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Abstract. The Surface Urban Energy and Water Balance Scheme (SUEWS) has recently been introduced to include a bottom-

up approach to modelling carbon dioxide (CO2) emissions and uptake in urban areas. In this study, SUEWS is evaluated against

the eddy covariance (EC) measured turbulent fluxes of sensible heat (QH ), latent heat (QE), and CO2 (FC) at a densely built

neighborhood in Beijing. The model sensitivity to maximum conductance (gmax) and leaf area index (LAI) is examined. Site-

specific gmax is obtained from observations over local vegetation species, and LAI parameters by optimization with remotely5

sensed LAI obtained from a Landsat 7 data product. For the simulation of anthropogenic CO2 components, local traffic and

population data are collected. In the model evaluation, the mismatch between the measurement source area and simulation

domain is also considered.

Using the optimized gmax and LAI, the modelling of heat fluxes is noticeably improved, showing higher correlation with

observations, lower bias, and more realistic seasonal dynamics of QE and QH . The effect of the gmax adjustment is more10

significant than the LAI adjustment. Compared to heat fluxes, the FC module shows lower sensitivity to the choices of gmax

and LAI. This can be explained by the low relative contribution of vegetation to the net FC in the modelled area. SUEWS

successfully reproduces the average diurnal cycle of FC and annual cumulative sums. Depending on the size of the simulation

domain, the modelled annual accumulated FC ranges from 7.4 to 8.7 kg C m−2 yr−1, when compared to 7.5 kg C m−2 yr−1

observed by EC. Traffic is the dominant CO2 source, contributing 59–70% to the annual total CO2 emissions, followed by15

human metabolism (14–18%), building (11–14%), and CO2 release by vegetation and soil respiration (6–10%). Vegetation

photosynthesis offsets only 5–10% of the total CO2 emissions. We highlight the importance of choosing the optimal LAI

parameters and gmax when SUEWS is used to model surface fluxes. The FC module of SUEWS is a promising tool in

quantifying urban CO2 emissions at the local scale, and therefore assisting to mitigate urban CO2 emissions.
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1 Introduction20

Currently, half of the global population resides in urban areas, and this percentage is projected to grow to 68% by the middle

of the 21st century (United Nations Department of Economic and Social Affairs, 2019). Urban expansion has reshaped the

morphological, thermal, and dynamical properties of the land surface (Grimmond and Oke, 2006; Oke, 1995; Zhu et al., 2016).

In addition, intensive human activities in urban areas have caused a large quantity of greenhouse gas emissions (Marcotullio

et al., 2013; Velasco and Roth, 2010). Both factors have influenced urban climate from micro to regional scales (Johansson and25

Emmanuel, 2006; Sarangi et al., 2018; Tan et al., 2010). Climatic and environmental risks due to urbanization are frequently

reported, such as heat waves, flooding, and air pollution (Qian et al., 2022; Watts et al., 2015). In this context, there is a pressing

need to better understand the effects of urbanization on land-atmosphere interaction, preferably in a quantitative way.

Urban land surface models (ULSMs) are widely used to simulate urban-atmosphere interactions, including the exchanges

of energy, water, and CO2, and hydrological processes (Chen et al., 2011; Masson et al., 2013). The results from the First30

International Urban Land Surface Model Comparison Project suggested that the most important processes for urban surface

energy balance were radiative and vegetation processes (e.g., vegetation fraction, seasonal cycle of vegetation phenology) (Best

and Grimmond, 2015; Grimmond et al., 2010; Nordbo et al., 2015). Long-term observations with low vegetation cover (<30%)

were especially needed to evaluate heat flux simulation, as energy distribution was found sensitive in such environments (Best

and Grimmond, 2016).35

The Surface Urban Energy and Water balance Scheme (SUEWS) is one of the widely tested ULSMs (Järvi et al., 2011, 2014;

Ward et al., 2016). SUEWS is designed to run with surface information (e.g., surface cover fractions) and a minimum amount

of model forcing data. In recent years, Supy (SUEWS in Python) was developed to allow Python front-end implementation for

broader and easier applications (Sun and Grimmond, 2019). SUEWS has demonstrated good performance against hydrological

observations and surface flux observations in several cities in Europe, North America, and Asia (Alexander et al., 2016; Ao40

et al., 2018; Havu et al., 2022a; Järvi et al., 2011; Ward et al., 2016). In SUEWS, the seasonal cycle of vegetation phenology

is indicated by leaf area index (LAI). Previous studies made in two UK cities and Shanghai, China have reported that bias

in modelled LAI lead to over- or underestimation in QE or QH (Ao et al., 2018; Ward et al., 2016). They highlighted the

importance of having an appropriate seasonal cycle of LAI in SUEWS. Omidvar et al. (2022) proposed a workflow to derive

LAI-related parameters for SUEWS, but it was intended for fully vegetated areas located mainly on the outskirt of cities. Apart45

from LAI, the maximum conductance (gmax) is also critical in scaling the surface conductance (gs), and therefore the available

energy distribution (Ward et al., 2016). However, the impact of LAI-related parameters and gmax on the modelled turbulent

fluxes has received insufficient attention in urban areas.

Recently, the module of local-scale CO2 flux (FC) was incorporated into SUEWS (Järvi et al., 2019). It was found to give

reasonable annual sum, seasonal and diurnal cycles against observed FC in Helsinki, Finland, suggesting that the bottom-up50

CO2 emission or uptake estimate in SUEWS can be evaluated by observation-based evidence provided by top-down eddy

covariance (EC) measurements. Furthermore, SUEWS shows the potential for broader use, such as quantifying the carbon

sequestration potential of urban vegetation (Havu et al., 2022a), investigating the spatial variability of CO2 emission, quanti-
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fying the contribution of each emission component (Järvi et al., 2019), and therefore assisting urban CO2 emission mitigation.

However, this module has not yet been evaluated in other cities than Helsinki.55

Beijing provides a unique test-bed for SUEWS evaluation and application: a mega-city with a population of over 21 million

and an increasing urbanized area (MHURD, 2018). The older version of SUEWS (V2017b), has been evaluated and applied in

Beijing by Kokkonen et al. (2019), showing good model performance against observed heat fluxes. However, good simulation

of turbulent flux does not necessarily imply that the sub-models within give accurate estimates, e.g., LAI and radiative com-

ponents. Correct presentation of these processes is necessary for more advanced applications such as the prediction of surface60

exchanges of energy under e.g., future climate scenarios. Besides, the newly-developed FC module has not yet been evaluated

in Beijing.

In this paper, we present a comprehensive evaluation of SUEWS V2020b in simulating surface fluxes of energy and CO2 in

Beijing. The main aims of this study are (1) to evaluate the model performance of SUEWS using different vegetation parameters

(default and site-specific) against the turbulent flux (QE , QH and FC) measurements, and (2) to estimate the anthropogenic65

and biogenic components’ contributions to the FC with the bottom-up modelling approach by SUEWS. Meanwhile, the impact

of the mismatch between the turbulent flux source area and the modelled area is also examined.

2 Model Description

SUEWS is an urban land surface model that simulates the surface energy and water balances, and CO2 flux at a local (neighbor-

hood) scale (Järvi et al., 2011, 2019; Ward et al., 2016). In SUEWS, the modelling domain is separated into seven interacting70

surface types (buildings, paved surfaces, grass, evergreen trees/shrub, deciduous trees/shrubs, bare soil, and water body), with

a single soil layer below each type. SUEWS is designed to run with surface information (e.g., surface cover fractions) and a

minimal amount of model forcing data including wind speed (U ), relative humidity (RH), air temperature (Tair), air pressure

(p), precipitation and incoming solar radiation (Kdown). SUEWS has sub-models for LAI and net all-wave radiation, and users

are allowed to modify the parameters of the sub-models based on the information of the modelled domain. In this study, we75

use SUEWS version V2020b (Havu et al., 2022b).

2.1 Leaf area index model

In SUEWS, leaf growth is accumulated when Tair stays above the limit value Tbase,GDD,i consecutively, denoted by growing-

degree-day (GDD). Leaf growth is allowed until GDD reaches the upper boundary GDDfull,i or LAI reaches its maximum

(LAImax,i). Similarly to the leaf growth period, the leaf off period is impacted by Tbase,SDD,i, senescence-degree-day (SDD),80

and SDDfull,i or LAImin,i. Leaf fall is controlled by Tair or at high latitudes by day length (Järvi et al., 2014). Here, LAI for

vegetation type i at the day of year d (LAId,i) is defined as:
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LAId,i =

min
(
LAImax,i,LAIω1,GDD,i

d−1,i ·GDDd,i ·ω2,GDD,i +LAId−1,i

)
, leaf-on,Tbase,GDD,i > Td−1

max
(
LAImin,i,LAIω1,SDD,i

d−1,i ·SDDd,i ·ω2,SDD,i +LAId−1,i

)
, leaf-off,Td−1 < Tbase,SDD,i,

(1)

where LAImax,i and LAImin,i for each vegetation type can be obtained from literature or determined from observations,

ω1/2,GDD/SDD,i represent the growing or senescence rates derived for each study site or use their default values (Järvi et al.,85

2011; Omidvar et al., 2022), and Td−1 is the previous day air temperature mean.

