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Abstract. We present a new framework for the reconstruction of climate indices based on proxy data such as tree rings.
The framework is based on the supervised learning method Gaussian Process Regression (GPR) and designed-to—preserve
aims at preserving the amplitude of past climate variabilityand-to-. It can adequately handle noise-contaminated proxies and
variable proxy availability in—over time. To this end, the GPR is perfermed-formulated in a modified input space, termed
here embedding space. We test the new framework for the reconstruction of the Atlantic Multi-decadal Variability (AMV) in a
controlled environment with pseudoproxies derived from coupled climate-model simulations. In this test environment, the GPR
outperforms benchmark reconstructions based on multi-linear Prineipte-Principal Component Regression. On AMV-relevant
timescales, i.e., multi-decadaltimeseates, the GPR is able to reconstruct the true magnitade-amplitude of variability even if the
proxies contain a realistic non-climatic noise signal and become sparser back in time. Thus, we conclude that the embedded

GPR framework is a highly promising tool for climate-index reconstructions.

1 Introduction

Climate indices are important measures to describe the evolution of climate on regional, hemispheric or global scales in a
condensed way. They reveal relevant timescales of climate variability and, in some casesalso-relevant-,_also subspaces that
are important for predictability. Paramount examples are the El Nifio-Southern Oscillation, the North Atlantic Oscillation
and the Atlantic Multi-decadal Variability (AMV). To understand whether the typical timescales and magnitude of climate
variability have been stationary over time or whether they have changed, e.g., with anthropogenic climate change, we need
a long-term perspective on these climate indices. The index-timeseries must not only cover the historical period of the past
150 years but also the preindustrial-period-period of interest, €.g., +e-the past 1000 to 2000 years (Common Era). To obtain
these long timeseries we need information from so-called climate proxies (e.g. tree rings, sediment cores) in combination with
sophisticated statistical models to reconstruct the climate indices from the proxy data. We present a new machine-learning
framework for climate-index reconstructions and test its skill for reconstructing the AMV.

The AMV is an important index that describes the North Atlantic climate variability on decadal and longer timescales.
Different definitions of the AMV have been developed over time, but the basic definition relies on the low-pass filtered spatial

average of sea surface temperature anomalies over the North Atlantic. Observations starting in about 1850 indicate that the
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AMYV varies on typical timescales of 30 to 60 years. The state of the AMV plays a key role for many relevant climate phenomena
such as Arctic sea-ice anomalies (Miles et al., 2014), North American and European summer climate, Hurricane-hurricane
seasons and Sahel rainfall (Zhang and Delworth, 2006; Zhang et al., 2007).

A-seeond-main-question-—is-Both atmospheric as well as oceanic processes have been suggested as possible drivers of
the AMV (Clement et al., 2015; Zhang et al., 2019; Yan et al., 2019; Garuba et al., 2018, e.
the vartabilityis-dueto-internal-AMV is generated by internal climate variability and how much resuttsfrom-the response
to-external-changes—in-—radiative-is_generated by changes in external radative forcing, i.e., through—veleanie-volcanic and
anthropogenic aerosols, solar insolation and greenhouse gas changes —On-the-one-hand;-analyses-of 20th-century-SST-observations

). It is not clear, how much of
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Given-the-dominant-multi-decadal-timeseales-of-the-AMV;-the-The observational period of approximately 150 years is not

sufficient to provide a long-term perspective on the AMV and-finally-address-its-relationship-to-external-foreingor in fact any

climate index that describes variability on longer timescales. Therefore, longer timeseries ef-the-AMV-are needed. Long- AMV
timeseries- These are typically derived from climate reconstructions based on climate proxies such as tree rings, bivalves or coral

skeletons (e.g. Gray et al., 2004; Mann et al., 2008; Svendsen et al., 2014; Wang et al., 2017; Singh et al., 2018). However;
the observational period to calibrate their parameters. The trained models then use the much longer proxy timeseries as input
to provide an estimation of the target index in the past.

Existing AMYV reconstructions disagree on the amplitude and timing of AMYV variationsvariability, especially prior to the

beginning of the 18th century (Wang et al., 2017). In-addition;manyreconstruction-methods-are known-to-underestima
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i-As a consequence

they also provide conflicting views on the AMYV response to external forcing (Knudsen et al., 2014; Wang et al., 2017; Zhang et al., 2019; M

Possible reasons for this disagreement are numerous. In general, the reconstructed variability will depend on the predictor
data, i.e., the number, types—quality and locations of the proxies;-as—wel-as-on-the-reconstruction—method-itsel—Obvious
differenees—can-befound-in-the-. Previous AMV reconstructions differed in their employed proxy networks —which—were

and types, usin
only terrestrial or also marine records&Sveﬂd%eﬁe%al—ZG}%mglﬁre&al—ZG%S)—{ﬂe}udmg As an example, including marine

records seems to

Proxy data are only available at a limited number of locations on the globe (see e.2., PAGES2k, 2017), and their availabilit
decreases further back in time. Proxies also contain varying amounts of non-climatic signals, i.e., noise.

foreing-and-the reconstructed-AM V-indices-(Mann-et-al5-2022)Existing reconstruction methods range from very simple linear
methods such as Composite Plus Scaling (Jones and Mann, 2004) or Principal Component Analysis (e.g., Gray et al., 2004)

over more complex linear methods such as Bayesian Hierarchical Modelling (Barboza et al., 2014) to non-linear methods such
, 2013) or Data Assimilation (e.g., Singh et al., 2018).

The presence of noise ;+e5nen-climatie-or mutually unrelated variability ;in-thestatistieal predictors-may result in biased es-
timations of parameters of the statistical models such as regression coefficients. This-biased-estimation-in-tarnlteadsto-abiased

Random Forest (Michel et al., 2020), Pairwise Comparison (Hanhijirvi et al.

the-predietor-s-Especially regression-based methods are known to underestimate the true magnitude of variability, especially.
on lower frequencies (Zorita et al., 2003; Esper et al., 2005; Von Storch et al., 2004; Christiansen et al., 2009). They also tend
Wcmammwmmwmmm uheertain-externat
calibration data, This is further exacerbated by
the presence of strong warming trends and shortness of the available calibration period (approximately 150 years).

Thus, robust reconstruction methods are needed in order to produce more reliable estimates of the amplitude of the past

variability of the AMYV in order to better quantify its response to external forcing. This is also a precondition for an un-
biased detection of any ’unusual’ observed trends and for the subsequent attribution of those trends to a particular forc-
ing, e.g., anthropogenic greenhouse gases. To this end, we need to design reconstruction methods which are more robust

against noise and, importantly, do not strongly ’regress to the mean’ when the predictors become more noisy or scarce back

—yield better reconstructions of AMV variability (e.g., Saenger et al., 2009; Mette et al., 2(
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in time. As in many disciplines, machine learning methods have successfully gained traction in the climate reconstruction

., Michel et al., 2020; Zhang et al., 2022; Wegmann and Jaume-Santero, 2023). Here, we explore the potential

of the non-linear supervised learning method Gaussian Process Regression (GPR) for climate index reconstructions. GPR finds

growing use in climate applications such as climate model emulators (Mansfield et al., 2020) or reconstructions of sea level
fields (Kopp et al., 2016) and global mean surface temperature (Buntgen et al., 2021).

Unlike other machine learning methods, such as neural networks, GPR offers greater transparency and is less of a "black
box", The number of free parameters is usually much smaller and ideally the parameters have a more direct physical interpretation.
A Gaussian Process (GP) describes a distribution over functions with a given mean and covariance structure. The covariance
structure is chosen such that the resulting functions best match a given set of observations. This setup appears as more intuitive
and closer to the more familiar family of regression methods than convoluted deep learning structures, which in the end may
need additional algorithms for their physical interpretation, GPR’s non-parametric nature has the advantage that we do not
need to make any assumptions about the (non-)linearity of the underlying reconstruction problem. As a Bayesian method, GPR

We do not only test GPR as a climate index reconstruction tool but also propose a modified input space for the GPR-based
reconstructions. To this end, we embed the entire available dataset (proxy data and the target index) in a virtual space. The
location of the data timeseries in this space are based on the similarity between the timeseries. The resulting cloud of data
points in this virtual space can be viewed as a temporal sequence of images with missing values. The covariance of the GP
describes the cross-correlation between the proxy records and the target index across time and virtual space. We use the GPR to
fill the missing values, where we do not have observations of the target index. This approach is somewhat similar to kriging in
geostatistics, where two-dimensional fields are reconstructed based on point measurements and a known covariance structure.
In our case, the input space is not the geographical space but the virtual embedding space and the covariance structure is learned
from the data. This set-up has the additional advantage that it can easily accommodate variable proxy availability in time and

that the proxy-related uncertainty can be directly accounted for by the parameters of the GP.
To fully judge the methodological performance and related uncertainties, reconstruction methods need to be tested in so-

called pseudoproxy experiments (Smerdon, 2012). Many methods have already been tested in such controlled environments,
but the evaluation often lacks a thorough assessment of the method’s capability to reconstruct the magnitude of the variability on
different timescales. In particular, a reconstruction method must be able to capture extreme phases, again to ascertain whether

the AMV is sensitive to sudden changes in the external forcing, e.g., after volcanic eruptions, but also to capture possible large

internally generated variations, which could occur independent of external forcing.
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a-Here, we test our proposed framework of the embedded GPR in such a pseudoproxy environment and place special emphasis
on the method’s skill of reconstructing extreme phases and the magnitude of variability of the AMV.

