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Abstract. We present a new framework for the reconstruction of climate indices based on proxy data such as tree rings.

The framework is based on the supervised learning method Gaussian Process Regression (GPR) and designed to preserve

::::
aims

::
at

:::::::::
preserving the amplitude of past climate variabilityand to .

::
It

:::
can

:
adequately handle noise-contaminated proxies and

variable proxy availability in
:::
over

:
time. To this end, the GPR is performed

:::::::::
formulated

:
in a modified input space, termed

:::
here

:
embedding space. We test the new framework for the reconstruction of the Atlantic Multi-decadal Variability (AMV) in a5

controlled environment with pseudoproxies derived from coupled climate-model simulations. In this test environment, the GPR

outperforms benchmark reconstructions based on multi-linear Principle
::::::::
Principal Component Regression. On AMV-relevant

timescales, i.e., multi-decadaltimescales, the GPR is able to reconstruct the true magnitude
::::::::
amplitude

:
of variability even if the

proxies contain a
:::::::
realistic non-climatic noise signal and become sparser back in time. Thus, we conclude that the embedded

GPR framework is a highly promising tool for climate-index reconstructions.10

1 Introduction

Climate indices are important measures to describe the evolution of climate on regional, hemispheric or global scales in a

condensed way. They reveal relevant timescales of climate variability and
:
,
:
in some casesalso relevant ,

::::
also

:
subspaces that

are important for predictability. Paramount examples are the El Niño-Southern Oscillation, the North Atlantic Oscillation

and the Atlantic Multi-decadal Variability (AMV). To understand whether the typical timescales and magnitude of climate15

variability have been stationary over time or whether they have changed, e.g., with anthropogenic climate change, we need

a long-term perspective on these climate indices. The index-timeseries must not only cover the historical period of the past

150 years but also the preindustrial period
:::::
period

::
of

:::::::
interest,

:::
e.g., i.e., the past 1000 to 2000 years

::::::::
(Common

::::
Era). To obtain

these long timeseries we need information from so-called climate proxies (e.g. tree rings, sediment cores) in combination with

sophisticated statistical models to reconstruct the climate indices from the proxy data. We present a new machine-learning20

framework for climate-index reconstructions and test its skill for reconstructing the AMV.

The AMV is an important index that describes the North Atlantic climate variability on decadal and longer timescales.

Different definitions of the AMV have been developed over time, but the basic definition relies on the low-pass filtered spatial

average of sea surface temperature anomalies over the North Atlantic. Observations starting in about 1850 indicate that the
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AMV varies on typical timescales of 30 to 60 years. The state of the AMV plays a key role for many relevant climate phenomena25

such as Arctic sea-ice anomalies (Miles et al., 2014), North American and European summer climate, Hurricane
::::::::
hurricane

seasons and Sahel rainfall (Zhang and Delworth, 2006; Zhang et al., 2007).

The origin of the AMV remains a topic of active debate (see Zhang et al., 2019, for a recent review). One of the main

questions is whether the variability is mainly induced by oceanic or atmospheric processes. Atmospheric simulations coupled

to a slab ocean produced very similar spectra to the observed AMV , suggesting that the AMV could be generated purely30

from atmospheric variability (Clement et al., 2015). This is also called the red noise hypothesis, according to which the AMV

is the red-noise response to atmospheric white-noise forcing. This hypothesis, however, is not compatible with other AMV

features, as described in Zhang et al. (2019). A multi-variate AMV index suggests that the observed AMV is mainly driven by

changes in the ocean circulation, especially the Atlantic Meridional Overturning Circulation (AMOC, Yan et al., 2019). This

does, however, not exclude a contribution of atmospheric processes because ocean-driven variability also includes coupled35

air-sea feedbacks (e.g., Garuba et al., 2018; Zhang et al., 2019).

A second main question is
::::
Both

:::::::::::
atmospheric

::
as

::::
well

:::
as

:::::::
oceanic

::::::::
processes

:::::
have

::::
been

:::::::::
suggested

:::
as

:::::::
possible

::::::
drivers

:::
of

::
the

::::::
AMV

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Clement et al., 2015; Zhang et al., 2019; Yan et al., 2019; Garuba et al., 2018, e.g.).

::
It
::
is
::::

not
:::::
clear,

:
how much of

the variability is due to internal
::::
AMV

::
is
:::::::::
generated

::
by

:::::::
internal

:::::::
climate variability and how much results from the response

to external changes in radiative
:
is
:::::::::

generated
:::
by

:::::::
changes

::
in
::::::::

external
:::::::
radative

:
forcing, i.e., through volcanic

:::::::
volcanic

::::
and40

:::::::::::
anthropogenic

:
aerosols, solar insolation and greenhouse gas changes . On the one hand, analyses of 20th century SST observations

(Haustein et al., 2019) as well as preindustrial control simulations with coupled climate models (Mann et al., 2021) suggested

a limited role for internally generated variability but rather advocate that the AMV is the result of competing anthropogenic

forcing (aerosols and greenhouse gases) and volcanic forcing. On the other hand, the dominant role of the AMOC (Garuba et al., 2018) indicated

that a large part of the observed AMV is due to internally generated oceanic variability.
::::::::::::::::::::::::::::::::::
(Haustein et al., 2019; Mann et al., 2021).45

Given the dominant multi-decadal timescales of the AMV, the
:::
The

:
observational period of approximately 150 years is not

sufficient to provide a long-term perspective on the AMV and finally address its relationship to external forcing
::
or

::
in

:::
fact

::::
any

::::::
climate

:::::
index

:::
that

::::::::
describes

:::::::::
variability

::
on

::::::
longer

:::::::::
timescales. Therefore, longer timeseries of the AMV are needed. Long AMV

timeseries
::::
These

:
are typically derived from climate reconstructions based on climate proxies such as tree rings, bivalves or coral50

skeletons (e.g. Gray et al., 2004; Mann et al., 2008; Svendsen et al., 2014; Wang et al., 2017; Singh et al., 2018). However,

these existing
::::
This

::::
kind

::
of

::::::::::::
reconstruction

::
is
:::::
based

:::
on

::::::::
statistical

::::::
models

::::
that

:::
link

:::
the

:::::
target

:::::
index

:::::
with

:::::
proxy

:::::::::
timeseries,

:::::
using

::
the

::::::::::::
observational

:::::
period

::
to
::::::::

calibrate
::::
their

::::::::::
parameters.

::::
The

::::::
trained

::::::
models

::::
then

:::
use

:::
the

:::::
much

::::::
longer

:::::
proxy

:::::::::
timeseries

::
as

:::::
input

::
to

::::::
provide

:::
an

::::::::
estimation

:::
of

::
the

:::::
target

:::::
index

::
in
:::
the

:::::
past.

:::::::
Existing

:::::
AMV

:
reconstructions disagree on the amplitude and timing of AMV variations

::::::::
variability, especially prior to the55

beginning of the 18th century (Wang et al., 2017). In addition, many reconstruction methods are known to underestimate the true

magnitude of low-frequency variability (Zorita et al., 2003; Esper et al., 2005; Von Storch et al., 2004; Christiansen et al., 2009).
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The exact reasons for the disagreement between previous AMV reconstructions are still unclear, but in
::
As

:
a
::::::::::::

consequence,

:::
they

::::
also

::::::
provide

:::::::::
conflicting

:::::
views

:::
on

:::
the

:::::
AMV

:::::::
response

::
to

:::::::
external

::::::
forcing

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Knudsen et al., 2014; Wang et al., 2017; Zhang et al., 2019; Mann et al., 2022).60

:::::::
Possible

::::::
reasons

:::
for

::::
this

:::::::::::
disagreement

::::
are

:::::::::
numerous.

::
In

:
general, the reconstructed variability will depend on the predictor

data, i.e.
:
, the number, types

:::::
quality

:
and locations of the proxies, as well as on the reconstruction method itself. Obvious

differences can be found in the .
::::::::
Previous

:::::
AMV

:::::::::::::
reconstructions

:::::::
differed

:::
in

::::
their

:
employed proxy networks , which were

either based purely on terrestrial records (Gray et al., 2004; Mann et al., 2008; Wang et al., 2017) or included
:::
and

:::::
types,

:::::
using

::::
only

::::::::
terrestrial

::
or

:
also marine records(Svendsen et al., 2014; Singh et al., 2018). Including

:
.
::
As

:::
an

::::::::
example,

::::::::
including marine65

records seems to be important to correctly capture the AMV in reconstructions (e.g., Saenger et al., 2009; Mette et al., 2021).

From the methodological side, limitations of linear methods could play a role. Linear methods might not capture the link

between proxies and the target climate index correctly; in this context some non-linear methods have already proved promising

(e.g. Hanhijärvi et al., 2013; Michel et al., 2020).
::::
yield

:::::
better

::::::::::::
reconstructions

::
of

:::::
AMV

:::::::::
variability

:::::::::::::::::::::::::::::::::::::
(e.g., Saenger et al., 2009; Mette et al., 2021).

:::::
Proxy

::::
data

:::
are

::::
only

::::::::
available

::
at

:
a
::::::
limited

:::::::
number

::
of

::::::::
locations

:::
on

:::
the

:::::
globe

::::::::::::::::::::::
(see e.g., PAGES2k, 2017),

::::
and

::::
their

::::::::::
availability70

::::::::
decreases

::::::
further

::::
back

::
in

::::
time.

:::::::
Proxies

::::
also

::::::
contain

:::::::
varying

:::::::
amounts

::
of

:::::::::::
non-climatic

::::::
signals,

::::
i.e.,

:::::
noise.

As a consequence of the disagreements between the existing AMV reconstructions, their analysis provided conflicting views

on the AMV response to external forcing (Knudsen et al., 2014).For instance, a reconstruction of the AMV during the past 12

centuries indicated that the combined contribution of solar and volcanic forcing explain only less than a third of the AMV

variance (Wang et al., 2017; Zhang et al., 2019). Another recent study, however, called into question whether external and75

internal AMV variability could at all be estimated reliably from reconstructions given the uncertainty in both the radiative

forcing and the reconstructed AMV indices (Mann et al., 2022)
::::::
Existing

::::::::::::
reconstruction

:::::::
methods

:::::
range

:::::
from

::::
very

::::::
simple

:::::
linear

:::::::
methods

::::
such

::
as

::::::::::
Composite

::::
Plus

::::::
Scaling

:::::::::::::::::::::::
(Jones and Mann, 2004) or

:::::::
Principal

::::::::::
Component

::::::::
Analysis

::::::::::::::::::::
(e.g., Gray et al., 2004),

:::
over

:::::
more

:::::::
complex

:::::
linear

::::::::
methods

::::
such

::
as

::::::::
Bayesian

::::::::::
Hierarchical

:::::::::
Modelling

::::::::::::::::::::
(Barboza et al., 2014) to

::::::::
non-linear

::::::::
methods

::::
such

:::::::
Random

:::::
Forest

:::::::::::::::::
(Michel et al., 2020),

::::::::
Pairwise

::::::::::
Comparison

::::::::::::::::::::::
(Hanhijärvi et al., 2013) or

::::
Data

::::::::::
Assimilation

::::::::::::::::::::
(e.g., Singh et al., 2018).80

The presence of noise , i.e., non-climatic or mutually unrelated variability , in the statistical predictors may result in biased es-

timations of parameters of the statistical models such as regression coefficients. This biased estimation in turn leads to a biased

amplitude of reconstructed variabilitywhen the predictors are proxy records, or biased estimation of forced variability when

the predictor is
::::::::
Especially

::::::::::::::
regression-based

:::::::
methods

:::
are

::::::
known

::
to
::::::::::::
underestimate

:::
the

::::
true

:::::::::
magnitude

::
of

:::::::::
variability,

:::::::::
especially

::
on

:::::
lower

::::::::::
frequencies

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zorita et al., 2003; Esper et al., 2005; Von Storch et al., 2004; Christiansen et al., 2009).

:::::
They

::::
also

::::
tend85

::
to

:::::::
"regress

::
to

:::
the

::::::
mean",

:::
i.e.

::::
they

::::
have

:::::::::
difficulties

::
in
::::::::::::
reconstructing

::::::
values

::::
that

::
lie

::::::
outside

:::
the

:::::
range

:::
of the uncertain external

forcing (Zorita et al., 2003; Von Storch et al., 2004; Christiansen et al., 2009)
::::::::
calibration

:::::
data.

::::
This

::
is
:::::::

further
::::::::::
exacerbated

:::
by

::
the

::::::::
presence

::
of

::::::
strong

:::::::
warming

::::::
trends

:::
and

::::::::
shortness

::
of

:::
the

::::::::
available

:::::::::
calibration

:::::
period

:::::::::::::
(approximately

::::
150

:::::
years).

Thus, robust reconstruction methods are needed in order to produce more reliable estimates of the amplitude of the past

variability of the AMV in order to better quantify its response to external forcing. This is also a precondition for an un-90

biased detection of any ’unusual’ observed trends and for the subsequent attribution of those trends to a particular forc-

ing, e.g., anthropogenic greenhouse gases. To this end, we need to design reconstruction methods which are more robust

against noise and, importantly, do not strongly ’regress to the mean’ when the predictors become more noisy or scarce back
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in time.
::
As

:::
in

:::::
many

:::::::::
disciplines,

::::::::
machine

:::::::
learning

::::::::
methods

::::
have

:::::::::::
successfully

::::::
gained

:::::::
traction

::
in

:::
the

:::::::
climate

::::::::::::
reconstruction

:::::::::
community

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Michel et al., 2020; Zhang et al., 2022; Wegmann and Jaume-Santero, 2023).

:::::
Here,

:::
we

::::::
explore

:::
the

::::::::
potential95

::
of

:::
the

::::::::
non-linear

:::::::::
supervised

:::::::
learning

:::::::
method

:::::::
Gaussian

:::::::
Process

:::::::::
Regression

::::::
(GPR)

:::
for

::::::
climate

:::::
index

:::::::::::::
reconstructions.

::::
GPR

:::::
finds

:::::::
growing

:::
use

::
in

:::::::
climate

::::::::::
applications

::::
such

:::
as

::::::
climate

::::::
model

::::::::
emulators

::::::::::::::::::::::
(Mansfield et al., 2020) or

:::::::::::::
reconstructions

::
of

:::
sea

:::::
level

::::
fields

:::::::::::::::::::
(Kopp et al., 2016) and

::::::
global

:::::
mean

::::::
surface

::::::::::
temperature

::::::::::::::::::
(Büntgen et al., 2021).

:

:::::
Unlike

:::::
other

::::::::
machine

:::::::
learning

::::::::
methods,

::::
such

::
as

::::::
neural

::::::::
networks,

:::::
GPR

:::::
offers

::::::
greater

:::::::::::
transparency

::::
and

::
is

:::
less

::
of

::
a
::::::
"black

::::
box".

::::
The

::::::
number

::
of

::::
free

:::::::::
parameters

::
is

::::::
usually

:::::
much

::::::
smaller

:::
and

::::::
ideally

:::
the

:::::::::
parameters

::::
have

:
a
:::::
more

:::::
direct

:::::::
physical

:::::::::::
interpretation.100

:
A
::::::::

Gaussian
:::::::
Process

::::
(GP)

::::::::
describes

::
a
::::::::::
distribution

::::
over

::::::::
functions

::::
with

:
a
:::::
given

:::::
mean

::::
and

:::::::::
covariance

::::::::
structure.

::::
The

:::::::::
covariance

:::::::
structure

::
is

::::::
chosen

::::
such

:::
that

:::
the

::::::::
resulting

::::::::
functions

:::
best

::::::
match

:
a
:::::
given

:::
set

::
of

:::::::::::
observations.

::::
This

::::
setup

:::::::
appears

::
as

:::::
more

:::::::
intuitive

:::
and

:::::
closer

::
to

:::
the

:::::
more

:::::::
familiar

::::::
family

::
of

:::::::::
regression

:::::::
methods

::::
than

:::::::::
convoluted

:::::
deep

:::::::
learning

:::::::::
structures,

:::::
which

::
in

:::
the

::::
end

::::
may

::::
need

::::::::
additional

::::::::::
algorithms

:::
for

::::
their

:::::::
physical

::::::::::::
interpretation.

::::::
GPR’s

:::::::::::::
non-parametric

::::::
nature

:::
has

:::
the

:::::::::
advantage

::::
that

:::
we

::
do

::::
not

::::
need

::
to

:::::
make

:::
any

::::::::::
assumptions

:::::
about

:::
the

::::::::::::
(non-)linearity

::
of

:::
the

:::::::::
underlying

::::::::::::
reconstruction

::::::::
problem.

::
As

::
a

:::::::
Bayesian

:::::::
method,

:::::
GPR105

:::::
comes

::::
with

:::
its

:::
own

::::::::::
uncertainty

::::::::
estimates,

::::::
which

::
is

:
a
::::
very

::::::::
important

::::::
feature

:::
for

:::::::::::
paleoclimate

:::::::::::
applications.

:::
We

::
do

:::
not

::::
only

::::
test

::::
GPR

::
as

::
a
::::::
climate

:::::
index

::::::::::::
reconstruction

::::
tool

:::
but

::::
also

::::::
propose

::
a
::::::::
modified

::::
input

:::::
space

:::
for

:::
the

::::::::::
GPR-based

:::::::::::::
reconstructions.

::
To

::::
this

::::
end,

:::
we

::::::
embed

:::
the

:::::
entire

::::::::
available

::::::
dataset

::::::
(proxy

::::
data

::::
and

:::
the

:::::
target

::::::
index)

::
in

:
a
::::::

virtual
::::::

space.
::::
The

::::::
location

:::
of

:::
the

::::
data

:::::::::
timeseries

::
in

:::
this

::::::
space

:::
are

:::::
based

:::
on

:::
the

::::::::
similarity

:::::::
between

::::
the

:::::::::
timeseries.