2.2 Radiation fluxes

Kdown is a required variable in the meteorological forcing data, whereas other radiation components are estimated within

SUEWS. Outgoing shortwave radiation (Kup) is calculated using a bulk albedo (α) based on the area fraction for each surface

type. Incoming longwave radiation (Ldown) is calculated using Tair and RH to estimate the cloud cover and the clear-sky90

emissivity (Loridan et al., 2011), while outgoing longwave radiation (Lup) is estimated by surface emissivity, α, Kdown,

Ldown and Tair (Offerle et al., 2003).

2.3 Turbulent heat fluxes

Latent heat flux (QE , W m−2) is calculated using the modified Penman-Monteith equation for each surface type:

QE =
s(QN +QF −∆Qs)+ ρcpV PD/rav

s+ γ(1+ rs/rav)
, (2)95

where QN (W m−2) is the net all-wave radiation, QF (W m−2) the anthropogenic heat flux, ∆QS (W m−2) the net storage

heat flux, ρ (kg m−3) the air density, cp (J kg−1 K−1) the specific heat capacity of air at constant pressure, V PD (Pa) the

vapour pressure deficit, s (Pa ◦C−1) the slope of the saturation vapour pressure curve, γ (Pa ◦C−1) the psychrometric constant,

rav (s mm−1) the aerodynamic resistance for water vapour, and rs (s mm−1) the surface resistance. rs, or its inverse surface

conductance gs (mm s−1), has the form:100

gs =
1

rs
=
∑
i

(gmax,i
LAIi

LAImax,i
fri)G1g(Kdown)g(∆q)g(Tair)g(∆θ), (3)

where gmax,i is the maximum conductance of vegetation type i, fri is the surface fraction of i, G1 is a constant connecting

stomatal conductance to canopy conductance, g(Kdown), g(∆q), g(Tair), and g(∆θ) are environmental response functions on

Kdown, specific humidity deficit (∆q), air temperature (Tair), and soil moisture deficit (∆θ), respectively. The functions have

the forms (Ward et al., 2016):105

g(Kdown) =
Kdown/(G2 +Kdown)

Kdown,max/(G2 +Kdown,max)
, (4)

g(∆q) =G3 +(1−G3)G
∆q
4 , (5)
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g(Tair) =
(Tair −TL)(TH −Tair)

TC

(G5 −TL)(TH −G5)TC
, (6)110

where

TC =
(TH −G5)

(G5 −TL)
, (7)

and

g(∆θ) =
1− exp(G6(∆θ−∆θWP ))

1− exp(−G6∆θWP )
. (8)

Coefficients G2 −G6 determine the shape of the curves describing responses of stomatal conductance to each environmental115

variable. Kdown,max (W m−2) is the maximum incoming solar radiation, TL and TH (◦C) are the lower and upper limits for

temperature at which photosynthesis and transpiration are off, and ∆θWP (mm) is wilting point deficit. Kdown (W m−2) is

model input, ∆q (g kg−1) is calculated from model input RH , Tair (◦C) is either model input or simulated at 2 m height, and

∆θ (mm) is simulated within SUEWS (Järvi et al., 2017). QH is determined as the residual from the surface energy balance

equation:120

QH =QN +QF −∆QS −QE . (9)

2.4 CO2 flux

The FC module adopts a bottom-up approach to determine the local-scale FC (µmol m−2 s−1), accounting for both anthro-

pogenic (FC,ant) and biogenic (FC,bio) components (Järvi et al., 2019):

FC = FC,ant +FC,bio = (FM +FV +FB +FP )+ (Fpho +Fres) . (10)125

In the Eq. 10, FM are the CO2 emissions from human metabolism, FV the emissions from traffic, FB the emissions from

buildings (e.g., combustion of natural gas, coal, and wood), FP the emissions from local-scale point sources, Fpho the CO2

uptake by photosynthesis, and Fres the CO2 release by soil and vegetation respiration. Positive values indicate CO2 emissions

and negative values indicate CO2 uptake with respect to the atmosphere. Fpho has a negative sign while the rest of the FC

components have a positive sign.130

FC,ant relates to the energy balance through QF . FM and FV are estimated with an inventory approach, i.e., based on

population density or traffic rate, and their emission factors (EFs). Hourly CO2 emissions from human metabolism on weekdays

or weekends (FM,h,d, µmol m−2 s−1) are calculated using:

FM,h,d = ph,d ·PPh,d ·APh,d ·CM , (11)

where ph,d is the daily average population density (cap ha−1), PPh,d the population diurnal profile by hour, APh,d the activity135

level diurnal profile by hour, and CM the CO2 release per person (µmol CO2 s−1 cap−1). The ph,d and PPh,d reconstruct the
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diurnal population density cycle. APh,d scales the CM to vary between the nighttime minimum and daytime maximum values

(CM(min,max)) to indicate the diurnal cycle of per capita human metabolic intensity.

Hourly traffic CO2 emissions (FV,h,d) on weekdays or weekends are calculated from

FV,h,d = Trd ·Ec,d ·HT,d, (12)140

where Trd is the mean daily traffic rate within the study area (veh day−1 area−1), HT,d the diurnal traffic profiles, and Ec,d

the traffic the EFs for CO2 (kg km−1 veh−1).

Hourly building CO2 emissions (FB,h,d) on weekdays or weekends are calculated from

FB,h,d = [frheat ·QF,heat + frnonheat ·QF,base · frQF,base,BEU,d] ·ECO2perJ , (13)

where frheat is the fraction of fossil fuels used for heating, QF,heat the building heat emission at local scale estimated from the145

heating-degree-day model (Järvi et al., 2011), frnonheat the fraction of fossil fuels used for energy other than heating (e.g. the

use of gas stove for cooking), QF,base the non-temperature related anthropogenic heat flux (W m−2) including heat emissions

from traffic, human metabolism, and electricity usage, frQF,base,BEU,d the fraction of the QF,base coming from building

energy use on weekdays or weekends, and ECO2perJ the EF for fuels in building energy use (µmol CO2 J−1). Emissions from

single-point sources such as power plants and industrial activities can be included as model inputs.150

Fpho relates to the energy balance through LAI and the environmental responses of surface conductance (Eq. 3). Fpho is

calculated using

Fpho =
∑
i

(friFpho,max,iLAIi)g(Tair)g(∆q)g(∆θ)g(Kdown), (14)

where Fpho,max,i is the maximum photosynthetic rate for vegetation type i.

Soil and vegetation respiration Fres (µmol m−2 s−1) follows an exponential dependency on Tair:155

Fres =
∑
i

frimax(ai · exp(Tairbi),0.6), (15)

where ai and bi are the parameters controlling the temperature dependency, and 0.6 µmol m−2 s−1 is the minimum respiration

in winter time.

3 Study site and measurements

The model domain is a 1 km circle around the 325 m meteorological tower constructed by Institute of Atmospheric Physics,160

Chinese Academy of Sciences (IAP tower, 39◦58’ N, 116◦22’ E, 60 m above sea level) located in the 6th Ring area of Beijing,

China (Fig. 1 a–d). An EC setup at the height of 47 m on IAP tower continuously measures the surface fluxes of QE , QH

and FC using a 3-dimensional sonic anemometer (Windmaster, Gill, UK) and an open-path infrared gas analyzer (LI-7500A,

LI-COR, USA). In addition, all four radiation components are measured at the height of 140 m using a net radiometer (CNR1,
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Kipp & Zonen, Netherlands). These measurements are used to evaluate SUEWS model performance. The 1 km radius circle165

around IAP tower roughly covers 80% accumulated flux footprint area (Liu et al., 2012). This area is mainly covered by

impervious surfaces (Fig. 1 b). Three patches of urban green spaces are situated to the east, south, and west to IAP tower, while

the other vegetation is scarcely located along the roads and near the buildings. Most of the impervious surfaces in the source

area are residential buildings (Fig. 1 d). A more detailed description of the surroundings and the used instruments can be found

in the previous publications by Cheng et al. (2018), Liu et al. (2012), and Liu et al. (2021).170
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Figure 1. (a) The location of IAP tower and the land cover type within the 6th Ring area of Beijing (MODIS Land Cover Type (MCD12Q1)

Version 6, Friedl and Sulla-Menashe (2019)), (b) a satellite image (Google Earth, image ©2022 Maxar Technologies) over the study area, (c)

wind sectors that have been filtered out for data quality control, (d) urban land use categories (EULUC-China) (Gong et al., 2020), and (e)

wind direction frequency by season.

8



The 30-min turbulent flux calculation procedures and the quality controls were described in detail by Cheng et al. (2018).

