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Abstract. Autocalibration techniques have the potential to enhance the efficiency and accuracy of intricate process-based 

hydrodynamic and water quality models. In this study, we developed a new R-based autocalibration toolkit for the 

Environmental Fluid Dynamics Code (EFDC) and implemented it into the recalibration of the Yuqiao Reservoir Water 10 

Quality Model (YRWQM) with long-term observations from 2006 to 2015, including dry, normal, and wet years. The 

autocalibration toolkit facilitated recalibration and contributed to exploring how the model recalibrated with long-term 

observations performs more accurately and robustly. Previously, the original YRWQM was calibrated and validated with 

observations of dry years in 2006 and 2007, respectively. Compared to the original YRWQM, the recalibrated YRWQM 

performed as well in water surface elevation with a Kling-Gupta Efficiency (KGE) of 0.99 and water temperature with a 15 

KGE of 0.91, while better in modeling total phosphorus (TP), chlorophyll a (Chl a), and dissolved oxygen (DO) with KGEs 

of 0.10, 0.30, and 0.74 respectively. Furthermore, the KGEs improved by 43~202% in modeling TP-Chl a-DO process 

when compared to the models calibrated with only dry, normal and wet years. The model calibrated in dry years 

overestimated DO concentrations, probably explained by the parameter of algal growth rate increased by 84%. The model 

calibrated in wet years performed poorly for Chl a due to a 50% reduction in the carbon-to-chlorophyll ratio probably 20 

triggered by changes in the composition of the algal population. Our study suggests that calibrating process-based 

hydrodynamic and water quality models with long-term observations may be an important measure to improve the 

robustness of models under severe hydrological variability. The newly developed general automatic calibration toolkit and a 

possible hierarchical autocalibration strategy will also be a powerful tool for future complex model calibration. 

1 Introduction 25 

Lakes and reservoirs fulfill the role of “sentinels” to climate change due to both their capacity to buffer synoptic-scale 

hydroclimatic extremes and their susceptibility to hydrological variability (Adrian et al., 2009; Williamson et al., 2009; 

Mooij et al., 2019). In recent decades, dramatic hydrological variability has been widely detected and remarkably influenced 
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biogeochemical processes in lakes and reservoirs (Sinha et al., 2017; Grant et al., 2021; Kong et al., 2022; Salk et al., 2022). 

In a bid to delve into these variations, process-based hydrodynamic and water quality models have been increasingly popular 30 

tools since they can disentangle numerous intricate causal relations between exogenous drivers and environmental impacts 

within water bodies (Arhonditsis and Brett, 2004; Mooij et al., 2010; Fu et al., 2019). However, the accuracy and robustness 

of these models in the face of such intense hydrological variability have become a key issue. 

Driven by the purpose of better understanding physical, chemical, and biological processes, the complexity of process-

based hydrodynamic and water quality models continues unabated over recent years (Robson, 2014). However, the increased 35 

complexity of the model is a mixed blessing. It indeed helps us to examine biogeochemical processes in lakes and reservoirs, 

but when the complexity of the model exceeds a certain level, both the accuracy and the identifiability are diminished 

(McDonald and Urban, 2010). Higher dimensions, more state variables, and more specific details introduce more and more 

parameters into models through drastic simplification of reality, which subsequently become a massive source of model 

uncertainty. Model calibration is one of the essential procedures in model setup to reduce the uncertainty from parameter 40 

estimations and to obtain a satisfactory parameter set to match simulated results with observed data (Jørgensen and Fath, 

2011). Although calibration has been used extensively in process-based hydrodynamic and water quality models, there are 

still two notable problems. 