2 Methods and Data
2.1 Pseudoproxies and simulated AMYV index

We generate the pseudoproxies from a simulation of the Common Era (i.e., the past 2000 years) with the Max Planck Institute
Earth System Model (MPI-ESM). The model version corresponds to the MPI-ESM-P LR setup used in the 5th phase of the
Coupled Model Intercomparison Project (CMIP5, Giorgetta et al., 2013). A detailed description of the simulation can be found
in Zhang et al. (2022). The target of the pseudo-reconstructions is the simulated AMV index (AMVI). We define the AMVI
as the spatial mean of annually averaged sea surface temperature anomalies (SST) in the North Atlantic (0 to 70°N and 80°W
to 0°E). The SST anomalies are calculated against the mean over the entire simulation period. We do not further detrend the
AMVI because it is difficult to define a meaningful trend period in the paleo context. In the case of real reconstructions, all
proxies and the AMVI would be available for overlapping periods with different length, and it is not possible to define a
meaningful common trend whieh-that could be subtracted from all records.

The pseudoproxies are defined as timeseries of the simulated surface—air-temperature at the model grid points closest to
existing proxy sites in the PAGES2k database (PAGES2k, 2017). Over land, we use 2m annual mean air temperature, over
ocean we use annual mean sea surface temperature. We do not use all available proxy sites from the PAGESk data base but
only a subset thereof. We limit our selection of proxy sites to those within the North Atlantic domain (10 to 90°N and 100°W
to 30°E) with a-temperal-resolution-of-five-years-or-higherannual resolution or finer. Out of these, we further select only those
locations at which the pseudoproxies have a correlation of 0.35 or higher with the AMVI during the last 150 simulation years
(in this case, both the AMVI and the pseudoproxies are detrended before calculating the correlation). The final proxy network

consists of 23 pseudoproxies (Fig.1a).

es-design three sets of pseudoproxies to account

for different sources of uncertainty: In the first test case (TCppp), we use perfect pseudoproxies, i.e., the pseudoproxies contain
only the temperature signal. In the second test case (TCnpp), we use noisy pseudoproxies, i.e., the pseudoproxies contain
additional non-climatic noise. The non-climatic noise is generated by adding white noise to the perfect pseudoproxies. The
amplitude of the white noise is defined such that the correlation between the noisy and the perfect pseudoproxies is 0.5; i.e., the

amplitude of the white noise corresponds to the standard deviation of the perfect pseudoproxy times /3. This is a reasonable

choice, as the correlation for real proxies with observations ranges from 0.3 to 0.7. The amount of white noise applied here
is also well within the range of other pseudoproxy studies (e.g., Smerdon, 2012). To ensure that the performance with noisy

data is independent of the specific noise realisation, we create an ensemble of 30 noise realisations. In both TCppp and TCnpp
we assume that all records are available at every point in time, i.e., that the network size remains constant in time. In reality,

different proxy records cover different periods and the network size is not constant (Fig.1b). Therefore, we set up a third test



case (TCp2k) with realistic temporal proxy availability from the PAGES2k database and both perfect and noisy pseudoproxies.
In all three test cases, the pseudoproxy records have annual resolution. The reconstruction period corresponds to the last 500
simulation years for TCppp and TCnpp, and to the entire 2000 simulation years for TCp2k.

165 To test the sensitivity of the method to the underlying climate-model simulation, we repeat the test cases TCppp and TCnpp
with an analogously derived set of 25 pseudoproxies and AMVI from simulations with the Community Climate System Model
(CCSM4, Gent et al., 2011). We combine the ’past1000’ simulation (Landrum et al., 2013; Otto-Bliesner, 2014) and one
“historical” simulation (Gent et al., 2011; Meehl, 2014) from the CMIP5 suite and use the last 500 years of the combined data

set. From the historical simulations, we used the ensemble member rlilpl. The results are displayed in Appendix B.

170 2.2 Benchmark reconstruction

To have a benchmark for the GPR-based reconstruction in the cases TCppp and TCnpp, we use pseudo-reconstructions with a

multi-linear Principal Component Regression (PCR). PCR is well established as a climate-index reconstruction method and has
been used e.g., for reconstructions of the global mean surface temperature (PAGES2k, 2019) and the AMVI (Gray et al., 2004; Wang et al.,
The selected proxy timeseries are first decomposed into principal components (PCs); the latter are then used as predictors in a

175 linear least-squares regression to obtain the AMVI for those timesteps where proxies and AMVI overlap. In other words, the
AMVL is expressed as a function of PCs of the original proxies (Eq. 1). We do not use all PCs but only retain those with a
cumulative explained variance of 99.5%. The trained model can then be used to reconstruct the AMVI for timesteps where we

AMVIW) = fren(PCy(0), .. PCx(1) 0
180 2.3 Gaussian Process Regression
2.3.1 The Concept

Gaussian Process Regression (GPR) is a Bayesian, non-parametric, supervised learning method (Rasmussen and Williams,
2006). Just like a probability distribution describes random variables, a Gaussian Process (GP) describes a distribution over

functions with certain properties. A GP is deseribed-determined by a mean function and a covariance function,

185 f(x) ~ GP(u(x),k(x,x%)) (2)

The mean function (x) describes the mean of all functions within the GP at location x. In the absence of other knowledge,
it is typically assumed that the mean of all functions within the prior GP is zero everywhere. The covariance function k(x,x”)
describes the statistical dependence between the function values at two different points in the input space. The exact covariance
structure is defined-prescribed by a kernel function. Kernel functions range from very simple (e.g. linear, radial basis functions)

190 to very-more complex (e.g., Matern functions, periodic). In principle, there is no limit to the kernel complexity and finding
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Figure 1. The selected pseudoproxy records and resulting distance metrics based on the MPIESM simulation. (a) the locations of the records,
colour-coded with the correlation between the records and the AMVI during the last 150 simulation years (after detrending); (b) the number
of available proxy records at the selected locations within the PAGES2k dataset over time; (c) cross-correlation; (d) standard deviation ratio
and (e) the resulting embedding distances from the combination of both. Matrix indexes 1 to 23 are the selected pseudo proxy records as
tabeled-labelled in (a), index 24 is the simulated AMVI. The diagonal entries in (e) are left empty because zero cannot be displayed on the

logarithmic eelor-colour scale.
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the right kernel can be considered an art in itself (e.g. Duvenaud et al., 2013). Once a general functional form of the ker-
nel has been chosen (e.g. radial basis function), the specific form is determined by the kernel hyperparametersparameters.
Since the underlying GP_model itself is non-parametric, kernel parameters are often also referred to as hyperparameters
(Rasmussen and Williams, 2006). These hyperparameters are either prescribed apriori-a priori if they are known, or learned
from the data through optimisation if they are unknown (e.g. through maximum likelihood estimation)if-they-are-unknown-

Without being constrained by data, the prior GP is a distribution of all functions with the given mean and covariance (Eq. 2).

In order to use the GP for regression and prediction, the prior GP is combined with the additional information from the training

data through Bayes theorem

$)-vartati i iThus, the posterior GP is obtained, i.e.inference-through-optimisation)-and

, only those functions are
selected that agree with the training data in a given uncertainty range. Predictions at previously unseen input points are then
iven by that posterior distribution of functions evaluated at those unseen input points.
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2.3.2 Finding the right regression space

As described for the PCR, classical climate-index reconstruction methods formulate their underlying statistical model ia-a-way
so that the climate index is assumed to be a function of temperature, the proxy values or e.g. principal components thereof.

In other words, the regression is performed in temperature/proxy/PC space; the proxies/PCs are the predictors and the climate

index is the predictand. Initially;we-tested-the-GPR-n-1f we reconstruct the AMVI with GPR in this classical setup, the target
AMVI becomes the posterior mean function and the covariance is estimated across the proxy space. fn-this setup;-the GP
With the trained GP model, the AMVI can be reconstructed by evaluating the GP at the proxy values that occurred during the
reconstruction period. Fig. 2a shows a schematic for the regression in proxy space for an example where the AMVT is given as
a function of two pseudoproxy records p;_and py. In this example, the posterior mean AMVI-function forms a surface in the
space spanned b and p,. Note that in our pseudoproxy experiments we use 23 pseudoproxies (Fig. 1a), so the proxy space
s actually 23-dimensional, which is impossible to visualise.

