
Reviewer #1
We would like to thank Referee 1 for their detailed and constructive comments. In the following we
explain how we revised the manuscript to address their suggestions.

The original comments are written in bold font, our responses with normal font and in colour.
Modified text passages are highlighted with italics.

1. General comment

C1 The new method and the results are definitely interesting and worthy of publication, albeit I do
not exactly see how the manuscript fits into the list of GMD manuscript types. It does not fit into
my understanding of the scope for ’model description papers’ because while it describes a new
method, the implemented model still seems in a rather experimental stage and the README of the
code in the Supplement explicitly states "The scripts are taylored to use the provided test data, i.e.
they are not written in a general form that would allow to use them with any kind of suitable
dataset, yet." This will make it very hard for readers to use the new method outside of the
presented PPEs. If it is designed as a model description paper, at least the model must be given an
explicit name and version number following the GMD guidelines and some more effort should be
put into making the code usable for others. Since the paper develops a new method and is not
related to model improvement it is also not directly a ’development and technical paper’.
Therefore, I ask the authors to clarify how the manuscript fits into the GMD manuscript types and
adapt it accordingly.

R1 This is to some extent a matter of perspective, and we assume that the editor has already perused
the manuscript at the submission stage to assess its suitability to the journal. However, we have
characterised the method more specifically according to its objectives and methodological steps, as
also outlined below in response to the specific comments. Indeed the method cannot be totally
universal, but it can certainly find applications in other areas of science and technology, where the
objective may be to provide a complete field (e.g., image) from sparse information.

Browsing the journal, we find other manuscripts that describe a methodological advance but that are
not ripe for a general application. Those manuscripts are, as ours, refinements or combinations of
statistical methodologies for a particular purpose. We therefore think that the manuscript does fit
into the category of “development and technical paper”.

2. Major issues

C 1 Introduction: The paragraphs l. 27-79 describe the AMV-related research fairly extensively and
in my opinion much longer than necessary for a model description/development paper. In
contrast, the final part (l. 80-89), where the new method is introduced, is a bit short to help me
understand the authors thought process in selecting and developing the described methods.



R. We have shortened the AMV-related part and devoted more space to motivate our choice of
method. We refer the reviewer to the new version of the manuscript for the reformulated
introduction.

C 2. Sect. 2.2: The model description varies between long descriptions of general GPR theory /
modeling options and fairly short parts on the selected solutions, the motivation behind these
choices, and implementation details. I would prefer to focus more on the specific choices for
reconstructing the AMVI and why these choices are made. For more specific questions arising from
the method description see below.

We would argue that most of the original method section was not about general GPR theory (except
section 2.2.1). But in response to this comment, we have restructured and re-written large parts of
the method section in order to make our choices and motivations clearer. We have put special
emphasis on the motivation for and design of the embedding space and hope that the concept is
clearer now. In rewriting, we have also addressed the more specific issues raised by the reviewer
below. Please see the manuscript with tracked changes for the modifications.

C 3. How is σn handled for the AMVI? Is the AMVI just given by f(z) or is ε also added in observed
and reconstructed AMVI?

R. The reconstructed AMVI is indeed the mean of the GP-posterior, the 'best' estimation of the true
value. A realisation of sigma_n is not added to the observed AMVI nor the posterior mean. Sigma_n
is estimated during training. As we estimate only one sigma_n across all dimensions, it is the same
for all proxy timeseries and the target AMVI. This is of course a simplification but the estimated
hyperparameters (Fig.4) show that the estimated sigma_n corresponds to the mean noise across all
records in most cases and is therefore a good first approximation. We have included a short
statement in section 2.3.4:

“The noise variance sigma_n2 is assumed to be the same across all dimensions, i.e., the learned
estimate will be the same for all pseudoproxies and the AMVI. This is a simplification, because every
pseudoproxy contains its own level of noise. We will show that this simplification is a good first
approximation and enables the GPR to handle uncertain pseudoproxies well.”

C 4. Sect. 3.2 / 3.3: In the evaluation of the PPEs with noisy pseudo-proxies, the authors focus on
the ensemble mean time series across all randomized experiments. I do not see why this is a useful
quantity for evaluation. It is not a quantity occurring in reality since the authors correctly state that
in real-world applications we only have one realization of pseudo-proxies. Therefore, the ensemble
members should be evaluated separately (as each of them is a single realization which could occur
in reality) and then the mean and spread of the evaluation measures should be reported and
analyzed.

R. Point taken. We have removed the ensemble mean reconstructions, as well as the spectrum of the
mean from the figures. Instead of the metrics of the ensemble mean, we present the mean and
spread of the metrics from the individual ensemble members. This information was already partly
available in the first versions of the manuscript (old Fig. B1 for the MPIESM TCnpp case), but we have
now calculated it for all noisy reconstructions and modified all figures and text accordingly. Some of
the numbers have slightly changed, but the conclusions have remained the same.

Appendix C now contains the distribution of the skill metrics for all noisy reconstruction ensembles
(MPIESM TCnpp, MPIESM TCp2k and CSESM TCnpp).

Text was adjusted in Section 3.2 and the relevant paragraphs of 3.3.1 and 3.3.2.



C 5. As the authors state, GPR is a Bayesian method. Thus, it naturally produces uncertainty
estimates through sampling of the posterior distribution. Currently, only the posterior mean is
evaluated throughout the manuscript if I see it correctly. Uncertainty quantification is an
important part of climate index reconstructions and has been the subject of intense debates over
the last decades. Therefore, I would like to see some evaluation on how useful the uncertainty
estimates provided by the posterior distribution are.