The first problem is that the manual calibration method (trial and error) commonly used in process-based hydrodynamic 

and water quality models is inefficient and does not guarantee optimal results. Firstly, some steps, such as adjustment of 45 

inputs, tuning of parameters, evaluation of model performance and visualization of outputs, subject modelers to time-

consuming and tedious tasks. Secondly, the parameter set selected by this method may still suffer from uncertainty and 

interferences of subjective factors. With the development of computer technology and subsequent application in numerical 

simulation methods, the automatic calibration method is burgeoning (Shimoda and Arhonditsis, 2016). Numerous modeling 

studies in recent decades have employed automatic calibration procedures in 2-D or lower-dimensional process-based 50 

hydrodynamic and water quality models in lakes or reservoirs (Rigosi et al., 2011; Huang, 2014; Luo et al., 2018). However, 

due to their high complexity and time-consuming calculation, there are few applications of automatic calibration procedures 

in 3-D hydrodynamic and water quality models. For example, the automated Parameter ESTimation software (PEST) was 

applied in the Environmental Fluid Dynamic Code (EFDC) (Arifin et al., 2016), and optimization algorithms were applied in 

Delft3D (Xia et al., 2022; Xia and Shoemaker, 2021, 2022). The lack of automatic calibration procedures is a major 55 

hindrance to improving the efficiency of model calibration and indirectly causes the problem below. The EFDC is a general-

purpose model developed for simulating three-dimensional flow, transport, and biogeochemical processes in surface water 

systems, including rivers, lakes, estuaries, reservoirs, wetlands, and coastal regions (Hamrick, 1992). The hydrodynamic 

model consists of continuity, momentum, state, and transport equations for salinity and temperature. The water quality model 

consists of 22 state variables and associated kinetics (Ji, 2017). More than 200 parameters which govern the above process 60 

are spread over different cards in different input files, and the model results comprises lots of output files in different formats. 

Despite the emergence of numerous well established generic tools for automatic calibration, the process of linking these 
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tools to EFDC input and output files is still cumbersome. For such a sprawling model system as the EFDC, a specific 

automatic calibration tool can eliminate much of the repetitive and unnecessary work. On the other hand, specific automatic 

calibration tools are needed to support multi-objective evaluation methods for three-dimensional model calibration, including 65 

evaluation at different locations on the horizontal plane, evaluation at different depths on the same grid, or a mixture of these 

objectives. 

The second problem is that many models were calibrated with only short-term observations with a narrow hydrological 

variability, then were employed in water ecosystem management decisions or future predictions. There are hidden perils in 

the presumption that these calibrated models are adaptive to a wider hydrological variability. For example, in a previous 70 

study of the Spokane River and Lake Spokane Model, the use of a low flow period for calibration may result in an 

overestimation of inlake total phosphorus (TP) and chlorophyll a (Chl a), and an underestimation of minimal dissolved 

oxygen (DO) (Zhang et al., 2018a). This issue has also arisen in studies of other models (Vaze et al., 2010; Nielsen et al., 

2014; Basijokaite and Kelleher, 2021). A large number of parameters is almost impossible to be constrained by a narrow 

hydrological variability (Janssen and Heuberger, 1995; Franks, 2009), thus triggering the equifinality problem, where several 75 

distinct parameter inputs produce the same model outputs called “good results for the wrong reasons” (Arhonditsis et al., 

2007; Paudel, 2012). Even if the final parameter set chosen by the modeler satisfies the match between model results and 

observations under the current hydrological variability, there is no credibility that the model will be accurate as a robust 

prognostic tool under a wider hydrological variability (Arhonditsis et al., 2007). Therefore, the utilization of a longer period 

of observations containing a wider range of hydrological years for calibration may be an important way to improve the 80 

identifiability of parameters in process-based hydrodynamic and water quality models. Benefiting from the continued 

accumulation of historical observations, numerous published models have been recalibrated using longer scales of data 

(James, 2016; Schnedler-Meyer et al., 2022). Cerco and Noel (2005) recalibrated the Chesapeake Bay model with a decade 

of observations resulting in a clear improvement in modeling primary production and light attenuation. Benefit from long-

term data supports, exploring how the hydrological variability in the calibration period impact model calibration will help 85 

establish more accurate and robust models. 

Long-term modeling is required to test the model’s ability to reproduce ecosystems under different hydrological years. 