::::
The

:::::::
resulting

:::::
cloud

:::
of

::::
data

:::::
points

::
in

::::
this

:::::
virtual

::::::
space

:::
can

::
be

:::::::
viewed

::
as

::
a

:::::::
temporal

::::::::
sequence

:::
of

::::::
images

::::
with

:::::::
missing

::::::
values.

::::
The

:::::::::
covariance

::
of

::::
the

:::
GP110

:::::::
describes

:::
the

::::::::::::::
cross-correlation

:::::::
between

:::
the

:::::
proxy

:::::::
records

:::
and

:::
the

:::::
target

:::::
index

:::::
across

::::
time

:::
and

::::::
virtual

:::::
space.

:::
We

::::
use

::
the

:::::
GPR

::
to

::
fill

:::
the

:::::::
missing

::::::
values,

:::::
where

:::
we

:::
do

:::
not

::::
have

::::::::::
observations

:::
of

:::
the

:::::
target

:::::
index.

::::
This

::::::::
approach

::
is

::::::::
somewhat

::::::
similar

::
to
:::::::
kriging

::
in

::::::::::
geostatistics,

::::::
where

::::::::::::::
two-dimensional

::::
fields

:::
are

::::::::::::
reconstructed

:::::
based

::
on

:::::
point

::::::::::::
measurements

:::
and

::
a
::::::
known

:::::::::
covariance

::::::::
structure.

::
In

:::
our

::::
case,

:::
the

::::
input

:::::
space

::
is

:::
not

:::
the

:::::::::::
geographical

:::::
space

::
but

:::
the

::::::
virtual

:::::::::
embedding

:::::
space

:::
and

:::
the

:::::::::
covariance

::::::::
structure

:
is
:::::::
learned

::::
from

:::
the

::::
data.

::::
This

::::::
set-up

:::
has

:::
the

:::::::::
additional

::::::::
advantage

::::
that

:
it
::::
can

:::::
easily

:::::::::::
accommodate

:::::::
variable

::::::
proxy

:::::::::
availability

::
in

::::
time

::::
and115

:::
that

:::
the

:::::::::::
proxy-related

::::::::::
uncertainty

:::
can

::
be

:::::::
directly

:::::::::
accounted

::
for

:::
by

:::
the

:::::::::
parameters

::
of

:::
the

::::
GP.

To fully judge the methodological performance and related uncertainties, reconstruction methods need to be tested in so-

called pseudoproxy experiments (Smerdon, 2012). Many methods have already been tested in such controlled environments,

but the evaluation often lacks a thorough assessment of the method’s capability to reconstruct the magnitude of the variability on

different timescales. In particular, a reconstruction method must be able to capture extreme phases, again to ascertain whether120

the AMV is sensitive to sudden changes in the external forcing, e.g., after volcanic eruptions, but also to capture possible large

internally generated variations, which could occur independent of external forcing.

In this study, we present and test a new method for climate-index reconstructions in order to address the methodological

issues outlined above. The method is based on the non-linear supervised learning method Gaussian Process Regression (GPR

). As in many disciplines, machine learning methods have started to gain traction in the climate reconstruction community125

(e.g., Michel et al., 2020). GPR itself finds growing use in climate applications such as climate model emulators (Mansfield et al., 2020) or

reconstructions of sea level (Kopp et al., 2016) and global mean surface temperature (Büntgen et al., 2021). We have developed

a modified input space for the GPR-based reconstructions, which is designed to adequately handle proxy-related uncertainties

4



and variable proxy availability in time and to correctly capture the magnitude of multi-decadal variability. We test the method in

a
:::::
Here,

:::
we

:::
test

:::
our

::::::::
proposed

:::::::::
framework

::
of

:::
the

:::::::::
embedded

::::
GPR

::
in

::::
such

:
a
:
pseudoproxy environment and place special emphasis130

on the method’s skill of reconstructing extreme phases and the magnitude of variability
::
of

:::
the

:::::
AMV.

2 Methods and Data

2.1 Pseudoproxies and simulated AMV index

We generate the pseudoproxies from a simulation of the Common Era (i.e., the past 2000 years) with the Max Planck Institute

Earth System Model (MPI-ESM). The model version corresponds to the MPI-ESM-P LR setup used in the 5th phase of the135

Coupled Model Intercomparison Project (CMIP5, Giorgetta et al., 2013). A detailed description of the simulation can be found

in Zhang et al. (2022). The target of the pseudo-reconstructions is the simulated AMV index (AMVI). We define the AMVI

as the spatial mean of annually averaged sea surface temperature anomalies (SST) in the North Atlantic (0 to 70◦N and 80◦W

to 0◦E). The SST anomalies are calculated against the mean over the entire simulation period. We do not further detrend the

AMVI because it is difficult to define a meaningful trend period in the paleo context. In the case of real reconstructions, all140

proxies and the AMVI would be available for overlapping periods with different length, and it is not possible to define a

meaningful common trend which
:::
that

:
could be subtracted from all records.

The pseudoproxies are defined as timeseries of the simulated surface air temperature at the model grid points closest to

existing proxy sites in the PAGES2k database (PAGES2k, 2017).
::::
Over

::::
land,

:::
we

::::
use

:::
2m

::::::
annual

:::::
mean

:::
air

:::::::::::
temperature,

::::
over

:::::
ocean

:::
we

:::
use

::::::
annual

:::::
mean

:::
sea

::::::
surface

:::::::::::
temperature.

:
We do not use all available proxy sites from the PAGESk data base but145

only
:
a subset thereof. We limit our selection of proxy sites to those within the North Atlantic domain (10 to 90◦N and 100◦W

to 30◦E) with a temporal resolution of five years or higher
:::::
annual

::::::::
resolution

:::
or

::::
finer. Out of these, we further select only those

locations at which the pseudoproxies have a correlation of 0.35 or higher with the AMVI during the last 150 simulation years

(in this case, both the AMVI and the pseudoproxies are detrended before calculating the correlation). The final proxy network

consists of 23 pseudoproxies (Fig.1a).150

We test the embedded Gaussian Process Regression (emGP) in three test cases
:::::
design

::::
three

::::
sets

::
of

::::::::::::
pseudoproxies to account

for different sources of uncertainty: In the first test case (TCppp), we use perfect pseudoproxies, i.e., the pseudoproxies contain

only the temperature signal. In the second test case (TCnpp), we use noisy pseudoproxies, i.e., the pseudoproxies contain

additional non-climatic noise. The non-climatic noise is generated by adding white noise to the perfect pseudoproxies. The

amplitude of the white noise is defined such that the correlation between the noisy and the perfect pseudoproxies is 0.5; i.e., the155

amplitude of the white noise corresponds to the standard deviation of the perfect pseudoproxy times
√

3.
:::
This

::
is
::
a

:::::::::
reasonable

::::::
choice,

::
as

:::
the

:::::::::
correlation

:::
for

::::
real

::::::
proxies

:::::
with

::::::::::
observations

::::::
ranges

:::::
from

:::
0.3

::
to

::::
0.7.

:::
The

:::::::
amount

::
of

:::::
white

:::::
noise

:::::::
applied

::::
here

:
is
::::
also

::::
well

::::::
within

:::
the

:::::
range

::
of

:::::
other

:::::::::::
pseudoproxy

::::::
studies

:::::::::::::::::::
(e.g., Smerdon, 2012). To ensure that the performance with noisy

data is independent of the specific noise realisation, we create an ensemble of 30 noise realisations. In both TCppp and TCnpp

we assume that all records are available at every point in time, i.e., that the network size remains constant in time. In reality,160

different proxy records cover different periods and the network size is not constant (Fig.1b). Therefore, we set up a third test
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case (TCp2k) with realistic temporal proxy availability from the PAGES2k database and both perfect and noisy pseudoproxies.

::
In

::
all

:::::
three

:::
test

:::::
cases,

:::
the

:::::::::::
pseudoproxy

:::::::
records

::::
have

::::::
annual

:::::::::
resolution.

:
The reconstruction period corresponds to the last 500

simulation years for TCppp and TCnpp, and to the entire 2000 simulation years for TCp2k.

To test the sensitivity of the method to the underlying climate-model simulation, we repeat the test cases TCppp and TCnpp165

with an analogously derived set of 25 pseudoproxies and AMVI from simulations with the Community Climate System Model

(CCSM4, Gent et al., 2011). We combine the ’past1000’ simulation (Landrum et al., 2013; Otto-Bliesner, 2014) and one

’historical’ simulation (Gent et al., 2011; Meehl, 2014) from the CMIP5 suite and use the last 500 years of the combined data

set. From the historical simulations, we used the ensemble member r1i1p1. The results are displayed in Appendix B.

2.2
::::::::::

Benchmark
:::::::::::::
reconstruction170

::
To

::::
have

::
a

:::::::::
benchmark

:::
for

:::
the

:::::::::
GPR-based

::::::::::::
reconstruction

::
in
:::
the

:::::
cases

::::::
TCppp

::::
and

::::::
TCnpp,

:::
we

:::
use

:::::::::::::::::::
pseudo-reconstructions

::::
with

::
a

:::::::::
multi-linear

::::::::
Principal

::::::::::
Component

:::::::::
Regression

::::::
(PCR).

::::
PCR

::
is

::::
well

:::::::::
established

::
as

::
a

:::::::::::
climate-index

::::::::::::
reconstruction

::::::
method

::::
and

:::
has

::::
been

::::
used

::::
e.g.,

::
for

:::::::::::::
reconstructions

::
of

:::
the

:::::
global

:::::
mean

::::::
surface

::::::::::
temperature

::::::::::::::::::
(PAGES2k, 2019) and

:::
the

::::::
AMVI

::::::::::::::::::::::::::::::
(Gray et al., 2004; Wang et al., 2017).

:::
The

:::::::
selected

:::::
proxy

:::::::::
timeseries

:::
are

:::
first

:::::::::::
decomposed

::::
into

:::::::
principal

::::::::::
components

::::::
(PCs);

:::
the

:::::
latter

::
are

::::
then

:::::
used

::
as

::::::::
predictors

::
in

::
a

:::::
linear

::::::::::
least-squares

:::::::::
regression

::
to

::::::
obtain

:::
the

::::::
AMVI

:::
for

::::
those

:::::::::
timesteps

:::::
where

:::::::
proxies

:::
and

::::::
AMVI

:::::::
overlap.

::
In

:::::
other

::::::
words,

:::
the175

:::::
AMVI

::
is
:::::::::
expressed

::
as

::
a

:::::::
function

::
of

::::
PCs

::
of

:::
the

:::::::
original

:::::::
proxies

::::
(Eq.

:::
1).

:::
We

:::
do

:::
not

:::
use

:::
all

::::
PCs

:::
but

::::
only

:::::
retain

:::::
those

::::
with

::
a

:::::::::
cumulative

::::::::
explained

:::::::
variance

::
of

:::::::
99.5%.

:::
The

::::::
trained

::::::
model

:::
can

::::
then

::
be

::::
used

:::
to

:::::::::
reconstruct

:::
the

::::::
AMVI

::
for

:::::::::
timesteps

:::::
where

:::
we

::::
have

::::
only

::::::
proxies

::::::::
available.

:

AMV I(t) = fPCR(PC1(t), ...,PCn(t))
:::::::::::::::::::::::::::::::::

(1)

2.3 Gaussian Process Regression180

2.3.1 The Concept

Gaussian Process Regression (GPR) is a Bayesian, non-parametric, supervised learning method (Rasmussen and Williams,

2006). Just like a probability distribution describes random variables, a Gaussian Process (GP) describes a distribution over

functions with certain properties. A GP is described
:::::::::
determined by a mean function and a covariance function.

:

f(x)∼GP (µ(x),k(x,x’)) (2)185

The mean function µ(x) describes the mean of all functions within the GP at location x. In the absence of other knowledge,

it is typically assumed that the mean of all functions within the prior GP is zero everywhere. The covariance function k(x,x’)

describes the statistical dependence between the function values at two different points in the input space. The exact covariance

structure is defined
::::::::
prescribed by a kernel function. Kernel functions range from very simple (e.g. linear, radial basis functions)

to very
::::
more

:
complex (e.g., Matern functions, periodic). In principle

:
, there is no limit to the kernel complexity and finding190
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(a)

(b)

(c)

(d)

(e)

Figure 1. The selected pseudoproxy records and resulting distance metrics based on the MPIESM simulation. (a) the locations of the records,

colour-coded with the correlation between the records and the AMVI during the last 150 simulation years (after detrending); (b) the number

of available proxy records at the selected locations within the PAGES2k dataset over time; (c) cross-correlation; (d) standard deviation ratio

and (e) the resulting embedding distances from the combination of both. Matrix indexes 1 to 23 are the selected pseudo proxy records as

labeled
:::::
labelled

:
in (a), index 24 is the simulated AMVI. The diagonal entries in (e) are left empty because zero cannot be displayed on the

logarithmic color
::::
colour

:
scale.
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the right kernel can be considered an art in itself (e.g. Duvenaud et al., 2013). Once a general functional form of the ker-

nel has been chosen (e.g. radial basis function), the specific form is determined by the kernel hyperparameters
::::::::::
parameters.

::::
Since

::::
the

:::::::::
underlying

::::
GP

:::::
model

:::::
itself

::
is
::::::::::::::

non-parametric,
::::::
kernel

:::::::::
parameters

::::
are

:::::
often

::::
also

:::::::
referred

::
to

:::
as

::::::::::::::
hyperparameters

::::::::::::::::::::::::::
(Rasmussen and Williams, 2006). These hyperparameters are either prescribed apriori

:
a
:::::
priori

:
if they are known, or learned

from the data through optimisation
:
if
::::

they
::::

are
::::::::
unknown (e.g.

:::::::
through maximum likelihood estimation)if they are unknown.195

Based on the so-determined kernel, a covariance matrix is created by evaluating the kernel function for all pairs of available

observations in the training data. .
:

Without being constrained by data, the prior GP is a distribution of all functions with the given mean and covariance (Eq. 2).

In order to use the GP for regression and prediction, the prior GP is combined with the additional information from the training

data through Bayes theorem (Rasmussen and Williams, 2006). Thus, the posterior GP is obtained, conditional on the data.200

Predictions at unseen input points can then be made by calculating the joint posterior distribution conditional on the training

data and the unseen input points (see Appendix A and Rasmussen and Williams (2006) for a more detailed description).

In the simplest way of using GPR for AMV reconstructions, analogous to classical climate-index reconstruction methods,

the AMVI would be the target function f(x) and the proxy data the input data x. Once a suitable kernel is selected, its

hyperparameters are estimated through training with the available values of x and f(x). With the trained GP model, the205

probability distribution of the AMVI for past times can be estimated conditioned on the proxy data x for these past times.

One known drawback of GPs is the bad scaling behaviour of the computing time required to estimate the hyperparameters

with respect to the number of available observations, also called batch size. The training time of a GP scales with n3, where

n is the batch size. This is mainly due to the necessity to invert the covariance matrix (e.g., Rasmussen and Williams, 2006).210

Regression problems with more than 1000-10000 observations become difficult to handle with the original GP formulation

(hereafter full GP) due to time and computing memory limitations. Even though paleo data sets are not what we would typically

call Big Data, they can already become challenging for GPs if the reconstruction period spans thousand years or more.

Various GP variants have been proposed to overcome this limitation (e.g., Särkkä, 2013; Hensman et al., 2013). One variant

is the so-called stochastic variational GP (SVGP, Hensman et al., 2013). The SVGP combines stochastic gradient descent (i,e,215

training with minibatches), variational inference (i
::::
Thus,

:::
the

::::::::
posterior

:::
GP

::
is

::::::::
obtained,

:
i.e.inference through optimisation) and

a low-rank approximation of the covariance matrix based on so-called inducing points. Put simply, the inducing points are a

small subset of the original dataset that represents the properties of the complete dataset. In other words, the true GP posterior

is approximated by a GP that is conditioned on the inducing points. The location of the inducing points in input space can

either be prescribed manually (e.g. randomly) or they can be optimised along with the kernel hyperparameters. The training220

time of the SVGP scales with m3, where m is the number of inducing points(Hensman et al., 2013)
:
,
::::
only

:::::
those

::::::::
functions

:::
are

::::::
selected

::::
that

:::::
agree

::::
with

:::
the

:::::::
training

::::
data

::
in

::
a

:::::
given

:::::::::
uncertainty

::::::
range.

:::::::::
Predictions

::
at
:::::::::
previously

::::::
unseen

:::::
input

::::::
points

:::
are

::::
then

::::
given

:::
by

:::
that

::::::::
posterior

::::::::::
distribution

::
of

::::::::
functions

::::::::
evaluated

::
at

::::
those

:::::::
unseen

::::
input

::::::
points.

We test the suitability of both the full GP as well as the SVGP (hereafter sparse GP) for climate-index reconstructions. Our

scripts are based on the python package GPflow (Matthews et al., 2017). The hyperparameters are learned through optimisation225

8



with the Adam Optimiser (Kingma and Ba, 2014), which is provided with GPflow. For the full GP, we repeat the optimisation

step 1000 times. For the sparse GP, we initialise the inducing points as every tenth point in time and the optimise the locations

along with the hyperparameters. We use minibatches with a size of 2000 and repeat the optimisation step 4000 times. The

respective number of optimisation steps is sufficient for the estimated likelihood to reach an equilibrium.

2.3.2 Embedding Space230

As described above,

2.3.2
:::::::
Finding

:::
the

:::::
right

:::::::::
regression

:::::
space

::
As

::::::::
described

:::
for

:::
the

:::::
PCR, classical climate-index reconstruction methods formulate their underlying statistical model in a way

::
so that the climate index is assumed to be a function of temperature, the proxy values or e.g. principal components thereof.