R. It is true that we mostly discuss the posterior mean. However, the posterior uncertainty estimate
is included in the originals Figures 2 and 3 in form of the 95% confidence interval (shading in Figure 2
and number in Figure3). The posterior uncertainty estimate is likely too conservative, as the target
index lies within the 95% interval 100% of the time. By definition, it would lie within the 95% interval
only 95% of the time. We have included short passages on this in Section 3.1:

“The GP related uncertainty, as given by the 95th percentile of the posterior distribution, is small for
the years 1850 to 2000 where the AMVI has been constrained during training. The uncertainty
increases for the reconstruction period. Overall, the posterior uncertainty estimate appears a bit too
large - i.e., too conservative - because the true AMVI lies always within the 95\% confidence interval.”

And in Section 3.2:

“The use of noisy pseudoproxies has approximately doubled the width of the 95% confidence intervals
for all three methods. The mean uncertainty range over all emGP ensemble members is +/-0.57,
which is again too conservative but reasonable given the amount of non-climatic noise in the
pseudoproxies. The mean PCR uncertainty range is +/-0.21, which is likely too confident in
combination with the large reconstruction bias.”

We have also formulated the captions more clearly to indicate where we show the posterior
uncertainty estimates in the figures.

C 6. Sect. 3/4: While the authors report several situations where one or several of the
reconstruction methods give unreasonable results or fail to reconstruct the underlying truth,
explanations for why the models are better in some aspects and worse in others are mostly
missing. The authors speculate on some potential reasons but I would like to see some more
sensitivity tests to give the reader a better feel for the strengths and weaknesses of the different
methods.

R. As the reviewer says, we have tried to come up with potential causes for the overall performance
of the respective methods and test cases. At some point, however, it becomes difficult to identify the
exact reason for their behaviour, as it happens with many other applications of machine-learning
methods. We do not think that we will be able to explain, e.g., why the full emGP in TCppp is able to
capture the target AMVI well in all periods except in the period from 1630 to 1680. But we have tried
to expand our explanation for the behaviour of the different models and set-ups:

1. Why do the methods perform differently with MPIESM- and CCSM-based pseudoproxies?

We have performed an EOF analysis of the simulated surface temperature fields from which
we generated the pseudoproxies and the AMVI in the respective simulations. We find that
CCSM is more spatially coherent in that the first EOF explains a much larger fraction of the
variability than in MPIESM (see Figure R1.1). This can explain why the PCR performs much
better in the TCppp case with CCSM data. As noted by reviewer 2 (comment to line 299-300),
the greater spatial coherence is also reflected in the overall smaller embedding distance. The
mean of the distance matrix is 1.44 (maximum is 3.91) for MPIESM and 1.10 (maximum
3.08) for CSSM4. The fact that the full and sparse emGPR perform about equally well for



MPIESM and CCSM4 indicates that the emGPR is more robust to different degrees of spatial
coherence in the underlying field. This can be considered an additional strength of the
emGPR.

2. How do the hyperparameters change with decreasing proxy availability (also in answer to
comment on 359)?

To address this, we have retrained and fitted the full emGPR with realistic proxy availability
for the period 1000-1500 (for the AMVI, we only used years 1350-1500 for training). The skill
is improved with the new set of hyperparameters, the correlation increases, the variance is
underestimated by 11% instead of overestimated by 25%, and the relative bias decreases
(Figure R1.2). The timescale l_f,t decreases, as well as the signal variance sigma2_f,t and
sigma2_f,r (see red and grey diamonds Figure R1.3). The lengthscale l_f,r and the noise
variance remain unchanged. This change in hyper parameters makes sense as it reflects the
fact that the AMVI variability (and likely also that of the pseudoproxies) is lower in the years
1000-1500 than in the years 1500-2000. So the somewhat overestimated variability in the
years 900-1500 in TCp2k with perfect pseudoproxies and realistic proxy availability (fig.5a)
could indeed be explained by a set of not exactly fitting hyperparameters. Non-stationarity in
the hyperparameters (or model-parameters in general) is something all reconstruction
methods have in common and which is difficult to fix with real-world data availability. We try
to overcome the problem somewhat in using as much proxy information as possible for
training and creating the distance matrix.

3. Why does the sparse emGP work better with noisy pseudoproxies than with perfect
pseudoproxies?

One hypothesis here is that the SVGP is more robust against overfitting in the presence of
noise. To test this, we repeat the TCppp and TCnpp cases with the sparse emGP but with a
proxy network that contains only a subset of eleven randomly selected pseudoproxies from
the original 23 MPIESM-basd records (and with a subset of twelve randomly selected
pseudoproxies from the original 24 CCSM4-based records). The idea was that if overfitting
was the reason for the difference in skill, the sparse emGP will no longer perform better with
noisy data if the proxy network is smaller. The reconstructed AMVI can be seen in Figure
R1.4. Given that the proxy network size is reduced by half, the overall reconstruction skill is
remarkably similar to that with the full networks with both MPIESM and CCSM data. The
difference between the reconstruction with perfect and noisy data is reduced with respect to
the full networks. The TCppp reconstruction has a comparable reconstruction skill to single
TCnpp reconstruction members. We interpret this such, that the better performance of the
sparse emGP with noisy data can at least partly be attributed to a greater robustness against
overfitting in the presence of noise.

See next point for a discussion on why the sparse emGP might outperform the full emGP in
the CCSM4-based TCnpp case.

4. What about non-optimal hyper-parameters?

As already discussed in the original manuscript, we think that the lower reconstruction skill
in the CCSM4-based TCnpp case with the full emGP is due to a non-optimal set of
hyperparameters. The signal variance sigma2_f,r and the noise variance sigma2_n appear
switched, so that in this case, the emGP did not correctly recognise the noise and instead
assigned the noise variance to signal variance. Simply repeating the reconstruction with the
two variances switched improves the skill slightly (not shown). Thus, also the lengthscales
might be non-optimal, e,g, a too low l_f,r. Repeating the full emGP reconstruction with the



set of hyperparameters from the sparse emGP gives almost identical results to the sparse
emGP TCnpp reconstruction (which could be expected).