Based on the established Yuqiao Reservoir Water Quality Model (YRWQM) (Zhang et al., 2013, 2015, 2019), this study 

aims to explore how long-term observations under a wider hydrological variability impact model calibration with the 

application of automatic calibration techniques. We hypothesized that models using observations with a longer period and 90 

wider hydrological variability for calibration perform more accurately and robustly. We first developed a new R-based 

autocalibration toolkit for the EFDC model. Second, we recalibrated the YRWQM by the toolkit with a decadal-scale 

observation under three hydrological situations: dry, normal, and wet periods. Finally, we compared the model performance, 

parameters, and kinetic processes represented by parameters across the model calibration scenarios that used different split-

sample approaches. These discrepancies will highlight the importance of the hydrological variability corresponding to the 95 
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observed data for model calibration and deepen our understanding of biogeochemical processes in shallow lakes and 

reservoirs under the wide hydrological variability. 

2 Materials and methods 

2.1 EFDC-Automatic Calibration Toolkit 

EFDC-Automatic Calibration Toolkit (EFDC-ACT) was developed in this study for automating the calibration of a 3-D 100 

hydrodynamic and water quality model, EFDC, with more than two hundred parameters. EFDC-ACT is a multi-parameter 

and multi-variable autocalibration toolkit based on R. Documentation and source code is shared and publicly available at 

https://doi.org/10.5281/zenodo.7438143. The conceptual overview of the EFDC-ACT is shown in Fig. 1. There are three 

main steps in EFDC-ACT: initialization, autocalibration, and post-analysis. 

Before using EFDC-ACT, the user should prepare the necessary files including the EFDC-ACT master file, the 105 

Comma-Separated Values (CSV) file containing the parameter and variable information, the input file for the EFDC, and the 

CSV file containing the observations. In the initialization step, EFDC-ACT checks and loads the master file, the parameter 

list, and the variable list. Then EFDC-ACT generates a matrix of parameter value ranges, sets the model evaluation statistics 

as the objective functions, and launches the autocalibration process. More detail is in EFDC-ACT User's Guide (S1). 

To maintain the diversity of the parameter sets while accelerating convergence, EFDC-ACT introduced the caRamel 110 

package (Monteil et al., 2020) in the autocalibration step. The caRamel package is a genetic algorithm-based multi-objective 

optimizer, incorporating the Multiobjective Evolutionary Annealing Simplex method (MEAS) (Efstratiadis and 

Koutsoyiannis, 2008) and Nondominated Sorting Genetic Algorithm II (ε-NSGA-II) (Reed and Devireddy, 2004). It is 

suitable for highly complex, time-consuming hydrodynamic and water quality models like EFDC. EFDC-ACT controls the 

caRamel optimization according to the master file, feeding the parameter value range matrix into the caRamel. The caRamel 115 

generates the parameter set, then EFDC-ACT passes it into EFDC and starts the calculation. At the end of the model run, 

EFDC-ACT calculates the statistics based on the modeled and observed values and passes the result back to caRamel as the 

objective function value. As the parameter set is adjusted, the autocalibration process is repeated until the termination 

criterion is reached, such as the maximum number of runs or the expected statistic results. 

Automatic model evaluation is a potent tool for making models more transparent and credible (Alexandrov et al., 2011; 120 

Soares and Calijuri, 2021). To this end, EFDC-ACT provides model result extraction, statistical model evaluation, and 

graphical model evaluation in the post-analysis step. During the autocalibration process, the user can open the CSV files to 

view each iteration's parameter set and model evaluation results. After each iteration, EFDC-ACT plots the time series using 

modeled and observed values, thus supplying the users with a visual comparison that statistics cannot afford. EFDC-ACT 

will also output the final optimization results in a CSV file when all iterations are complete. 125 

According to the model evaluation guidelines proposed by Moriasi et al. (2007), the statistics used to evaluate the 

model performance include three categories: standard regression (R2), dimensionless (NSE, KGE), and error index (MAE, 
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RMSE, PBIAS, RSR). Kling-Gupta Efficiency (KGE) is included as an alternative to NSE in this study. KGE gives equal 

weight to bias, linear correlation, and variability, avoiding the systematic underestimating of the variability (Gupta et al., 

2009). 130 

 