In initial tests, the GPR reconstruction in proxy space did not perform better-than-the- PCR-the-underestimation-of-vartability
was-as-strong-as-with-the PCR-well; the variability of the AMVI was strongly underestimated (not shown). One-A possible
explanation is that GPs eannot-extrapolate-well-to-ranges-unseenduring-training—tn-are very good interpolators but bad at
extrapolating to regions of the input-space-where-available-predietors—are-sparse——the-GP-proxy space that have not been
sampled during training (e.g. upper left and lower right quadrants in the example of Fig. 2a) or where predictors become sparse
WMWMH fall back to the prior mean function (regression to the
mean) - o-and the predictive skill becomes very
small. From a mathematical point of view. this setup of the regression in proxy space is also actually not suitable for GPR.
Real-world proxies come with large uncertainties, and while GPs are designed to handle uncertain targets, they assume that the
mmappmach the problem differently and set up the GP-ina-modified-input-space;
"GPR in a way that leverages

two GPR strengths: (1) being good interpolators and (2) handling uncertain targets.
We-

In our new approach, we embed the entire available data set (the selected prexy-pseudoproxy records and AMVI at all
points in time where observations are avallable) in a virtual space. Fime-is—considered-as—an—additional-dimension—of-the
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Figure 2. Schematic visualisation of the regression spaces for an example with two proxy records p; and p; and the AMVT. (a) GPR in proxy.
space: The independent variables are the temperature anomalies of the proxy records; the dependent variable is the AMVI (colour-coded) (b)
GPR in the embedding space: the independent variables are the locations in the embedding space and time, the dependent variables are the
temperature anomalies of the proxy records and the AMVI (colour-coded). In this simplified example, the three timeseries are located such

of data points can be viewed as a sequence of images in this virtual space. The images contain missing values at timesteps
where we do not have AMVI observations available. The climate-index reconstruction problem thus becomes similar to an
image-reconstruction problem. The GPR reconstructs the AMVI by filling the missing values based on the surrounding proxy.
values. In this framework, the GPR inputs are the locations in the embedding space and the GPR targets are the temperature
anomalies of the proxies and the AMVI:_

AT = farn(t.x). ®

where AT is either a proxy record p; or the AMVI and x; is the location of the respective record within the embedding
space. Fig. 2b shows a schematic view of this embedding space for the example with two pseudoproxies and the AMVI. The
location of each timeseries within the embedding space is constant, so that the temporal sequence of data of one particular proxy
sertes-form-timeseries forms a straight line parallel to the time axis. The location of each record is based on its similarity to all
other records. The more similar two records are, the closer they are located in the embedding space. To adequately reflect the
distances between the proxy records and the AMV-AMV], the embedding space needs to have a dimension of {¢—4—++(g — 1),
where ¢ is the number of prexies-timeseries including the AMVI timeseriesand-+—=-1for-the-time-dimension:, This is easiest

to understand if one imagines the case where all timeseries have the same distance from each other (as shown in Fig. 2b). To

arrange, e.g. three timeseries with equal distances from each other, one needs a two-dimensional space (spanned by x; and x:
in Fig. 2b). In case of the MPIESM-based proxy network, the embedding space has thus 24-23 dimensions (23 proxy records, 1

10
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AMVI). With time as an additional dimension, the resulting space has a total of 24 dimensions. In the following, we will use r
to refer to a point in space and time, and x and ¢ to refer to points in i only space and only time, respectively.

find a function that fits the entire dataset in this virtual space and to interpolate the AMVI at the virtual locations X 4arv

for points in time where we do not have observations.

tempeoral-auto-correlation-and-With the right kernel formulation (see Sect. 2.3.4), we can account not only for cross-correlations
between the different timeseriesinto-aceount—

Tn-the-interpoelationprecess;a-, but also for temporal auto-correlation: A data point in the embedding space at time t,, is
affected by all other surrounding points in the embedding space at time ¢,,, and to a smaller extent also at times ¢,, > ¢,,, and

tx < tm,. The degree of influence is determined by the distance between the points in the embedding space and the typical

length- and timescale of the kernel function. The closer two points are, the larger the-their influence.

Thus, the AMVLis still reconstructed based on the information from the pseudoproxies, but we have formulated the problem
such that the GP can handle the proxy-related uncertainty correctly, because the pseudoproxies are now targets and no longer
inputs. An additional advantage is that we can use this setup with variable proxy availability in time without having to retrain
the model each time the proxy availability changes. Instead, the "images” simply have more missing values as the number of
proxies decreases further back in time.

2.3.3 Defining the distance matrix

Finding the right position x for each proxy record and the target index in the embedding space is an important and non-trivial
step. Since we care only about the relative distance in the embedding space and not the absolute location, we can specify
the distance between each pair of ¢ records (proxies and AMVI) in a distance matrix D and determine the coordinates via
multi-dimensional scaling —The-problem-thenreduces-to-speeifying-the-distanee-matrix—(MDS e.g., Mead, 1992). MDS uses
the information of dissimilarity between objects to place these objects in a Cartesian space of a given dimension, such that the
distance between the objects in the new space reflects the dissimilarity in an optimal way. In our case, the objects are the proxy.
records and the AMVI, and the given dimension is 23.

2.3.4 Defining-the-distanece-matrix

We define the distance matrix based on an appropriate distance metric. This metrie-could in principle be any distance metric

such as the Euclidian distance or similar. To be used as a distance metric in MDS, a metric must meet the following three

criteria: it needs to be (1) positive, (2) zero, when it is applied on the object with itself and (3) symmetric (e.g., Mead, 1992).

11
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We chose to define the distance based on the eross-correlationcross-correlation (CC, Fig. 1c) and the standard deviation ratio
(SR, Fig. 1d) of the respective records. The SR of two timeseries p; and p; is defined as

stApi) it std(pg) > std(p;
SRij _ stdEpJ;a (p ) (pj) )
P

std .
sfﬁd(pji)’ if std(p;) < std(p;),

this way, the SR is symmetric, fulfilling the third criterion for the distance metric. Assuming that the records are all positively

correlated, the distance measure between two timeseries p; and p; is defined as

Dij:(l—CCij)*SRij, (5)

i.e., the distance will be small when the CC is high and the records have similar amplitudes of variability, and larger -
when the CC is low and/or the records have very different amplitudes of variability (Fig. 1e). This choice of distance metric
outperforms equidistant coordinates and a metric based solely on CC (not shown). The-SR-eftwe-timeseriespand-p;-is-defined

std(pi) - , ,
A, = sidpy i std(p;) > std(p;)

std(p; e .
s if std(p,) < std(p;),

embedding space range-from-The final distance matrix D is then obtained by evaluating Eq. 5 for all pairs of records. For
all pairs of pseudoproxies, the distance is estimated from the entire simulation length, For calculating the distance between
the AMVI and the pseudoproxies. we use only the last 150 years (years 1850 to 2000) and lineraly detrend both AMVI and
pseudoproxies before the calculation. The so determined unitless distances range from 0.02 to 3.91 for the MPIESM-based

of-the-1e). The resulting distance matrix is +-10-

12
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then used as input for the MDS algorithm to obtain the coordinates in a 23-dimensional space. The embedding distance
reflects the actual geographical distance to a certain degree. Records that are close in actual space tend to be close also in the

embedding space, as they have higher cross-correlations and similar standard deviations (Fig. le).
2.3.4 Kernel Design and Hyperparameters

We choose a very simple kernel function, the radial basis function (RBF), because we have no prior information that would jus-
tify the use of a more complex kernel. Complex kernels would introduce additional uncertainty and reduce the interpretability

of the results. We define the kernel #-as an additive kernel of two RBF components;+—=+h1—-++%2:

1/t —t]\°
k1(ti,t;) = of, exp (2 (|lft]|) ) (6)

1 /|rj—r; 2
k2(ri,r5) = JJ%,T exp (2 (|lfj> > . @)

where-The final kernel or covariance equation is then given as
k= kl+h2 ®)

In Eq. 6 and 7, |*| is the Euclidian distance between two points ¢; and ¢; or r; and r;. The [ and JJ% are the hyperparameters

of the respective kernels. [y denotes a typical lengthscale of the target function, while afc describes the signal variance, e.g., a

The first kernel k1 operates on the time dimension only, i.e. it controls ;-how much the neighbouring time steps at one
embedding location influence the value at time ¢;. This could be considered as a mean typical timescale of variability in the
dataset. The second kernel k2 operates on all dimensions of the embedding space, including the time dimension. This enables
interaction between locations at time ¢; and neighbouring time steps. This kernel setup outperforms a kernel that consisted

only of k2 and one where k2 did not include the time dimension (not shown). The higher skill of this kernel makes sense if

one considers how the kernel design affects the interactions between the different timeseries. Having only k2 does not consider
that the timescale of auto-correlation may not be the same as the timescale of cross-correlation. It, therefore, makes sense to
have k1 operate across the time dimension only. If £2 operated only across the embedding dimensions, no interaction between
different records across time would be possible.

Because k2 operates on both the time and the embedding dimensions, we rescale the time steps to be of the same order
of magnitude as the distances between the records. This is necessary to allow for the interaction across records and time.
Otherwise, the length scale of k2 would either be dominated by the time step or by the embedding distance. One rescaled time
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step equals the mean of the distance matrix D. In the case of the MPIESM-based network (Fig. 1), the mean of the distance
matrix is 1.44. For the CCSM-based network (Fig,
A third additional hyperparameter o7 denotes the likelihood or noise variance (see also Appendix A). The noise variance
enables the GPR to handle target uncertainty. A small o7 indicates that the targets have low uncertainty and the fitted function
365  will be very strongly constrained by the training data. If o7, is larger, the targets come with large uncertainty. The fitted function
is_then less constrained by the training data and more robust against overfitting, Introducing 7 is similar to the so-called
nugget effect in geostatistics. The noise variance o7 is assumed to be the same across all dimensions, i.c., the learned estimate.
will be the same for all pseudoproxies and the AMVI. This is a simplification, because every pseudoproxy contains its own
level of noise. We will show that this simplification is a good first approximation and enables the GPR to handle uncertain

370  pseudoproxies well.

the mean of the distance matrix is 1.10.