5. Are the embedding distances constant in time?

A last possibility for mismatches between the target AMVI and the reconstructed AMVI could
be non-stationary embedding distances. Temporary shifts in the similarity could explain why
some periods are captured better than others. In Figure R1.6, we show the changes in the
embedding metric Dij for the AMVI with all respective MPIESM-based pseudorecords,
calculated over a running window of 151 years. This shows how the similarity/distance
between the AMVI and the pseudoproxies varies on time. For all AMVI/pseudoproxy pairs
the distance varies in time, and there are also bands, where the distance varies almost
uniformly across all pairs, e.g. years 450-600 (distance smaller than average) and years
900-1100 (distance larger than average). This means that the impact of some records will
sometimes be over- or underestimated by the emGP reconstruction, which can temporarily
reduce the reconstruction skill. As with non-stationary hyperparameters, this is something
we cannot change, and which is common to all reconstruction methods. By calculating the
embedding distance over the entire length of the pseudoproxy records, we try capture the
mean distance which best represents the entire reconstruction period.

We have expanded our discussion (Section 4) to include the above insights, and also point to the
explanations already in the results section (Section 3). (see revised manuscript with tracked changes)

3. Specific comments

l. 12: Please reformulate one of the ’relevants’

R. We have removed the second “relevant”.

• l. 17: The last 1000-2000 years are normally named the ’Common Era’ and not the ’preindustrial
period’. ’Preindustrial’ could lead to confusion with simulations using fixed preindustrial boundary
conditions. Focusing here on the Common Era as a ’must’ seems a bit arbitrary since also other
periods would be of interest.

R. We have modified the sentence to: The index-timeseries must not only cover the historical period
of the past 150 years but also the period of interest, e.g., the past 1000 to 2000 years (Common Era).

• l. 58: Which non-linear methods have shown promise? Is non-linearity really the main advantage
here or could other factors also be important?

R. E.g., data assimilation, some neural network configuration and random forest have been
successfully applied for climate index and climate field reconstructions. A non-linear nature is likely
only of advantage if the underlying problem is also non-linear. The non-parametric nature of the GP
has the advantage that we do not need to make any assumptions about the underlying (non-)
linearity. In the rewritten introduction we now devote more space to motivate our choice of the GPR
and especially the embedding space.

• l. 103-105: Which climate variable do you use to construct the pseudo-proxies (e.g. SST, surface
temperature, near-surface air temperature)?

R. 2m air temperature over land and SST over ocean. We have made this more explicit in the text:



“Over land, we use 2m annual mean air temperature, over ocean we use annual mean sea surface
temperature. “

• l. 109-111: How do the SNR and the construction of pseudo-proxies compare to other
pseudo-proxy studies?

The amount of local interannual noise in real proxies is usually assessed by the correlation between
the proxy time series and the instrumental time series. These correlations may be in the range 0.3 to
0.7. The amount of local noise used in other pseudo-proxy studies is within this range, as ours. We
will include a sentence in the revised version:

“This is a reasonable choice, as the correlation for real proxies with observations ranges from 0.3 to
0.7. The amount of white noise apllied here is also well within the range of other pseudoproxy
studies(e.g., Smerdon 2012)”

• Figure 1a: From the color scale in (a), it is very difficult to distinguish the correlation of the
different records. Maybe you can improve the color scale.

We have chosen a different colour map and decreased the range of the colour bar to match the
maximum and minimum correlation of the selected records with the AMVI. See updated Figures 1
and B1 (previously C1).

• Figure 1c-e: Over which period are the cross-correlation, STD radio, and embedding distance
computed?

For the pseudoproxy records the entire 2000 years of the simulation, for all pairs including the AMVI
only the most recent 150 years. We have included this information in the method section (new
section 2.3.3):

“The final distance matrix $D$ is then obtained by evaluating Eq.5 for all pairs of records. For all pairs
of pseudoproxies, the distance is estimated from the entire simulation length. For calculating the
distance between the AMVI and the pseudoproxies, we use only the last 150 years (years 1850 to
2000) and detrend both AMVI and pseudoproxies before the calculation. “

• Figure 1d: The 100 could be removed.

We have removed it.

• l. 132: Are Matern functions really ’very complex’ kernels?

We have changed it to ‘more complex kernels’

• l. 139-140: The inference strategy is described very briefly here. Some more explanation could be
useful for readers not that familiar with Bayesian inference

We refer the reviewer to Appendix A, where we describe in more detail the calculation of the
posterior predictive distribution.

• l. 160: Is there a reason why the abbreviation SVGP is not adopted in the manuscrit and ’sparse
GP’ is used instead?

This was done because we later only use “full and sparse emGP” when we refer to the GP in
embedding space. In section 2.2.1 (now 2.3.5) we will stick instead to SVGP. In the remainder of the
manuscript we will stick to the full and sparse emGP nomenclature.



• l. 163: What is the ’Adam Optimiser’?

R. The Adam optimiser is an algorithm to search the best model parameters according to a
prescribed cost function. It belongs to the family of stochastic gradient descent algorithms and it is
widely used in machine learning applications due to its favourable properties. Essentially, it takes into
account the mean and standard deviations of the gradient of the cost function in previous
optimization iterations to propose a new value of the parameters. We have added a sentence to text:

“The hyperparameters are learned through optimisation with the Adam Optimiser, which is a
stochastic gradient descent algorithm widely used in machine learning applications (Kingma 2014).
We use the algorithm as provided by GPflow.”