In other words, the regression is performed in temperature/proxy/PC space; the proxies/PCs are the predictors and the climate235

index is the predictand. Initially, we tested the GPR in
:
If
:::
we

:::::::::
reconstruct

:::
the

::::::
AMVI

::::
with

:::::
GPR

::
in

:::
this

:::::::
classical

::::::
setup,

:::
the

:::::
target

:::::
AMVI

::::::::
becomes

:::
the

::::::::
posterior

:::::
mean

:::::::
function

::::
and

:::
the

::::::::::
covariance

::
is

::::::::
estimated

::::::
across

:::
the

:
proxy space. In this setup, the GP

::::
With

:::
the

::::::
trained

:::
GP

::::::
model,

:::
the

::::::
AMVI

:::
can

:::
be

:::::::::::
reconstructed

::
by

:::::::::
evaluating

:::
the

:::
GP

::
at

:::
the

:::::
proxy

::::::
values

:::
that

::::::::
occurred

::::::
during

:::
the

:::::::::::
reconstruction

:::::::
period.

:::
Fig.

:::
2a

:::::
shows

:
a
:::::::::
schematic

:::
for

:::
the

::::::::
regression

::
in

:::::
proxy

:::::
space

:::
for

:::
an

:::::::
example

:::::
where

:::
the

::::::
AMVI

::
is

:::::
given

::
as

:
a
:::::::
function

::
of

::::
two

:::::::::::
pseudoproxy

::::::
records

:::
p1 :::

and
:::
p2.

::
In

::::
this

::::::::
example,

:::
the

:::::::
posterior

:::::
mean

::::::::::::::
AMVI-function

:::::
forms

:
a
:::::::
surface

::
in

:::
the240

::::
space

:::::::
spanned

:::
by

::
p1::::

and
:::
p2.

::::
Note

::::
that

::
in

:::
our

:::::::::::
pseudoproxy

::::::::::
experiments

:::
we

:::
use

::
23

::::::::::::
pseudoproxies

:::::
(Fig.

:::
1a),

:::
so

:::
the

:::::
proxy

:::::
space

:
is
:::::::
actually

::::::::::::::
23-dimensional,

:::::
which

::
is

:::::::::
impossible

::
to

::::::::
visualise.

:

::
In

:::::
initial

::::
tests,

:::
the

::::
GPR

::::::::::::
reconstruction

::
in
:::::
proxy

:::::
space

:
did not perform better than the PCR; the underestimation of variability

was as strong as with the PCR
::::
well;

:::
the

:::::::::
variability

::
of

:::
the

::::::
AMVI

::::
was

:::::::
strongly

:::::::::::::
underestimated (not shown). One

::
A possible

explanation is that GPs cannot extrapolate well to ranges unseen during training. In
::
are

::::
very

:::::
good

:::::::::::
interpolators

:::
but

::::
bad

::
at245

:::::::::::
extrapolating

::
to

:
regions of the input space where available predictors are sparse , the GP

::::
proxy

::::::
space

:::
that

:::::
have

:::
not

:::::
been

:::::::
sampled

:::::
during

:::::::
training

::::
(e.g.

:::::
upper

:::
left

:::
and

:::::
lower

:::::
right

::::::::
quadrants

::
in

:::
the

:::::::
example

::
of

::::
Fig.

:::
2a)

::
or

:::::
where

:::::::::
predictors

::::::
become

::::::
sparse

:::::
(lower

:::
left

::::::::
quadrant

::
in

::::
Fig.

:::
2a).

::
In

:::::
those

:::::
cases,

:::
the

:::::
GPR

:::::::::
estimation will fall back to the prior mean function (regression to the

mean) . Instead they are very good interpolators. In order to make use of this, we tried to
:::
and

:::
the

::::::::
predictive

::::
skill

::::::::
becomes

::::
very

:::::
small.

:::::
From

:
a
::::::::::::
mathematical

:::::
point

::
of

:::::
view,

:::
this

:::::
setup

::
of

:::
the

:::::::::
regression

::
in
::::::

proxy
:::::
space

::
is

::::
also

:::::::
actually

:::
not

:::::::
suitable

:::
for

:::::
GPR.250

:::::::::
Real-world

::::::
proxies

:::::
come

::::
with

:::::
large

:::::::::::
uncertainties,

:::
and

:::::
while

::::
GPs

:::
are

:::::::
designed

::
to

::::::
handle

::::::::
uncertain

::::::
targets,

::::
they

::::::
assume

::::
that

:::
the

:::::
inputs

:::
are

:::::::
without

::::::::::
uncertainty.

:::::::::
Therefore,

:::
we approach the problem differently and set up the GP in a modified input space,

which we denote here as embedding space. We will refer to this setup as embedded GPR (emGPR)
::::
GPR

::
in

::
a

:::
way

::::
that

::::::::
leverages

:::
two

::::
GPR

:::::::::
strengths:

::
(1)

:::::
being

:::::
good

:::::::::::
interpolators

:::
and

:::
(2)

:::::::
handling

::::::::
uncertain

::::::
targets.

We255

::
In

:::
our

::::
new

:::::::::
approach,

:::
we embed the entire available data set (the selected proxy

:::::::::::
pseudoproxy records and AMVI at all

points in time where observations are available) in a virtual space. Time is considered as an additional dimension of the

embedding space. Each timeseries is assigned a constant location in this virtual space so that the positions of the
:::
The

:::::
cloud
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Figure 2.
::::::::
Schematic

:::::::::
visualisation

::
of

:::
the

:::::::
regression

::::::
spaces

::
for

::
an

:::::::
example

:::
with

:::
two

:::::
proxy

:::::
records

:::
p1 :::

and
::
p2 :::

and
::
the

::::::
AMVI.

::
(a)

:::
GPR

::
in

:::::
proxy

::::
space:

::::
The

:::::::::
independent

:::::::
variables

::
are

:::
the

:::::::::
temperature

::::::::
anomalies

::
of

::
the

:::::
proxy

::::::
records;

:::
the

:::::::
dependent

:::::::
variable

:
is
:::
the

:::::
AMVI

:::::::::::
(colour-coded)

:::
(b)

::::
GPR

:
in
:::
the

:::::::::
embedding

:::::
space:

::
the

::::::::::
independent

:::::::
variables

::
are

:::
the

:::::::
locations

::
in

:::
the

::::::::
embedding

:::::
space

:::
and

::::
time,

::
the

::::::::
dependent

:::::::
variables

:::
are

:::
the

:::::::::
temperature

:::::::
anomalies

::
of
:::
the

:::::
proxy

::::::
records

:::
and

::
the

::::::
AMVI

:::::::::::
(colour-coded).

::
In

:::
this

::::::::
simplified

:::::::
example,

:::
the

::::
three

::::::::
timeseries

::
are

::::::
located

::::
such

:::
that

::
the

:::::::
distance

::::::
between

::::
them

::
is

::::
equal

:::
for

::
all

::::::::
respective

::::
pairs

::
of

::::::
records.

::
of

::::
data

:::::
points

::::
can

::
be

:::::::
viewed

::
as

:
a
::::::::

sequence
:::

of
::::::
images

::
in

::::
this

::::::
virtual

:::::
space.

::::
The

::::::
images

:::::::
contain

:::::::
missing

:::::
values

:::
at

::::::::
timesteps

:::::
where

:::
we

:::
do

:::
not

::::
have

::::::
AMVI

:::::::::::
observations

::::::::
available.

::::
The

::::::::::::
climate-index

::::::::::::
reconstruction

:::::::
problem

::::
thus

::::::::
becomes

::::::
similar

::
to

:::
an260

:::::::::::::::::
image-reconstruction

::::::::
problem.

:::
The

:::::
GPR

::::::::::
reconstructs

:::
the

::::::
AMVI

::
by

::::::
filling

::
the

:::::::
missing

::::::
values

:::::
based

::
on

:::
the

:::::::::::
surrounding

:::::
proxy

::::::
values.

::
In

:::
this

::::::::::
framework,

:::
the

:::::
GPR

:::::
inputs

:::
are

:::
the

::::::::
locations

::
in

:::
the

::::::::::
embedding

:::::
space

:::
and

:::
the

:::::
GPR

::::::
targets

:::
are

:::
the

::::::::::
temperature

::::::::
anomalies

::
of

:::
the

:::::::
proxies

:::
and

:::
the

::::::
AMVI:

:

∆Ti = fGPR(t,xi),
:::::::::::::::

(3)

:::::
where

::::
∆Ti::

is
:::::
either

::
a

:::::
proxy

::::::
record

::
pi::

or
:::
the

:::::::
AMVI,

:::
and

:::
xi ::

is
:::
the

:::::::
location

::
of

:::
the

:::::::::
respective

:::::
record

::::::
within

:::
the

::::::::::
embedding265

:::::
space.

::::
Fig.

::
2b

::::::
shows

:
a
:::::::::
schematic

::::
view

::
of

::::
this

:::::::::
embedding

:::::
space

:::
for

:::
the

:::::::
example

:::::
with

:::
two

::::::::::::
pseudoproxies

::::
and

:::
the

::::::
AMVI.

::::
The

::::::
location

:::
of

::::
each

::::::::
timeseries

::::::
within

::
the

::::::::::
embedding

:::::
space

:
is
::::::::
constant,

::
so

:::
that

:::
the

:
temporal sequence of data of one particular proxy

series form
:::::::::
timeseries

:::::
forms a straight line parallel to the time axis.

:::
The

:::::::
location

:::
of

::::
each

:::::
record

::
is

:::::
based

:::
on

::
its

::::::::
similarity

::
to

:::
all

::::
other

:::::::
records.

::::
The

::::
more

::::::
similar

::::
two

::::::
records

::::
are,

:::
the

:::::
closer

::::
they

:::
are

::::::
located

:::
in

::
the

::::::::::
embedding

:::::
space.

:
To adequately reflect the

distances between the proxy records and the AMV
:::::
AMVI, the embedding space needs to have a dimension of (q− 1) + t

::::::
(q− 1),270

where q is the number of proxies
::::::::
timeseries

:
including the AMVI timeseriesand t= 1 for the time dimension.

:
.
::::
This

::
is

::::::
easiest

::
to

:::::::::
understand

::
if

:::
one

::::::::
imagines

:::
the

::::
case

:::::
where

:::
all

:::::::::
timeseries

::::
have

:::
the

::::
same

::::::::
distance

::::
from

::::
each

:::::
other

:::
(as

::::::
shown

::
in

:::
Fig.

::::
2b).

:::
To

::::::
arrange,

::::
e.g.

::::
three

:::::::::
timeseries

::::
with

:::::
equal

::::::::
distances

::::
from

::::
each

:::::
other,

::::
one

:::::
needs

:
a
::::::::::::::
two-dimensional

:::::
space

::::::::
(spanned

::
by

:::
x1:::

and
:::
x2

::
in

:::
Fig.

::::
2b). In case of the MPIESM-based proxy network, the embedding space has thus 24

::
23 dimensions (23 proxy records, 1

10



AMVI).
::::
With

::::
time

::
as

::
an

:::::::::
additional

:::::::::
dimension,

:::
the

::::::::
resulting

:::::
space

:::
has

:
a
::::
total

::
of

:::
24

::::::::::
dimensions. In the following, we will use r275

to refer to a point in space and time, and x and t to refer to points in space and time only
::::
only

::::
space

::::
and

::::
only

::::
time, respectively.

The prescribed distance between the virtual locations xi reflects the similarity between the respective timeseries, e.g. the

similarity between a proxy record and the AMVI, or the similarity between two proxy records. We then use the GP to fit

:::
find

::
a
:::::::
function

::::
that

:::
fits

:
the entire dataset in this virtual space and to interpolate the AMVI at the virtual locations xAMV

for points in time where we do not have observations. By performing the regression/interpolation in the embedding space,280

the coordinates of the embedding space become the predictors/inputs and both the proxies and the climate index become the

predictands/targets.This allows for a much bigger training data set and increases the range of climate variability seen during

training. Because time is an additional dimension, and the kernel is also a function of time separation, this approach also takes

temporal auto-correlation and
::::
With

:::
the

::::
right

:::::
kernel

::::::::::
formulation

::::
(see

::::
Sect.

::::::
2.3.4),

:::
we

:::
can

::::::
account

:::
not

::::
only

:::
for

:
cross-correlations

between the different timeseriesinto account.285

In the interpolation process, a ,
::::
but

:::
also

:::
for

::::::::
temporal

::::::::::::::
auto-correlation:

::
A

:
data point in the embedding space at time tm is

affected by all other surrounding points in the embedding space at time tm and to a smaller extent also at times tn > tm and

tk < tm. The degree of influence is determined by the distance between the points in the embedding space and the typical

length- and timescale of the kernel function. The closer two points are, the larger the
::::
their influence.

:::::
Thus,

::
the

::::::
AMVI

::
is

:::
still

::::::::::::
reconstructed

:::::
based

::
on

:::
the

::::::::::
information

::::
from

:::
the

:::::::::::::
pseudoproxies,

:::
but

::
we

::::
have

::::::::::
formulated

:::
the

:::::::
problem290

::::
such

:::
that

:::
the

:::
GP

::::
can

:::::
handle

:::
the

::::::::::::
proxy-related

:::::::::
uncertainty

::::::::
correctly,

:::::::
because

:::
the

::::::::::::
pseudoproxies

:::
are

::::
now

::::::
targets

::::
and

::
no

::::::
longer

:::::
inputs.

:::
An

:::::::::
additional

::::::::
advantage

::
is
::::
that

:::
we

:::
can

:::
use

::::
this

::::
setup

:::::
with

::::::
variable

::::::
proxy

:::::::::
availability

::
in

::::
time

:::::::
without

::::::
having

::
to

::::::
retrain

::
the

::::::
model

::::
each

::::
time

:::
the

::::::
proxy

:::::::::
availability

::::::::
changes.

::::::
Instead,

:::
the

::::::::
"images"

::::::
simply

:::::
have

::::
more

:::::::
missing

::::::
values

::
as

:::
the

::::::
number

:::
of

::::::
proxies

::::::::
decreases

::::::
further

::::
back

::
in

:::::
time.

2.3.3
:::::::
Defining

:::
the

::::::::
distance

::::::
matrix295

Finding the right position x for each proxy record and the target index in the embedding space is an important and non-trivial

step. Since we care only about the relative distance in the embedding space and not the absolute location, we can specify

the distance between each pair of q records (proxies and AMVI) in a distance matrix D and determine the coordinates via

multi-dimensional scaling . The problem then reduces to specifying the distance matrix.
::::::::::::::::::::
(MDS,e.g., Mead, 1992).

:::::
MDS

::::
uses

::
the

::::::::::
information

:::
of

::::::::::
dissimilarity

:::::::
between

::::::
objects

::
to
:::::
place

:::::
these

::::::
objects

::
in

:
a
::::::::
Cartesian

:::::
space

:::
of

:
a
:::::
given

:::::::::
dimension,

::::
such

::::
that

:::
the300

:::::::
distance

:::::::
between

:::
the

::::::
objects

::
in

:::
the

:::
new

:::::
space

:::::::
reflects

::
the

:::::::::::
dissimilarity

::
in

::
an

:::::::
optimal

::::
way.

::
In

:::
our

:::::
case,

:::
the

::::::
objects

:::
are

:::
the

:::::
proxy

::::::
records

:::
and

:::
the

:::::::
AMVI,

:::
and

:::
the

:::::
given

:::::::::
dimension

:
is
:::
23.

:

2.3.4 Defining the distance matrix

We define the distance matrix based on an appropriate distance metric. This metric could in principle be any distance metric

such as the Euclidian distance or similar.
::
To

:::
be

::::
used

:::
as

:
a
:::::::
distance

::::::
metric

:::
in

:::::
MDS,

::
a

:::::
metric

:::::
must

:::::
meet

:::
the

::::::::
following

:::::
three305

::::::
criteria:

::
it

:::::
needs

::
to

:::
be

::
(1)

::::::::
positive,

:::
(2)

::::
zero,

:::::
when

::
it

::
is

::::::
applied

:::
on

::
the

::::::
object

::::
with

:::::
itself

:::
and

:::
(3)

:::::::::
symmetric

::::::::::::::::
(e.g., Mead, 1992).
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We chose to define the distance based on the cross correlation
::::::::::::::
cross-correlation (CC, Fig. 1c) and the standard deviation ratio

(SR, Fig. 1d) of the respective records.
::::
The

:::
SR

::
of

:::
two

:::::::::
timeseries

::
pi:::

and
:::
pj ::

is
::::::
defined

::
as

:

SRij =


std(pi)
std(pj)

, if std(pi)> std(pj)

std(pj)
std(pi)

, if std(pi)< std(pj),
::::::::::::::::::::::::::::::::::

(4)

:::
this

::::
way,

:::
the

:::
SR

:
is
::::::::::
symmetric,

:::::::
fulfilling

:::
the

::::
third

:::::::
criterion

:::
for

:::
the

:::::::
distance

::::::
metric.

:
Assuming that the records are all positively310

correlated, the distance measure between two timeseries pi and pj is defined as

Dij = (1−CCij) ∗SRij , (5)

i.e., the distance will be small when the CC is high and the records have similar amplitudes of variability, and larger ,

when the CC is low and/or the records have very different amplitudes of variability (Fig. 1e). This choice of distance metric

outperforms equidistant coordinates and a metric based solely on CC (not shown). The SR of two timeseries pi and pj is defined315

as
::::
With

:::::::::
equidistant

::::::::::
coordinates

:::
all

::::::
records

:::::::::
determine

::
the

::::::
AMVI

::
to
:::
the

:::::
same

::::::
degree,

:::::::::
regardless

::
of

::::
their

::::::
actual

::::::::
similarity

::
to

:::
the

::::::
AMVI.

::::
With

::
a
::::::
metric

:::::
based

:::::
solely

:::
on

:::
CC,

:::
the

::::::::::::
reconstruction

::
is
:::::::::

dominated
:::

by
:::::::
records

::::
with

::::
high

:::::::::
variability

:::
and

:::
the

::::::::
resulting

:::::
AMVI

:::::::::
variability

::
is

::::::::::::
overestimated.