Quality controls such as out-of-limit value removal, spike removal, and a dropout test were conducted on the 10 Hz data during

the flux calculation. In order to exclude low-quality data caused by precipitation, dust, or other contamination on the sensor, the

records with automatic gain control value ≥ 62 were discarded. On top of the procedures by Cheng et al. (2018), the following

quality control steps are performed for 30-minute turbulent flux observations in the year 2016. (1) Upper/lower boundary175

filtering: QE observations that fall outside the range from -500 to 1000 W m−2, QH from -500 to 1000 W m−2, and FC from

-100 to 200 µmol m−2 s−1 are removed. (2) Spikes detection: flux values outside 3.5 times of the standard deviation from the

3-day moving mean value are removed (Liu et al., 2012). (3) Wind direction filtering: the wind directions with building heights

over 50 m (112–128, 160–243, 314–3◦) are removed (Kokkonen et al., 2019) (Fig. 1 c). (4) Stationarity test: data points with

stationary indicator > 30% are filtered out (Foken and Wichura, 1996). The percentages of data removed through these 4 steps180

are 0.2–0.3%, 1.7–2.7%, 37.8–38.2%, and 13.1–17.4%, respectively. The numbers of observations retained after quality control

are 8017 for QE , 7338 for QH , and 7797 for FC . These 30-minute flux observations are resampled to one–hour resolution. In

addition, FC is gap-filled using seasonal mean diurnal cycle in order to calculate the seasonal and annual sums (Falge et al.,

2001).

Wind directions are mainly from the S-W sectors and the NE-E sectors before the implementation of the wind direction185

filtering (Fig. 1 e). In winter, wind from the west is more frequently seen than from the east compared to the other seasons.

Due to the wind direction filtering, the actual flux source area "seen" by the EC measurement is biased from the 1 km radius

circle around IAP tower. The vegetation fraction is 31% in the remaining sectors combined, as compared to 29% in the entire

1 km radius circle (Fig. 1 b–c, Table S1). The model performance in turbulent flux modelling with the land fractions for the

remaining sectors is similar to the entire circle (Fig. S1). Therefore, only the results using the land fractions of the entire circle190

are demonstrated in the main text.

To optimize the behavior of LAI, a six-year time series (2011–2016) of LAI over an adjacent park near IAP tower is cal-

culated from the atmospherically corrected surface reflectance provided by USGS Landsat 7 Enhanced Thematic Mapper +

(ETM+) (30 m spatial resolution) via the Google Earth Engine Data Catalog (Masek et al., 2006). The atmospherically cor-

rected surface reflectance bands have been preprocessed using the scaling factors from the metadata. Next, enhanced vegetation195

index (EVI) is calculated using the formula (Huete, 1997):

EV I = 2.5× (NIR−RED)/(NIR+6×RED− 7.5×BLUE+1) , (16)

where NIR, RED and BLUE are the near-infrared, red, and blue bands, respectively. EVI is further used to calculate LAI with

the formula (Boegh et al., 2002):

LAI = 3.618×EV I − 0.118. (17)200

The LAI and air temperature time series are subjected to optimization using the Covariance matric adaptation evolution strategy

(CMA-ES) (Appendix A). Before the optimization process, values larger than 10 m2 m−2 and negative values are considered

as outliers and removed; values during December and January are set to a fixed value, i.e., the average of these months (0.2 m2
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m−2), to reduce the noise in winter and improve the optimization performance. More details can be found at Appendix A. The

related data and codes are openly available to reproduce the results (Zheng et al., 2022).205

4 Model run

4.1 Forcing meteorological data

The reanalysis dataset WFDE5 (Cucchi et al., 2021) is used as the forcing data for SUEWS. WFDE5 is a bias-corrected dataset

of near-surface meteorological variables specifically suited for land surface modelling. It is derived from the fifth generation

of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis (Hersbach et al., 2020). It is210

provided at 0.5◦ spatial and at hourly temporal resolution. WFDE5 is evaluated against observed meteorological observations

before it is used as the forcing data for SUEWS (Appendix B).

4.2 Land cover

Land cover types and their fractions needed in the model cases are estimated based on aerial images. Paved surface accounts

for 46% of the total area, buildings 24%, trees/shrub 13%, grass/lawn 16%, and water 1%. The average building height is 19.1215

m (Kokkonen et al., 2019). According to a field survey conducted in the 6th Ring area, the population of deciduous species

accounts for 82% of the total number of woody plants investigated (Ma, 2019). Therefore, the surface fraction of deciduous

trees is set to 11% and evergreen trees 2%.

4.3 Storage heat flux

To calculate the storage heat flux, Objective Hysteresis Model (OHM) is used (Grimmond and Oke, 1999). The coefficients220

for all the surface types follow the previous study by Kokkonen et al. (2019). A large portion of the paved surface is asphalt

in the study area. Thus, the coefficients are set to the weighted average values of asphalt surface (AN99) following Ward et al.

(2016).

4.4 Human activity

In this study, local parameters of traffic, population dynamics, and building energy use are incorporated in order to estimate225

QF and CO2 emissions.

The annual mean weekday and weekend diurnal cycle of traffic rate for each road link in 2017 in the study domain are

extracted from a dataset based on an extensive road traffic monitoring network (Yang et al., 2019). For weekends and weekdays,

the diurnal traffic cycles are calculated independently. The total hourly traffic rate (veh km hour−1) is calculated as the sum

of the traffic rates, i.e., the product of traffic volume (veh hour−1) and the road link length (km) from all the road links in the230

study area. The hourly traffic rates are then summed up to the total daily traffic rates (veh km−1 day−1), and divided by the
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total modelling area, yielding Trd. Finally, the diurnal traffic profiles (HT,d) are obtained by normalizing the diurnal cycles of

the total hourly traffic rate (Table 1, Fig. 2).

Annual average diurnal cycle of population density within the model domain is obtained from a dataset of hourly population

dynamics at 500-m resolution generated from remotely sensed and geospatial data over the years 2015 and 2016 (Zhao et al.,235

2021) (Fig. 2). As there are several residential building areas located within the model domain (Fig. 1 d), population density

increases in the evening when residents get home from work, remains high throughout the night, and decreases in the morning.

Weekdays and weekends share the same diurnal cycle of population density in our study.

Heating in Beijing is dominated by central heating, supplied mainly at the district level. The sources include cogeneration

plants fueled by coal or gas, and district boilers powered by coal, oil, or gas. Cogeneration plants are usually located at suburban240

or rural areas, and there are no cogeneration plants within the model domain, so their contribution to CO2 emission is neglected

in this study. In comparison, boiler plants are very common: over 5000 coal-fired and 1000 gas-fired heating boilers are located

surrounding the populated areas in 2014 (Cui et al., 2019). We investigated the boiler plants near IAP tower through interviews

and found that there were at least 11 of them located at multiple directions within 1.5 km distance from IAP tower. For the

known boiler plants, 8 of them have a chimney height lower than 20 m. Thus, their CO2 emissions are very likely to be245

observed by EC at 47 m during the heating season. Unfortunately, the heating capacity and detailed information regarding the

fuel combustion for each boiler plant are unknown or restricted from access. Therefore, it is challenging to treat the boiler CO2

emissions as point sources. As an alternative, SUEWS first estimates the anthropogenic heat release from heating QF,heat and

then converts the heat into local CO2 release using the EF and the fraction of fossil fuels used for heating frheat (Eq. 13).

In 2015, the ratio of district boilers heating capacity to cogeneration plants was 4.2:1 (Zhang et al., 2019). Correspondingly,250

frheat is set to 0.81 to represent the heating capacity from local boiler plants. The value of natural gas consumption over

the annual total heating supply is 3.2×106 ton coal equivalent (tce) and the value for coal consumption 2.6×106 tce in 2015.

The consumption of the rest of the fuel types is only 3.8×105 tce (MHURD, 2018). The EFs of heating supply are 96.51

Tg CO2/1019 J for coal-fired boiler, and 56.17 Tg CO2/1019J for gas-fired boiler, respectively (Du et al., 2018). Therefore,

the EF for fuels used in building energy use (ECO2perJ ) in SUEWS takes the average of the EFs of natural gas and coal255

weighted by their annual consumption, i.e., 0.1688 µmol CO2 J−1 (Table 1). In addition, SUEWS needs a temperature limit

(base temperature, Tbase_HC) to indicate when heating takes place in the heating-degree-day model. Central heating usually

starts around 15th of November and lasts until 15th of March, when the outdoor air temperature is around 12 ◦C. Therefore,

this value is given to SUEWS Tbase_HC to replace the default value (18.2 ◦C) (Järvi et al., 2011).

Statistics showed that urban household living consumed liquefied petroleum gas 27.9×107 kg of coal equivalent (kgce), gas260

17.1×108 kgce, and electricity 20.46×108 in 2016 (BMBS, 2017), indicating that 50% of the household energy use involved

on-site CO2 emissions. Therefore, the non-heating fraction (frnonheat) is set to 0.5.
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Table 1. Parameters related to anthropogenic heat and CO2 emissions.