• l. 171: How is the AMVI formulated in proxy space since it is defined over a different spatial scale
than the individual proxies and how does GPR-based climate index reconstruction work when the
GP is formulated as function of the proxy values (=temperature?)?

R. We interpret 'spatial scale' in this comment as 'amplitude of variability' In this particular
application, the pseudo-proxies and the AMV index are all defined as near-surface air temperature,
so that the range of variability is roughly similar for all of them. The reviewer is right that this
condition cannot be generalised and for other reconstructions the proxies and target time series
would need to be standardised to unit variance. We have included a brief explanation in the
discussion.

“In principle, the framework presented here can be applied to any climate index that exhibits
significant correlations with local proxy sites. It is thus not limited to the AMVI application presented
here. With real proxies, that do not all come in units of °C, it might make more sense to standardise
all records to unit variance. ”

We have also added a more explicit paragraph about the GPR in proxy space, together with the new
Figure 2 for visualisation:

“As described for the PCR, classical climate-index reconstruction methods formulate their underlying
statistical model in a way that the climate index is assumed to be a function of temperature, the
proxy values or e.g. principal components thereof. In other words, the regression is performed in
temperature/proxy/PC space; the proxies/PCs are the predictors and the climate index is the
predictand. If we reconstruct the AMVI with GPR in this classical setup, the target AMVI becomes the
posterior mean function and the covariance is estimated across the proxy space. With the trained GP
model, the AMVI can be reconstructed by evaluating the GP at the proxy values that occurred during
the reconstruction period. Fig.1a shows a schematic for the regression in proxy space for an example
where the AMVI is given as a function of two pseudoproxy records p_1 and p_2. In this example, the
posterior mean AMVI-function forms a surface in the space spanned by p_1 and p_2. Note that in our
pseudoproxy experiments we use 23 pseudoproxies (Fig.1a), so the proxy space is actually
23-dimensional, which is impossible to visualise.”

.• l. 177-192: I struggled to understand why the embedding space needs to have the given
dimension and the idea of how the embedding space is constructed did not become clear to me
until I finished reading Sect. 2.2.3.

R. Indeed the new set-up of the GPR is not easy to visualise. We have rearranged and rewritten the
entire previous section 2.2 (now section 2.3) and hope the derivation, design and motivation for the
embedding space become clearer now. Regarding dimensionality, we have added a new figure (new
Fig.2) and the following explanation:



“To adequately reflect the distances between the proxy records and the AMVI, the embedding space
needs to have a dimension of (q-1), where q is the number of proxies including the AMVI timeseries.
This is easiest to understand if you imagine a case where all timeseries should have the same distance
from each other. To arrange, e.g. three timseries with equal distances from each other, you need a
two-dimensional space (spanned by x1and x2 in Fig.2b). [...] ”

• l. 203-205: What are the properties that need to be fulfilled by the distance matrix / distance
measure? Why is a positive correlation between records needed between the records?

R. We have added the three criteria that need to be met:

“To be used as a distance metric in MDS, a metric must meet the following three criteria: (1) it needs
to be positive, (2) it needs to be zero, when it is applied on the object with itself and (3) it needs to be
symmetric (e.g., Mead 1992).”

Our chosen distance measure meets all three criteria. The CC needs to be positive because
otherwise, two records with high negative CC would be placed further away even though they
co-vary closely in time. Positive correlation could be easily ensured by changing the sign of one of the
records, But all our selected records have only positive CCs anyway (Fig.1c).

• l. 209: I guess that equidistant coordinates perform worse because than all records influence the
AMVI roughly equally whereas for CC-based coordinates records with a high correlation with the
AMVI become more important. But why does including the SR improve the result compared to just
using CC?

R. The reviewer is correct about the case with the equidistant coordinates, When performing the
reconstructions only with CC-based coordinates, we found that the reconstruction is dominated by
northern hemisphere records which have a much larger range of variability. This became especially
important for networks with realistic proxy availability. Further back in time, only NH records are
available and the reconstructed variability for earlier periods was strongly overestimated in the
CC-based case. The consideration of the SR in the metric ensures that records that may have larger
variability are considered farther away from the target, this improved the magnitude of the
reconstructed variability. An alternative approach would be the normalisation of all records. In that
case, CC-based coordinates would be sufficient. We have added a short explanation to the text:

“With equidistant coordinates all records determine the AMVI to the same degree, regardless of their
actual correlation with the AMVI. With a metric based solely on CC, the reconstruction is dominated
by records with high variability and the resulting AMVI variability is overestimated. The additional
SR-scaling yields improved variability estimates.”

• Equation (3): Is RA = SR?

R Yes we have corrected this

• l. 213-218: The description was a bit short here for me to really understand what is happening
and why.

R. The rescaling of the time axis is done to ensure that the variations along the time axis are
comparable to the variations along the other embedding dimensions. This is a necessary step due to
how the kernel k2 is formulated, distance in time and embedding space must be comparable, to
allow for interactions across time and records. Without the rescaling, either the distance between
records or the timescale would dominate the lengthscale of k2. If the kernel would be formulated
such that time and embedding dimensions were treated separately, this rescaling would likely not be



necessary. But as stated in the manuscript, the current kernel formulation outperforms the separated
kernel. We have added this explanation to the text:

“Because k2 operates on both the time and the embedding dimensions, we rescale the time steps to
be of the same order of magnitude as the distances between the records. This is necessary to allow
for the interaction across records and time. Otherwise, the lengthscale of k2 would either be
dominated by the time step or by the embedding distance. One rescaled time step equals the mean of
the distance matrix D.”

• Equations (4/5): The Gaussian kernel functions lead to very smooth (infinitely differentiable)
functions, likely much smoother than most processes actually observed in climatology. Does this
lead to overly smooth predictions on certain timescales and did you test the procedure with
kernels that lead to less smooth posteriors? It also might be useful to write down the final
covariance model as an equation.