2.3.5 GP scaling behaviour

One known drawback of GPs is a bad scaling behaviour of the computing time required to estimate the hyperparameters with

respect to the number of available observations, also called batch size. The training time of a GP scales with n°, where n is the

batch size. This is mainly due to the necessity to invert the covariance matrix (e.g.

375 problems with more than 1000-10000 observations become difficult to handle with the original GP formulation (hereafter full
GP) due to time and computing memory limitations. Even though paleo data sets are not what we would typically call Big
Data, they can already become challenging for GPs if the reconstruction period spans thousand years or more.

Various GP variants have been proposed to overcome this limitation (e.g., Sarkké, 2013; Hensman et al., 2013). One variant

is the so-called stochastic yariational GP (SVGP, Hensman et al., 2013). The SVGP combines stochastic gradient descent

i.e., training with minibatches), variational inference (i.e.

Rasmussen and Williams, 2006). Regression

380 inference through optimisation) and a low-rank approximation of

the covariance matrix based on so-called inducing points. Simply put, the inducing points are a small subset of the original
dataset that represents the properties of the complete dataset. In other words, the true GP posterior is approximated by a GP.
that is conditioned on the inducing points. The location of the inducing points in input space can either be prescribed manually
(e.g. randomly) or they can be optimised along with the kernel hyperparameters. The training time of the SVGP scales with

385 m’, where m is the number of inducing points (Hensman et al.,, 2013). Here, we test both the full GP and the SVGP for
climate-index reconstruction in the embedding space. In the following, we will refer to the full embedded GP as full emGP and
the embedded SVGP as sparse emGP.

2.3.6  Technical notes

Our scripts are based on the python package GPflow (Matthews et al., 2017). The hyperparameters are learned through optimisation.
390 with the Adam Optimiser. which is a stochastic gradient descent algorithm widely used in machine learning applications

(Kingma and Ba, 2014). We use the algorithm as provided by GPflow. For the full GP, we repeat the optimisation step 1000

times. For the sparse GP, we initialise the inducing points as every tenth point in time and the optimise the locations along.
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with the hyperparameters. We use minibatches with a size of 2000 and repeat the optimisation step 4000 times. The respective
number of optimisation steps is sufficient for the estimated likelihood of reaching an equilibrium.

2.4 Training and Testing

In the real world, SST measurements are only available since approximately 1850. Therefore, AMV observations are also
only available from 1850 to today. We use this criterion to divide our pseudo-data set into training and testing data. The
relationship between the pseudoproxies and the simulated AMVI can be inferred only from the last 150 years of the simulation,
the remaining years of the simulated AMVI are used for testing. This may not be the most effective way of splitting a data set
in the machine-learning context, but it best reflects the actual data availability in the paleo-context.

For the em

the-benchmark PCR reconstruction, which takes place in PCR-space, the training inputs are the most recent 150 years of the
retained principal components and the training targets are the corresponding 150 years of simulated AMVI (i.c. years 1850 to
2000). In the testing period, the AMVI is reconstructed with the trained regression model and the remaining 350 years of the
retained principal components as inputs.

For the emGPR reconstructions, the training inputs are the locations r; of the pseudoproxies and the AMVI. For the pseu-
doproxies, all time steps are used for training (i.e. years 1500 to 2000); for the AMVI only the time steps corresponding to

the last 150 simulation years are used for training +(i.e. the-years 1850 to 2000eft-matrixinEq—2?). The training target-data
i tmg@p&values of the 23 proxy records p; over the full 500

s-. During training, the

kernel hyperparameters and the noise variance are learned. The AMVI is then reconstructed by evaluating the trained emGP at
the embedding location of the AMVI x 471y = X24 and the timesteps corresponding to the remaining 350 simulation yearsEg-

s Loy

years and the AMVI record over the last 150 yearsé

tq i1 ... T123 p1(t1)
tm i1 ... T123 p1(tm)
p23(t1)
tq r231 ... T2323
p23(tm)
tm 231 ... T2323
tm—150 @241 ... T2423| |AMVI(t;m—_150)
tm Toa1 ... Tosos| | AMVI(tn)
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reeent150-years-of-additional advantage that the training set is much bigger than in the ¢-selected-prineipal-components-and-the

2y—classical setup. Thus

we increase the range of climate variability seen during training and reduce the risk of reconstructing climate states that the
430 model has not been trained with.
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3 Pseudo-reconstructions
3.1 TCppp: Perfect pseudoproxies

With perfect pseudoproxies, the best overall reconstruction is achieved by the full emGPR. The reconstructed AMVI closely
follows the target AMVI except for the period from approximately 1630 to 1680 (Fig. 3a). This is reflected by the high
correlation with the target AMVI (0.93 for the smoothed index). There is a weak negative mean bias, corresponding to 20%
of the target standard deviation, which stems mainly from the 56-year-50-year period from 1630 to 1680. As-expected;-the
The GP related uncertainty, as given by the 95th percentile of the posterior distribution, is small for the years 1850 to 2000

where the AMVI has been constrained during training. The uncertainty increases for the reconstruction period. Overall, the

osterior uncertainty estimate appears a bit too large - i.e., too conservative - because the true AMVI always lies within the
95% confidence interval. The full emGPR captures the magnitude of variability very well:-the-, The standard deviation ratio of

0.93 indicates only a small underestimation of 7%. Also, the period of very low AMVI following several volcanic eruptions
between 1800 and 1850 is well captured, the reconstructed and target AMVI are almost indistinguishable. The spectrum of
the reconstructed AMVI agrees well with the spectrum of the target AMVI; the full emGPR captures the variability at all
frequencies (Fig. 3b).

The sparse emGPR captures the main features of the target AMVI, but the reconstruction is less accurate (Fig. 3c). The
correlation is lower (0.79 for the smoothed index), and there are more periods with larger deviations between the reconstruction
and the target. Interestingly, the sparse emGPR has large mismatches during ether-different periods than the full emGPR. The
full emGPR has the largest mismatch in the years 1630 to 1680, the sparse emGPR has the largest mismatches in the years
1720 to 1830. The mismatches result in a positive mean bias corresponding to 33% of the target standard deviation. The GP
related uncertainty is the same as the uncertainty from the full emGPR, but in the sparse case, the uncertainty is approximately
constant over the entire period. The standard deviation ratio is 0.80, i.e., the variability is underestimated by 20%. This is, e.g.
visible for the years 1800 to 1850, where the very low AMVT is not captured as well as by the full emGPR. The spectrum of
the reconstruction still agrees well with the target spectrum, but there is a slight overestimation of variability at the very high

frequencies and an underestimation at lower frequencies at timescales of 80 to 100 years (Fig. 3d). Differences in the skill

of the full and sparse emGP might partly be explained by different estimates of hyperparameters (see left halves of Fig. 5).
We assume that the hyperparameters learned with the full emGPR are closer to the truth. Both the estimated timescale of

auto-correlation (I ¢ ;) and the signal variance (o ¢, and o ¢ ,.) are underestimated by the sparse emGP.
The PCR reconstruction achieves the highest correlation (0.95 for the smoothed index) and comes with the smallest uncertaint

range, but at the cost of a larger underestimation of variability and a systematic bias towards higher AMVI values, for peri-
ods during which the AMVI is outside of the range of the training period (Fig. 3e). This is especially apparent during the
period of the very low AMVI from 1800 to 1850, where the target AMVI lies outside of the PCR uncertainty range. The
mean bias corresponds to 79% of the target standard deviation. The standard deviation ratio of 0.65 indicates an underestima-
tion of the variability by 35%. The underestimation occurs systematically at lower frequencies in the multi-decadal range; the

high-frequency variability (timescales shorter than 30 years) is well captured (Fig. 3e).
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Figure 3. Reconstructions with perfect MPIESM-pseudoproxies based on (a,b) the full emGPR, (c,d) the sparse emGPR and (e,f) PCR.

Left-hand panels show the smoothed reconstructed and target timeseries. The dashed line marks the separation between training and testing

periods. Shading indicates the 95% confidence interval (CI). The CI is determined by the posterior GP distribution for the full and sparse

emGP. For the PCR, the CI is derived from the uncertainty in the regression coefficients, which is based on the t-distribution. The metrics r,
R, and b denote correlation, the ratio of standard deviations and the bias relative to the target standard deviation, respectively. Subseripts-snw

y—The metrics are calculated for the smoothed timeseries over the reconstruction

period (1500 to 1850). Right-hand panels show the Welch pewerspeetra_power spectra of the target and reconstructed AMVI. Shading
indicates the 95% confidence interval as obtained from the y2-distribution. The power spectral density (PSD) is given in K2 yr.
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With CCSM4-based pseudo proxies, the results for the full and sparse emGPR are consistent with the MPIESM-based recon-
structions (cf. Fig. 3a-d and Fig. B2a-d). The PCR performs much better in the CCSM environment, both the underestimation
of variability and the systematic bias to higher AMVI values are smaller in the CCSM4 case (cf. Fig. 3e and Fig. B2e). Also,
the low-frequency variability is better captured (Fig. B2f). While the full emGPR clearly outperforms the PCR in the MPIESM
case, PCR and the full emGPR perform similarly well in the CCSM4 case.