::::
The

::::::::
additional

:::::::::
SR-scaling

::::::
yields

::::::::
improved

::::::::
variability

:::::::::
estimates.

RAij =


std(pi)
std(pj)

, if std(pi)> std(pj)

std(pj)
std(pi)

, if std(pi)< std(pj),

this way, the SR is symmetric - a necessary condition for a distance measure. The so determined unitless distances in the320

embedding space range from
:::
The

:::::
final

:::::::
distance

::::::
matrix

::
D

::
is
::::
then

::::::::
obtained

:::
by

:::::::::
evaluating

:::
Eq.

::
5

:::
for

::
all

:::::
pairs

::
of

:::::::
records.

::::
For

::
all

:::::
pairs

::
of

:::::::::::::
pseudoproxies,

:::
the

:::::::
distance

::
is

::::::::
estimated

:::::
from

:::
the

:::::
entire

:::::::::
simulation

::::::
length.

::::
For

:::::::::
calculating

:::
the

:::::::
distance

::::::::
between

::
the

::::::
AMVI

::::
and

:::
the

:::::::::::::
pseudoproxies,

:::
we

:::
use

::::
only

:::
the

:::
last

::::
150

:::::
years

:::::
(years

:::::
1850

::
to

:::::
2000)

::::
and

:::::::
lineraly

::::::
detrend

::::
both

::::::
AMVI

::::
and

::::::::::::
pseudoproxies

:::::
before

:::
the

::::::::::
calculation.

::::
The

:::
so

:::::::::
determined

:::::::
unitless

::::::::
distances

:::::
range

:::::
from 0.02 to 3.91 for the MPIESM-based

network (Fig. 1e).325

The distance matrix is then transformed into coordinates of a (q− 1) dimensional space via multi-dimensional scaling. Time

becomes an additional dimension of this new space, and the determined coordinates for each record are constant in time. The

distance between the time steps is normalised to be of the same order of magnitude as the distances between the records.

We rescale the time axis so that the distance between time steps equals the mean of the distance matrix D. In the case of the

MPIESM-based network (Fig. 1) , the mean of the distance matrix is 1.44. For the CCSM-based network (Fig. B1), the mean330

of the
:::
1e).

::::
The

:::::::
resulting

:
distance matrix is 1.10.

12



:::
then

:::::
used

::
as

:::::
input

:::
for

:::
the

:::::
MDS

:::::::::
algorithm

::
to

::::::
obtain

:::
the

::::::::::
coordinates

::
in

:
a
:::::::::::::

23-dimensional
::::::

space.
:
The embedding distance

reflects the actual geographical distance to a certain degree. Records that are close in actual space tend to be close also in the

embedding space, as they have higher cross-correlations and similar standard deviations (Fig. 1e).

2.3.4 Kernel Design and Hyperparameters335

We choose a very simple kernel function, the radial basis function (RBF), because we have no prior information that would jus-

tify the use of a more complex kernel. Complex kernels would introduce additional uncertainty and reduce the interpretability

of the results. We define the kernel k as an additive kernel of two RBF components, k = k1 + k2:

k1(ti, tj) = σ2
f,t exp

(
1

2

(
|ti− tj |
lf,t

)2
)

(6)

340

k2(ri,rj) = σ2
f,r exp

(
1

2

(
|ri− rj|
lf,r

)2
)
. (7)

where
:::
The

:::::
final

:::::
kernel

::
or

:::::::::
covariance

::::::::
equation

:
is
::::
then

:::::
given

::
as
:

k = k1 + k2
:::::::::

(8)

::
In

:::
Eq.

:
6
::::
and

::
7, |∗ | is the Euclidian distance between two points ti and tj or ri and rj. The lf and σ2

f are the hyperparameters

of the respective kernels. lf denotes a typical lengthscale of the target function, while σ2
f describes the signal variance, e.g., a345

function with small lf and large σ2
f will be very wiggly. A third additional hyperparameter σ2

n denotes the likelihood or noise

variance (see also Appendix A). If σ2
n is small, the fitted function will be very strongly constrained by the training data. If σ2

n

is larger, the fitted function is less constrained by the training data and more robust against overfitting.

:::
The

::::
first

::::::
kernel k1 operates on the time dimension only, i.e. it controls , how much the neighbouring time steps at one

embedding location influence the value at time tj . This could be considered as a mean typical timescale of
:::::::::
variability

::
in the350

dataset.
:::
The

::::::
second

:::::
kernel

:
k2 operates on all dimensions of the embedding space, including the time dimension. This enables

interaction between locations at time tj and neighbouring time steps. This kernel setup outperforms a kernel that consisted

only of k2 and one where k2 did not include the time dimension (not shown).
:::
The

::::::
higher

::::
skill

::
of

::::
this

:::::
kernel

::::::
makes

:::::
sense

::
if

:::
one

::::::::
considers

::::
how

:::
the

:::::
kernel

::::::
design

:::::
affects

:::
the

::::::::::
interactions

:::::::
between

:::
the

:::::::
different

::::::::::
timeseries.

::::::
Having

::::
only

::
k2

::::
does

:::
not

::::::::
consider

:::
that

:::
the

::::::::
timescale

::
of

::::::::::::::
auto-correlation

::::
may

:::
not

::
be

:::
the

:::::
same

::
as

:::
the

:::::::::
timescale

::
of

::::::::::::::
cross-correlation.

:::
It,

::::::::
therefore,

::::::
makes

:::::
sense

::
to355

::::
have

::
k1

:::::::
operate

:::::
across

:::
the

::::
time

:::::::::
dimension

::::
only.

::
If
:::
k2

:::::::
operated

::::
only

::::::
across

:::
the

:::::::::
embedding

::::::::::
dimensions,

:::
no

:::::::::
interaction

:::::::
between

:::::::
different

::::::
records

::::::
across

::::
time

:::::
would

:::
be

:::::::
possible.

:

:::::::
Because

::
k2

::::::::
operates

::
on

:::::
both

:::
the

::::
time

::::
and

:::
the

:::::::::
embedding

:::::::::::
dimensions,

:::
we

::::::
rescale

:::
the

::::
time

:::::
steps

::
to

:::
be

::
of

:::
the

:::::
same

:::::
order

::
of

:::::::::
magnitude

::
as

:::
the

::::::::
distances

::::::::
between

:::
the

:::::::
records.

::::
This

:::
is

::::::::
necessary

::
to

:::::
allow

::::
for

:::
the

:::::::::
interaction

::::::
across

::::::
records

::::
and

:::::
time.

:::::::::
Otherwise,

:::
the

:::::
length

:::::
scale

::
of

::
k2

::::::
would

:::::
either

::
be

:::::::::
dominated

:::
by

:::
the

::::
time

:::
step

::
or
:::
by

:::
the

:::::::::
embedding

::::::::
distance.

::::
One

:::::::
rescaled

::::
time360
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:::
step

::::::
equals

:::
the

:::::
mean

::
of

:::
the

:::::::
distance

::::::
matrix

:::
D.

::
In

:::
the

::::
case

::
of

:::
the

::::::::::::::
MPIESM-based

:::::::
network

:::::
(Fig.

::
1),

:::
the

:::::
mean

:::
of

:::
the

:::::::
distance

:::::
matrix

::
is

:::::
1.44.

:::
For

:::
the

:::::::::::
CCSM-based

:::::::
network

::::
(Fig.

::::
B1),

:::
the

:::::
mean

::
of

:::
the

:::::::
distance

::::::
matrix

::
is

::::
1.10.

:

:
A
:::::

third
::::::::
additional

::::::::::::::
hyperparameter

::
σ2
n:::::::

denotes
:::
the

:::::::::
likelihood

::
or

:::::
noise

:::::::
variance

::::
(see

::::
also

:::::::::
Appendix

:::
A).

::::
The

::::
noise

::::::::
variance

::::::
enables

:::
the

::::
GPR

::
to
::::::
handle

:::::
target

::::::::::
uncertainty.

::
A

:::::
small

:::
σ2
n :::::::

indicates
::::
that

:::
the

:::::
targets

:::::
have

:::
low

::::::::::
uncertainty

:::
and

:::
the

:::::
fitted

:::::::
function

:::
will

::
be

::::
very

:::::::
strongly

::::::::::
constrained

::
by

:::
the

:::::::
training

::::
data.

::
If

:::
σ2
n :

is
::::::
larger,

:::
the

::::::
targets

::::
come

::::
with

:::::
large

::::::::::
uncertainty.

:::
The

:::::
fitted

:::::::
function365

:
is
::::

then
::::

less
::::::::::
constrained

:::
by

:::
the

:::::::
training

::::
data

::::
and

::::
more

::::::
robust

:::::::
against

:::::::::
overfitting.

::::::::::
Introducing

:::
σ2
n::

is
::::::
similar

:::
to

:::
the

::::::::
so-called

:::::
nugget

:::::
effect

::
in
:::::::::::
geostatistics.

::::
The

:::::
noise

:::::::
variance

:::
σ2
n :

is
::::::::
assumed

::
to

::
be

:::
the

:::::
same

:::::
across

:::
all

::::::::::
dimensions,

:::
i.e.,

:::
the

:::::::
learned

:::::::
estimate

:::
will

:::
be

:::
the

::::
same

:::
for

:::
all

::::::::::::
pseudoproxies

::::
and

:::
the

::::::
AMVI.

::::
This

::
is
::
a
::::::::::::
simplification,

:::::::
because

:::::
every

:::::::::::
pseudoproxy

:::::::
contains

:::
its

::::
own

::::
level

::
of

::::::
noise.

:::
We

::::
will

::::
show

::::
that

::::
this

:::::::::::
simplification

::
is
::
a
::::
good

::::
first

:::::::::::::
approximation

:::
and

:::::::
enables

:::
the

::::
GPR

:::
to

::::::
handle

::::::::
uncertain

::::::::::::
pseudoproxies

::::
well.370

2.3.5
:::
GP

::::::
scaling

:::::::::
behaviour

:::
One

::::::
known

:::::::::
drawback

::
of

::::
GPs

:
is
::
a
:::
bad

::::::
scaling

:::::::::
behaviour

::
of

:::
the

:::::::::
computing

::::
time

::::::::
required

::
to

:::::::
estimate

:::
the

::::::::::::::
hyperparameters

::::
with

::::::
respect

::
to

:::
the

::::::
number

::
of

::::::::
available

:::::::::::
observations,

::::
also

:::::
called

:::::
batch

::::
size.

:::
The

:::::::
training

::::
time

::
of

::
a

:::
GP

:::::
scales

::::
with

:::
n3,

:::::
where

::
n
::
is

:::
the

::::
batch

::::
size.

::::
This

::
is

::::::
mainly

:::
due

::
to

:::
the

::::::::
necessity

::
to

:::::
invert

:::
the

:::::::::
covariance

:::::
matrix

:::::::::::::::::::::::::::::::
(e.g., Rasmussen and Williams, 2006).

::::::::::
Regression

:::::::
problems

:::::
with

::::
more

::::
than

::::::::::
1000-10000

:::::::::::
observations

:::::::
become

::::::
difficult

::
to
::::::
handle

::::
with

:::
the

:::::::
original

:::
GP

::::::::::
formulation

::::::::
(hereafter

::::
full375

:::
GP)

::::
due

::
to

::::
time

::::
and

:::::::::
computing

:::::::
memory

::::::::::
limitations.

:::::
Even

::::::
though

:::::
paleo

::::
data

::::
sets

:::
are

:::
not

::::
what

:::
we

::::::
would

::::::::
typically

:::
call

::::
Big

::::
Data

:
,
::::

they
::::
can

::::::
already

:::::::
become

::::::::::
challenging

::
for

::::
GPs

::
if

:::
the

::::::::::::
reconstruction

::::::
period

::::
spans

::::::::
thousand

:::::
years

::
or

:::::
more.

:

::::::
Various

:::
GP

:::::::
variants

::::
have

::::
been

::::::::
proposed

::
to

:::::::::
overcome

:::
this

::::::::
limitation

:::::::::::::::::::::::::::::::::::
(e.g., Särkkä, 2013; Hensman et al., 2013).

::::
One

::::::
variant

:
is
::::

the
:::::::
so-called

:::::::::
stochastic

::::::::::
variational

:::
GP

:::::::::::::::::::::::::
(SVGP, Hensman et al., 2013).

::::
The

::::::
SVGP

::::::::
combines

:::::::::
stochastic

:::::::
gradient

:::::::
descent

::::
(i.e.,

::::::
training

:::::
with

:::::::::::
minibatches),

:::::::::
variational

::::::::
inference

::::
(i.e.,

::::::::
inference

:::::::
through

:::::::::::
optimisation)

::::
and

:
a
::::::::

low-rank
::::::::::::
approximation

:::
of380

::
the

::::::::::
covariance

::::::
matrix

:::::
based

::
on

::::::::
so-called

::::::::
inducing

::::::
points.

::::::
Simply

::::
put,

:::
the

::::::::
inducing

:::::
points

:::
are

::
a
:::::
small

:::::
subset

:::
of

:::
the

:::::::
original

::::::
dataset

:::
that

:::::::::
represents

:::
the

:::::::::
properties

::
of

:::
the

::::::::
complete

::::::
dataset.

:::
In

::::
other

::::::
words,

:::
the

::::
true

:::
GP

::::::::
posterior

::
is

:::::::::::
approximated

:::
by

::
a

:::
GP

:::
that

::
is

::::::::::
conditioned

::
on

:::
the

::::::::
inducing

:::::
points.

::::
The

:::::::
location

::
of

:::
the

:::::::
inducing

::::::
points

::
in

::::
input

:::::
space

::::
can

:::::
either

::
be

:::::::::
prescribed

::::::::
manually

::::
(e.g.

::::::::
randomly)

:::
or

::::
they

:::
can

:::
be

::::::::
optimised

:::::
along

::::
with

:::
the

::::::
kernel

::::::::::::::
hyperparameters.

::::
The

:::::::
training

::::
time

::
of

:::
the

::::::
SVGP

::::::
scales

::::
with

:::
m3,

::::::
where

::
m

::
is
::::

the
::::::
number

:::
of

::::::::
inducing

:::::
points

::::::::::::::::::::
(Hensman et al., 2013).

:::::
Here,

:::
we

::::
test

::::
both

:::
the

::::
full

:::
GP

::::
and

:::
the

::::::
SVGP

:::
for385

:::::::::::
climate-index

::::::::::::
reconstruction

::
in

:::
the

:::::::::
embedding

::::::
space.

::
In

:::
the

::::::::
following,

:::
we

::::
will

::::
refer

::
to

:::
the

:::
full

:::::::::
embedded

:::
GP

::
as

:::
full

:::::
emGP

::::
and

::
the

:::::::::
embedded

::::::
SVGP

::
as

:::::
sparse

::::::
emGP.

:

2.3.6
::::::::
Technical

:::::
notes

:::
Our

::::::
scripts

:::
are

::::
based

:::
on

:::
the

::::::
python

:::::::
package

::::::
GPflow

:::::::::::::::::::
(Matthews et al., 2017).

::::
The

::::::::::::::
hyperparameters

::
are

:::::::
learned

::::::
through

:::::::::::
optimisation

::::
with

:::
the

:::::
Adam

::::::::::
Optimiser,

:::::
which

::
is
::

a
:::::::::
stochastic

:::::::
gradient

:::::::
descent

::::::::
algorithm

:::::::
widely

::::
used

::
in
::::::::

machine
:::::::
learning

:::::::::::
applications390

:::::::::::::::::::
(Kingma and Ba, 2014).

::::
We

:::
use

:::
the

::::::::
algorithm

:::
as

:::::::
provided

:::
by

:::::::
GPflow.

:::
For

:::
the

::::
full

:::
GP,

:::
we

::::::
repeat

:::
the

::::::::::
optimisation

::::
step

:::::
1000

:::::
times.

:::
For

:::
the

::::::
sparse

:::
GP,

:::
we

::::::::
initialise

:::
the

::::::::
inducing

:::::
points

:::
as

:::::
every

::::
tenth

:::::
point

::
in

::::
time

::::
and

:::
the

::::::::
optimise

:::
the

::::::::
locations

:::::
along
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::::
with

::
the

:::::::::::::::
hyperparameters.

:::
We

:::
use

::::::::::
minibatches

::::
with

::
a

:::
size

::
of

:::::
2000

:::
and

::::::
repeat

:::
the

::::::::::
optimisation

::::
step

::::
4000

::::::
times.

:::
The

:::::::::
respective

::::::
number

::
of

:::::::::::
optimisation

::::
steps

::
is

::::::::
sufficient

:::
for

:::
the

::::::::
estimated

:::::::::
likelihood

::
of

:::::::
reaching

::
an

:::::::::::
equilibrium.

2.4 Training and Testing395

In the real world, SST measurements are only available since approximately 1850. Therefore, AMV observations are also

only available from 1850 to today. We use this criterion to divide our pseudo-data set into training and testing data. The

relationship between the pseudoproxies and the simulated AMVI can be inferred only from the last 150 years of the simulation,

the remaining years of the simulated AMVI are used for testing. This may not be the most effective way of splitting a data set

in the machine-learning context, but it best reflects the actual data availability in the paleo-context.400

For the emGPR reconstructions, the training input data consists of the time steps tj and the embedding coordinates xi of

the
:::::::::
benchmark

::::
PCR

:::::::::::::
reconstruction,

:::::
which

:::::
takes

:::::
place

::
in

::::::::::
PCR-space,

:::
the

:::::::
training

:::::
inputs

:::
are

:::
the

:::::
most

:::::
recent

::::
150

::::
years

:::
of

:::
the

::::::
retained

::::::::
principal

::::::::::
components

::::
and

:::
the

::::::
training

::::::
targets

:::
are

:::
the

::::::::::::
corresponding

::::
150

::::
years

:::
of

::::::::
simulated

::::::
AMVI

:::
(i.e.

:::::
years

:::::
1850

::
to

:::::
2000).

