the ratio of standard deviations and the bias relative to the target standard deviation, respectively. Subscripts sm and yr denote smoothed and unsmoothed data, respectively. The metrics are calculated for the reconstruction period (1500 to 1850). Right-hand panels show the Welch powerspectra of the target and reconstructed AMVI. Shading indicates the 95% confidence interval. The power spectral density (PSD) is given in $K^2 \text{yr.}^{-1}$.
Figure C3. Reconstructions with noisy CCSM4-pseudoproxies based on (a,b) the full emGPR, (c,d) the sparse emGPR, (e,f) PCR. Left-hand panels show the smoothed reconstructed and target timeseries. The dashed line marks the separation between training and testing periods. Thin lines show the individual ensemble members, the bold line indicates the ensemble mean. The metrics r, R_{σ}, and b denote correlation, ratio of standard deviations and the bias relative to the target standard deviation, respectively. Subscripts sm and yr denote smoothed and unsmoothed data, respectively. The metrics are calculated for the ensemble mean during the reconstruction period (1500 to 1850). Right-hand panels show Welch powerspectra of the target and reconstructed AMVI. Thin lines indicate the spectra of the individual ensemble members, the bold line indicates the spectrum of the ensemble mean. Shading indicates the 95% confidence interval of the ensemble mean spectrum. The power spectral density (PSD) is given in K2 yr.
Figure C4. The respective hyperparameters for different training periods with CCSM4-based perfect pseudoproxies (left halves of the panels) and the different white noise ensemble members (right halves of the panels). The hyperparameters are (a) the typical lengthscales $l_{f,t}$ and $l_{f,r}$, (b) the signal variance $\sigma^2_{f,t}$ and $\sigma^2_{f,r}$, and (c) the noise variance σ^2_n. The subscript t indicates that the kernel operates only on the time dimension; the subscript r indicates that the kernel operates on all dimensions, including time (see Eq. 4 and 5). The lengthscales are unitless, corresponding to the unitless distance of the embedding space. The lengthscale $l_{f,t}$ can be transformed into years through division by 1.10. The signal and noise variance are given in K2.