Figure 1: Conceptual overview of EFDC-ACT. The main files consist of nine categories: (a) EFDC_ACT_pars.yaml: the EFDC-

ACT master file; (b) Par_list.csv: parameter ranges and whether to calibrate; (c) Var_list.csv: objective state variable, spatial 

location, statistics used and accuracy expected; (d) EFDC inp files: input files for EFDC; (e) Obs files: CSV files containing 

observations; (f) Par_result.csv: autocalibration results of parameter values by each iteration; (g) Var_result.csv: autocalibration 135 
results of statistics for objective state variables by each iteration; (h) Plots: Time series plots for model results and observations; (i) 

caRamel_result.csv: final autocalibration results containing optimal parameter sets and model evaluations. 

2.2 Chronicle of YRWQM 

The Yuqiao Reservoir (40°00’-40°04’N, 117°26’-117°37’E) is situated in Jixian County, Tianjin, China (Fig. 2). The 

shallow reservoir has a length of 66 km from east to west and a width of 50 km from north to south, an average water depth 140 

of 4.74 m, a maximum water depth of 12.74 m, a total surface area of 86.6 km2, and a storage capacity of 1.559 billion m3. It 

is situated within a basin area that covers 2060 km2 (Fig. S1). The Yuqiao Reservoir is the primary source of drinking, 
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agricultural and industrial water for approximately 129 villages in the surrounding area (Zhang et al., 2019; Yu and Zhang, 

2021). Previous studies have shown that Yuqiao Reservoir is a typical mesotrophic, phosphorus-limited environment (Chen 

et al., 2012; Zhang et al., 2020). The YRWQM (Zhang et al., 2013) is a regional hydrodynamic and water quality model 145 

developed under the framework of EFDC (Hamrick, 1992; Ji et al., 2001) to improve the understanding and management of 

the Yuqiao Reservoir. Since its inception, the model has undergone five phases of development and refinement (Fig. 2). 

The original YRWQM was constructed to investigate how agricultural pollution by flood flows affects the water quality 

in the Yuqiao Reservoir. The model was calibrated, validated, and employed to predict the variations of water quality 

resulting from agricultural pollution (Zhang et al., 2013). Subsequently, the YRWQM was coupled with a modified 150 

submerged aquatic vegetation model (M-SAVM) to study the development effect of submerged macrophytes (Zhang et al., 

2015, 2016) and epiphyton (Špoljar et al., 2017; Zhang et al., 2018b) on the water quality indicators of the reservoir. An 

integrated climate-hydrological-water quality (RCM-SWAT-YRWQM) framework was also proposed to elucidate the 

effects of a changing climate on the trophic state (Zhang et al., 2019). 

The YRWQM has become a powerful tool for research and management of the Yuqiao Reservoir water ecosystem 155 

through the above phases in the past decade. However, there may still be a risk of insufficient accuracy since the original 

YRWQM calibration does not take into account long-term hydrological variability. With the availability of the decadal-scale 

observations covering dry, normal, and wet periods and the design of new model calibration methods, it is time to examine 

whether a longer period of calibration can improve the accuracy and robustness of the model. 

 160 
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Figure 2: Bathymetric map of the Yuqiao Reservoir and the chronicle of YRWQM. The YRWQM has undergone five phases of 

development and refinement: (I) Model construction; (II) M-SAVM module; (III) Epiphyton; (IV) Integrated framework RCM-

SWAT-YRWQM; (V) Recalibration with EFDC-ACT. 

2.3 Benchmarking point: model calibration with the strategy of original YRWQM 

As mentioned above, the original YRWQM was initially developed with the purpose of investigating the variations of water 165 

quality arising from agricultural pollution in the Yuqiao Reservoir. Both the hydrodynamic and water quality model were 

calibrated and validated with the observations collected in the six monitoring stations from 2006 to 2007 and performed 

satisfactorily. A more detailed description of the original YRWQM can be found in Zhang et al. (2013). It should be noted 

that both the calibration period (the year 2006) and validation period (six months of the year 2007) was under dry 

hydrological conditions. 170 

Consistent with the original YRWQM calibration strategy, the dry years (the years 2006, 2007, 2010, and 2015) of the 

decade were selected as the calibration period to establish a benchmarking point for comparison with recalibrated YRWQM. 