::
In

:::
the

::::::
testing

::::::
period,

:::
the

::::::
AMVI

::
is
::::::::::::
reconstructed

::::
with

:::
the

::::::
trained

:::::::::
regression

:::::
model

::::
and

:::
the

::::::::
remaining

::::
350

:::::
years

::
of

:::
the

::::::
retained

::::::::
principal

::::::::::
components

::
as

::::::
inputs.

:
405

:::
For

:::
the

:::::::
emGPR

:::::::::::::
reconstructions,

:::
the

:::::::
training

:::::
inputs

:::
are

:::
the

::::::::
locations

::
ri::

of
:::

the
:

pseudoproxies and the AMVI. For the pseu-

doproxies, all time steps are used for training
:::
(i.e.

:::::
years

::::
1500

::
to
::::::

2000); for the AMVI only the time steps corresponding to

the last 150 simulation years are used for training ,
:
(i.e. the years 1850 to 2000(left matrix in Eq. ??). The training target data

is thus the entire available data set, i.e., the
:::::
targets

:::
are

:::
the

::::::::::::
corresponding

:
values of the 23 proxy records pi over

:::
the

:::
full

:
500

years and the AMVI record over the last 150 years(right matrix in Eq. ??). During testing, the AMVI is .
:::::::
During

:::::::
training,

:::
the410

:::::
kernel

::::::::::::::
hyperparameters

:::
and

:::
the

:::::
noise

:::::::
variance

:::
are

:::::::
learned.

:::
The

::::::
AMVI

::
is

::::
then reconstructed by evaluating the trained emGP at

the embedding location of the AMVI xAMV = x24 and the timesteps corresponding to the remaining 350 simulation years(Eq.

??).



t1 x1,1 . . . x1,23
...

...
. . .

...

tm x1,1 . . . x1,23
...

...
...

t1 x23,1 . . . x23,23
...

...
. . .

...

tm x23,1 . . . x23,23

tm−150 x24,1 . . . x24,23
...

...
. . .

...

tm x24,1 . . . x24,23





p1(t1)
...

p1(tm)

p23(t1)
...

p23(tm)
...

AMV I(tm−150)
...

AMV I(tm)


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
t1 x24,1 . . . x24,23
...

...
. . .

...

tm−151 x24,1 . . . x24,23




AMV (t1)
...

AMV (tm−151)

 ,415

where t1 is the simulated year 1500, and tm the simulated year 2000.

2.5 Principle Component Regression

To have a benchmark for the emGPR reconstruction in the cases TCppp and TCnpp, we use pseudo-reconstructions with a

multi-linear Principle Component Regression (PCR). PCR is well established as a climate-index reconstruction method and has

been used e.g., for reconstructions of the global mean surface temperature (PAGES2k, 2019) and the AMVI (Gray et al., 2004; Wang et al., 2017).420

For the PCR, the AMVI is expressed as a function of principal components of the original pseudoproxies. The selected proxy

timeseries are first decomposed into principal components; the latter are then used as predictors in a linear least-squares

regression to obatain the AMVI. We do not use all principal components but only the first q with a cumulative explained

variance of 99.5%.

The PCR does not make use of the embedding space. In case of the PCR,
:
.
::::
This

::::::::
approach

:::
has the training inputs are the most425

recent 150 years of
::::::::
additional

::::::::
advantage

:::
that

:::
the

:::::::
training

:::
set

:
is
:::::
much

::::::
bigger

::::
than

::
in the q selected principal components and the

training target is the corresponding simulated AMVI (Eq. ??). In the testing period, the AMVI is reconstructed with the trained

regression model with the remaining 350 years of the selected q principal components as inputs (Eq. ??).
:::::::
classical

:::::
setup.

:::::
Thus,

::
we

:::::::
increase

::::
the

:::::
range

::
of

::::::
climate

:::::::::
variability

::::
seen

::::::
during

:::::::
training

::::
and

:::::
reduce

::::
the

:::
risk

::
of

::::::::::::
reconstructing

:::::::
climate

:::::
states

::::
that

:::
the

:::::
model

::::
has

:::
not

::::
been

:::::::
trained

::::
with.

:
430


pc1(tm−150) . . . pcq(tm−150)

...
. . .

...

pc1(tm) . . . pcq(tm)



AMV (tm−150)

...

AMV (tm)




pc1(t1) . . . pcq(t1)

...
. . .

...

pc1(tm−151) . . . pcq(tm−151)




AMV I(t1)
...

AMV I(tm−151)


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3 Pseudo-reconstructions

3.1 TCppp: Perfect pseudoproxies

With perfect pseudoproxies, the best overall reconstruction is achieved by the full emGPR. The reconstructed AMVI closely435

follows the target AMVI except for the period from approximately 1630 to 1680 (Fig. 3a). This is reflected by the high

correlation with the target AMVI (0.93 for the smoothed index). There is a weak negative mean bias, corresponding to 20%

of the target standard deviation, which stems mainly from the 50 year
::::::
50-year

:
period from 1630 to 1680. As expected, the

:::
The

:
GP related uncertainty,

:::
as

:::::
given

::
by

:::
the

:::::
95th

::::::::
percentile

::
of

:::
the

::::::::
posterior

:::::::::::
distribution, is small for the years 1850 to 2000

where the AMVI has been constrained during training. The uncertainty increases for the reconstruction period.
:::::::
Overall,

:::
the440

:::::::
posterior

::::::::::
uncertainty

:::::::
estimate

:::::::
appears

:
a
:::
bit

:::
too

:::::
large

:
-
::::
i.e.,

:::
too

::::::::::
conservative

::
-
:::::::
because

:::
the

:::
true

::::::
AMVI

:::::::
always

:::
lies

::::::
within

:::
the

::::
95%

:::::::::
confidence

:::::::
interval. The full emGPR captures the magnitude of variability very well, the

:
.
:::
The

:
standard deviation ratio of

0.93 indicates only a small underestimation of 7%. Also,
:
the period of very low AMVI following several volcanic eruptions

between 1800 and 1850 is well captured, the reconstructed and target AMVI are almost indistinguishable. The spectrum of

the reconstructed AMVI agrees well with the spectrum of the target AMVI; the full emGPR captures the variability at all445

frequencies (Fig. 3b).

The sparse emGPR captures the main features of the target AMVI, but the reconstruction is less accurate (Fig. 3c). The

correlation is lower (0.79 for the smoothed index), and there are more periods with larger deviations between the reconstruction

and the target. Interestingly, the sparse emGPR has large mismatches during other
:::::::
different

:
periods than the full emGPR. The

full emGPR has the largest mismatch in the years 1630 to 1680, the sparse emGPR has the largest mismatches in the years450

1720 to 1830. The mismatches result in a positive mean bias corresponding to 33% of the target standard deviation. The GP

related uncertainty is the same as the uncertainty from the full emGPR, but in the sparse case, the uncertainty is approximately

constant over the entire period. The standard deviation ratio is 0.80, i.e., the variability is underestimated by 20%. This is,
:
e.g.

visible for the years 1800 to 1850, where the very low AMVI is not captured as well as by the full emGPR. The spectrum of

the reconstruction still agrees well with the target spectrum, but there is a slight overestimation of variability at the very high455

frequencies and an underestimation at lower frequencies at timescales of 80 to 100 years (Fig. 3d).
:::::::::
Differences

::
in
::::

the
::::
skill

::
of

:::
the

:::
full

::::
and

:::::
sparse

::::::
emGP

:::::
might

::::::
partly

::
be

::::::::
explained

:::
by

::::::::
different

::::::::
estimates

::
of

::::::::::::::
hyperparameters

::::
(see

:::
left

::::::
halves

::
of

::::
Fig.

:::
5).

:::
We

::::::
assume

::::
that

:::
the

::::::::::::::
hyperparameters

:::::::
learned

::::
with

:::
the

::::
full

:::::::
emGPR

:::
are

:::::
closer

:::
to

:::
the

:::::
truth.

:::::
Both

:::
the

::::::::
estimated

::::::::
timescale

:::
of

:::::::::::::
auto-correlation

::::
(lf,t)::::

and
:::
the

:::::
signal

:::::::
variance

::::
(σf,t::::

and
::::
σf,r)

:::
are

:::::::::::::
underestimated

::
by

:::
the

::::::
sparse

::::::
emGP.

The PCR reconstruction achieves the highest correlation (0.95 for the smoothed index)
:::
and

::::::
comes

::::
with

:::
the

::::::
smallest

::::::::::
uncertainty460

::::
range, but at the cost of a larger underestimation of variability and a systematic bias towards higher AMVI values, for peri-

ods during which the AMVI is outside of the range of the training period (Fig. 3e). This is especially apparent during the

period of the very low AMVI from 1800 to 1850, where the target AMVI lies outside of the PCR uncertainty range. The

mean bias corresponds to 79% of the target standard deviation. The standard deviation ratio of 0.65 indicates an underestima-

tion of the variability by 35%. The underestimation occurs systematically at lower frequencies in the multi-decadal range; the465

high-frequency variability (timescales shorter than 30 years) is well captured (Fig. 3e).
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3. Reconstructions with perfect MPIESM-pseudoproxies based on (a,b) the full emGPR, (c,d) the sparse emGPR and (e,f) PCR.

Left-hand panels show the smoothed reconstructed and target timeseries. The dashed line marks the separation between training and testing

periods. Shading indicates the 95% confidence interval
:::
(CI). The

::
CI

::
is

::::::::
determined

:::
by

::
the

:::::::
posterior

:::
GP

:::::::::
distribution

:::
for

::
the

::::
full

:::
and

:::::
sparse

:::::
emGP.

:::
For

::
the

:::::
PCR,

::
the

:::
CI

:
is
::::::
derived

::::
from

:::
the

::::::::
uncertainty

::
in

:::
the

::::::::
regression

:::::::::
coefficients,

:::::
which

:
is
:::::
based

::
on

:::
the

::::::::::
t-distribution.

:::
The

:
metrics r,

Rσ and b denote correlation, the ratio of standard deviations and the bias relative to the target standard deviation, respectively. Subscripts sm

and yr denote smoothed and unsmoothed data, respectively. The metrics are calculated for the
:::::::
smoothed

::::::::
timeseries

:::
over

:::
the reconstruction

period (1500 to 1850). Right-hand panels show the Welch powerspectra
:::::
power

::::::
spectra of the target and reconstructed AMVI. Shading

indicates the 95% confidence interval
::
as

:::::::
obtained

:::
from

:::
the

:::::::::::
χ2-distribution. The power spectral density (PSD) is given in K2 yr.
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With CCSM4-based pseudo proxies, the results for the full and sparse emGPR are consistent with the MPIESM-based recon-

structions (cf. Fig. 3a-d and Fig. B2a-d). The PCR performs much better in the CCSM environment, both the underestimation

of variability and the systematic bias to higher AMVI values are smaller in the CCSM4 case (cf. Fig. 3e and Fig. B2e). Also
:
,

the low-frequency variability is better captured (Fig. B2f). While the full emGPR clearly outperforms the PCR in the MPIESM470

case, PCR and the full emGPR perform similarly well in the CCSM4 case.

3.2 TCnpp: Noisy pseudoproxies

With the noisy pseudoproxies, the best reconstruction is still achieved by the full emGPR (
:::
The

:::::::
superior

:::::::::::
performance

::
of

:::
the

::::
PCR

::
in

:::
the

:::::::
CCSM4

::::
case

:::
can

::
be

:::::::::
explained

::
by

::
a
::::::
greater

::::::
spatial

::::::::
coherence

:::
of

:::
the

:::::::::
underlying

:::::::
CCSM4

::::::::::
temperature

:::::
field.

:::
The

:::::::
leading

::::
EOF

:::::::
explains

::::
41%

:::
of

:::
the

::::
total

:::::::
variance

::
in

:::
the

:::::::
CCSM4

::::
case

::::
and

::::
only

::::
27%

::
in

:::
the

:::::::::
MPIESM

::::
case

:::
(not

:::::::
shown).

::::
The

:::::::::
difference475

::
in

:::::
spatial

:::::::::
coherence

::
is

::::
also

:::::::
reflected

::
in

:::
the

::::::
overall

:::::::
smaller

:::::::::
embedding

::::::::
distances

::
in
:::
the

::::::::
CCSM4

::::
case

::::::::
(compare Fig. 4a,c

:
1
::::
and

::
B1). The mean of the 30 noisy reconstructions is remarkably similar to

:::
fact

::::
that

:::
the

:::
full

::::
and

::::::
sparse

:::::::
emGPR

:::::::
perform

:::::
about

::::::
equally

::::
well

:::
for

::::::::
MPIESM

::::
and

:::::::
CCSM4,

::::::::
indicates

:::
that

::::
the

::::::
emGPR

::
is
:::::
more

::::::
robust

::
to

:::::::
different

:::::::
degrees

::
of

::::::
spatial

:::::::::
coherence

::
in

::
the

::::::::::
underlying

::::
field.

::::
This

:::
can

:::
be

:::::::::
considered

::
an

:::::::::
additional

:::::::
strength

::
of

:::
the

:::::::
emGPR.

:

3.2
::::::
TCnpp:

::::::
Noisy

::::::::::::
pseudoproxies480

:::
We

:::::::
calculate

:
the AMVI based on perfect pseudoproxies. The characteristics of the ensemble mean likely gives a too positive

evaluation of the reconstruction skill because some of the noise effects will cancel in the averaging process. But also the
:::
for

::::
each

::
of

:::
the

::
30

:::::
noisy

:::::::::::::
reconstructions

::::::::
separately

::::
and

::::::
provide

:::
the

:::::
mean

::::
and

:::::
spread

::
of

:::
the

::::::::
ensemble

::::::::
statistics.

::::
The

::::::::::
distribution

::
of

::
the

:::::
three

::::
skill

::::::
metrics

:::
for

::::
each

::::::::::::
reconstruction

:::::::
method

:::
can

::
be

::::::
found

::
in

::::::::
Appendix

:::::
C.For

:::
the

:::
full

::::::
emGP,

:::
the

:
individual ensemble

members are still in reasonably good agreement with the target AMVI (see thin lines in Fig. 4a and Fig. C1afor the distribution485

of skill metrics). The
::::
mean

:
correlation of the smoothed ensemble mean

:::::::::::
reconstructed

:
AMVI with the target AMVI is 0.95

(ensemble range: 0.84 to 0.96)
::::
0.89

::
±

::::
0.06. The mean bias is with 21

::
±

::::
0.15

:
% of the target standard deviationidentical

:
,

::::
very

::::::
similar to the bias from the TCppp case(ensemble range: -37 to -5%), and as before it

:
.
:::
As

::::
with

:::
the

::::::
TCppp

::::::::
testcase,

::
the

::::
bias

:
mostly stems from the years 1630 to 1680, where the mismatch between the reconstructions and target is largest.

The variability is still captured remarkably well. The
::::
mean

:
standard deviation ratio for the ensemble mean of 0.95 indicates a490

slight underestimation of the variabilityby 5% (ensemble range: 0.86 to 1.16). The underestimation
::
is

::::
1.01

::
±

::::
0.17,

:::::::::
indicating

:::
that

:::::
most

::::::::
ensemble

:::::::::::::
reconstructions

::::::
contain

::
a
:::::::
realistic

:::::::
amount

::
of

::::::::::
variability.

:::
The

:::::
main

::::
loss

:
of variability occurs mainly at

frequencies higher than decadal(Fig. 4b). The lower-frequency variability range, which is of main interest for studying the

AMV, is well reconstructed
:
;
::
the

::::::::::::
reconstructed

::::::
spectra

::
lie

::::
well

::::::
within

:::
the

:::::::::
uncertainty

:::::
range

:::
of

::
the

:::::
target

::::::::
spectrum.

The sparse emGPR also performs well with noisy pseudoproxies (Fig. 4c,d
:::
and

::::
Fig.

::::
C1b). The ensemble mean even has495

a higher reconstruction skill as the AMVI reconstructed from
::::::
overall

::::::::::::
reconstruction

::::
skill

::
is

::::
even

::::::
higher

::::
with

:::::
noisy

::::
than

::::
with

perfect pseudoproxies. The
:::
This

:::::::::
improved

::::::::::
performance

::
is
::::
also

::::::::
reflected

::
in

:::
the

::::::::
estimated

:::::::::
timescale

::
of

::::::::::::::
auto-correlation.

::::
The

:::::::
estimate

:::
for

:::
lf,t::

is
:::::

now
:::::
much

:::::
closer

:::
to

:::
the

:::::::
estimate

:::::
from

:::
the

::::
full

::::::
emGP

::::
(Fig.

::::
5a).

::::
We

::::
will

:::::
come

::::
back

:::
to

:::
this

:::::::::
improved

::::::::::
performance

::
in

:::::
Sect.

::
4.

:::
The

::::::::
ensemble

:::::
mean

:
correlation of the smoothed ensemble mean AMVI with the target AMVI is 0.92
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Reconstructions with noisy MPIESM-pseudoproxies based on (a,b) the full emGPR, (c,d) the sparse emGPR and (e,f) PCR.

Left-hand panels show the smoothed reconstructed and target timeseries. The dashed line marks the separation between training and testing

periods. Thin
::::::
coloured

:
lines show the individual ensemble members,

:
.
:::
The

::::
95%

::
CI

::
in
:
the bold line

::::
lower

::::
right

::
of
:::
all

::::
three

:::::
panels indicates

the
:
CI

:::::::
averaged

::::
over

::::
time

:::
and

::
all

:
ensemble mean

::::::
members. The metrics r, Rσ and b denote correlation, ratio of standard deviations and the

bias relative to the target standard deviation, respectively. Subscripts sm and yr denote smoothed and unsmoothed data, respectively. The

metrics are calculated for the
:::
each

::::::::
smoothed ensemble mean during

::::::
member

::::
over the reconstruction period (1500 to 1850),

::::
and

::
the

:::::
mean

:::
and

:::::
spread

:::::
(±2σ)

::
are

:::::::
reported

:::
here. Right-hand panels show Welch powerspectra

::::
power

::::::
spectra of the target and reconstructed AMVI. Thin

::::::
coloured

:
lines indicate the spectra of the individual ensemble members, the bold line indicates the spectrum of the ensemble mean. Shading

::::
Grey

::::::
shading indicates the 95% confidence interval of the ensemble mean

::::
target spectrum

::
as

:::::::
obtained

::::
from

::
the

::::::::::::
χ2-distribution.