3.2 FEapp:Neoisypseudoproxies

performance of the PCR

in the CCSM4 case can be explained by a greater spatial coherence of the underlying CCSM4 temperature field. The leading
B1). The mean-of-the-30-noisy reconstructions—is-remarkably-similarto-fact that the full and sparse emGPR perform about

3.2 TCnpp: Noisy pseudoproxies

each of the 30 noisy reconstructions separately and provide the mean and spread of the ensemble statistics. The distribution of

the three skill metrics for each reconstruction method can be found in Appendix C.For the full emGP, the individual ensemble
members are stil-in reasonably good agreement with the target AMVI (see thintnesin-Fig. 4a and Fig. Clafer-the-distribution

of skitb-metries). The mean correlation of the smoothed ensemble-mean-reconstructed AMVI with the target AMVI is 0:95
{ensemble-range:0-84-16-0:96)0.89 + 0.06. The mean bias is with 21 £ 0.15 % of the target standard deviationidentieal-,
very similar to the bias from the TCppp case(ensemble-range:—37-to—5%);-and-as-before-it-. As with the TCppp testcase,
the bias mostly stems from the years 1630 to 1680, where the mismatch between the reconstructions and target is largest.
The variability is still captured remarkably well. The mean standard deviation ratio for-the-ensemble-mean-of-0:95-indicates-a

d A O h o7 o hle 0

e e e B e s e Bl e e D e e Dle b e b e s 1.0 = 0017 indicatin
that most ensemble reconstructions contain a realistic amount of variability. The main loss of variability occurs mainly—at

frequencies higher than decadal(Fig. 4b). The lower-frequency variability range, which is of main interest for studying the

AMY, is well reconstructed; the reconstructed spectra lie well within the uncertainty range of the target spectrum.
The sparse emGPR also performs well with noisy pseudoproxies (Fig. 4c,d and Fig. C1b). The ensemble-mean-evenhas

a-higherreconstruetionskill-as-the- AMVIreconstructed-from-overall reconstruction skill is even higher with noisy than with
perfect pseudoproxies. The-This improved performance is also reflected in the estimated timescale of auto-correlation. The

estimate for [r; is now much closer to the estimate from the full emGP (Fig. 5a). We will come back to this improved
erformance in Sect. 4. The ensemble mean correlation of the smoothed ensemble-mean-AMVI with the target AMVI is 6:92
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Figure 4. Reconstructions with noisy MPIESM-pseudoproxies based on (a,b) the full emGPR, (c,d) the sparse emGPR and (e,f) PCR.
Left-hand panels show the smoothed reconstructed and target timeseries. The dashed line marks the separation between training and testing
periods. Thin coloured lines show the individual ensemble members;-. The 95% CI in the botdtine-lower right of all three panels indicates
the CI averaged over time and all ensemble meanmembers. The metrics r, R, and b denote correlation, ratio of standard deviations and the

bias relative to the target standard deviation, respectively.

metrics are calculated for the-each smoothed ensemble mean-during-member over the reconstruction period (1500 to 1850), and the mean

and spread (£20) are reported here. Right-hand panels show Welch pewerspeetrapower spectra of the target and reconstructed AMVI. Thin

coloured lines indicate the spectra of the individual ensemble members;-the-bold-tine-indicates-the spectrum-of the-ensemble-mean. Shading
Grey shading indicates the 95% confidence interval of the ensemble-mean-target spectrum as obtained from the 2_distribution.. The power

spectral density (PSD) is given in K2 yr.
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{ensemblerange-0:-74-t0-0:94;-Fig—C1b)-0.87 £ 0.09. Also the mean bias is very small with 11 £ 0.09% of the target standard
deviationfensemblerange:—5-+to—18%), only a third of the bias from the TCppp case. The mean standard deviation ratio is

0-78(ensemblerange0.70-t6-0:98)0.83 £ 0.14, corresponding to an underestimation of the variability by 2217 & 14%. This
underestimation is due to a complete loss of power at frequencies higher than decadal (Fig. 4d). But as with the full emGPR,
the frequency range of interest for the AMV is well reconstructed.

The PCR still achieves high correlations, but suffers a strong underestimation of variability and an increased systematic bias
towards the mean of the AMVI over the training period —(Fig. 4e.f and Fig. Clc). These deficiencies of the PCR reconstructions

with noisy data have been well documented already (e.g., von Storch et al., 2009). The ensemble mean correlation with the

smoothed target AM VI is 0-87(ensemblerange:0-71t0-0:88;Fig—C1e)-0.81 £ 0.10. The mean bias of 145 + 26% exceeds one
standard deviation of the target AMVI(ensemblerange:5-+t0172%). The mean standard deviation ratio is O-46—(ensemble
range04+t0-06-59)0.49 £ 0.09, corresponding to an underestimation of variability by 5451 £ 9%. The loss of variability
occurs mainly in the range of frequencies lower than decadal, i.e., the frequencies of interest for the AMVI are underestimated-

severely underestimated (Fig. 4f).

The use of noisy pseudoproxies has approximately doubled the width of the 95% confidence intervals for all three methods.
The mean uncertainty range over all emGP ensemble members is £0.57, which is again too conservative but reasonable given
the amount of non-climatic noise in the pseudoproxies. The mean PCR uncertainty range is £0.21, which is likely too confident

in combination with the large reconstruction bias.
Again, the reconstruction results with the noisy CCSM4-based pseudoproxies are broadly consistent with the MPIESM-

based reconstructions —(Fig. B3 and Fig.). Still, some notable differences occur. The full emGPR has a larger negative mean
bias of 7475 £ 0.17% of the target standard deviation and slightly overestimates the variability on multi-decadal-timeseales
timescales longer than 80 years (Fig. B3a,b). The best reconstruction skill in the noisy CCSM4 case is achieved by the sparse

emGPR, with high correlations, a small mean bias and a good estimation of the variability in the decadal to multi-decadal

frequency range (Fig. B3c,d). A possible explanation for the higher skill of the sparse emGPR can again be found in the

hyperparameters. In the sparse case, the uncertainty from the noisy pseudoproxies was correctly assigned to the noise variance
2 (Fi B4b). We will

return to this point in Sect. 4. With noisy pseudoproxies, the PCR shows the same deficiencies as in the MPIESM case: a

. B4c). In the full case, the large proxy noise was instead interpreted as signal variance (o, Fig.

strong systematic bias towards the mean of the AMVI during the training period and a strong underestimation of variability on

timesealeslonger-than-decadal-AM V-relevant timescales (Fig. B3e,f).

3.3 TCp2k: Realistic PAGES2k proxy availability

Until now, we have assumed that the proxy availability is constant in time. In the following, we assess the reconstruction skill
of the two emGPR methods with realistic — i.e., varying — data availability and over the full 2000 years. We do this in three
steps: First, we test how the emGPR performs over the full 2000 years with perfect pseudoproxies and constant data availability

(i.e., the same as TCppp but over 2000 years). Second, we reconstruct the AMVI with perfect pseudoproxies and realistically

varying data availability. To achieve realistic data availability, we clip the annually resolved pseudoproxy records at the start

21



535

540

545

550

555

560

565

and end years of the corresponding real-world proxy records from the PAGES2k data-base. And third, we test the emGPR with
noisy pseudoproxies and varying data availability. The third step, even though still idealised, is closest to representing realistic

conditions for proxy-based reconstructions.

Because the full and sparse emGPR differ in the amount of computing memory, we use two different approaches to recon-
struct the full 2000 years. In our current computing environment and with the selected MPIESM-based proxy network of 23
locations, the full emGPR cannot handle much more than 500 years at a time. Wetherefore-, therefore, train the full emGPR on
the most recent 500 years and use the estimated hyperparameters to reconstruct the AMVI piece-wise in the remaining three
blocks of 500 years. For the first step, we actually take the hyperparameters from TCppp (red stars in Fig. 5). For the second
step, we estimate the hyperparameters again, to see how much they differ when the data availability changes (red diamonds
in Fig. 5). For the full emGPR, they turn out to be very similar, therefore, we use the hyperparameters from TCnpp in the
third step in order to save computing time (red dots in Fig. 5). The sparse emGPR can be trained and evaluated over the whole

2000 years at once with reasonable computational effort. Therefore, we retrain the hyperparameters in each of the three steps -

ellow diamonds in Fig. 5).

3.3.1 Full emGPR

The first step with the full emGPR shows that our approach of piece-wise reconstruction works well. The reconstructed AMVI
closely follows the target AMVI also in the years 0 to 1500 (Fig. 6a). This confirms that the hyperparameters estimated from
the first 500 years are also representative for-of the remaining periods (at least in this MPIESM-based setting). The correlation
of the smoothed reconstructed AMVI and the target AM VI is with 0.87, a bit lower as in the TCppp case. The mean bias of 8%
of the target standard deviation is smaller than in the TCppp case. The variability is well reconstructed, as indicated by both
the standard deviation ratio of 1.03 and and-the power spectrum (Fig- 8a).