Parameter Notation Value Reference

CM(min) Minimum CO2 release per capita 120 µmol CO2 s−1 cap−1 Ward et al. (2013)

CM(max) Maximum CO2 release per capita 280 µmol CO2 s−1 cap−1 Moriwaki and Kanda (2004)

Ec,wd Traffic CO2 EF for weekday
0.207 kg km−1 veh−1

(4.70×106 µmol CO2 veh−1 km−1)

Wen et al. (2020, 2022);

Zhang et al. (2014)

Ec,we Traffic CO2 EF for weekend
0.209 kg km−1 veh−1

(4.75×106 µmol CO2 veh−1 km−1)

Wen et al. (2020, 2022);

Zhang et al. (2014)

Trwd Mean daily traffic rate for weekday 0.3260 veh km day−1 m−2 Yang et al. (2019)

Trwe Mean daily traffic rate for weekend 0.2664 veh km day−1 m−2 Yang et al. (2019)

Frheat Fraction of fossil fuels used for heating 0.81
Cui et al. (2019); MHURD (2018);

Zhang et al. (2019)

Frnonheat Fraction of fossil fuels used for energy 0.5 BMBS, 2017

ECO2perJ EF for fuels used in building energy use 0.1688 µmol CO2 J−1 Cui et al. (2019)

Tbase_HC Base temperature for heating degree day 12 ◦C this study

Figure 2. Annual average diurnal cycle of traffic rate for weekday (Trwd) and weekend (Trwe), population density (POP), and the activity

profiles for weekday (APwd) and weekend (APwe) within the 1 km radius circle around IAP tower.

4.5 Evaluation design

Two different groups of SUEWS runs are made around IAP tower (Fig. 1c). The first run over the years 2009 to 2011 is to

evaluate the modelled radiation components against observations. The first 16 months are the spin-up period, and the actual265
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model evaluation is made from May 2010 to June 2011, when the radiation observations are available. The second SUEWS

run from 2015–2016 is to evaluate the turbulent fluxes. The first year is used as a spin-up period and only the year 2016 is used

in the evaluation.

The model performance of radiation fluxes is evaluated prior to the simulation of turbulent heat fluxes. The results show

that SUEWS is applicable to provide realistic estimates of radiation fluxes in the study area despite the absence of site-specific270

parameters (Appendix C). The calculation of radiation fluxes is mostly dependent on the land cover fractions under the current

scheme adopted by SUEWS (Loridan et al., 2011; Offerle et al., 2003). No visible change in land use type is observed according

to satellite images from Google Earth within the modelled area between 2010 and 2016 (figure not shown). Therefore, we

assume that the evaluation of radiation fluxes using observations in the years 2011–2012 holds true in 2016.

4.5.1 Sensitivity to vegetation-related parameters275

In order to test the model’s sensitivity of radiation and turbulent fluxes to vegetation-related parameters, four model cases are

designed as follows:

1. Case base: control run where model parameters are considered "default" following Kokkonen et al. (2019) (Table S2–

S4). The exceptions are: (1) parameters in the environmental response functions (Eq.4 –7) of surface conductance which

follow those by Havu et al. (2022a) (Table 2), because the product of response functions calculated following Kokkonen280

et al. (2019) is too low (95th percentile = 0.19) to obtain realistic estimate of photosynthetic rate; (2) biogenic parameters

for Eq.14–15 and soil properties which were updated following Havu et al. (2022a) (Table 2). In addition, Fpho,max

for grass/lawn (5.5 µmol m−2 s−1) is obtained from EC observations of CO2 flux made over urban lawn in Helsinki in

summer 2021 by fitting the conductance parameters (Fpho,max,grass, G2−G6) to the observations following Järvi et al.

(2019) (Appendix D).285

2. Case LAI: Same as case base but the parameters for Eq.1 describing the annual behaviour of LAI are optimized using

remotely-sensed LAI and CMA-ES (Appendix A). The new optimized LAI parameters are compared with case base in

Table 3.

3. Case gs: Same as case base but with gmax values collected from observational studies over vegetation species in Beijing

(Appendix E). The site-specific gmax are in general lower than the values used by case base (Table 4).290

4. Case gs_LAI: Same as case base, but with both LAI and gmax modified as described in case LAI and case gs.
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Table 2. SUEWS biogenic model parameters used for all case runs in this study.

Parameter Evergreen/deciduous tree Grass/lawn Reference

LAIi,max (m2 m−2) 5.1a/5.5b 5.9 Järvi et al. (2011)

LAIi,min (m2 m−2) 4.0a/1.0b 1.6 Järvi et al. (2011)

Fpho,max,i (µmol m−2 s−1) 8.4c 5.5d cHavu et al. (2022a); dthis study

G1 3.5 3.5 Havu et al. (2022a)

G2 477 477 Havu et al. (2022a)

G3 0.66 0.66 Havu et al. (2022a)

G4 0.89 0.89 Havu et al. (2022a)

G5 30 30 Havu et al. (2022a)

G6 0.36 0.36 Havu et al. (2022a)

∆θWP (mm) 132 132 Havu et al. (2022a)

Kdown,max (W m−2) 1200 1200 Järvi et al. (2014)

TL (◦C) -10 -10 Ward et al. (2016)

TH (◦C) 55 55 Ward et al. (2016)

ai 0.78c 2.1e cHavu et al. (2022a); eJärvi et al. (2019)

bi 0.08c 0.06e cHavu et al. (2022a); eJärvi et al. (2019)

Soil depth (mm) 1000c 349f cHavu et al. (2022a); fKokkonen et al. (2019)

a Evergreen tree
b Deciduous tree

Table 3. Comparison in leaf area index (LAI) parameters between case base and case LAI/gs_LAI. All vegetation types (evergreen tree,

deciduous tree and grass) use the same LAI parameters within one case. Case base values are as in Järvi et al. (2011).

LAI parameters

case base case LAI/gs_LAI

Tbase,GDD (◦C) 5 5.7

Tbase,SDD (◦C) 10 22

GDDfull (◦C) 300 446

SDDfull (◦C) -450 -1000

ω1,GDD 0.04 -1.42

ω2,GDD 0.001 0.00258

ω1,SDD -1.5 2.0

ω2,SDD 0.0015 0.0001
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Table 4. Comparison of maximum conductances (gmax) between case base and case gs/gs_LAI. Parameters for case base follow Järvi et al.

(2011). More details can be found in Appendix E.

gmax (mm s−1)

case base case gs/gs_LAI

Evergreen tree 7.4 1.4

Deciduous tree 11.7 7.0

Grass 40.0 3.7

4.5.2 Sensitivity to radius of modelled area

SUEWS output will be evaluated against EC-measured turbulent fluxes, but the challenge is that the source area of the observa-

tions are different to the exact modelling domain. To consider the impact of the chosen modelling domain on model evaluation,

we designed three additional model cases where different radius circular areas around IAP tower are considered. The default295

run is with the 1 km radius circle, but SUEWS is also run within 500 m, 750 m, and 1500 m circular areas, corresponding to

the flux footprint of roughly 60%, 70%, and 80–90%, respectively (Liu et al., 2012). Used vegetation parameters are as in case

gs_LAI, but land surface fractions, population, and traffic parameters are modified accordingly (Appendix F).

4.6 Statistical metrics for model evaluation

Common statistical metrics are used to quantify the model performance, including, coefficient of determination (R2), root-300

mean-square error (RMSE) and mean bias error (MBE). Simple linear regression is used to estimate the relationship between

the model output and the observations, and the square of the correlation coefficient is taken as R2. The other statistical metrics

are defined as follows:

RMSE =

√∑n
i=1(yi − ŷi)2

n
,and (18)

305

MBE=
1

n

n∑
i=1

(ŷi − yi), (19)

where ŷi is the modelled and yi the measured value. Statistical metrics are calculated at annual and seasonal scale, i.e., DJF

(winter), MAM (spring), JJA (summer), SON (autumn).
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5 Results and Discussion

5.1 Seasonal dynamics of the optimized LAI310

The control case base simulates the onset of leaf growth and the ending of senescence reasonably well (Fig. 3). The perfor-

mance of LAI modelling is further improved after the optimization (Appendix A). In case base, the modelled LAI starts to

increase rapidly from day of year (DOY) 70 and plateaus at DOY 105, which is too early when compared to the remotely

sensed LAI (Landsat 7 LAI). The optimized LAI starts to grow at the same time but slightly slower and peaks 20 days later

than base. In autumn, LAI modelled by case base drops rapidly at DOY 310, while the optimized LAI starts to decline rapidly315

at DOY 267. LAI model with the optimized parameters is better at capturing the behavior of senescence than in the control

case base.

Although previous studies suggested that LAI was generally modelled well using default parameters following Järvi et al.

(2011), Ward et al. (2016) reported that leaf-on is reached too early and suddenly in spring in two UK cities. On the contrary, Ao

et al. (2018) showed that the simulated LAI might be lower than reality when vegetation remained green in winter and spring320

in Shanghai, China. These lead to the bias in gs and therefore QE estimates (Eq. 2–3). In Beijing, the rainy season lasts from

May to October, while the other time of the year is the dry season (Liu et al., 2012). It is possible that the distinct dry season

leads to a lack of soil moisture in spring and autumn and thus influences the LAI seasonal dynamics if there is no external water

input (Omidvar et al., 2022). However, the urban green spaces in Beijing are usually sufficiently or even excessively irrigated

(Zhang et al., 2017). Observations also provided evidence to support the relationship between air temperature and phenological325

dynamics in the urban environment in Beijing (Lu et al., 2006; Luo et al., 2007). Therefore, the air temperature-dependent

LAI model is applicable in Beijing, but the "default" LAI parameters might be not suitable. We recommend evaluating the LAI

model when SUEWS is applied to a different city, and deriving the optimal LAI parameters if necessary.
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Figure 3. Normalized LAI in 2016, where the value 0 (1) represents the minimum (maximum) of LAI. “Base” denotes the modelled LAI for

case base, “Landsat” the remotely sensed LAI of the adjacent park near IAP tower, and “optimized” the modelled LAI using the parameters

derived with CMA-ES (Appendix A).
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5.2 Evaluation of turbulent heat fluxes modelling

Both observed QE and QH reach their maxima around noon (Fig. 4). The observed QE has the largest amplitude during the330

summer months, while QH during the spring months. All four model cases capture their diurnal cycles, but large differences

in the amplitude and model performance are observed among the model cases (Fig. 5).