The parameter set obtained from the calibration was implemented to simulate other years with different hydrological 

conditions to validate the model. The normal years (the years 2009, 2011, and 2014) and the wet years (the years 2008, 2012, 

and 2013) of the decade were also employed to calibrate and then validate the model with the same method. All of three 175 

different models and their parameter sets were eventually comprised with the recalibrated YRWQM to reveal improvements 

with a wider hydrological variability. 

2.4 YRWQM recalibration with EFDC-ACT 

The datasets required for YRWQM recalibration included meteorological data, discharge, precipitation, evaporation, water 

surface elevation, water temperature, and water quality data. Meteorological data are obtained from China Meteorological 180 

Data Service Centre. Discharge, precipitation, evaporation, and water surface elevation data used in the model were obtained 

from the Yuqiao Reservoir Administrative Bureau. The data above were collected at a frequency of once a day from 2006 to 

2015, except for 2012 when water surface elevation data were collected once a month (Zhang et al., 2019). While six 

monitoring stations were employed by the original YRWQM for calibration and validation (Zhang et al., 2013). to balance 

the cost with accuracy in calibration, water temperature and water quality data collected from monitoring station S2 were 185 

used in recalibrated model evaluation, which represented the water column at the center of the Yuqiao Reservoir. The water 

quality state variables included TP, Chl a, and DO concentrations (Zhang et al., 2015). All the water quality data was 

sampled, preserved, and analyzed monthly or semi-monthly from 2006 to 2015 according to the Standard Method for the 

Examination of Water and Wastewater Editorial Board. 

Due to the lower stability of the hydrodynamic model compared to the water quality model, the recalibration of the 190 

YRWQM was divided into two parts: the hydrodynamic model recalibration and the water quality model recalibration. Both 

parts of the YRWQM were recalibrated with EFDC-ACT. The parameter ranges listed in Table S1 were referenced from the 

original YRWQM and other literature (Wu and Xu, 2011; Zhang et al., 2013; Yi et al., 2016; Jiang et al., 2018; Zhao et al., 
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2020; Kim et al., 2021). KGE and PBIAS were used to evaluate the recalibrated model. Model performance is considered 

satisfactory when the KGE is greater than -0.41 in this study, meaning that the model improves upon the mean value 195 

benchmark (Knoben et al., 2019). The PBIAS describes the average tendency for simulated values to be greater or less than 

observed values, with positive values indicating a model bias toward underestimation and negative values indicating a model 

bias toward overestimation (Gupta et al., 1999). 

The hydrodynamic model of YRWQM was recalibrated with the field data collected between 2006 and 2015 with a 

time step of 10 seconds. The objective function of EFDC-ACT included the KGE results of water surface elevation (WSE) 200 

and surface water temperature (TEM) at station S2 from 2006 to 2015. The decade included dry years (2006, 2007, 2010, 

and 2015), normal years (2009, 2011, and 2014), and wet years (2008, 2012, and 2013). The parameters were automatically 

adjusted by EFDC-ACT until all the objective functions (KGEs) were greater than -0.41 or the number of iterations reached 

the maximum. In the water quality model recalibration, the objective function of EFDC-ACT included the KGE results of 

three water quality state variables (TP, Chl a, and DO) at station S2 from 2006 to 2015. When all the objective functions 205 

(KGEs) were greater than -0.41 or the number of iterations exceeded the maximum, the autocalibration is considered 

complete. 