R. The temporal component of Gaussian kernel leads to predictions that are indeed smooth in time,
as it acts as a low-pass filter on the predictor time series. However, this does not mean that the
model is not able to represent rapid changes of the target variable if the proxy records also change
rapidly. The case that the reviewer raising - a non differentiable temporal behaviour - is in our
opinion extremely rare. And as we have stated in the text, we use this very simple kernel formulation
because we have no prior information that would justify more complex kernels. More complex
kernels with less smooth posteriors would introduce more uncertainty and reduce interpretability.

The final covariance model / Kernel equation is simply the sum of k1 and k2. We have added this as
an additional equation (new Eq. 8) in the manuscript

• l. 230: Is σn 2 the same as a nugget effect in statistical modeling? If so, it might make sense to
mention it here for the statistically-inclined readers.

R. Yes, we thank the review for this suggestion. We have included this in the text:

“Introducing sigma_n^2 is similar to the so-called nugget effect in geostatistics.”

• l. 235/236: Do you have an explanation for why this slightly unusual formulation (two kernels
acting in time but only one kernel acts in the "embedding space/distance") performs better than
models without k1 or with separated kernels acting in time and embedding distance? Does this
indicate that the system (AMVI) is better described by two characteristic timescales instead of one
similar to two-box energy balance models outperforming one-box energy balance models in
predicting sea surface temperatures?

R The rationale is to allow for different time scales in the autocorrelation (k1) and in the
cross-correlation between proxy records (k2). Also, the lengthscale of k2 cannot be interpreted as a
pure timescale as it describes the typical lengthscale for the influence of the respective records
across time and embedding space. We have added an explanation to the text:

“ The higher skill of this kernel makes sense, if you consider how the kernel design affects the
interactions between the different timeseries. Having only k2 does not consider that the timescale of
auto-correlation may not be the same as the timescale of cross-correlation. It therefore makes sense
to have $k1$ operate across the time dimension only. If k2 operated only across the embedding
dimensions, no interaction between different records across time would be possible.”

We think that this is not related with the issue raised by the reviewer, as our model does not include
any type of forcing or reservoirs for the Atlantic Ocean. If we had included in the predictors a forcing



time series, then the interpretation of the time scale would indeed be closely related to a thermal
inertial timescale of the ocean.

• Equations (6) - (9) did not help my understanding. Either they should be embedded better in the
text / explained better or they could be removed.

R We have removed the equations. Instead we tried to explain the regression in proxy space and
regression in embedding space more clearly and also included a figure to visualise the two spaces for
a simplified example with three timeseries (two pseudoproxies and the AMVI). See new Fig. 2. And
new sections 2.2 and 2.3 (rewritten version of old 2.2)

• l. 259: There is a typo in ’obtain’

R Noted and corrected

• l. 299/300 (and similar parts in subsequent sections): The difference between the MPI- ESM- and
CCSM4-based results could be explored a bit further. What are the main differences between the
simulations that might explain the differing behavior of the reconstruction methods?

R. See point number 1 in response to Major Comment 6.

• l. 313/314: Is there an explanation for why the sparse GP performs better for noisy than for
perfect pseudo-proxies on multi-decadal timescales?

R. See point number 3 in response to Major Comment 6.

• Fig. 4: This is an interesting figure to explain some of the differences between methods displayed
in Fig. 2/3 but unless I missed something, it is barely discussed in the text.

R. We have included more discussion of Fig.5 (previous Fig.4) in Section 3 and 4. (see tracked
changes)

• l. 359: Could the overestimation of variability in periods with few available proxy records be
explained by relying too strongly on a small number of proxy records which tend to be more
variable than the AMVI due to integrating over a smaller spatial scale? This could maybe be tested
by comparing hyperparameters fitted separately for periods with high and low record availability.

R. This is certainly a reasonable explanation. In fact, dendroclimatologists apply a statistical tool
specially designed for this purpose called 'variance stabilization'. Our objective is, however, to
compare the methods in different situations , i.e. is method A or B closer to the truth, and not so
much the correction of the effect of sparser proxy networks. That would be a different
methodological paper.

In our specific case, however, we think that the suggestion of the reviewer can only be part of the
explanation. On the one hand we try to amend for the effect of few records with large variability
through the additional SR scaling in the distance matrix. On the other hand, if this were the only
explanation, we would expect the effect to get stronger the further we go back in time as the
number of records decreases further. See also answer to comment on l.209 about CC-based
coordinates and SR-scaling.

We have additionally performed a sensitivity experiment as suggested by the reviewer, and also
explored the (non-)stationarity of the embedding distances. See points numbers 2 and 5 in response
to Major Comment 6.



• l. 393-398: Is the introduction of a ’noise variance’ parameter similar to error-in-variables
approaches for frequentist regression models?

R. Formally, the noise variance is not the same as the error-in-variables approach. The EIV accounts
for uncertainty in the independent variables/predictors, while the noise variance describes the
uncertainty of the dependent variables/predictands. There are studies that explore how to
incorporate measurement errors/input uncertainty in GPR (e.g. Zhou et al 2023,
https://jmlr.org/papers/v24/21-1480.html), but the classical GPR assumes independent variables
without error.

Conceptually one could argue that in our application, the noise variance is somewhat similar to the
EIV approach, in the sense that the noise variance accounts for the uncertainty in both the
pseudoproxies and the AMVI. And even though we have formulated the regression such that both
pseudoproxies and the AMVI are the regression targets, the AMVI is still determined by the
surrounding pseudoproxies in the embedding space. The EIV model, however, requires the
knowledge of the ratio of noise in the independent and dependent variables, whereas here the noise
variance is estimated along with the other hyperparameters,

• l. 408: Is the model really using one tenth of the available training data if you use every tenth
time step but also an (optimized) subset of the original locations?