In case base, the model overestimates QE (with MBE from -7.4 to 48.6 W m−2) except in winter months (Fig. 5). With

the optimized LAI (case LAI), model performance in QE remains virtually unchanged, with RMSE (12.1–94.1 W m−2) and

R2 (0.17–0.53) when compared to case base (with RMSE 11.7–96.1 W m−2 and R2 0.20–0.51) (Fig. 5 a–c). QE is to a large335

extent determined by surface conductance which is scaled by gmax of each vegetated surface for the modelled area (Eq. 3).

Clear improvement is observed when the local gmax is used (case gs), especially during summer. The overestimation of QE

is largely reduced, RMSE drops to 11.3–54.7 W m−2, and R2 increases to 0.25–0.61. With both the optimized LAI and the

local gmax introduced (case gs_LAI), the R2 is similar to case gs, while RMSE slightly decreases by 1–2 W m−2 in spring

and summer compared to case gs. QE is underestimated throughout the day in winter (MBE = -8.3 W m−2). Observational340

studies have shown that combustion-derived water vapor often contributes 5–10% of total urban humidity during heating season

(Fiorella et al., 2018; Liu et al., 2022; Salmon et al., 2017). The observed QE ranges from 0 to 30 W m−2 in winter when

vegetation is dormant; this suggests that combustion and evaporation, as the dominant sources of QE , might lead to QE at this

magnitude. The anthropogenic water vapor release might be underestimated by SUEWS in winter.
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Figure 4. Annual and seasonal mean diurnal cycles of observed and modelled (a–e) latent heat flux (QE) and (f–j) sensible heat flux (QH )

for the four model cases (case base, gs, LAI, and gs_LAI) in the year 2016. The shaded area denotes the interquartile range.
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Figure 5. Model performance statistics R2, RMSE and MBE of (a–c) latent heat flux (QE) and (d–f) sensible heat flux (QH ) for the four

model cases (case base, gs, LAI, and gs_LAI) in the year 2016.

In SUEWS, QH is estimated as the residual of energy balance, and is therefore directly affected by the modelled QE . As a345

result of overestimating QE in case base, QH is greatly underestimated with MBE -51.1–14.4 W m−2 and RMSE 60.9–116.0

W m−2. R2 in summer months and autumn months are lower than 0.1. The model performance is barely improved by the

optimized LAI (case LAI) but it is noticeably improved after the local gmax is introduced (case gs) (Fig. 5 d–f). The best

model performance for QH is obtained by case gs_LAI, decreasing the magnitudes of MBE to -13.6–15.2 W m−2 and RMSE

to 60.1–75.3 W m−2, and increasing R2 to 0.40–0.64 (Fig. 5 d–e).350

QH is also influenced by QF . Nighttime QF in summer might be overestimated, leading to the overestimation in QH .

Turbulent heat fluxes are also related to ∆QS . Both QE and QH correlate with ∆Qs negatively (Eq. 2, Eq. 9). For instance,

QE is underestimated while QH is overestimated at noon in summer in case gs_LAI. The decrease in ∆QS will lead to a

simultaneous increase in QE and QH , lowering QH ’s bias while increasing QE’s. Therefore, the adjustment of ∆QS can

hardly improve the QE and QH modelling at the same time.355

Our results suggest that the model performance of heat fluxes is more sensitive to the adjustment of gmax than to the

change of LAI seasonal dynamics. By incorporating local LAI and gmax, SUEWS simulates the heat fluxes noticeably better,

increasing R2 by 0.03 (0.30) and decreasing RMSE by 27.0 (23.7) W m−2 for QE (QH ) compared to case base.
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5.3 Evaluation of CO2 fluxes modelling

5.3.1 Model performance360

SUEWS basically reproduces the average annual and seasonal diurnal cycle of observed FC (Fig. 6). The diurnal behaviour is

dominated by on-road traffic emission, which reaches 22.6 and 23.0 µmol m−2 s−1 for the morning peak and afternoon peak,

respectively, during the rush hours (Fig. 7). Human metabolism (maximum 4.8 µmol m−2 s−1) is the second largest source

of CO2 emissions. In winter, the building CO2 emission has a maximum of 6.7 µmol m−2 s−1 in the daytime. The maximum

photosynthesis rate is 5.9 µmol m−2 s−1 around noon in summer, while soil and vegetation respiration constantly serves as a365

CO2 source with a rate lower than 3.6 µmol m−2 s−1.

Each of the model performance statistics of FC is of a similar magnitude among cases, indicating the FC modelling is far

less sensitive to the choices of gmax and LAI-related parameters than QE and QH shown in Sect. 5.2 (Fig. 8). Under the

current parameterizations, Fres considers only air temperature (Eq. 15). The adjustments of gmax and LAI parameters affect

the modelled heat fluxes, influencing 2 m air temperature, and finally Fres, but the difference in annual CO2 release from370

respiration is less than 0.01 kg C m−2 yr−1 among cases. Fpho is sensitive to the adjustments of gmax and LAI parameters.

In case base, the large values of gmax allow relatively high evapotranspiration (namely QE). As a result, the average ∆θ

during January and June is larger than 105 mm, which is only 27 mm lower than the wilting point deficit (∆θWP ). The dry

soil lowers the surface conductance and photosynthetic CO2 uptake through the limiting function of g(∆θ) (Eq. 8). As the

local gmax is introduced, the soil remains moister with ∆θ lower than 75 mm throughout the year, allowing a more favourable375

condition for the photosynthetic CO2 assimilation. The CO2 assimilated through photosynthesis is 0.57 kg C m−2 yr−1 in case

gs, which is 0.21 kg C m−2 yr−1 higher than in case base. The LAI reduction in spring and autumn in case gs_LAI, on the

other hand, directly limits surface conductance and photosynthesis (Eq. 14), leading to a decrease by 0.07 kg C m−2 yr−1 in

annual photosynthetic CO2 uptake when compared to case gs.

In SUEWS, photosynthetic and respiration rates are proportional to the fractions of vegetated surfaces, which account for380

only 29% of the modelled area. The magnitude of Fpho is substantially lower than the traffic emission, making the effect of

photosynthesis, as well as its response to the adjustments of gmax and LAI parameters, hardly visible in the FC diurnal cycles.

Expectedly, SUEWS has difficulty in capturing the hourly variability of FC , resulting in the overall low R2 (0.16–0.22) and

high RMSE (12.9–16.4 µmol m−2 s−1) (Fig. 8 a). On one hand, observed FC has great variability at hourly scale through-

out the year indicated by the large interquartile range (Fig. 6). On the other, under the current parameterization, two of the385

anthropogenic FC components are static: modelled traffic emission diurnal cycle is only dependent on whether it is weekend

or weekday, and modelled human metabolism diurnal cycle is invariable throughout the year (Fig. 7), making it difficult to

capture the extreme values. Other urban FC bottom-up modelling studies also reported similar challenges in modelling FC

hourly variability in Helsinki and in Basel (Järvi et al., 2019; Stagakis et al., 2022).

SUEWS gives a reasonable estimate of annual accumulated FC (8.6 kg C m−2 yr−1), which is 15% higher than the observed390

gap-filled value (7.5 kg C m−2 yr−1). FC is overestimated in all seasons, with the lowest MBE (0.2 µmol m−2 s−1) in winter

and the highest MBE (5.7 µmol m−2 s−1) in summer (Fig. 8 c).
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There are multiple reasons to explain the difficulty in accurately capturing the diurnal cycle of the observed FC for each

season. First, the influence of the underlying seasonal variation in the diurnal wind pattern is not considered. The observed

FC varies noticeably with wind direction, and at the same time, the diurnal cycle of wind direction frequency varies with395

season. This makes the FC diurnal cycle from the NW quadrant more “seen” in winter and spring, while the diurnal cycle

from SE more “seen” in summer and autumn (Fig. S2). SUEWS cannot consider this FC’s wind-direction dependency as it

simulates the overall flux from the simulation domain. Second, atmospheric stability influences the real-time footprint fetch

of FC (Crawford and Christen, 2015), but this is not considered in our study. Third, there might be biases in simulating the

seasonal cycles of FC components. SUEWS might underestimate the vegetation photosynthetic rate or overestimate the CO2400

release from respiration due to the lack of site-specific biogenic parameters. Nonetheless, the model performance over the FC

diurnal cycle is reasonably good as compared to a previous study (Järvi et al., 2019).