3 Results 

3.1 EFDC-ACT efficiency and model recalibration 

Before giving the complicated details of the analysis on model performance and parameters, we first give an overview of the 210 

implementation of the EFDC-ACT on the YRWQM recalibration. Both the manual recalibration and the automatic 

recalibration experiments with a modeling scale of one year were implemented under the same calculating workstation with 

Intel(R) Core(TM) i7-10700 CPU @ 2.90 GHz. In the manual recalibration, each iteration took an average of 8.25 h, with an 

average of 6.41 h spent on modeling and an average of 1.84 h spent on manual pre-processing (parameter adjustment, 

parameter set recording) and post-processing (result extraction, statistic calculation, time series plotting, model performance 215 

recording). The manual pre- and post-processing took 22.35% of the total time of each iteration. In the automatic 

recalibration, each iteration took an average of 6.43 h, with an average of 0.02 h (77 s) spent on automatic pre- and post-

processing. The automatic pre- and post-processing took 0.36% of the total time of each iteration. In terms of time 

consumption, automatic recalibration with EFDC-ACT takes 21.99% less time than manual operation, thereby reducing the 

time consumed per iteration by 22.02% (1.82 h). From the perspective of labour saving, EFDC-ACT spared the modeler 220 

from tedious repetitive tasks such as extraction of results, calculation of statistical values, and plot of time series. These 

savings in time and labour provided us with abundant time to analyze and improve the recalibrated YRWQM. 

During the recalibration period (2006-2015), the bottom roughness height and the wind-drag multiplier were 

automatically calibrated. The hydrodynamics of the recalibrated YRWQM demonstrated good performance for WSE and 

TEM at station S2 (Fig. 3). The recalibrated YRWQM remarkably reproduced the decadal variation of WSE in Yuqiao 225 
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Reservoir with a KGE of 0.99. The recalibrated YRWQM reproduced the seasonal cycle of water temperature with a KGE of 

0.91. The highest and lowest water temperatures were grasped with a highest observed value of 31℃ and a corresponding 

simulated value of 28℃, and a lowest observed value of 0℃ and a same corresponding simulated value. The modeled WSE 

and TEM both indicated that the hydrodynamic model in the recalibrated YRWQM is reliable and can be used for water 

quality modeling in the Yuqiao Reservoir during the recalibration period. 230 

The water quality of the recalibrated YRWQM performed satisfactorily for the modeled TP concentration at station S2 

with a KGE of 0.10. Most of the observations were evenly distributed with little variances on either side of the modeled 

values, with only a few observations away (Fig. 3). The modeled TP concentration peaked at the end of 2010 and 2011 and 

was beyond the range of observations. Nevertheless, the inter- and intra-annual variability in TP concentrations were still 

well captured and the model showed acceptable performance overall with a PBIAS of 40%. The model represented the 235 

variation of Chl a concentration over the decade with a KGE of 0.30. Chl a concentration showed a clear double-peaked or 

multi-peaked pattern of intra-annual variation, with peaks occurring mostly in spring and autumn (Fig. 3). The modeled DO 

concentrations likewise showed good performance with a KGE of 0.74. DO concentration exhibited a pronounced seasonal 

cycle with lower concentrations in summer and higher concentrations in winter (Fig. 3). 

The comparisons of the recalibrated model against the original model demonstrated the better accuracy and robustness 240 

of the recalibrated YRWQM over the decade in the Yuqiao Reservoir (Table 1). The hydrodynamics of the recalibrated 

YRWQM performed as well as the original YRWQM, while the recalibrated YRWQM performed better than the original 

YRWQM in modeling TP, Chl a, and DO concentrations. The water quality of the original YRWQM failed to reach a 

satisfactory result with KGEs of -1.60, -3.03, and -0.19 for TP, Chl a, and DO respectively, while the water quality of the 

recalibrated YRWQM performed well with KGEs of 0.10, 0.30, and 0.74 respectively as mentioned above. The 11 primary 245 

parameters in the water quality model were listed in Table 1, eight of which governed algal kinetics (CChl, PM, Keb, TM1, 

TM2, KHP, BMR, PRR), two parameters influenced phosphorus cycling (KRP, KDP), and one affected reaeration (REAC). 