During the entire optimisation/fitting procedure, the model always uses a slightly different subset in
every optimisation step, so in a sense it uses more than a tenth of the data. But the resulting
co-variance matrix is based on an optimised subset which always corresponds to a tenth of the data.

• l. 416-418: Can you expand on these length scales and magnitudes? What are expected values
and where do the parameters rank in the range of reasonable values?

R. We have expanded on the magnitudes:

“The hyperparameters that have a straightforward physical interpretation, i.e. the typical lengthscale
l_f,t and variance sigma_f,t^2 of the first kernel and the noise variance sigma_n2, also appear
reasonable in their magnitudes in most cases (red stars in Fig.5). The timescale of the full emGP is on
the order of 2.7 years, which is a reasonable timescale of auto-correlation. As discussed above,
igma_n2 captures the magnitude of the mean added noise variance across all records. The signal
variance sigma_f,t^2=0.12 indicates a temporal temperature variability of approximately 0.35 K. For
all selected pseudoproxies, the temporal variability ranges from 0.28 to 1.15 K. The estimated
sigma_f,t is thus on the lower end of plausible values. The timescale l_f,r$ and variance sigma_f,r^2
of the second kernel are less straightforward to interpret, as they operate across space and time.
However, sigma_f,r^2 should somehow reflect the mean temperature variability across all records
and time. The estimate of sigma_f,r^2=0,51 indicates a variability of 0.71. This is a fairly close
estimate of the actual 0.82 K of the underlying data.”

• l. 444: The GPR-model seems to handle white noise proxies very well, in parts due to the
inclusion of the parameter σn . What would happen if the proxy noise would be auto-correlated?
Is there a way to adapt the model accordingly?

R. The GPR model could be modified to account for temporal autocorrelation in sigma_n. Actually, it
seems that the GPR model would need to be cast in an embedding scape similar to the one
implemented here (explicitly including the temporal dimension). This augmented model could be
even expanded to account for spatial and temporal correlation of the sigma_n - in that case sigma_n
would not be just a random variable but a gaussian random field itself, described by three additional



hyperparameters (the local noise, one temporal decorrelation and one spatial decorrelation). The
calibration would certainly become more complex.

“Here, we have only tested white-noise pseudoproxies, i.e. we assume that the noise in the
pseudoproxy records is not correlated in time. The typical noise model for $\sigma_n^2$, which we
apply here, also works with the assumption of uncorrelated Gaussian white noise. For real proxies
this may not always be the case. There are ways of adapting the noise model to include, e.g.,
correlated noise (see Rasmussen & Williams, 2006). The embedding space would be a good starting
point for this, as we explicitly take the time dimension into account. The noise model would introduce
additional hyperparameters and make the calibration more complex. If we simply used our current
set-up with correlated noise, the model might interpret some of the noise correlation incorrectly as
actual data-correlation. This could be the subject of follow-up studies.”

• Conclusions: Since this paper develops and tests a new methods for climate index
reconstructions, it would be very useful for the reader to get some more guidelines for future
applications of the method and how it might be applied to other indices.

R. We have added a section to the discussion: “Using real proxies and wider applications”. There we
have added two new and modiefied paragraphs:

“In principle, the framework presented here can be applied to any climate index that exhibits
significant correlations with local proxy sites. It is thus not limited to the AMVI application presented
here. With real proxies, that do not all come in units of °C (e.g., lake sediments, tree ring width,
isotope ratios), it might make more sense to standardise all records to unit variance. In this case, the
embedding distance would no longer need to include the SR-scaling. A simple dependence on the CC
might be sufficient. This remains to be tested.

In order to use this framework for indexes that operate on longer timescales, it might become
necessary to include records with lower temporal resolution. This would require subsampling of all
records to the lowest common resolution, which is common practice in long-term reconstructions. It
might also be possible to train one emGP model for the high-resolution records and one for the low
resolution-records. The caveat here is that the observational period is often too short to include
enough training data for the low-resolution records. But this is true for all reconstruction methods
and not unique to the emGP framework here.

In the TCnpp cases, we created 30 different white noise realisations to estimate the noise-related
uncertainty. With real proxies, we of course only have one realisation of the data and cannot run
noise ensembles. But one could think of other ways of generating ensembles, e.g. with slightly
different hyperparameters, slightly different ways of constructing the distance matrix or inclusion of
different noise models for sigma_n^2. This would instead give insight into the other more
methodological sources of uncertainty.”



4. Review Figures:

Figure R1.1: Patterns of the leading EOFs derived from the simulated temperature in the North
Atlantic-European sector by the models MSI-ESM and CCSM4. The percentage of explained variance is 27% and
41%, respectively. Note the different scalings in both panels - the leading EOF of the CCSM4 model has larger
total variance and explains a higher percentage of the total variance than for the MPI-ESM model

Figure R1.2. The upper panel shows the newly fitted full emGP based on the period 1000-1500. The lower panel
shows the original reconstruction from Figure 5 in the original manuscript version, where the hyperparameters
were estimated from the period 1500-2000 (only the period 1000-1500 is shown here).

This figure was added in the appendix (Fig.D2)



Figure R1.3: Hyperparameters for the sensitivity experiments, analogously to Figure 4 from the original
manuscript. Red diamonds correspond to the full emGPR fit based on the period 1000-1500 (upper panel in
Fig.R1.2), grey diamonds to the second TCp2k case with perfect proxies and realistic proxy availability (trained
on 1500-2000). Yellow stars correspond to the sparse emGP reconstruction with a network that contains only 11
pseudoproxies. Grey stars are from the analogous sparse emGP TCppp case from the manuscript. Yellow dots
correspond to the same 11-proxy network but with added white noise. Grey dots are the hyperparameters from
the corresponding original TCnpp sparse emGP fit, for comparison.