Figure 6. Annual and seasonal average diurnal cycles of observed and modelled CO2 flux (FC ) for the four model cases (case base, gs,

LAI, and gs_LAI) in the year 2016. The shaded area denotes the interquartile range.
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Figure 7. Seasonal average diurnal cycles of modelled CO2 flux (FC ) components by case gs_LAI in 2016. FcTraff denotes the CO2

emissions from on-road traffic, FcBuilding building, FcMetab human metabolism, FcRespi vegetation and soil respiration, and FcPhoto the

CO2 uptake by vegetation photosynthesis. Positive values indicate the emissions of CO2 and negative values indicate the uptake of CO2 with

respect to the atmosphere. The shaded area denotes the interquartile range.

Figure 8. Model performance statistics (a) R2, (b) RMSE and (c) MBE of CO2 flux (FC ) for the four cases (base, gs, LAI, and gs_LAI) in

the year 2016.

Uncertainties in traffic emission originate from the traffic rates and EFs. SUEWS adopts static traffic EFs, and neglects

the relationship between traffic emission and Tair as reported by Alvarez and Weilenmann (2012) and Fontaras et al. (2017).

In order to examine the impact of seasonal variation of Tair in traffic emission, correction is conducted using the regression405

function following Zhang et al. (2021), but only a marginal difference is seen at monthly scale: a difference of 3% in winter,

-2% in spring, ~0% in summer and -1% in autumn. Therefore, we believe that the static traffic EFs adopted by SUEWS can

provide reasonable traffic emission without considering the seasonal dynamics of Tair.

Järvi et al. (2019) reported that using a different coefficient of CO2 release per capita (CM ) lead to a 6% decrease in human

metabolic CO2 emission estimate. If CM is set to a daily mean value of 242 µmol m−2 s−1 (Prairie and Duarte, 2007) instead410

of the current values (Table 1), the human metabolic emission will increase and the annual FC will be 4% higher than the

original estimate.
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Building emissions are calculated based on the QF estimates and heating fraction. Modelled average QF in December is 52.7

W m−2, which is higher than another model estimate (21.6 W m−2) in the modelled area (Wang et al., 2020). Observations of

QF are rarely available, and thus these QF estimates have not yet been validated. The representativeness of the heating fraction415

estimated from yearbook statistics is yet to be examined because the location and heating capacity of heating boilers within

the modelled area is unknown. However, the building emission estimate (0.97 kg C m−2 yr−1) falls in the range of estimates

(~0–3.0 kg C m−2 yr−1) by other cities (Björkegren and Grimmond, 2018; Christen et al., 2011; Järvi et al., 2019; Moriwaki

and Kanda, 2004).

The modelled CO2 release by respiration is larger than CO2 assimilated through photosynthesis in our study. At the annual420

scale, urban vegetative surfaces can have a net CO2 uptake (Awal et al., 2010; Konopka et al., 2021), but may also have a net

emission (Peters and McFadden, 2012). Admittedly, bias might exist in biogenic CO2 flux estimates since the parameters used

in this study are derived from the observations over street trees in Helsinki and over a lawn at Ossinlampi, Finland, where

the climate and vegetative species are different from Beijing. With these parameters, the model might underestimate the CO2

sequestrated by the local vegetation, or overestimate the CO2 release by respiration.425

5.3.2 The impact of the modelling domain size

The surroundings of IAP tower are heterogeneous in terms of land surface fraction and mean daily traffic rate (Fig. 9 a). The

fraction of vegetated surfaces is higher closer to the tower than further away due to the green spaces adjoining IAP tower (Fig.

1 b). Additionally, there is a traffic hot spot on the 3rd Ring North Road located 850 m to the south of IAP tower (Fig. 1 d),

where the traffic rate is 2 to 7 times the value for the other roads inside the circle of a 1000 m radius (figure not shown). A430

large increase of 26% in daily traffic rate is seen when the radius of modelling domain is 1000 m or 1500 m when compared to

domains with lower radii (Fig. 9 a). Thus, the modelled annual accumulated FC largely depends on the modelling domain size

chosen, giving estimates of 7.4, 7.6, 8.6 and 8.7 kg C m−2 yr−1 for the radii of 500 m, 750 m, 1000 m, and 1500 m, respectively.

Observational annual FC (7.5 kg C m−2 yr−1) falls within this range, which indicates the good model performance of SUEWS

(Fig. 9 b).435

The turbulent flux modelling is usually evaluated over a fixed extent such as a circle with a certain radius to approximate

the flux source area (Demuzere et al., 2017; Järvi et al., 2019). However, when a circle with the radius ≥ 1000 m is selected

to approximate the ≥80% footprint fetch in our study, SUEWS does not give the closest estimate of annual FC . This can

be explained by the mismatch between the modelling domain and the real flux source area—the single fixed-extent modelled

area cannot perfectly represent the land surface characteristics (e.g., the nonuniform land cover and human activities), biasing440

turbulent flux modelling (Chu et al., 2021; Laine et al., 2009). First, the accumulated footprint area of the observed fluxes is

irregular in shape and vary with time (Liu et al., 2012). Second, the relative contribution to flux from the land surface decreases

as the distance to the measurement instrument increases (Christen et al., 2011; Rebmann et al., 2005). Thus, when the modelling

domain is a 1000 m radius circle, the model might underestimate the relative contribution from the adjacent vegetated surface,

and overestimate the contribution of the traffic hot spot at the edge of 80% footprint fetch.445
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Figure 9. (a) Land use fraction and mean daily traffic rate (Trwd/we), and (b) accumulated CO2 flux (FC ) for modelling domain with the

radius ranging from 500 m to 1500 m. “Wd” denotes weekday, “we” weekend; “Mod” denotes modelled FC , and “Obs” observed FC . Note

that in (b) the lines for Mod 500m and Mod 750 m nearly overlap, and the lines for Mod 1000m and Mod 1500m nearly overlap.

Regardless of the modelling domain size, traffic is the dominant CO2 source, contributing 59–70% to the total CO2 emis-

sions, followed by human metabolism (14–18%), building energy use (11–14%), and CO2 release by vegetation and soil respi-

ration (6–10%). Vegetation photosynthesis offsets only 5–10% of the total annual CO2 emissions (Fig. 10). Several bottom-up

modelling studies show that the on-road traffic is the greatest source in a densely built neighbourhood, contributing to 70% in

central London, 61% in Helsinki, 53%–78% in Tokyo, 70% in Vancouver, while human metabolism also plays an important450

role, contributing 5–39% to the annual total FC (Björkegren and Grimmond, 2018; Christen et al., 2011; Järvi et al., 2019;

Moriwaki and Kanda, 2004). Our results are in general agreement with these studies. The contribution of the local building

emissions within the study area is more variable among cities: a contribution of 70% is reported in Basel (Stagakis et al.,

2022), while ~0% in Helsinki (Järvi et al., 2019), and our estimate falls in this range. The direct CO2 sequestration by urban

plants is minor compared with the total CO2 emissions in this densely built neighbourhood, which is in general agreement with455

Pataki et al. (2011) and Christen et al. (2011). For more accurate biogenic component estimates in Beijing, photosynthetic and

respiration observations over local species are needed in the future.

25



Figure 10. The contribution to total CO2 emissions by each component at the annual scale for the modelled area with a radius ranging from

500 m to 1500 m. Note that for photosynthesis the percentages denote the offset against total CO2 emissions.

6 Conclusions

A correct description of vegetation is vital in order to simulate the energy and CO2 fluxes over urban surfaces using the urban

land surface model SUEWS. In this study, the impact of selecting appropriate vegetation parameters, including LAI parameters460

and gmax, on simulating the surface fluxes is examined in Beijing, China. Besides, the newly-developed CO2 emissions module

in SUEWS is evaluated against EC measurements.

The model performance of heat fluxes (QE and QH ) is more sensitive to the adjustment of gmax than to the change of LAI

seasonal dynamics in our study area. The LAI model has been improved by using CMA-ES to optimize the LAI parameters

with a remotely sensed LAI product, providing more realistic vegetation phenological dynamics, especially for the senescence465

season. Observational leaf-level gmax of vegetative species in Beijing are also collected and parameterized. By incorporating

local LAI and gmax, SUEWS simulates the heat fluxes noticeably better, increasing R2 by 0.03 (0.30) and decreasing RMSE

by 27.0 (23.7) W m−2 for QE (QH ), and showing more realistic seasonal dynamics when compared to EC observations.

FC modelling appears to be less sensitive to the choices of LAI-related parameters and gmax. Only one of the FC compo-

nents, Fpho, responds noticeably to them. SUEWS can catch the general diurnal and seasonal behaviour of FC but tends to470

overestimate FC , especially over summer months. We also tested the influence of chosen modelling domain size on simulated

FC . By selecting the modelled radii of circular area ranging from 500 m to 1500 m (i.e., accumulated footprint area from 60%

to 80–90%), the modelled annual FC ranges from 7.4 to 8.7 kg C m−2 yr−1, which is comparable with the EC observations

(7.5 kg C m−2 yr−1). This shows the model performs well also on the annual scale. Regardless of the modelling domain size,

traffic is the dominant CO2 source, contributing 59–70% to the total CO2 emissions, followed by metabolism (14–18%), build-475
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ing (11–14%), and CO2 release by vegetation and soil respiration (6–10%). Vegetation photosynthesis offsets only 5–10% of

the CO2 emissions.