With variable data availability in the second step, the full emGPR still achieves a similarly high reconstruction skill (Fig. 6b).
The correlation of the smoothed reconstructed AMVI and the target AM VI is 0.88 and the mean bias is negligible. Interestingly,

the reduced data availability leads to an overestimation of variability in some periods (e.g., in the years 900 to 1100). This is

also indicated by the standard deviation ratio of 1.19. This could be attributed to non-optimal hyperparamters for the reduced

roxy availability in this period (see Sect. 4). The power spectrum also shows slightly higher power in the multi-decadal
frequency range (Fig- 8b). On the other hand, there is a strong loss of power in the high-frequeney-high-frequency range (>

1/10 yr=1).

The third step confirms that the full emGPR can achieve high reconstruction skill also under realistic conditions (Fig. 6¢
and Fig. C2a). The mean correlation of the smoothed ensemble-mean-AMVI reconstruction with the target AMVI is 086
fensemblerange:0:59-t60-0-74)-0.67 & 0.07 and the mean bias amounts to 12 & 5% of the target standard deviationfersemble
range:-6-to15%). Many periods of extreme high and low AMVT are well captured (e.g., around year 300 and 1150), but some
of these extreme periods are also underestimated (e.g., around year 550). The mean standard deviation ratio ef-the-mean-is

0-88(ensemblerange:-0:90-to-122)is 1.06 £ 0.15, indicating an
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Figure 5. The hyperparameters of the two GPR versions for different training periods with perfect MPIESM-pseudoproxies (left halves of
the panels) and the different white noise ensemble members (right halves of the panels). The hyperparameters are (a) the typical lengthscales
ly¢ and Iy ., (b) the signal variance a}%,t and U%T, and (c) the noise variance 2. The subscript ¢ indicates that the kernel operates only on the
time dimension; the subscript r indicates that the kernel operates on all dimensions, including time (see Eq. 6 and 7). The lengthscales are
unitless, corresponding to the unitless distance of the embedding space. The lengthscale [ ; can be transformed into years through division

by 1.44. The signal and noise variance are given in K.

of variability. Especially the variability in the decadal to multi-decadal range is still well captured (Fig- 8c). The wvariability
in-the-decadal-to-multi-decadal range-is-still-well-capturedonly loss of variability occurs again in the high-frequency range on

timescales shorter than decadal.
3.3.2 Sparse emGPR

In the first step, the sparse emGPR shows a slightly reduced reconstruction skill as compared with the TCppp case. The mean
bias is very small, but the correlation is smaller and the underestimation of variability is stronger (Fig. 7a). The variability is
underestimated both on interannual and multi-decadal to centennial timescales (Fig. 8,d).

With variable data coverage in the second step, the reconstruction skill of the sparse emGPR remains similar, only the

underestimation of variability on multidecadal to centennial timescales increases (Fig. 7b and 8e).
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Figure 6. The MPIESM-TCp2k reconstructions with the full emGPR. (a) first step with perfect pseudoproxies and constant proxy availability.
(b) second step with perfect pseudoproxies and realistic proxy availability according to the PAGES2k database. (¢) third step with white-noise

added to the proxies and realistic proxy availability.

24



0.75
(a) o target r=0.68 R,=0.66  b=0.06
¥ 0504 emGP.s = o I
©
£ 025; _
o MN\f\AV’ A P
s} | i y s . Jf\ A /l\ P A f
£ 0.00 VN\ U \I/\/ \ d,"v;_mi /v PRIV W WA :
S _0os |
2 -0.25
<C
050, constant coverage
(b) 0.75
< 0.50 | r=0.64 R,=0.60 b=0.18
©
g 0.251
o W"\f\'\'\ll A /\
3 | W An / M | r Mo A
§1 0.00 \\V \j/ \l/\\é" \II\NW!\I\/\.WJV \‘\ %\/‘"\} ‘\V\/ ‘\
S _ |
2 0.25
—0.501 p2k-like coverage
0 500 1000 1500 2000
Years (AD)
(C) 2 051 emGP_s r=0.77+0.07 R,=0.69+0.10 b=0.09+0.05
T 7| = target
N
)
8
£ 0.0
(7]
S
<Z( —05 p2k-like & white noise
0 500 1000 1500 2000
Years (AD)

Figure 7. The MPIESM-TCp2k reconstructions with the sparse emGPR. (a) first step with perfect pseudoproxies and constant proxy avail-
ability. (b) second step with perfect pseudoproxies and realistic proxy availability according to the PAGES2k database. (¢) third step with

white-noise added to the proxies and realistic proxy availability.
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In the third step, the mean correlation of the smoothed reconstructed-ensemble-mean-AMVI-AMYVI reconstructions with
the target AMVI increases to 0-88-(ensemble-range:0-70-40-0-83)0.77 £0.07, confirming again that the sparse emGPR seems
to capture some details of the AMVI better in the presence of noise (Fig. 7c and Fig. C2b), and the greater flexibility that
comes with a high estimate of noise variance in the GP hyperparameters (Fig. 5c). Still;-the-The underestimation of variability
remains large both on interannual and multi-decadal to centennial timescales (Fig. 8f). The-underestimation-of-variability-on
Even though the sparse emGPR obtains the worst reconstruction skill in this test
case, the overall skill is still higher than that of the PCR with full data availability in the TCnpp case.

4 Discussion

We have tested two versions of GPR in a newly developed input space (embedding space) for climate-index reconstructions in
pseudoproxy experiments with increasingly realistic conditions. As a benchmark, we used a PCR-based reconstruction. Under
perfect conditions (TCppp), all three methods — full and sparse emGPR and PCR — achieve high reconstruction skill. The full
emGPR outperforms the sparse emGPR and performs at least as well as the PCR. With noise-contaminated pseudoproxies (TC-
npp), the full emGPR has the highest reconstruction skill with a realistic estimate of variability on AMV-relevant timescales
—(i.e., decadal to multi-decadal). The sparse emGPR achieves the second-best-second-best reconstruction skill with a realistic
mean but increased variance loss. The PCR-based reconstruction is systematically biased to the AMVI values of the training pe-
riod and suffers a strong loss of variance on AMV-relevant timescales. With realistic proxy availability and neise-eentaminated
noise-contaminated pseudoproxies (3rd step of TCp2k), the full emGPR is still able to achieve a high reconstruction skill with
a realistic {ensemble)-mean and variability on AMV-relevant timescales. Below, we re-assess the overall performance of the

4.1 Non-climatic noise

Our results indicate that the emGPR (both full and sparse) is able to perform well in the presence of non-climatic noise. This
property can most likely be explained by the hyperparameter of the noise variance o2 (Fig. 5¢). The noise variance describes the
uncertainty in the regression targets. This concept can only be meaningfully applied here because we perform the GPR in the
embedding space, where both the proxy timeseries and the AMVI are the regression targets. The noise variance cantherefore-,
therefore, capture the non-climatic signal of the pseudoproxies and give the emGPR the necessary flexibility to filter the non-
climatic part of the signal. Comparing the noise variance between the TCppp and TCnpp cases illustrates this quite well. In
the TCppp case, the estimated noise variance (or likelihood) o2 lies between 0.1 and 0.4 K2. In the TCnpp case, the estimated
o2 lies between 2 and 2.7 K2. This does reflect the actual mean magnitude of the noise which we added to the pseudoproxies.
The mean variance of the noise of all 23 records is approximately 2.1 K2 (for the individual records, the variance of the added

noise ranges from 0.3 K2 to 4.9 K?). Thus, the GPR training procedure seems to be able to learn a realistic magnitude of the

added noise.
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Figure 8. Welch power spectra of the MPIESM-TCp2k reconstructions for the full (red) and sparse (yellow) emGPR. (a,d) first step with
perfect pseudoproxies and constant proxy availability. (b,e) second step with perfect pseudoproxies and realistic proxy availability according

to the PAGES2k database. (c,f) third step with white-noise added to the proxies and realistic proxy availability, grey shading indicates the
95% confidence interval of the target spectrum. The power spectral density (PSD) is given in K yr.
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Interestingly, the increased flexibility of the GP through the higher o2 not only yields robust reconstructions in the presence

of uncertain pseudoproxies, it also seems to improve the performance of the sparse emGPR—atleast-for-the-ecases-with-ideal

proxy-avattability (FEnpp)— It is possible that the presence of noise makes the sparse emGP less sensitive to overfitting. To
test this, we have repeated TCppp and TCnpp for the sparse emGP with a network consisting of only half the number of
pseudoproxies (randomly selected from the original networks). We would expect the difference in skill to decrease with the
smaller networks, if overfitting was indeed the reason. The difference between the reconstruction with perfect and noisy data
is indeed reduced with respect to the full networks (Fig. D1). The TC reconstruction has a comparable reconstruction skill
to single TCnpp reconstruction members with both MPIESM and CCSM4-based pseudoproxies. We, therefore, conclude that
the improved performance of the sparse emGP with noisy data can at least partly be attributed to a greater robustness against

Here, we have only tested white-noise pseudoproxies, i.e. we assume that the noise in the pseudoproxy records is not
correlated in time. The typical noise model for o7:, which we apply here, also works with the assumption of uncorrelated
Gaussian white noise. For real proxies this may not always be the case. There are ways of adapting the noise model to include,
e.g., correlated noise (see Rasmussen and Williams, 2006). The embedding space would be a good starting point for this, as
we explicitly take the time dimension into account. The noise model would introduce additional hyperparameters and make
the calibration more complex. If we simply used our current set-up with correlated noise, the model might interpret some of
the noise correlation incorrectly as actual data-correlation. This could be the subject of a follow-up study.