A modified version of figure was added in the appendix (Fig.D3)

Figure R1.4: Sensitivity experiments with 50% smaller networks. Left panels with MPIESM-based pseudoproxies,
right panels with CCSm4-based pseudoproxies. Upper panels with perfect pseudoproxies, lower panels with
noisy pseudoproxies. The hyperparameters for the MPIESM-based experiments can be found in Fig.R1.3 (yellow
stars and dots). For the CCSM4-based experiments, the hyperparameters can be found in Fig.R1.5 (yellow stars
and dots).

This figure was added in the appendix (Fig.D1)



Figure R1.5: Hyperparameters for the CCSM4-based TCppp (stars) and TCnpp (dots) experiments with twelve
randomly selected pseudoproxies (yellow) and the original 24 pseudoproxies (grey).

FIgure R1.6: Changes in the embedding distance metric Dij for all pseudoproxies and the AMVI over time (x-axis
in years). The distances are calculated with a running window of 151 years. The anomalies are calculated
against the mean distance over the entire period- Red indicates greater distance (less similarity), blue indicates
smaller distance (more similar). The number of records (y-axis) corresponds to the numbers in Fig. 1 of the
manuscript.

This figure was added in the appendix (Fig.D4)



Reviewer #2
We would like to thank Referee 2 for their detailed and constructive comments. In the following to
explain how we plan to revise the manuscript to address their suggestions.

The original comments are written in bold font, our responses with normal font and in colour.
Modified text passages are highlighted with italics.

C The quality of the paper is generally high, the analysis appears accurate from my knowledge, and
there are no major points which I think should prevent its publication. There are however several
minor points and suggestions which I identified and reported below, which I think could improve
the paper further.

R. We thank the reviewer for the general positive assessment

Lines 33-34: “however” is awkward in the middle of the negation.

The sentence has been removed during revisions in response to Reviewer 1

C Line 134: Might be useful to describe the term ‘hyperparameter’ for those outside the machine
learning field, how is it different from a normal ‘parameter’?

R. The reviewer is right. This notation is usual in the Gaussian Process literature, but can be
confusing. A “normal” parameter would directly be related to describe the underlying target
function, such as e.g. a regression coefficient in a linear least squares model. The GP-model itself
however is non-parametric. To make this distinction, kernel parameters are therefore often referred
to as hyperparameters. We have added the following sentence:

[...] the specific form is determined by the kernel parameters. Since the underlying GP model itself is
non-parametric, kernel parameters are typically referred to as hyperparameters (Rasmussen &
Williams, 2006).

C.Lines 148: So the batch size is the total number of observations across records (i.e. 5 records with
100 observations plus 2 records with 200 observations would mean a batch size of 900)?

R. The batch size corresponds to the number of training observations given to the algorithm in. In our
case it is defined as suggested by the reviewer.

C. Lines 180-183: How are the irregular resolution of the proxies handled (for the realistic P2k
case)? Or are the pseudo-proxies created at annual resolution? In which case it would be helpful to
briefly hint in the discussion how realistic irregular proxies could be used in the future and how it
might affect the results.

In the p2k case, the pseudoproxies are indeed created with annual resolution. We have added a
corresponding sentence to Section 2.1:

“In all three testcases, the pseudoproxy records have annual resolution”

In fact, at all 23 selected locations, the corresponding real-world proxies also have annual resolution
or higher. We have therefore removed the 5year-criterion from the text, as it was creating confusion.

We have also included the handling of records with different resolution in the discussion.



C. Equation 3: Should RA be SR?

Yes, we have corrected it.

C. Lines 248-249: So the embedding coordinates are calculated from the distance matrix via
multidimensional scaling? Might not be obvious for the layman (including me) how the matrix is
obtained, could it be made more explicit in an Appendix?

We have rewritten large parts of the method section and hope that the definition of the distance
matrix is clearer now. The distance matrix is obtained be evaluating Eq.4 (previously Eq.2) for all
pairs of proxyrecords and proxyrecords with the AMV. There is no unique distance metric to define
the distance matrix. We use the one described in Eq.4, which seems to be a reasonable choice. But
other metrics could be possible, too.

We have also included a sentence and a reference on multidimensional scaling.

C Line 259: “obatain”

R We have corrected the typo.

C Equation 6,7,8,9: Shouldn’t the matrix be equal to something for an equation? Make explicit
which one is the input and which the output.

R .We have removed the equations and instead tried to explain the respective regression spaces and
also added a visualisation of both regression spaces for a simplified example with three timeseries
(two pseudoproxies and the AMVI).

C Lines 299-300: Could it be because CCSM4 is more homogeneous (less spatial degrees of
freedom) since the mean embedding distance between the records is smaller? Just a thought.

R. Yes, the reviewer is correct. The first EOF of the CCSM4 surface temperature explains a much
larger portion of the variance than in the MPIESM case (see also Figure R1.1. in response to Reviewer
1). This could explain the better performance of the PCR in the TCppp CCSM4 case. It also indicates
that the emGPR seems to perform equally well regardless of the spatial coherence of the underlying
temperature fields.