We highlight the importance in choosing more site-specific LAI parameters or gmax when SUEWS is used for heat fluxes

modelling before the more advanced application such as urban climate and hydrological modelling. Observations are needed

to support more accurate parameterizations of biogenic CO2 fluxes. We believe that the bottom-up approach to model FC by480

SUEWS can be a promising tool in capturing the CO2 emission hot spots, quantifying the relative contribution of the local

CO2 sources, and assisting to mitigate urban CO2 emissions.

Appendix A: Workflow of LAI parameters optimization

In SUEWS, LAI influences the surface conductance, and subsequently QE and Fpho (Sect. 2). A workflow for parameter

derivation for the LAI sub-model based on remotely-sensed data is designed for natural ecosystems (Omidvar et al., 2022).485

However, vegetation in urban areas behaves differently from natural ecosystems (Zhang et al., 2022), and needs to be considered

separately. Therefore, we propose a workflow to obtain the parameters for urban area based on remotely-sensed LAI and

Covariance matric adaptation evolution strategy (CMA-ES). This workflow can also be applied to natural ecosystems. The

related data and codes are openly available (Zheng et al., 2022).

Covariance matric adaptation evolution strategy (CMA-ES) is one of the strategies for numerical optimization of non-convex490

problems. It is based on the principle of biological evolution. The evolution strategy takes a certain number of individuals

(candidate solutions) in a stochastic way, selects individuals based on the fitness, and repeats this process for generations so

that a better or an optimal solution is obtained. Adaptation of the covariance matrix amounts to learning a second order model

of the underlying objective function. Compared with classic optimization methods, CMA-ES requires neither derivatives nor an

objective function; it only requires the ranking of candidate solutions. Besides, CMA-ES outranks many of other optimization495

algorithms, performing especially strong on "difficult functions" or larger dimensional search spaces (Hansen et al., 2010).

Taking our study area as an example, the LAI parameters are optimized as the following:

1. LAI derivation. A six-year time series (2011–2016) of LAI of the vegetation in an adjacent park near IAP tower is

calculated from the atmospherically corrected surface reflectance provided by USGS Landsat 7 Enhanced Thematic

Mapper + (ETM+) (30 m spatial resolution) via the Google Earth Engine Data Catalog (Masek et al., 2006). The time500

series is treated as the “original LAI”.

2. Spikes removal. There are outliers in the LAI time series caused by instrument problems, uncertainties of retrieval

algorithm, and cloud contamination. Values larger than 10 m2 m−2 and negative values are first removed. The LAI

values during December and January are set to a fixed value, i.e., the average of these months (0.2 m2 m−2), in order to

reduce the noise in winter and improve the optimization performance.505

3. Scaling the original LAI to the canopy level. The original LAI might be noticeably lower than the measured LAI at the

canopy level over a homogeneous vegetated surface. Nonetheless, the original LAI provides the signals of vegetation
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phenology (e.g., leaf-out, peak growing season, leaf-fall). In order to give a more realistic estimate of LAI at the canopy

level, the original LAI needs to be scaled. Therefore, LAImax and LAImin need to be given manually, preferably based

on observational studies over local species. Here, the original LAI is scaled to allow the optimized LAI to reach 5–6 m2510

m−2 in the peak growing season as reported by an observational study in Beijing (Wang et al., 2021). The canopy-level

LAI is marked as the “input LAI” for the process of optimization and marked as the “observed LAI” for the process of

evaluation.

4. Interpolation. The observed LAI are linearly interpolated between values to obtain a daily time series, marked as the

“interpolated LAI”.515

5. Parameters derivation using CMA-ES. The time series of interpolated LAI and Tair are subjected to CMA-ES to optimize

the parameters. Using the LAI model and the parameters derived, LAI is calculated and marked as the “predicted LAI”.

The input LAI fluctuates greatly in summer, but the CMA-ES method provides a good estimate of the LAI seasonal dy-

namics, indicating that the CMA-ES is a useful tool that can handle input data contaminated by noise (Fig. A1 a). The model

performance is overall good (with R2 = 0.74 and RMSE = 1.2 m2 m−2) (Fig. A1 b).520

Figure A1. (a) Time series of the the input, the interpolated, and the predicted leaf area index (LAI), and (b) comparison of the predicted

against the observed LAI.

Appendix B: Evaluation of WFDE5 reanalysis against observed meteorological variables

To force SUEWS, local scale meteorological data within the inertial sublayer is required. However, they can be unavailable for

the area and period desired. Reanalyses provide spatially and temporally complete datasets, which might make the modelling

run easier for users. Kokkonen et al. (2018) and Kokkonen et al. (2019) evaluated one of the reanalyses, WATCH Forcing Data

ERA-Interim (WFDEI), suggesting that WFDEI can serve as the forcing of SUEWS, but should be corrected beforehand when525

the bias is large.

WFDE5 is a bias-corrected dataset of near-surface meteorological variables derived from the fifth generation of the European

Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis (ERA5) (Cucchi et al., 2021). It is generated
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using the same methodology as WFDEI, and provides a single layer at 0.5° spatial resolution and hourly temporal resolution.

The evaluation of WFDE5 and the use of it as forcing data to SUEWS have been neglected so far. Here, we compare WFDE5530

against observed meteorological variables including air temperature (Tair), relative humidity (RH), wind velocity (U ) at 47

m, and incoming shortwave radiation (Kdown) at 140 m on IAP tower (Liu et al., 2012). The evaluation of Kdown is conducted

from May 2010 to June 2011, and the rest from January 2010 to December 2011. All the observed variables are resampled

from 30-minute to 1-hour resolution.

Table B1. The height of WFDE5 and observed meteorological variables.

WFDE5 Observations

Tair 2 m 47 m

RH near surface 32 m

U 10 m 47 m

Kdown near surface 140 m

With the difference in height for each meteorological variable (Table B1), however, WFDE5 is close to the observed as a535

whole (Fig. B1). Compared with the observed, WFDE5 Tair is lower, RH higher, U lower, and Kdown higher. WFDE5 may

underestimate Tair, and overestimate RH , for neglecting the urban anthropogenic heat release; WFDE5 might overestimate

Kdown due to insufficient consideration of aerosol’s effect in decreasing solar radiation received by the urban surface. The

lower U of WFDE5 can be explained by the lower height compared with the observations (Table B1). If the WFDE5 U is

adopted as forcing of SUEWS, aerodynamic resistance might be overestimated, and therefore QE underestimated.540

Admittedly, some meteorological variables of WFDE5 correlate poorly with the observations in a particular season (e.g.,

R2=0.13 for U in JJA). However, the overall high R2, and low RMSE and MBE in magnitude suggest that WFDE5 provides

reasonably good estimates of each meteorological variable (Table B2). Therefore, WFDE5 is adopted as the forcing data of

SUEWS in this study.

Figure B1. Comparison of WFDE5 and observed meteorological variables including (a) air temperature (Tair), (b) relative humidity (RH),

(c) wind velocity (U ) and (d) incoming solar radiation (Kdown) at an hourly resolution.
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Table B2. Statistics for WFDE5 compared against the observed meteorological variables.

Season
average

R2 RMSE MBE N
WFDE5 Observed

Tair (°C)

DJF -2.1 -1.2 0.83 2.3 -1.0 4217

MAM 12.7 13.5 0.92 2.5 -1.0 4100

JJA 26.2 26.8 0.77 2.1 -0.5 3966

SON 13.8 14.2 0.94 1.9 -0.4 4278

RH (%)

DJF 41.8 32.4 0.77 13.4 9.3 4216

MAM 41.6 34.1 0.74 13.8 7.9 3986

JJA 66.6 59.9 0.71 12.6 5.1 3546

SON 60.2 49.3 0.50 20.6 10.9 3958

U (m s−1)

DJF 2.1 2.7 0.52 1.3 -0.5 4217

MAM 2.7 2.8 0.45 1.4 -0.1 4100

JJA 1.9 1.9 0.13 1.2 0.1 3949

SON 2.0 1.9 0.45 1.0 0.0 4252

Kdown (W m−2)

DJF 117.0 99.2 0.94 50.6 19.5 2160

MAM 222.5 218.1 0.93 82.7 19.7 2941

JJA 216.4 189.3 0.86 110.5 38.2 2883

SON 140.9 124.7 0.93 58.9 16.5 2150

Appendix C: Evaluation of radiation fluxes545

The radiation parameterization scheme Net All-wave Radiation Parameterization (NARP) does not involve gmax or LAI. As

expected, the four experiments (Sect. 4.5.1) give identical radiation flux components in the output. Therefore, only the case

gs_LAI is further analyzed here.

The model performance of SUEWS in simulating radiation fluxes is good (Fig. C1, Table C1) and it can reproduce the

diurnal cycle of each radiation flux well (Fig. C2). Kup is overestimated in all seasons with MBE ranging from 0 to 10 W550

m−2. At least partly, this overestimation can be explained by the positive bias (MBE > 15 W m−2 in all seasons) of WFDE5

Kdown when compared to the observed Kdown (Appendix B). The overestimation in Kup can also be caused by surface albedo.