Among these parameters we also found six of them to be sensitive (Table 1). These parameters were carbon-to-chlorophyll 

ratio for algae (CChl), the maximum growth rate for algae (PM), basal metabolism rate for algae (BMR), predation rate on 

algae (PRR), the minimum mineralization rate of dissolved organic phosphorus (KDP), and reaeration multiplier (REAC). 250 

These primary parameters were selected during our calibration process based on the biogeochemical characteristics of 

Yuqiao Reservoir and the model performance, and they significantly influenced the model results. More detailed model 

equations, parameter interpretations, and calibration results are listed in Sect. S3. 
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Figure 3: Performance of the model recalibrated and the model calibrated with original strategy (with dry years) at station S2 of 255 
the Yuqiao Reservoir (n = 3309 for WSE and 190 for other state variables).  
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Table 1: Comparison of the recalibrated YRWQM, the original YRWQM (calibrated with the year 2006), and YRWQM 

calibrated with original strategy (the dry years 2006, 2007, 2010, and 2015). The state variables being compared included WSE, 

TEM, TP, Chl a, and DO. The parameters being compared included eight governing algal kinetics (CChl, PM, Keb, TM1, TM2, 260 
KHP, BMR, PRR), two influencing phosphorus cycling (KRP, KDP), and one affecting the reaeration of DO (REAC). A more 

detailed explanation of the model equations and parameters is listed in Sect. S3. 

State variables Statistics 
Recalibrated 

YRWQM 

Original 

YRWQM 

YRWQM calibrated 

with original strategy 

WSE KGE 0.99 0.99 0.99 
 

PBIAS(%) 0.03 -0.10 0.03 

TEM KGE 0.91 0.91 0.91 
 

PBIAS(%) 7.93 8.36 7.93 

TP KGE 0.10 -1.60 0.11 
 

PBIAS(%) 40 -78 20 

Chl a KGE 0.30 -3.03 0.31 
 

PBIAS(%) 36 -357 5 

DO KGE 0.74 -0.19 0.24 
 

PBIAS(%) -2 -53 -22 

Parameters Units Descriptions 
Recalibrated 

YRWQM 

Original 

YRWQM 

YRWQM calibrated  

with original strategy 
Sensitivity 

CChl mg C / 

μg Chl 

Carbon-to-Chlorophyll ratio for algae 0.080 0.083 0.060 Yes 

PM day-1 The maximum growth rate for algae 2.77 2.00 5.10 Yes 

Keb m-1 Background light extinction coefficient 0.410 0.475 0.475 No 

TM1 ℃ The lower optimal temperature for algal 

growth 

21 9 22 No 

TM2 ℃ The upper optimal temperature for algal 

growth 

28 15 26 No 

KHP mg/L Phosphorus half-saturation for algae 0.0019 0.0010 0.0022 No 

BMR day-1 Basal metabolism rate for algae 0.120 0.010 0.140 Yes 

PRR day-1 Predation rate on algae 0.117 0.010 0.280 Yes 

KRP day-1 Minimum hydrolysis rate of refractory 

particulate organic phosphorus (RPOP) 

0.005 0.001 0.067 No 

KDP day-1 Minimum mineralization rate of 

dissolved organic phosphorus (DOP) 

0.060 0.005 0.070 Yes 

REAC / Reaeration multiplier 1.4 0.9 1.1 Yes 
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3.2 Performance comparison between YRWQM recalibrated in decade and models calibrated in different 

hydrological years 265 

There were obvious discrepancies in the performance of the recalibrated YRWQM in different hydrological years (Fig. 4). 

The ability of the recalibrated YRWQM to reproduce TP concentrations in the decade was the best with the highest KGE 

values. The recalibrated model evaluation for TP concentrations reflected satisfactory performance in dry and wet years with 

KGEs of -0.22 and 0.004 respectively, while in normal years the KGE value was less than -0.41. The recalibrated model 

showed reasonable performance for Chl a concentration and performed best in normal years with a KGE of 0.36. The 270 

recalibrated model succeeded in reproducing DO concentrations in different hydrological years, with all KGE values greater 

than 0.6 and the maximum KGE of 0.76 occurring in wet years. 

 

Figure 4: Performance of the models calibrated with different strategies. The YRWQM was recalibrated with the decade and 

calibrated with dry, normal, and wet years respectively. The parameter sets derived from four model calibration strategies were 275 
applied to the other hydrological years or the decade to validate the model under the different hydrological conditions. 