4.2 Hyperparameter estimation and overfittin

The full emGPR achieves generally higher reconstruction skill than the sparse emGPR (one exception is the TCnpp case with
€EM4-based-CCSM4-based pseudoproxies). This could be expected, since the sparse emGPR approximates the covariance
matrix based on only a tenth of the available training data, i.e the subset of selected inducing points. Possibly, the hyperpa-
rameters are more accurately learned from the full dataset. Another possibility is that the location of the inducing points in
non-optimal. We have initialised the inducing points as every tenth step in time and then optimised the location during training.
We have not tested other setups of the inducing points. It is possible that a higher number or differently selected inducing points
would result in a higher reconstruction skill.

The optimisation of the hyperparameters is an additional source of uncertainty. The learned set of hyperparameters may not
always be the optimal set. We did not make any sensitivity tests regarding e.g. initialisation of the hyperparameters. But the fact
that the training of the full emGPR resulted in similar hyperparameters for all three MPIESM-based test cases (TCppp,TCnpp
and TCp2k) gives us confidence that the estimated hyperparameters for the full emGPR are accurate. The hyperparameters that

can-be-interpreted-physieallyhave a straightforward physical interpretation, i.e. the typetalHengthseale-of-the-kernel-over-the

typical lengthscale [, mMand the noise variance o2, also appear reasonable

in their magnitudes in most cases —(red stars in Fig. 5). The timescale of the full emGP is on the order of 2.7 years, which is
a reasonable timescale of auto-correlation. As discussed above, g2 captures the magnitude of the mean added noise variance

across all records. The signal variance or2~ =0.12 indicates a temporal temperature variability of approximately 0.35 K. For all
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selected pseudoproxies, the temporal variability ranges from 0.28 to 1.15 K. The estimated g, is thus on the lower end of
plausible values. The timescale 1, and variance o , of the second kernel are less straightforward to interpret, as they operate.
across space and time. However, 0% ,, should somehow reflect the mean temperature variability across all records and time. The
estimate of 0% ,=0,51 indicates a variability of 0.71. This is a fairly close estimate of the actual 0.82 K of the underlying data.

Based on the comparison of the hyperparameters across all experiments, we identify two possible cases of non-optimal
hyperparameters: ()-First, the TCppp case with the sparse emGPR, based on both MPIESM and CCSM4 pseudoproxies.
Here, the estimated typical timescale [ ; is much shorter than that estimated from the full emGPR (left halves of Fig. 5a and
Fig. B4a. {2)-And second, the TCnpp case with the full emGPR and CCSM4-based pseudoproxies. In this case, the noise

variance was not identified-eorreetly—correctly estimated. Instead, the noise variance was attributed to the signal variance O'J% -

The values of o2 and ‘712",r appear switched compared to the other TCnpp experiments (compare right halves of Fig. B4b

and ¢, and Fig. 5b and c). Repeating the CCSM4-based TCnpp experiment with switched o2 and g% _ slightly increases the
reconstruction skill, but the skill remains lower than for the TCnpp with the sparse emGPR (not shown). This illustrates how

difficult it is to find an optimal set of hyperparameters.

The-skilt-of-As with all reconstruction methods, it is possible that the (hyper)parameters learned during training are not
proxy availability, we have repeated the TCp2k experiment with the full emGP for the years 1000-1500 (Fig.D2). The new.
hyperparameters indicate a smaller signal variance and shorter auto-correlation timescale (red and grey diamonds in Fig. D3).
are difficult to account for with real-world data. By training the emGP with the maximum of available proxy data, we try to get
the best mean estimate, but cannot fully avoid the effect of non-stationarity.

4.3 Embedding distance

As well as the hyperparameters, also the embedding distances are not constant in time (Fig. D4). Changing cross-correlations

may lead to under- or overestimation of individual records during certain periods. Again, this is something which is difficult to
account for with real world data, and by calculating the embedding distance over the entire periods of proxy availability we try.
to find the best mean distance estimate.

Another source of uncertainty is the choice of the distance metric on which the creation of the embedding space is based.
We have tested equidistant coordinates, cross-correlation and cross-correlation with standard deviation ratio and selected the
latter metric. But of course, other ways of constructing the embedding space could be possible, The optimal embedding space
may differ for each proxy network and proxy properties. This is definitely worthy of further investigation.

4.4 Climate model dependence

The skill of all three methods, including the benchmark PCR, depends to some degree also on the climate model from which the
pseudoproxies are derived. This is a known issue (Smerdon et al., 2011). The full emGPR performs better in the MPIESM-based
experiments, the PCR performs better in the CCSM4-based experiments and the sparse emGPR performs about equally well in
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both model worlds. Source of the different skill could be the differences in the network size and location of the pseudoproxies
and differences in the cross-correlation structure. It isef-eourse-, of course, difficult to say --whether a reconstruction with real
proxies will behave more like the MPIESM-based experiments or more like the CCSM4-based experiments. But regardless of
the differences in skill, the fact that the emGPR has higher reconstruction skill in the more realistic TCnpp case and suffers

from a much smaller variability loss than the PCR in both model worlds, makes-gives us confidence that emGPR will also

improve the reconstructed variability in a real reconstruction.

4.5 Using real proxies and wider applications

The pseudoproxy experiments give a good first impression of how the reconstructions may behave with real proxies. Nonethe-
less, even though the third step of TCp2k (noise contamination and variable proxy coverage) is already quite realistic, it is still
idealised. E.g. in the pseudoproxy setup, we calculate the distance matrix D based on the whole length of the simulation. With
real proxies, each proxy record has a different length and covers a different period. In this case, the distance matrix could be
calculated based either on a common time period where all records are available (this could be a very short period), or it could

be the period of overlap for each individual pair of records. fa-the-

In principle, the framework presented here can be applied to any climate index that exhibits significant correlations with
local proxy sites. It is thus not limited to the AMVI application presented here. With real proxies, that do not all come in units
of °C (e.

In this case, the embedding distance would no longer need to include the SR-scaling. A simple dependence on the CC might
be sufficient. This remains to be tested.

In order to use this framework for indexes that operate on longer timescales, it might become necessary to include records
with lower temporal resolution. This would require subsampling of all records to the lowest common resolution, which is
common practice in long-term reconstructions. It might also be possible to train one emGP model for the high-resolution
records and one for the low resolution-records. The caveat here is that the observational period is often too short to include
enough training data for the low-resolution records. But this is true for all reconstruction methods and not unique to the emGP.

framework here.

., lake sediments, tree ring width, isotope ratios), it might make more sense to standardise all records to unit variance.

In the TCnpp cases, we created 30 different white noise realisations to estimate the noise-related uncertainty. With real prox-
ies, weoef-eourse, of course, only have one realisation of the data and cannot run noise ensembles. But one could think of other
ways of generating ensembles, e.g. with slightly different hyperparameterser, slightly different ways of constructing the dis-
tance matrix or inclusion of different noise models for o2. This would instead give insight into the other more methodological

sources of uncertainty.
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5 Conclusions

710 We have developed and tested a new method for proxy-based climate-index reconstruction. Our aim was to reduce the under-
estimation of variability on AMV-relevant timescales (decadal to multi-decadal), which is a common drawback of established
reconstruction techniques such as PCR. To this end, we applied Gaussian Process regression and developed a modified in-
put space, which we denoted embedding space. We tested two versions of GPR, a full version and a stochastic variational,
i.e. sparse, version. The full version is generally more accurate but comes at high computational costs and can only handle a

715 limited amount of data. As a benchmark comparison, we also computed AMVI reconstructions with PCR.

Under ideal conditions (TCppp: pseudoproxies contain only the climate signal, all records available over the entire recon-
struction period), the full embedded GPR performs at least as well as the PCR; in the pseudoproxy experiments based on
MPIESM the embedded GPR achieves an even higher reconstruction skill and suffers almost no variance loss. Under more
realistic conditions (TCnpp: pseudoproxies contaminated with non-climatic white noise, all records available over the entire

720 reconstruction period), the reconstructions skill of the PCR strongly decreases, and both the full and the sparse embedded GPR
clearly outperform the PCR. The GP-based reconstructions have an overall small mean bias and reconstruct the variability on
AMV-relevant timescales much more accurately. Under even more realistic conditions (TCp2k: pseudoproxies contaminated
with non-climatic white noise, records have different length and cover different periods), the sparse embedded GPR still has an
overall small mean bias but suffers a strong variance loss, while the full embedded GPR is still capable of reconstructing the

725 variability on the timescales of interest accurately.

Of course, it remains to be seen how the embedded GPR performs with real proxies. As a next step, we will perform a real
AMVI reconstruction based on the PAGES2k proxy network. Based on the results presented in this study, we are confident that
climate-index reconstructions can be significantly improved with embedded GPR. A more accurate reconstruction of the mean
state and the magnitude of variability will help ir-advanetng-advance our understanding of AMV dynamics, e.g., especially

730 during periods of extreme cooling following volcanic eruptions.