Observational studies have shown that the urban surface albedo near IAP tower varies between 0.1 and 0.15 with season (Jiang

et al., 2007; Miao et al., 2012). The annual bulk albedo for the modelling domain given to SUEWS is 0.14, which is relatively

high but still consistent with the observations. A larger positive bias in Kup is observed in summer than in winter. Surface555
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albedo is influenced by many factors such as surface wetness and street canyon trapping effect (Ao et al., 2016; Dou et al.,

2019), which have not yet been considered by SUEWS. By simply (1) adjusting the albedos for surface types following Ward

et al. (2016), and (2) allowing albedo for vegetation to vary from a lower value in summer to a higher value in winter (Table

S5), the RMSE for Kup decreases for all seasons, especially in summer (from 18.0 to 13.6 W m−2), but this has only a minor

impact on QN modelling (Table S6).560
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Figure C1. Input or modelled vs. observed hourly radiation fluxes, including (a–d) incoming solar radiation (Kdown), (e–h) outgoing short-

wave radiation (Kup), (i–l) incoming longwave radiation (Lup), (m–p) outgoing longwave radiation (Lup), and (q–t) net radiation (QN )

from May 2010 to June 2011. Note that only Kdown is input and the rest are model output.

32



Figure C2. Average diurnal cycle of input or modelled and observed hourly radiation fluxes by season, including (a–d) incoming solar

radiation (Kdown), (e–h) outgoing shortwave radiation (Kup), (i–l) incoming longwave radiation (Lup), (m–p) outgoing longwave radiation

(Lup), and (q–t) net radiation (QN ) from May 2010 to June 2011. Shading area denotes the standard deviation. Note that only Kdown is

input and the rest are model output.

The average seasonal and diurnal cycles of Ldown are well captured by the model (Fig. C2 i–l), although R2 (0.68–0.88) is

lower than with other radiation fluxes. The difference might result from the discrepancy between the observed and modelled

cloud fraction as clear skies and overcast conditions are especially difficult to capture by the radiation model NARP, as reported

also by Ao et al. (2016) and Ward et al. (2016). The diurnal amplitude of Lup is slightly overestimated by SUEWS (Fig. C2 m–
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p). The model tends to overestimate Lup particularly at high values of Lup (Fig. C1 m–p). The values of emissivity of building565

materials used in SUEWS might be slightly higher than in reality. Lup is also dependent on Kdown in NARP. Therefore, the

overestimation of Lup can be partly explained by the overestimated Kdown provided by WFDE5, especially around noon and

in summer.

We conclude that SUEWS is applicable to provide a realistic estimate of radiation fluxes in Beijing, in general accordance

with previous studies (Järvi et al., 2014; Karsisto et al., 2016; Ward et al., 2016), despite the absence of site-specific parameters.570

Table C1. SUEWS model performance statistics for radiation fluxes. The abbreviations are the same as Fig. C1. Note that Kdown is an input

and others are output of SUEWS.

Season R2 RMSE MBE N

Kdown

DJF 0.94 52.3 19.5 2160

MAM 0.93 82.6 19.8 2940

JJA 0.86 110.4 39.3 2728

SON 0.93 59.6 16.6 2150

Kup

DJF 0.88 9.2 0.2 2160

MAM 0.92 14.8 5.0 2940

JJA 0.88 18.0 8.1 2728

SON 0.91 11.6 3.3 2150

Ldown

DJF 0.74 16.0 -2.4 2160

MAM 0.86 20.5 -10.0 2940

JJA 0.68 18.1 8.8 2728

SON 0.88 23.7 12.9 2150

Lup

DJF 0.80 15.3 3.8 2160

MAM 0.90 18.6 3.2 2940

JJA 0.79 22.1 10.5 2728

SON 0.91 18.6 9.2 2150

QN

DJF 0.94 38.0 13.2 2160

MAM 0.93 64.6 1.5 2940

JJA 0.86 87.0 29.5 2728

SON 0.92 50.8 17.0 2150
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Appendix D: Fitting maximum photosynthetic rate for vegetation type of grass/lawn

In order to find the maximum photosynthetic rate for the vegetation type of grass to be used in SUEWS simulation, the

environmental response functions g(Tair), g(∆q), g(∆θ), and g(Kdown) in Eq. 14 were fitted to observations from an eddy

covariance (EC) station (60°11’16.02"N, 24°49’56.85"E) situated in an urban lawn in Espoo, Finland. A 1.2 m high EC tower

was located at the center of the urban lawn covering an area of 0.7 ha. The EC setup consisted of a three-dimensional sonic575

anemometer (Metek GmbH, Germany) for measuring the three wind components and sonic temperature, and a closed-path

infrared gas analyser (LI-7200; LI-COR, Lincoln, NE, USA) for measuring the CO2 and H2O mixing ratios. The gas analyser

inlet was positioned 13 cm below the anemometer and air was drawn into the gas analyser using a 60 cm length of steel

tube, having an inner diameter of 4.57 mm and a mean flow rate of 12 l min−1. The tube was heated to avoid water vapor

condensation on tube walls. The raw EC data were sampled at 10 Hz and stored for post-processing. The steps before 30-min580

flux calculations consisted of de-spiking, linear de-trending, and planar fitting of the raw data.

The biogenic CO2 flux Fc,bio from EC measurements was partitioned into Fres and Fpho using the night-time temperature

dependency of Fres. The nighttime Fc,bio was considered as nighttime Fres, and it was related to the observed Tair by fitting

the exponential model:

Fres = agrass · exp(Tairbgrass) , (D1)585

where agrass and bgrass are parameters controlling the temperature dependency. The nighttime temperature dependency of

Fres was then extrapolated to daytime, and Fpho was then calculated by

Fpho = FC,bio −Fres. (D2)

Then Fpho was used as a dependent variable, whereas on-site measurements of net radiation (CNR4; Kipp&Zonen, Delft,

Netherlands), air temperature, and relative humidity (HMP110 A15; Vaisala Oyj, Vantaa, Finland) and soil moisture (ML3590

Thetaprobe; Delta-T, Cambridge, UK) were used to estimate the independent variables in g(Tair), g(∆q), g(∆θ) and g(Kdown).

Atmospheric pressure from Finnish Meteorological Institute Kumpula station was used to calculate ∆q. Additional reference

values of soil properties (field capacity and wilting point), which were estimated to be same as in an urban lawn in Kumpula

(Järvi et al., 2019), were used to calculate ∆θWP . Parameters Fpho,max and G2−G6 were fitted using a non-linear least-square

approach.595

Data from mid-July to the end of August 2021 were used and in the fitting only data points with Kdown > 10 W m−2

and ∆q > 1 g kg−1 were selected (Havu et al., 2022a). After applying a bootstrapping method to randomly select seven

eighths of the data for 100 times, the final parameters fitted for grass were obtained as medians with the uncertainties as

follows: Fpho,max = 5.497±0.110 µmol m−2s−1, G2 = 195.019±5.601 W m−2, G3 = 0.741±0.008, G4 = 0.413±0.015,

G5 = 30.000± 0.000 ◦C, G6 = 0.500± 0.000 mm−1. The value of Fpho,max is used for grass/lawn in the Beijing simulation.600
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Appendix E: Maximum conductance of urban green space in Beijing

Table E1. Maximum conductance (gmax) for each vegetated surface.

Deciduous tree

Sophora japonica Linn. Populus tomentosa Carr. Faxinus chinensis Roxb. Ginkgo biloba Linn.

Ratioa 26.26% 12.39% 9.44% 8.12%

gmax (mm s−1) 9.0 5.2 6.1 4.1

Reference Xu et al. (2020) Wang et al. (2018) Xu et al. (2020) Song et al. (2015)

Evergreen tree Grass/lawn

Pinus tabuliformis Festuca arundinacea Schreb. Poa pratensis L. Zoysia japonica Steud.

gmax (mm s−1) 1.4b 5.4 4.0 1.6

Reference Chen et al. (2021) Wang et al. (2006) Wang et al. (2006) Wang et al. (2006)

a obtained from a field survey over Beijing (Ma et al., 2019)
b obtained by dividing maximum canopy conductance by G1 (=3.5)

The weighted average of gmax is 7.0 mm s−1 for the deciduous tree weighted by the population ratio of each species (Table

E1). The average gmax for grass is 3.7 mm s−1. Note that when the species in the modelled area are known, we suggest the

gmax is selected accordingly. Here, we seek values that can represent the overall vegetation over the urban area in Beijing, and

therefore the average is taken from different species.605
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Appendix F: Comparison of parameters for modelling domain with different radii

Table F1. Land surface fraction for modelling domain with different radii, where “Paved” denotes paved surface, “Bldgs” buildings, “EveTr”

evergreen tree, “DecTr” deciduous tree, “Grass” grassland and lawn, “Bsoil” bare soil, “Water” water body.

Radius (m)

500 750 1000 1500

Fr_Paved 0.39 0.32 0.46 0.46

Fr_Bldgs 0.18 0.21 0.24 0.24

Fr_EveTr 0.04 0.04 0.02 0.02

Fr_DecTr 0.18 0.18 0.11 0.01

Fr_Grass 0.20 0.24 0.16 0.17

Fr_Bsoil 0 0 0 0

Fr_Water 0.01 0.01 0.01 0.01

Figure F1. Diurnal cycles of (a) traffic rate and (b) population density for modelling domain with different radii, where WD denotes weekday

and WE weekday.
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