:
. The power

spectral density (PSD) is given in K2 yr.
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(ensemble range: 0.74 to 0.94, Fig. C1b).
::::
0.87

::
±

::::
0.09.

:
Also the mean bias is very small with 11

::
±

::::
0.09% of the target standard500

deviation(ensemble range: -5 to 18%), only a third of the bias from the TCppp case. The mean standard deviation ratio is

0.78 (ensemble range: 0.70 to 0.98)
:::
0.83

::
±

::::
0.14, corresponding to an underestimation of the variability by 22

::
17

::
±

::
14%. This

underestimation is due to a complete loss of power at frequencies higher than decadal (Fig. 4d). But as with the full emGPR,

the frequency range of interest for the AMV is well reconstructed.

The PCR still achieves high correlations, but suffers a strong underestimation of variability and an increased systematic bias505

towards the mean of the AMVI over the training period .
::::
(Fig.

:::
4e,f

:::
and

::::
Fig.

:::::
C1c). These deficiencies of the PCR reconstructions

with noisy data have been well documented already (e.g., von Storch et al., 2009). The ensemble mean correlation with the

smoothed target AMVI is 0.87 (ensemble range: 0.71 to 0.88, Fig. C1c).
:::
0.81

::
±

::::
0.10.

:
The mean bias of 145

::
±

::
26% exceeds one

standard deviation of the target AMVI(ensemble range: 115 to 172%). The mean standard deviation ratio is 0.46 (ensemble

range: 0.41 to 0.59)
::::
0.49

::
±

::::
0.09, corresponding to an underestimation of variability by 54

::
51

::
±

::
9%. The loss of variability510

occurs mainly in the range of frequencies lower than decadal, i.e., the frequencies of interest for the AMVI are underestimated.

:::::::
severely

::::::::::::
underestimated

:::::
(Fig.

:::
4f).

:::
The

:::
use

::
of

:::::
noisy

::::::::::::
pseudoproxies

:::
has

::::::::::::
approximately

:::::::
doubled

:::
the

:::::
width

:::
of

:::
the

::::
95%

:::::::::
confidence

:::::::
intervals

:::
for

::
all

:::::
three

::::::::
methods.

:::
The

:::::
mean

:::::::::
uncertainty

:::::
range

::::
over

:::
all

:::::
emGP

::::::::
ensemble

::::::::
members

::
is

::::::
±0.57,

::::::
which

:
is
:::::
again

:::
too

:::::::::::
conservative

:::
but

:::::::::
reasonable

:::::
given

::
the

:::::::
amount

::
of

::::::::::
non-climatic

:::::
noise

::
in

:::
the

::::::::::::
pseudoproxies.

::::
The

:::::
mean

::::
PCR

:::::::::
uncertainty

:::::
range

::
is

::::::
±0.21,

:::::
which

::
is

:::::
likely

:::
too

::::::::
confident515

::
in

::::::::::
combination

::::
with

:::
the

:::::
large

:::::::::::
reconstruction

:::::
bias.

Again, the reconstruction results with the noisy CCSM4-based pseudoproxies are broadly consistent with the MPIESM-

based reconstructions .
::::
(Fig.

:::
B3

:::
and

:::::
Fig.).

:
Still, some notable differences occur. The full emGPR has a larger negative mean

bias of 74
::
75

::
±

::::
0.17% of the target standard deviation and slightly overestimates the variability on multi-decadal timescales

::::::::
timescales

::::::
longer

::::
than

::
80

:::::
years

:
(Fig. B3a,b). The best reconstruction skill in the noisy CCSM4 case is achieved by the sparse520

emGPR, with high correlations, a small mean bias and a good estimation of the variability in the decadal to multi-decadal

frequency range (Fig. B3c,d).
::
A

:::::::
possible

::::::::::
explanation

:::
for

:::
the

::::::
higher

::::
skill

:::
of

:::
the

::::::
sparse

:::::::
emGPR

:::
can

:::::
again

:::
be

:::::
found

:::
in

:::
the

::::::::::::::
hyperparameters.

::
In

:::
the

:::::
sparse

:::::
case,

:::
the

:::::::::
uncertainty

:::::
from

::
the

:::::
noisy

::::::::::::
pseudoproxies

::::
was

:::::::
correctly

::::::::
assigned

::
to

:::
the

:::::
noise

:::::::
variance

::
σ2
n:::::

(Fig.
:::::
B4c).

::
In

:::
the

::::
full

:::::
case,

:::
the

::::
large

::::::
proxy

:::::
noise

:::
was

:::::::
instead

:::::::::
interpreted

:::
as

:::::
signal

::::::::
variance

:::::
(σf,r,

::::
Fig.

::::::
B4b).

:::
We

::::
will

:::::
return

::
to

::::
this

::::
point

:::
in

::::
Sect.

:::
4. With noisy pseudoproxies, the PCR shows the same deficiencies as in the MPIESM case: a525

strong systematic bias towards the mean of the AMVI during the training period and a strong underestimation of variability on

timescales longer than decadal
:::::::::::
AMV-relevant

:::::::::
timescales

:
(Fig. B3e,f).

3.3 TCp2k: Realistic PAGES2k proxy availability

Until now, we have assumed that the proxy availability is constant in time. In the following, we assess the reconstruction skill

of the two emGPR methods with realistic – i.e., varying – data availability and over the full 2000 years. We do this in three530

steps: First, we test how the emGPR performs over the full 2000 years with perfect pseudoproxies and constant data availability

(i.e., the same as TCppp but over 2000 years). Second, we reconstruct the AMVI with perfect pseudoproxies and realistically

varying data availability.
:::
To

::::::
achieve

:::::::
realistic

::::
data

::::::::::
availability,

:::
we

:::
clip

:::
the

::::::::
annually

:::::::
resolved

:::::::::::
pseudoproxy

:::::::
records

::
at

:::
the

::::
start
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:::
and

:::
end

:::::
years

::
of

:::
the

::::::::::::
corresponding

:::::::::
real-world

:::::
proxy

::::::
records

::::
from

:::
the

:::::::::
PAGES2k

::::::::
data-base.

:
And third, we test the emGPR with

noisy pseudoproxies and varying data availability. The third step, even though still idealised, is closest to representing realistic535

conditions for proxy-based reconstructions.

Because the full and sparse emGPR differ in the amount of computing memory, we use two different approaches to recon-

struct the full 2000 years. In our current computing environment and with the selected MPIESM-based proxy network of 23

locations, the full emGPR cannot handle much more than 500 years at a time. Wetherefore
:
,
::::::::
therefore,

:
train the full emGPR on

the most recent 500 years and use the estimated hyperparameters to reconstruct the AMVI piece-wise in the remaining three540

blocks of 500 years. For the first step, we actually take the hyperparameters from TCppp (red stars in Fig. 5). For the second

step, we estimate the hyperparameters again, to see how much they differ when the data availability changes (red diamonds

in Fig. 5). For the full emGPR, they turn out to be very similar, therefore, we use the hyperparameters from TCnpp in the

third step in order to save computing time (red dots in Fig. 5). The sparse emGPR can be trained and evaluated over the whole

2000 years at once with reasonable computational effort. Therefore, we retrain the hyperparameters in each of the three steps .545

::::::
(yellow

::::::::
diamonds

::
in
::::
Fig.

:::
5).

3.3.1 Full emGPR

The first step with the full emGPR shows that our approach of piece-wise reconstruction works well. The reconstructed AMVI

closely follows the target AMVI also in the years 0 to 1500 (Fig. 6a). This confirms that the hyperparameters estimated from

the first 500 years are also representative for
::
of the remaining periods (at least in this MPIESM-based setting). The correlation550

of the smoothed reconstructed AMVI and the target AMVI is with 0.87,
:
a bit lower as in the TCppp case. The mean bias of 8%

of the target standard deviation is smaller than in the TCppp case. The variability is well reconstructed, as indicated by both

the standard deviation ratio of 1.03 and and the power spectrum (Fig- 8a).

With variable data availability in the second step, the full emGPR still achieves a similarly high reconstruction skill (Fig. 6b).

The correlation of the smoothed reconstructed AMVI and the target AMVI is 0.88 and the mean bias is negligible. Interestingly,555

the reduced data availability leads to an overestimation of variability in some periods (e.g., in the years 900 to 1100). This is

also indicated by the standard deviation ratio of 1.19.
::::
This

:::::
could

::
be

:::::::::
attributed

::
to

::::::::::
non-optimal

:::::::::::::
hyperparamters

:::
for

:::
the

:::::::
reduced

:::::
proxy

:::::::::
availability

:::
in

:::
this

::::::
period

::::
(see

:::::
Sect.

:::
4).

:
The power spectrum also shows slightly higher power in the multi-decadal

frequency range (Fig- 8b). On the other hand, there is a strong loss of power in the high frequency
::::::::::::
high-frequency range (>

1/10 yr−1).560

The third step confirms that the full emGPR can achieve high reconstruction skill also under realistic conditions (Fig. 6c

:::
and

::::
Fig.

::::
C2a). The

:::::
mean correlation of the smoothed ensemble mean AMVI reconstruction with the target AMVI is 0.80

(ensemble range: 0.59 to 0.74)
::::
0.67

::
±

::::
0.07 and the mean bias amounts to 12

::
±

:
5% of the target standard deviation(ensemble

range: 6 to 15%). Many periods of extreme high and low AMVI are well captured (e.g., around year 300 and 1150), but some

of these extreme periods are also underestimated (e.g., around year 550). The
:::::
mean standard deviation ratio of the mean is565

0.88 (ensemble range: 0.90 to 1.22)
:
is

::::
1.06

::
±

::::
0.15, indicating an underestimation of variabilityby 22%. The loss of variability

mainly occurs again in the high-frequency range, and to some extent also in the very low-frequency range
::::::
overall

::::::
realistic

:::::
level
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Figure 5. The hyperparameters of the two GPR versions for different training periods with perfect MPIESM-pseudoproxies (left halves of

the panels) and the different white noise ensemble members (right halves of the panels). The hyperparameters are (a) the typical lengthscales

lf,t and lf,r , (b) the signal variance σ2
f,t and σ2

f,r , and (c) the noise variance σ2
n. The subscript t indicates that the kernel operates only on the

time dimension; the subscript r indicates that the kernel operates on all dimensions, including time (see Eq. 6 and 7). The lengthscales are

unitless, corresponding to the unitless distance of the embedding space. The lengthscale lf,t can be transformed into years through division

by 1.44. The signal and noise variance are given in K2.

::
of

:::::::::
variability.

:::::::::
Especially

:::
the

:::::::::
variability

::
in

:::
the

:::::::
decadal

::
to

::::::::::::
multi-decadal

:::::
range

::
is

:::
still

::::
well

::::::::
captured (Fig- 8c). The variability

in the decadal to multi-decadal range is still well captured
:::
only

::::
loss

::
of

:::::::::
variability

::::::
occurs

::::
again

::
in
:::

the
:::::::::::::

high-frequency
:::::
range

:::
on

::::::::
timescales

::::::
shorter

::::
than

:::::::
decadal.570

3.3.2 Sparse emGPR

In the first step, the sparse emGPR shows a slightly reduced reconstruction skill as compared with the TCppp case. The mean

bias is very small, but the correlation is smaller and the underestimation of variability is stronger (Fig. 7a). The variability is

underestimated both on interannual and multi-decadal to centennial timescales (Fig. 8,d).

With variable data coverage in the second step, the reconstruction skill of the sparse emGPR remains similar, only the575

underestimation of variability on multidecadal to centennial timescales increases (Fig. 7b and 8e).
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(a)

(b)

(c)

Figure 6. The MPIESM-TCp2k reconstructions with the full emGPR. (a) first step with perfect pseudoproxies and constant proxy availability.

(b) second step with perfect pseudoproxies and realistic proxy availability according to the PAGES2k database. (c) third step with white-noise

added to the proxies and realistic proxy availability.
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(a)

(b)

(c)

Figure 7. The MPIESM-TCp2k reconstructions with the sparse emGPR. (a) first step with perfect pseudoproxies and constant proxy avail-

ability. (b) second step with perfect pseudoproxies and realistic proxy availability according to the PAGES2k database. (c) third step with

white-noise added to the proxies and realistic proxy availability.
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In the third step, the
:::::
mean correlation of the smoothed reconstructed ensemble mean AMVI

::::::
AMVI

::::::::::::
reconstructions

:
with

the target AMVI increases to 0.88 (ensemble range: 0.70 to 0.83)
:::
0.77

::::::
±0.07, confirming again that the sparse emGPR seems

to capture some details of the AMVI better in the presence of noise (Fig. 7c
:::
and

:::
Fig.

:::::
C2b), and the greater flexibility that

comes with a high estimate of noise variance in the GP hyperparameters (Fig. 5c). Still, the
::::
The underestimation of variability580

remains large, both on interannual and multi-decadal to centennial timescales (Fig. 8f). The underestimation of variability on

multi-decadal timescales is comparable to
::::
Even

::::::
though

:::
the

::::::
sparse

:::::::
emGPR

::::::
obtains

:::
the

:::::
worst

::::::::::::
reconstruction

:::::
skill

::
in

:::
this

::::
test

::::
case,

:::
the

::::::
overall

::::
skill

::
is

:::
still

::::::
higher

::::
than that of the PCR

::::
with

:::
full

::::
data

:::::::::
availability

:
in the TCnpp case.

4 Discussion

We have tested two versions of GPR in a newly developed input space (embedding space) for climate-index reconstructions in585

pseudoproxy experiments with increasingly realistic conditions. As a benchmark
:
, we used a PCR-based reconstruction. Under

perfect conditions (TCppp), all three methods – full and sparse emGPR and PCR – achieve high reconstruction skill. The full

emGPR outperforms the sparse emGPR and performs at least as well as the PCR. With noise-contaminated pseudoproxies (TC-

npp), the full emGPR has the highest reconstruction skill with a realistic estimate of variability on AMV-relevant timescales

.
::::
(i.e.,

::::::
decadal

::
to
:::::::::::::
multi-decadal).

:
The sparse emGPR achieves the second best

:::::::::
second-best

:
reconstruction skill with a realistic590

mean but increased variance loss. The PCR-based reconstruction is systematically biased to the AMVI values of the training pe-

riod and suffers a strong loss of variance on AMV-relevant timescales. With realistic proxy availability and noise contaminated

::::::::::::::::
noise-contaminated pseudoproxies (3rd step of TCp2k), the full emGPR is still able to achieve a high reconstruction skill with

a realistic (ensemble) mean and variability on AMV-relevant timescales.
::::::
Below,

:::
we

::::::::
re-assess

:::
the

::::::
overall

::::::::::
performance

:::
of

:::
the

:::::::
methods,

::::
give

:::::::
possible

:::::::::::
explanations

:::
for

:::::::::
differences

::
in

::::::::::::
reconstruction

::::
skill

:::
and

:::::::
discuss

::
the

::::::
wider

::::::::::
applicability

::
of

:::
the

::::::
emGP.595

4.1
::::::::::

Non-climatic
:::::
noise

Our results indicate that the emGPR (both full and sparse) is able to perform well in the presence of non-climatic noise. This

property can most likely be explained by the hyperparameter of the noise variance
::
σ2
n (Fig. 5c). The noise variance describes the

uncertainty in the regression targets. This concept can only be meaningfully applied here because we perform the GPR in the

embedding space, where both the proxy timeseries and the AMVI are the regression targets. The noise variance cantherefore
:
,600

::::::::
therefore, capture the non-climatic signal of the pseudoproxies and give the emGPR the necessary flexibility to filter the non-

climatic part of the signal. Comparing the noise variance between the TCppp and TCnpp cases illustrates this quite well. In

the TCppp case, the estimated noise variance (or likelihood) σ2
n lies between 0.1 and 0.4 K2. In the TCnpp case, the estimated

σ2
n lies between 2 and 2.7 K2. This does reflect the actual mean magnitude of the noise which we added to the pseudoproxies.

The mean variance of the noise of all 23 records is approximately 2.1 K2 (for the individual records, the variance of the added605

noise ranges from 0.3 K2 to 4.9 K2). Thus, the GPR training procedure seems to be able to learn a realistic magnitude of the

added noise.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. Welch power spectra of the MPIESM-TCp2k reconstructions for the full (red) and sparse (yellow) emGPR. (a,d) first step with

perfect pseudoproxies and constant proxy availability. (b,e) second step with perfect pseudoproxies and realistic proxy availability according

to the PAGES2k database. (c,f) third step with white-noise added to the proxies and realistic proxy availability,
::::
grey

::::::
shading

:::::::
indicates

:::
the

:::
95%

:::::::::
confidence

:::::
interval

::
of
:::
the

:::::
target

:::::::
spectrum. The power spectral density (PSD) is given in K2 yr.
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Interestingly, the increased flexibility of the GP through the higher σ2
n not only yields robust reconstructions in the presence

of uncertain pseudoproxies, it also seems to improve the performance of the sparse emGPR- at least for the cases with ideal

proxy availability (TCnpp). .
::
It
::
is

:::::::
possible

::::
that

:::
the

:::::::
presence

:::
of

::::
noise

::::::
makes

:::
the

::::::
sparse

:::::
emGP

::::
less

::::::::
sensitive

::
to

:::::::::
overfitting.