We have added a short paragraph on this:

“ The superior performance of the PCR in the CCSM4 case can be explained by a greater spatial
coherence of the underlying CCSM4 temperature field. The leading EOF explains 41\% of the total
variance in the CCSM4 case and only 27\% in the MPIESM case (not shown). The difference in spatial
coherence is also reflected in the overall smaller embedding distances in the CCSM4 case (compare
Fig.1 and B1). The fact that the full and sparse emGPR perform about equally well for MPIESM and
CCSM4, indicates that the emGPR is more robust to different degrees of spatial coherence in the
underlying field. This can be considered an additional strength of the emGPR. ”

C Figure 2: Unclear to me what the 95% confidence intervals represent in the temporal domain?
Are they the spread of the unsmoothed data? Also for the spectra it is not explained what the
confidence intervals are, simply chi-square CI with 2 degrees of freedom? It is a question of style
and not necessary, but I personally like smoothing the spectra to make for a clearer comparison
(e.g. Using a Gaussian smoothing kernel as in JW Kirchner, Aliasing in 1/f(α) noise spectra: Origins,
consequences, and remedies. Phys Rev E Stat Nonlin Soft Matter Phys 71, 066110; 2005).



R In case of the full and sparse emGPR, the shading indicates the 2sigma range of the posterior GP
distribution. This is the uncertainty range directly estimated by the GP. For the PCR, the CI
corresponds to the uncertainty in the estimated regression coefficients, which is based on the
t-distribution. The spectral uncertainty does indeed correspond to the chi-square CI. We have added
this information to the caption:

“The CI is determined by the posterior GP distribution for the full and sparse emGP. For the PCR, the CI
is derived from the uncertainty in the regression coefficients, which is based on the t-distribution. [...]
Shading indicates the 95\% confidence interval as obtained from the Chi^2-distribution.”

We have also added some more discussion of the uncertainty ranges , as requested by reviewer 1.

C. Caption Figure 2 and 3: “powerspectra” -> “power spectra”

R Noted and corrected

C Figure 3: I don’t understand the indicated 95% CI number. Do those correspond to the same CI
shown on Figure 2?

R Yes, for each individual ensemble member, the CI is defined the same way as in Fig.2. The values
reported by the respective numbers correspond to the CI averaged over time and all ensemble
members. We have added this information to the caption:

“The 95% CI in the lower right of all three panels indicates the CI averaged over time and all
ensemble members.”

C Section 3.2: I would generally favour calculating the statistics for individual ensemble members
and reporting the mean+/- standard deviation rather than calculating them with respect to the
ensemble mean. Similarly, I would show the mean of the spectra rather than the spectrum of the
mean for Figure 3 b,d,f as it is more representative of the real result one would obtain.

Point taken. We have removed the ensemble mean reconstructions (as well as the spectrum of the
mean) from the figures, and instead of the metrics of the ensemble mean, we present the mean and
spread of the metrics from the individual ensemble members. This information was already partly
available in the first versions of the manuscript (old Fig. B1 for the MPIESM TCnpp case), but we have
now calculated it for all noisy reconstructions and modified all figures and text accordingly. Some of
the numbers have slightly changed, but the conclusions have remained the same.

Appendix C now contains the distribution of the skill metrics for all noisy reconstruction ensembles
(MPIESM TCnpp, MPIESM TCp2k and CSESM TCnpp).

Text was adjusted mostly in Section 3.2 and the relevant paragraphs of 3.3.1 and 3.3.2.

C Figure 3 b,d,f: I wonder whether the PCR has the right high-frequency amplitude for the right
reason? Are the high-frequencies just noise and thus PCR doesn’t perform better than the other
methods or are they actually correlated with the real series?

R This is a behaviour that has been found in other previous analyses. Yes, the PCR reconstructions are
indeed correlated with the target at high frequencies.

C Lines 329-331: Do the authors have an idea why the sparse can outperform the full GP? Could it
be a case of overfitting when noise is present? Such that the sparse one is less sensitive to
overfitting?



See our points 3 and 4 in our response to major comment 6 by reviewer #1. We have included
corresponding paragraphs in the discussion.

C Lines 335-339: How are data resolution handled? If there is 5 years resolution, then are there
gaps between the years or are the values interpolated? Or are the annual data used and only
clipped at the end of the record?

R The latter case. In the manuscript only proxies with annual resolution are created and clipped at
the end of the record.. This is the standard case for past millennium reconstructions. We have added
a sentence to the text:

“To achieve realistic data availability, we clip the annually resolved pseudoproxy records at the start
and end years of the corresponding real-world proxy records from the PAGES2k data-base.”

As stated above, we have also removed the 5-year resolution selection-criterion, because at all 23
selected locations, the real proxy records have annual resolution or higher.

C Line 387: I would remind the reader for the discussion what AMV-relevant timescales are. Maybe
write in parenthesis something like (decadal to multi-decadal).

R. We have added the suggested parentheses.

C One issue I would like better discussed is the loss of variance on longer than centennial
timescales in the sparse emGPR for the full 2k run. To me this is quite an important limitation since
I don't think it makes sense to restrict AMV-relevant timescales to decadal to multi-decadal; there
is a continuum of processes and I don’t think there are reasons to believe that it would flatten out
on longer than centennial timescales or be related to a separate non-AMV relevant process right?

R. The length of the available simulations is 1000-2000 years, so that it is difficult to assess the
behavior on multicentennial timescales - the degrees of freedom is considerably reduced. For
instance, the correlation between reconstruction and target woud be estimated using, say, 10
degrees of freedom, assuming that centuries are independent samples.

Note however, that in case of the full emGP, the underestimation on very long timescales was an
artefact of taking the spectrum of the ensemble mean. In the new versions of the figures, where we
have removed the spectrum of the mean, you can see that actually all ensemble members (at least of
the full emGP) capture the longterm variability well (new Fig.8c). We have therefore updated the text
in section 3.3.1 accordingly.

C Line 465-466: Looking forward to seeing how it compares to the traditional PCR method!

R. Thank you. We are also curious to see how it will compare to existing reconstructions. This is
ongoing work and will be the focus of a follow up study.