Code and data availability. The extracted pseudoproxy data and the simulated AMVI from the MPIESM and CCSM4 simulations as well as
the python scripts for the preparation of the pseudoproxy network, the preparation of the embedding space and the GP regression are provided
in the supplement of the paper. The used Python packages Scikit-learn (v.0.19.1), TensorFlow (v.1.12.0) and GPflow (v.1.3.0) are publicly
available. The PAGES2k database can be downloaded here: https://doi.org/10.6084/m9.figshare.c.3285353. The CCSM4 past1000 and histor-
735  ical simulations can be obtained from the World Data Center for Climate (doi:10.1594/WDCC/CMIP5.NRS4pk and doi:10.1594/WDCC/CMIP5.NRS4hi,

respectively).
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Appendix A: Calculating the posterior predictive distribution

Given a set of observed data y = y; = f(x;), the objective is to provide the probability distribution at a yet unobserved data
point z, f(z), conditional on the available observations. This is achieved by the application of the Bayes theorem. Before
the application of Bayes theorem, the prior for f(z) is just the assumed probability distribution for the Gaussian process,
with mean fi,,ior(2) and variance covp,ior = k(2,2). Usually, fiprior is assumed to be zero without loss of generality (e.g.

by taking anomalies from the mean). It is also assumed that observations are a realisation of a noisy Gaussian process, which

2

are contaminated by uncertainty in observations, i.e, y; = f(x;) + €. The noise € is assumed to be Gaussian with variance o,

and uncorrelated across the locations x;. After the application of Bayes theorem, the mean and variance can be calculated

according to the following predictive equations (for a detailed derivation see Rasmussen and Williams, 2006):

Hpost (2) = k:(z,x)T[k(x,x) + aﬁl]fly (A1)

CoVpost(2) = k(2,2) — k(z,x)[k(x,%x) + o217 k(x,2) (A2)

where I is the identity matrix. These equations can be interpreted as follows. The posterior mean is a linear combination
of observations Y and the process covariances between positions of the available observations and the new position k(z,x).
Usually, the kernel is assumed to decrease with increasing separation between locations. This implies that when the new
position z is out of the range of available observations, the posterior mean will tend towards the prior mean. The posterior

variance is smaller than the prior variance, since the available observations reduce the range of likely values of f(z).
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Appendix B: CCSM4 pseudoproxies
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Figure B1. The selected pseudoproxy records and resulting distance metrics based on the CCSM4 simulation. (a) the locations of the

records, colour-coded with the correlation between the records and the AMV during the last 150 simulation years (after detrending); (b)

cross-correlation; (¢) standard deviation ratio and (d) the resulting embedding distances from the combination of both. Matrix indexes 1 to

25 are the selected pseudo proxy records as labeled in (a), index 26 is the simulated AMV index. The diagonal entries in (d) are left empty

because zero cannot be displayed on the logarithmic color scale.

39



0.75
(a) —— emGP_f r=0.95
0507 —— target R, =0.94

0251 b=-0.29

AMVI [K]

0.00 1

—0.251

-0.501

0.75
(C) emGP s r0.70
0.50 —0X target Rs=0.67

0.251 b=0.55

0.00 |

AMVI [K]

—0.251

-0.50_

e 0.75
( ) 0.50 1

0.251

0.00 1

AMVI [K]

—0.251

-0.50{ . , , . , 1073 — —
1500 1600 1700 1800 1900 2000 10 10
Years (AD) Frequency (yr™1)

Figure B2. Reconstructions with perfect CCSM4-pseudoproxies based on (a,b) the full emGPR, (c,d) the sparse emGPR (e,f) PCR. Left-
hand panels show the smoothed reconstructed and target timeseries. The dashed line marks the separation between training and testing
periods. Shading indicates the 95% confidence interval. The metrics 7, R, and b denote correlation, the ratio of standard deviations and
the bias relative to the target standard deviation, respectively. Subscripts sm and yr denote smoothed and unsmoothed data, respectively.
The metrics are calculated for the reconstruction period (1500 to 1850). Right-hand panels show the Welch powerspectra of the target and
reconstructed AMVI. Shading indicates the 95% confidence interval. The power spectral density (PSD) is given in K yr.
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Figure B3. Reconstructions with noisy CCSM4-pseudoproxies based on (a,b) the full emGPR, (c,d) the sparse emGPR (e,f) PCR. Left-hand

panels show the smoothed reconstructed and target timeseries. The dashed line marks the separation between training and testing periods.

Thin lines show the individual ensemble members, the bold line indicates the ensemble mean. The metrics r, R, and b denote correlation,

ratio of standard deviations and the bias relative to the target standard deviation, respectively. Subscripts sm and yr denote smoothed and

unsmoothed data, respectively. The metrics are calculated for the ensemble mean during the reconstruction period (1500 to 1850). Right-hand

panels show Welch powerspectra of the target and reconstructed AMVI. Thin lines indicate the spectra of the individual ensemble members,

the bold line indicates the spectrum of the ensemble mean. Shading indicates the 95% confidence interval of the ensemble mean spectrum.

The power spectral density (PSD) is given in K2 yr.
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Figure B4. The respective hyperparameters for different training periods with CCSM4-based perfect pseudoproxies (left halves of the panels)
and the different white noise ensemble members (right halves of the panels). The hyperparameters are (a) the typical lengthscales [ ; and
lf,r, (b) the signal variance a?,t and a?,r, and (c) the noise variance 2. The subscript ¢ indicates that the kernel operates only on the time
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The signal and noise variance are given in K.
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Appendix C: Metrics of TCnpp ensemble members
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Figure C1. Distribution of skill metrics for the ensemble of reconstructions with noisy MPIESM-pseudoproxies with (a) the full emGPR,
(b) the sparse emGPR and (c¢) PCR. The histograms show the respective distributions, the vertical lines indicate the ensemble mean. The
rinted values denote the mean and spread (2¢0°) which are also reported in the text and Fig.4.
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Figure C2. Distribution of skill metrics for the ensemble of reconstructions with noisy MPIESM-pseudoproxies and realistic data-availabilit
with (a) the full emGPR and (b) the sparse emGPR. The histograms show the respective distributions, the vertical lines indicate the ensemble
mean. The printed values denote the mean and spread (20) which are also reported in the text, Fig.6 and Fig.7.
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Figure C3. Distribution of skill metrics for the ensemble of reconstructions with noisy CCSM4-pseudoproxies with (a) the full emGPR, (b
the sparse emGPR and (¢) PCR. The histograms show the respective distributions, the vertical lines indicate the ensemble mean. The printed
values denote the mean and spread (20) which are also reported in the text and Fig.B3.
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Appendix D: Sensitivity experiments
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Figure D1. Sensitivity experiments similar to TC and TCnpp with the sparse emGP but with only half the number of pseudoproxies.

Reconstructions based on (a) eleven MPIESM-based pseudoproxies and (b)

the reconstruction with perfect pseudoproxies, the lower panels show the reconstruction with nois

46

seudoproxie:

S.

twelve CCSM4-based pseudoproxies. The upper panels show




(a) 0.75 r=0.91

—— target

< Ry=0.89
¥ 0501 — emGp f ? ;
D §
& 0.25- ;
+—

3

2 0.00-

i

> _ |

< 0.25

<

—0.504 hyparams: 1000-1500

(b) 07> r=0.88

Y 0.50- Rys=1.25

©

L 0.251

bt

3

€ 0.00-

7]

S _ l

: 0.25

—0.504 hyparams: 1500-2000
1000 1100 1200 1300 1400 1500

Years (AD)

Figure D2. (a) Sensitivity experiment similar to TCp2k with the full emGP but the hyperparameters are estimated for the period 1000-1500
where the proxy availability is strongly reduced (see Fig. 1b). The AMVI during the years 1350-1500 has been used for training. (b) AMVI
reconstruction for the same period from Fig. 6b for comparison. Here, the hyperparameters were estimated for the period 1500-2000.
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Figure D3. Hyperparameters of the sensitivity experiment shown in Fig.D2. Red diamonds correspond to the period 1000-1500, gre

diamonds to the period 1500-2000 (grey diamonds here are the same as the red diamonds in Fig. 5). The hyperparameters are (a) the

typical lengthscales .+ and L¢ ., (b) the signal variance o2

operates only on the time dimension; the subscript r indicates that the kernel operates on all dimensions, including time (see Eq. 6 and 7).

The lengthscales are unitless, corresponding to the unitless distance of the embedding space. The lengthscale /¢ ; can be transformed into
ears through division by 1.10. The signal and noise variance are given in K>.

and o2 ., and (c¢) the noise variance af. The subscript ¢ indicates that the kernel
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Figure D4. Changes of the embedding distance between the AMVI and the pseudoproxy records (Eg. 5) calculated over a running window

of 151 years. The anomalies are calculated against the mean distance over the entire period. Blue shading indicates a smaller distance, i.e.

more similar records. Red shading indicates a greater difference, i.e., less similar records. The numbers on the y-axis are the correspond to

the pseudoproxy numbering in Fig. 1.
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