:::
To610

:::
test

::::
this,

:::
we

::::
have

::::::::
repeated

::::::
TCppp

::::
and

::::::
TCnpp

:::
for

:::
the

::::::
sparse

::::::
emGP

::::
with

::
a

:::::::
network

:::::::::
consisting

::
of

::::
only

::::
half

:::
the

:::::::
number

:::
of

::::::::::::
pseudoproxies

:::::::::
(randomly

:::::::
selected

::::
from

:::
the

:::::::
original

:::::::::
networks).

:::
We

::::::
would

::::::
expect

:::
the

:::::::::
difference

::
in

::::
skill

::
to

:::::::
decrease

:::::
with

:::
the

::::::
smaller

::::::::
networks,

::
if
:::::::::
overfitting

::::
was

:::::
indeed

:::
the

:::::::
reason.

:::
The

:::::::::
difference

:::::::
between

:::
the

::::::::::::
reconstruction

::::
with

::::::
perfect

::::
and

:::::
noisy

::::
data

:
is
::::::
indeed

:::::::
reduced

::::
with

::::::
respect

::
to

:::
the

::::
full

:::::::
networks

:::::
(Fig.

::::
D1).

:::
The

::::::
TCppp

::::::::::::
reconstruction

::::
has

:
a
::::::::::
comparable

::::::::::::
reconstruction

::::
skill

::
to

:::::
single

::::::
TCnpp

::::::::::::
reconstruction

::::::::
members

::::
with

::::
both

::::::::
MPIESM

::::
and

::::::::::::
CCSM4-based

:::::::::::::
pseudoproxies.

:::
We,

::::::::
therefore,

::::::::
conclude

::::
that615

::
the

:::::::::
improved

::::::::::
performance

::
of
:::

the
::::::

sparse
::::::
emGP

::::
with

:::::
noisy

:::
data

::::
can

::
at

::::
least

:::::
partly

:::
be

::::::::
attributed

::
to

:
a
:::::::
greater

:::::::::
robustness

::::::
against

::::::::
overfitting

::
in

:::
the

::::::::
presence

::
of

:::::
noise.

:

::::
Here,

::::
we

::::
have

::::
only

::::::
tested

::::::::::
white-noise

:::::::::::::
pseudoproxies,

:::
i.e.

:::
we

:::::::
assume

::::
that

:::
the

:::::
noise

::
in

:::
the

::::::::::::
pseudoproxy

::::::
records

::
is
::::

not

::::::::
correlated

::
in

:::::
time.

::::
The

::::::
typical

:::::
noise

::::::
model

:::
for

:::
σ2
n,

::::::
which

:::
we

:::::
apply

:::::
here,

::::
also

:::::
works

:::::
with

:::
the

::::::::::
assumption

::
of

:::::::::::
uncorrelated

:::::::
Gaussian

:::::
white

:::::
noise.

::::
For

:::
real

:::::::
proxies

:::
this

::::
may

:::
not

::::::
always

::
be

:::
the

:::::
case.

:::::
There

:::
are

::::
ways

::
of

::::::::
adapting

:::
the

::::
noise

::::::
model

::
to

:::::::
include,620

:::
e.g.,

:::::::::
correlated

:::::
noise

:::::::::::::::::::::::::::::::
(see Rasmussen and Williams, 2006).

:::
The

::::::::::
embedding

:::::
space

:::::
would

:::
be

:
a
:::::

good
:::::::
starting

::::
point

:::
for

::::
this,

:::
as

::
we

::::::::
explicitly

::::
take

:::
the

:::::
time

:::::::::
dimension

:::
into

::::::::
account.

:::
The

:::::
noise

::::::
model

::::::
would

::::::::
introduce

::::::::
additional

::::::::::::::
hyperparameters

::::
and

:::::
make

::
the

::::::::::
calibration

::::
more

::::::::
complex.

::
If
:::
we

::::::
simply

::::
used

::::
our

::::::
current

:::::
set-up

:::::
with

::::::::
correlated

:::::
noise,

:::
the

::::::
model

:::::
might

::::::::
interpret

::::
some

:::
of

::
the

:::::
noise

:::::::::
correlation

:::::::::
incorrectly

:::
as

:::::
actual

::::::::::::::
data-correlation.

::::
This

:::::
could

::
be

:::
the

::::::
subject

::
of

::
a

::::::::
follow-up

:::::
study.

:

4.2
::::::::::::::

Hyperparameter
:::::::::
estimation

::::
and

:::::::::
overfitting625

The full emGPR achieves generally higher reconstruction skill than the sparse emGPR (one exception is the TCnpp case with

CCM4-based
::::::::::::
CCSM4-based

:
pseudoproxies). This could be expected, since the sparse emGPR approximates the covariance

matrix based on only a tenth of the available training data, i.e the subset of selected inducing points. Possibly, the hyperpa-

rameters are more accurately learned from the full dataset. Another possibility is that the location of the inducing points in

non-optimal. We have initialised the inducing points as every tenth step in time and then optimised the location during training.630

We have not tested other setups of the inducing points. It is possible that a higher number or differently selected inducing points

would result in a higher reconstruction skill.

The optimisation of the hyperparameters is an additional source of uncertainty. The learned set of hyperparameters may not

always be the optimal set. We did not make any sensitivity tests regarding e.g. initialisation of the hyperparameters. But the fact

that the training of the full emGPR resulted in similar hyperparameters for all three MPIESM-based test cases (TCppp,TCnpp635

and TCp2k) gives us confidence that the estimated hyperparameters for the full emGPR are accurate. The hyperparameters that

can be interpreted physically
::::
have

::
a

:::::::::::::
straightforward

:::::::
physical

:::::::::::
interpretation, i.e. the typcial lengthscale of the kernel over the

time dimension
:::::
typical

::::::::::
lengthscale

:
lf,t :::

and
:::::::
variance

::::
σ2
f,t ::

of
:::
the

::::
first

:::::
kernel

:
and the noise variance σ2

n, also appear reasonable

in their magnitudes in most cases .
:::
(red

::::
stars

::
in

::::
Fig.

:::
5).

:::
The

::::::::
timescale

:::
of

:::
the

:::
full

::::::
emGP

:
is
:::
on

:::
the

:::::
order

::
of

:::
2.7

:::::
years,

::::::
which

::
is

:
a
:::::::::
reasonable

::::::::
timescale

::
of

::::::::::::::
auto-correlation.

:::
As

::::::::
discussed

::::::
above,

:::
σ2
n:::::::

captures
:::
the

:::::::::
magnitude

::
of

:::
the

:::::
mean

::::::
added

::::
noise

::::::::
variance640

:::::
across

:::
all

::::::
records.

::::
The

:::::
signal

::::::::
variance

::::::::
σ2
f,t=0.12

:::::::
indicates

::
a
::::::::
temporal

::::::::::
temperature

::::::::
variability

::
of

::::::::::::
approximately

::::
0.35

:::
K.

:::
For

:::
all
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::::::
selected

:::::::::::::
pseudoproxies,

:::
the

::::::::
temporal

:::::::::
variability

::::::
ranges

::::
from

::::
0.28

::
to
:::::

1.15
::
K.

::::
The

::::::::
estimated

::::
σf,t::

is
::::
thus

:::
on

:::
the

:::::
lower

:::
end

:::
of

:::::::
plausible

::::::
values.

::::
The

::::::::
timescale

:::
lf,r::::

and
:::::::
variance

::::
σ2
f,r ::

of
:::
the

::::::
second

:::::
kernel

:::
are

::::
less

::::::::::::
straightforward

:::
to

:::::::
interpret,

::
as

::::
they

:::::::
operate

:::::
across

:::::
space

:::
and

:::::
time.

::::::::
However,

::::
σ2
f,r :::::

should
::::::::
somehow

::::::
reflect

:::
the

:::::
mean

::::::::::
temperature

::::::::
variability

::::::
across

::
all

::::::
records

::::
and

::::
time.

::::
The

:::::::
estimate

::
of

::::::::
σ2
f,r=0,51

::::::::
indicates

:
a
:::::::::
variability

::
of

:::::
0.71.

::::
This

:
is
::
a
:::::
fairly

::::
close

:::::::
estimate

:::
of

::
the

::::::
actual

::::
0.82

::
K

::
of

:::
the

:::::::::
underlying

::::
data.

:
645

Based on the comparison of the hyperparameters across all experiments, we identify two possible cases of non-optimal

hyperparameters: (1)
::::
First,

:
the TCppp case with the sparse emGPR, based on both MPIESM and CCSM4 pseudoproxies.

Here, the estimated typical timescale lf,t is much shorter than that estimated from the full emGPR (left halves of Fig. 5a and

Fig. B4a. (2)
::::
And

:::::::
second, the TCnpp case with the full emGPR and CCSM4-based pseudoproxies. In this case, the noise

variance was not identified correctly
:::::::
correctly

::::::::
estimated. Instead, the noise variance was attributed to the signal variance σ2

f,r.650

The values of σ2
n and σ2

f,r appear switched compared to the other TCnpp experiments (compare right halves of Fig. B4b

and c, and Fig. 5b and c).
::::::::
Repeating

:::
the

::::::::::::
CCSM4-based

::::::
TCnpp

::::::::::
experiment

::::
with

::::::::
switched

:::
σ2
n :::

and
::::
σ2
f,r:::::::

slightly
::::::::
increases

:::
the

:::::::::::
reconstruction

:::::
skill,

:::
but

:::
the

::::
skill

:::::::
remains

:::::
lower

::::
than

:::
for

:::
the

::::::
TCnpp

::::
with

:::
the

::::::
sparse

:::::::
emGPR

:::
(not

:::::::
shown).

::::
This

:::::::::
illustrates

::::
how

::::::
difficult

::
it

::
is

::
to

:::
find

:::
an

::::::
optimal

:::
set

::
of

:::::::::::::::
hyperparameters.

The skill of
:::
As

::::
with

::
all

:::::::::::::
reconstruction

::::::::
methods,

:
it
::

is
::::::::

possible
:::
that

::::
the

:::::::::::::::
(hyper)parameters

::::::
learned

::::::
during

:::::::
training

:::
are

::::
not655

:::::::::
completely

::::::::::::
representative

::
for

:::
the

::::::::::::
reconstruction

::::::
period.

:::
To

:::
test

:::
for

:::
the

:::::::::::::
non-stationarity

::
of

::::::::::::::
hyperparameters

::
in

::::
case

::
of

::::::::
changing

:::::
proxy

::::::::::
availability,

:::
we

::::
have

:::::::
repeated

:::
the

:::::::
TCp2k

:::::::::
experiment

::::
with

::::
the

:::
full

::::::
emGP

:::
for

:::
the

:::::
years

:::::::::
1000-1500

::::::::
(Fig.D2).

::::
The

::::
new

:::::::::::::
hyperparameters

:::::::
indicate

::
a

::::::
smaller

:::::
signal

::::::::
variance

:::
and

::::::
shorter

:::::::::::::
auto-correlation

::::::::
timescale

::::
(red

:::
and

:::::
grey

::::::::
diamonds

::
in

::::
Fig.

::::
D3).

::::
This

:::::::
improves

:::
the

::::::::::::
reconstruction

::::
skill

::::
with

::::::
respect

::
to

:::
the

::::::
original

::::::
TCp2k

::::::::::
experiment.

::::::::
However,

::::::::::::
non-stationary

::::::::::::::
hyperparameters

::
are

:::::::
difficult

::
to

:::::::
account

:::
for

::::
with

::::::::
real-world

:::::
data.

:::
By

::::::
training

:::
the

::::::
emGP

::::
with

:::
the

::::::::
maximum

::
of

::::::::
available

:::::
proxy

::::
data,

:::
we

:::
try

::
to

:::
get660

::
the

::::
best

:::::
mean

::::::::
estimate,

:::
but

::::::
cannot

::::
fully

:::::
avoid

:::
the

:::::
effect

::
of

:::::::::::::
non-stationarity.

:

4.3
:::::::::

Embedding
::::::::
distance

::
As

::::
well

::
as

:::
the

:::::::::::::::
hyperparameters,

:::
also

:::
the

::::::::::
embedding

::::::::
distances

:::
are

:::
not

:::::::
constant

::
in

::::
time

:::::
(Fig.

::::
D4).

::::::::
Changing

:::::::::::::::
cross-correlations

:::
may

::::
lead

::
to

::::::
under-

::
or

::::::::::::
overestimation

:::
of

::::::::
individual

::::::
records

::::::
during

::::::
certain

:::::::
periods.

::::::
Again,

:::
this

::
is

:::::::::
something

:::::
which

::
is

:::::::
difficult

::
to

::::::
account

:::
for

::::
with

::::
real

:::::
world

::::
data,

:::
and

:::
by

:::::::::
calculating

:::
the

:::::::::
embedding

:::::::
distance

::::
over

:::
the

:::::
entire

:::::::
periods

::
of

:::::
proxy

:::::::::
availability

:::
we

:::
try665

::
to

:::
find

:::
the

::::
best

:::::
mean

:::::::
distance

:::::::
estimate.

:

:::::::
Another

:::::
source

:::
of

:::::::::
uncertainty

::
is
:::
the

::::::
choice

::
of

:::
the

:::::::
distance

::::::
metric

:::
on

:::::
which

:::
the

:::::::
creation

:::
of

:::
the

:::::::::
embedding

:::::
space

::
is

::::::
based.

:::
We

::::
have

:::::
tested

::::::::::
equidistant

::::::::::
coordinates,

::::::::::::::
cross-correlation

:::
and

::::::::::::::
cross-correlation

:::::
with

:::::::
standard

::::::::
deviation

::::
ratio

::::
and

:::::::
selected

:::
the

::::
latter

::::::
metric.

::::
But

::
of

::::::
course,

:::::
other

::::
ways

::
of

:::::::::::
constructing

:::
the

:::::::::
embedding

:::::
space

:::::
could

:::
be

:::::::
possible.

::::
The

::::::
optimal

::::::::::
embedding

:::::
space

:::
may

:::::
differ

:::
for

::::
each

:::::
proxy

::::::::
network

:::
and

:::::
proxy

:::::::::
properties.

::::
This

::
is

::::::::
definitely

::::::
worthy

::
of

::::::
further

:::::::::::
investigation.

:
670

4.4
::::::
Climate

::::::
model

::::::::::
dependence

:::
The

::::
skill

::
of all three methods, including the benchmark PCR, depends to some degree also on the climate model from which the

pseudoproxies are derived. This is a known issue (Smerdon et al., 2011). The full emGPR performs better in the MPIESM-based

experiments, the PCR performs better in the CCSM4-based experiments and the sparse emGPR performs about equally well in
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both model worlds. Source of the different skill could be the differences in the network size and location of the pseudoproxies675

and differences in the cross-correlation structure. It isof course ,
::
of
:::::::
course, difficult to say , whether a reconstruction with real

proxies will behave more like the MPIESM-based experiments or more like the CCSM4-based experiments. But regardless of

the differences in skill, the fact that the emGPR has higher reconstruction skill in the more realistic TCnpp case and suffers

from a much smaller variability loss than the PCR in both model worlds, makes
:::::
gives us confidence that emGPR will also

improve the reconstructed variability in a real reconstruction.680

A last source of uncertainty is the choice of the distance metric on which the creation of the embedding space is based. We

have tested equidistant coordinates, cross-correlation and cross-correlation with standard deviation ratio and selected the latter

metric. But of course other ways of constructing the embedding space could be possible. The optimal embedding space may

differ for each proxy network and proxy properties. This is definitely worthy of further investigation.

The685

4.5
::::

Using
::::
real

:::::::
proxies

::::
and

:::::
wider

:::::::::::
applications

:::
The

:
pseudoproxy experiments give a good first impression of how the reconstructions may behave with real proxies. Nonethe-

less, even though the third step of TCp2k (noise contamination and variable proxy coverage) is already quite realistic, it is still

idealised. E.g. in the pseudoproxy setup, we calculate the distance matrix D based on the whole length of the simulation. With

real proxies, each proxy record has a different length and covers a different period. In this case, the distance matrix could be690

calculated based either on a common time period where all records are available (this could be a very short period), or it could

be the period of overlap for each individual pair of records. In the

::
In

::::::::
principle,

:::
the

:::::::::
framework

:::::::::
presented

::::
here

:::
can

:::
be

::::::
applied

:::
to

:::
any

:::::::
climate

:::::
index

:::
that

:::::::
exhibits

:::::::::
significant

:::::::::::
correlations

::::
with

::::
local

:::::
proxy

:::::
sites.

:
It
::
is
::::
thus

:::
not

::::::
limited

::
to

:::
the

::::::
AMVI

:::::::::
application

:::::::::
presented

::::
here.

::::
With

::::
real

:::::::
proxies,

:::
that

:::
do

:::
not

::
all

:::::
come

::
in

:::::
units

::
of

::

◦C
:::::
(e.g.,

::::
lake

:::::::::
sediments,

:::
tree

::::
ring

:::::
width,

::::::
isotope

::::::
ratios),

::
it
:::::
might

:::::
make

::::
more

:::::
sense

::
to

::::::::::
standardise

::
all

::::::
records

::
to
::::
unit

::::::::
variance.695

::
In

:::
this

:::::
case,

:::
the

:::::::::
embedding

:::::::
distance

::::::
would

::
no

::::::
longer

::::
need

::
to
:::::::

include
:::
the

::::::::::
SR-scaling.

::
A

::::::
simple

::::::::::
dependence

::
on

:::
the

:::
CC

::::::
might

::
be

::::::::
sufficient.

::::
This

:::::::
remains

::
to

:::
be

:::::
tested.

:

::
In

::::
order

:::
to

:::
use

:::
this

::::::::::
framework

::
for

:::::::
indexes

::::
that

::::::
operate

:::
on

:::::
longer

::::::::::
timescales,

:
it
::::::
might

::::::
become

:::::::::
necessary

::
to

::::::
include

:::::::
records

::::
with

:::::
lower

::::::::
temporal

:::::::::
resolution.

::::
This

::::::
would

::::::
require

:::::::::::
subsampling

::
of

:::
all

:::::::
records

::
to

:::
the

::::::
lowest

::::::::
common

:::::::::
resolution,

::::::
which

::
is

:::::::
common

:::::::
practice

::
in
:::::::::

long-term
:::::::::::::
reconstructions.

::
It
::::::

might
::::
also

::
be

::::::::
possible

::
to

::::
train

::::
one

::::::
emGP

::::::
model

:::
for

:::
the

:::::::::::::
high-resolution700

::::::
records

:::
and

::::
one

:::
for

:::
the

::::
low

:::::::::::::::
resolution-records.

::::
The

::::::
caveat

::::
here

::
is

:::
that

:::
the

::::::::::::
observational

:::::
period

::
is
:::::

often
:::
too

:::::
short

::
to

:::::::
include

::::::
enough

:::::::
training

:::
data

:::
for

:::
the

::::::::::::
low-resolution

:::::::
records.

::::
But

:::
this

::
is

:::
true

:::
for

:::
all

::::::::::::
reconstruction

:::::::
methods

:::
and

:::
not

::::::
unique

::
to

:::
the

::::::
emGP

:::::::::
framework

::::
here.

:

::
In

:::
the TCnpp cases, we created 30 different white noise realisations to estimate the noise-related uncertainty. With real prox-

ies, weof course
:
,
::
of

::::::
course,

:
only have one realisation of the data and cannot run noise ensembles. But one could think of other705

ways of generating ensembles, e.g. with slightly different hyperparametersor
:
, slightly different ways of constructing the dis-

tance matrix
::
or

::::::::
inclusion

::
of

:::::::
different

:::::
noise

::::::
models

:::
for

:::
σ2
n. This would instead give insight into the other more methodological

sources of uncertainty.
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5 Conclusions

We have developed and tested a new method for proxy-based climate-index reconstruction. Our aim was to reduce the under-710

estimation of variability on AMV-relevant timescales (decadal to multi-decadal), which is a common drawback of established

reconstruction techniques such as PCR. To this end, we applied Gaussian Process regression and developed a modified in-

put space, which we denoted embedding space. We tested two versions of GPR, a full version and a stochastic variational,

i.e. sparse, version. The full version is generally more accurate but comes at high computational costs and can only handle a

limited amount of data. As a benchmark comparison,
:
we also computed AMVI reconstructions with PCR.715

Under ideal conditions (TCppp: pseudoproxies contain only the climate signal, all records available over the entire recon-

struction period), the full embedded GPR performs at least as well as the PCR; in the pseudoproxy experiments based on

MPIESM the embedded GPR achieves an even higher reconstruction skill and suffers almost no variance loss. Under more

realistic conditions (TCnpp: pseudoproxies contaminated with non-climatic white noise, all records available over the entire

reconstruction period), the reconstructions skill of the PCR strongly decreases, and both the full and the sparse embedded GPR720

clearly outperform the PCR. The GP-based reconstructions have an overall small mean bias and reconstruct the variability on

AMV-relevant timescales much more accurately. Under even more realistic conditions (TCp2k: pseudoproxies contaminated

with non-climatic white noise, records have different length and cover different periods), the sparse embedded GPR still has an

overall small mean bias but suffers a strong variance loss, while the full embedded GPR is still capable of reconstructing the

variability on the timescales of interest accurately.725

Of course, it remains to be seen how the embedded GPR performs with real proxies. As a next step, we will perform a real

AMVI reconstruction based on the PAGES2k proxy network. Based on the results presented in this study, we are confident that

climate-index reconstructions can be significantly improved with embedded GPR. A more accurate reconstruction of the mean

state and the magnitude of variability will help in advancing
::::::
advance

:
our understanding of AMV dynamics, e.g., especially

during periods of extreme cooling following volcanic eruptions.730

Code and data availability. The extracted pseudoproxy data and the simulated AMVI from the MPIESM and CCSM4 simulations as well as

the python scripts for the preparation of the pseudoproxy network, the preparation of the embedding space and the GP regression are provided

in the supplement of the paper. The used Python packages Scikit-learn (v.0.19.1), TensorFlow (v.1.12.0) and GPflow (v.1.3.0) are publicly

available. The PAGES2k database can be downloaded here: https://doi.org/10.6084/m9.figshare.c.3285353. The CCSM4 past1000 and histor-

ical simulations can be obtained from the World Data Center for Climate (doi:10.1594/WDCC/CMIP5.NRS4pk and doi:10.1594/WDCC/CMIP5.NRS4hi,735

respectively).
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Appendix A: Calculating the posterior predictive distribution865

Given a set of observed data y = yi = f(xi), the objective is to provide the probability distribution at a yet unobserved data

point z, f(z), conditional on the available observations. This is achieved by the application of the Bayes theorem. Before

the application of Bayes theorem, the prior for f(z) is just the assumed probability distribution for the Gaussian process,

with mean µprior(z) and variance covprior = k(z,z). Usually, µprior is assumed to be zero without loss of generality (e.g.

by taking anomalies from the mean). It is also assumed that observations are a realisation of a noisy Gaussian process, which870

are contaminated by uncertainty in observations, i.e, yi = f(xi) + ε. The noise ε is assumed to be Gaussian with variance σ2
n

and uncorrelated across the locations xi. After the application of Bayes theorem, the mean and variance can be calculated

according to the following predictive equations (for a detailed derivation see Rasmussen and Williams, 2006):

µpost(z) = k(z,x)T [k(x,x) +σ2
nI]

−1y (A1)

covpost(z) = k(z,z)− k(z,x)[k(x,x) +σ2
nI]

−1k(x,z) (A2)875

where I is the identity matrix. These equations can be interpreted as follows. The posterior mean is a linear combination

of observations Y and the process covariances between positions of the available observations and the new position k(z,x).

Usually, the kernel is assumed to decrease with increasing separation between locations. This implies that when the new

position z is out of the range of available observations, the posterior mean will tend towards the prior mean. The posterior

variance is smaller than the prior variance, since the available observations reduce the range of likely values of f(z).880
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Appendix B: Metrics of TCnpp ensemble members

Distribution of skill metrics for the ensemble of reconstructions with noisy MPIESM-pseudoproxies with (a) the full emGPR,

(b) the sparse emGPR and (c) PCR. The histrograms show the respective distributions, the vertical lines correspond to the

metric of the ensemble mean noted also in Fig. 4. The printed numbers denote the minimum and maximum of the respective

metrics and correspond to the ensemble ranges given in the text.885

Appendix B: CCSM4 pseudoproxies
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(a)

(b)

(c)

(d)

Figure B1. The selected pseudoproxy records and resulting distance metrics based on the CCSM4 simulation. (a) the locations of the

records, colour-coded with the correlation between the records and the AMV during the last 150 simulation years (after detrending); (b)

cross-correlation; (c) standard deviation ratio and (d) the resulting embedding distances from the combination of both. Matrix indexes 1 to

25 are the selected pseudo proxy records as labeled in (a), index 26 is the simulated AMV index. The diagonal entries in (d) are left empty

because zero cannot be displayed on the logarithmic color scale.
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(a) (b)

(c) (d)

(e) (f)

Figure B2. Reconstructions with perfect CCSM4-pseudoproxies based on (a,b) the full emGPR, (c,d) the sparse emGPR (e,f) PCR. Left-

hand panels show the smoothed reconstructed and target timeseries. The dashed line marks the separation between training and testing

periods. Shading indicates the 95% confidence interval. The metrics r, Rσ and b denote correlation, the ratio of standard deviations and

the bias relative to the target standard deviation, respectively. Subscripts sm and yr denote smoothed and unsmoothed data, respectively.

The metrics are calculated for the reconstruction period (1500 to 1850). Right-hand panels show the Welch powerspectra of the target and

reconstructed AMVI. Shading indicates the 95% confidence interval. The power spectral density (PSD) is given in K2 yr.
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(a) (b)

(c) (d)

(e) (f)

Figure B3. Reconstructions with noisy CCSM4-pseudoproxies based on (a,b) the full emGPR, (c,d) the sparse emGPR (e,f) PCR. Left-hand

panels show the smoothed reconstructed and target timeseries. The dashed line marks the separation between training and testing periods.

Thin lines show the individual ensemble members, the bold line indicates the ensemble mean. The metrics r, Rσ and b denote correlation,

ratio of standard deviations and the bias relative to the target standard deviation, respectively. Subscripts sm and yr denote smoothed and

unsmoothed data, respectively. The metrics are calculated for the ensemble mean during the reconstruction period (1500 to 1850). Right-hand

panels show Welch powerspectra of the target and reconstructed AMVI. Thin lines indicate the spectra of the individual ensemble members,

the bold line indicates the spectrum of the ensemble mean. Shading indicates the 95% confidence interval of the ensemble mean spectrum.

The power spectral density (PSD) is given in K2 yr.
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Figure B4. The respective hyperparameters for different training periods with CCSM4-based perfect pseudoproxies (left halves of the panels)

and the different white noise ensemble members (right halves of the panels). The hyperparameters are (a) the typical lengthscales lf,t and

lf,r , (b) the signal variance σ2
f,t and σ2

f,r , and (c) the noise variance σ2
n. The subscript t indicates that the kernel operates only on the time

dimension; the subscript r indicates that the kernel operates on all dimensions, including time (see Eq. 6 and 7). The lengthscales are unitless,

corresponding to the unitless distance of the embedding space. The lengthscale lf,t can be transformed into years through division by 1.10.

The signal and noise variance are given in K2.
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Appendix C:
::::::
Metrics

:::
of

::::::
TCnpp

:::::::::
ensemble

::::::::
members

(a)

(b)

(c)

Figure C1.
::::::::
Distribution

::
of
::::

skill
::::::
metrics

:::
for

::
the

::::::::
ensemble

::
of

:::::::::::
reconstructions

::::
with

::::
noisy

:::::::::::::::::::
MPIESM-pseudoproxies

::::
with

::
(a)

::
the

:::
full

:::::::
emGPR,

::
(b)

::
the

:::::
sparse

::::::
emGPR

::::
and

::
(c)

::::
PCR.

:::
The

::::::::
histograms

:::::
show

::
the

::::::::
respective

::::::::::
distributions,

:::
the

::::::
vertical

::::
lines

::::::
indicate

:::
the

:::::::
ensemble

:::::
mean.

::::
The

:::::
printed

:::::
values

:::::
denote

:::
the

::::
mean

:::
and

::::::
spread

:::
(2σ)

:::::
which

:::
are

:::
also

:::::::
reported

:
in
:::
the

:::
text

:::
and

:::::
Fig.4.
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(a)

(b)

Figure C2.
:::::::::
Distribution

::
of

:::
skill

::::::
metrics

:::
for

::
the

:::::::
ensemble

::
of

::::::::::::
reconstructions

:::
with

::::
noisy

:::::::::::::::::::
MPIESM-pseudoproxies

:::
and

::::::
realistic

::::::::::::
data-availability

:::
with

:::
(a)

::
the

:::
full

::::::
emGPR

:::
and

:::
(b)

:::
the

::::
sparse

:::::::
emGPR.

:::
The

::::::::
histograms

:::::
show

::
the

::::::::
respective

::::::::::
distributions,

::
the

::::::
vertical

::::
lines

::::::
indicate

:::
the

:::::::
ensemble

::::
mean.

::::
The

:::::
printed

:::::
values

:::::
denote

:::
the

::::
mean

:::
and

::::::
spread

:::
(2σ)

:::::
which

:::
are

:::
also

:::::::
reported

:
in
:::
the

::::
text,

::::
Fig.6

:::
and

:::::
Fig.7.
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(a)

(b)

(c)

Figure C3.
::::::::
Distribution

::
of

::::
skill

::::::
metrics

::
for

:::
the

:::::::
ensemble

::
of

:::::::::::
reconstructions

::::
with

::::
noisy

::::::::::::::::::
CCSM4-pseudoproxies

:::
with

:::
(a)

:::
the

::
full

:::::::
emGPR,

:::
(b)

::
the

:::::
sparse

::::::
emGPR

:::
and

:::
(c)

::::
PCR.

:::
The

:::::::::
histograms

::::
show

::
the

::::::::
respective

::::::::::
distributions,

:::
the

:::::
vertical

::::
lines

::::::
indicate

:::
the

:::::::
ensemble

:::::
mean.

:::
The

::::::
printed

:::::
values

:::::
denote

::
the

:::::
mean

:::
and

:::::
spread

::::
(2σ)

:::::
which

::
are

::::
also

::::::
reported

::
in

::
the

::::
text

:::
and

:::::
Fig.B3.
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Appendix D:
:::::::::
Sensitivity

:::::::::::
experiments

(a) (b)MPIESM CCSM4

Years (AD) Years (AD)

Figure D1.
::::::::
Sensitivity

:::::::::
experiments

:::::
similar

::
to
::::::

TCppp
:::
and

::::::
TCnpp

::::
with

::
the

:::::
sparse

::::::
emGP

::
but

::::
with

::::
only

:::
half

:::
the

::::::
number

::
of

::::::::::::
pseudoproxies.

::::::::::::
Reconstructions

::::
based

:::
on

::
(a)

::::
eleven

:::::::::::::
MPIESM-based

:::::::::::
pseudoproxies

:::
and

::
(b)

:::::
twelve

:::::::::::
CCSM4-based

:::::::::::
pseudoproxies.

::::
The

::::
upper

:::::
panels

:::::
show

::
the

:::::::::::
reconstruction

::::
with

:::::
perfect

:::::::::::
pseudoproxies,

:::
the

::::
lower

::::::
panels

::::
show

::
the

:::::::::::
reconstruction

::::
with

::::
noisy

:::::::::::
pseudoproxies.
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(a)

(b)

Figure D2.
::
(a)

::::::::
Sensitivity

::::::::
experiment

::::::
similar

::
to

:::::
TCp2k

::::
with

::
the

:::
full

:::::
emGP

:::
but

::
the

:::::::::::::
hyperparameters

:::
are

:::::::
estimated

::
for

:::
the

:::::
period

:::::::::
1000-1500,

::::
where

:::
the

:::::
proxy

::::::::
availability

::
is

::::::
strongly

::::::
reduced

::::
(see

:::
Fig.

:::
1b).

::::
The

:::::
AMVI

:::::
during

:::
the

::::
years

::::::::
1350-1500

:::
has

::::
been

::::
used

::
for

:::::::
training.

::
(b)

:::::
AMVI

::::::::::
reconstruction

:::
for

::
the

:::::
same

:::::
period

::::
from

:::
Fig.

::
6b

:::
for

:::::::::
comparison.

::::
Here,

:::
the

:::::::::::::
hyperparameters

:::
were

::::::::
estimated

::
for

:::
the

:::::
period

:::::::::
1500-2000.
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(a) (b) (c)

1000-1500
1500-2000

p2k-like

Figure D3.
:::::::::::::
Hyperparameters

::
of

:::
the

::::::::
sensitivity

:::::::::
experiment

:::::
shown

::
in

::::::
Fig.D2.

::::
Red

::::::::
diamonds

::::::::
correspond

:::
to

:::
the

:::::
period

:::::::::
1000-1500,

::::
grey

:::::::
diamonds

::
to

:::
the

:::::
period

:::::::::
1500-2000

::::
(grey

::::::::
diamonds

::::
here

:::
are

:::
the

::::
same

::
as

:::
the

:::
red

::::::::
diamonds

::
in

:::
Fig.

:::
5).

:::
The

:::::::::::::
hyperparameters

:::
are

:::
(a)

::
the

:::::
typical

:::::::::
lengthscales

:::
lf,t:::

and
::::
lf,r ,

::
(b)

::
the

::::
signal

:::::::
variance

:::
σ2
f,t:::

and
::::
σ2
f,r ,

:::
and

:::
(c)

::
the

:::::
noise

::::::
variance

:::
σ2
n.

:::
The

:::::::
subscript

:
t
:::::::
indicates

:::
that

:::
the

:::::
kernel

::::::
operates

::::
only

::
on

:::
the

:::
time

:::::::::
dimension;

:::
the

:::::::
subscript

:
r
:::::::
indicates

:::
that

:::
the

:::::
kernel

::::::
operates

:::
on

::
all

:::::::::
dimensions,

::::::::
including

:::
time

::::
(see

:::
Eq.

:
6
:::
and

:::
7).

:::
The

:::::::::
lengthscales

:::
are

::::::
unitless,

:::::::::::
corresponding

::
to
:::
the

::::::
unitless

::::::
distance

:::
of

::
the

:::::::::
embedding

:::::
space.

:::
The

:::::::::
lengthscale

:::
lf,t:::

can
::
be

:::::::::
transformed

::::
into

::::
years

::::::
through

::::::
division

::
by

::::
1.10.

::::
The

::::
signal

:::
and

:::::
noise

::::::
variance

:::
are

::::
given

::
in

:::
K2.

:
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Figure D4.
::::::
Changes

::
of

:::
the

::::::::
embedding

::::::
distance

:::::::
between

:::
the

:::::
AMVI

:::
and

:::
the

:::::::::
pseudoproxy

::::::
records

::::
(Eq.

::
5)

:::::::
calculated

::::
over

:
a
::::::
running

:::::::
window

:
of
::::

151
::::
years.

::::
The

::::::::
anomalies

::
are

::::::::
calculated

::::::
against

::
the

:::::
mean

::::::
distance

::::
over

:::
the

::::
entire

::::::
period.

::::
Blue

::::::
shading

:::::::
indicates

:
a
::::::
smaller

:::::::
distance,

:::
i.e.,

::::
more

:::::
similar

::::::
records.

::::
Red

::::::
shading

:::::::
indicates

:
a
::::::
greater

::::::::
difference,

:::
i.e.,

:::
less

::::::
similar

::::::
records.

:::
The

:::::::
numbers

::
on

:::
the

:::::
y-axis

:::
are

::
the

:::::::::
correspond

::
to

::
the

::::::::::
pseudoproxy

::::::::
numbering

::
in

:::
Fig.

::
1.
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