In comparison to the YRWQM recalibrated with the decade, the other three models calibrated in different hydrological 

years showed distinct inferiority (Fig. 4). The model calibrated in dry years performed relatively poor in modeling DO with a 
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KGE of 0.24 over the decade and a maximum KGE of 0.36 in dry years. The model calibrated in normal years failed to 

obtain good evaluations in modeling TP with the lowest KGE values over the decade and in all three different hydrological 280 

situations. The model calibrated in wet years showed relatively worse in modeling Chl a with all KGEs less than 0.2 and the 

lowest KGE of -0.02 occurring in dry years. The results indicated that the YRWQM recalibrated with the decade 

outperformed the other three models calibrated in a solely hydrological year, with the best robustness in modeling TP, Chl a, 

and DO concentrations for a wide hydrological variability during the decade. 

3.3 Parameters and kinetic processes comparison between recalibrated YRWQM and models calibrated within 285 

different hydrological years 

Similar to the model performances, models employing different calibration strategies also had different parameter results 

(Fig. 5). Most parameter values of the recalibrated YRWQM were within the parameter ranges of the other three calibrated 

models, except for PRR, which had the lowest value of 0.12 among the four models. PRR represents the rate of predation on 

algae by zooplankton or other aquatic organisms and algal predation is one of the main causes of algal reduction. 290 

Compared to models using other calibration strategies, the model calibrated in dry years had the highest PM of 5.1, the 

highest PRR of 0.28, and the lowest REAC of 1.1. PM and PRR govern the growth and predation of algae respectively. 

REAC represents the reaeration multiplier for the turbulence-induced and wind-induced surface reaeration coefficient, a 

lower REAC value means less reaeration at the air-water interface. There were significantly lower BMR and higher KDP in 

the model calibrated in normal years, two parameters that represent the algal basal metabolism and the mineralization of 295 

dissolved organic phosphorus into inorganic phosphorus, respectively. Most parameters of the model calibrated in wet years 

were similar to the model recalibrated in the decade, except for one significantly lower value of CChl, which governs the 

conversion between modeled and measured algal biomass. 
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Figure 5: Parameters of the models calibrated with different hydrological years. 300 

4 Discussion 

4.1 Recalibrated YRWQM vs. Original YRWQM 

Before embarking on the discussion of the discrepancies between the recalibrated YRWQM and original YRWQM, it is 

important to note that the model evaluations chose a single station (station S2, the center of the Yuqiao Reservoir) and three 
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state variables (TP, Chl a, DO), constrained by the complexity and computational cost of decadal-scale modeling. 305 

Nevertheless, the above indicators were considered capable of representing the main biogeochemical processes in Yuqiao 

Reservoir, as previous statistical analyses and numerical models have indicated that Yuqiao Reservoir is a phosphorus-

limited mesotrophic reservoir (Chen et al., 2012; Zhang et al., 2013; Xu et al., 2015). The model evaluations demonstrated 

that the recalibrated YRWQM performed equally well as the original YRWQM in terms of hydrodynamics, while the 

recalibrated YRWQM outperformed when it came to water quality. We supposed that the better performance probably 310 

stemmed from the recalibrated parameter values, especially sensitive parameters (Table 1). As described by Cerco and Cole 

(1994) in the three-dimensional eutrophication model of Chesapeake Bay, the growth rate of algae was expressed as a 

multiplication of the maximum growth rate (PM) with a series of limiting factors in YRWQM, while the algal reduction was 

caused mainly by basal metabolism (BMR) and predation (PRR). These parameter values in the original YRWQM gave the 

algae too lenient growth conditions and motivated inaccurate algal outbreaks during the decade with a PBIAS of -357% 315 

(Table 1). These algal outbreaks may also be a potential reason for the overestimations of TP and DO concentrations with 

PBIASs of -78% and -53%, respectively (Table 1). With the excessive algal outbreaks in the original YRWQM, the 

continuous enrichment of phosphorus in algae and the oxygen production process of excessive net photosynthesis prompted 

the final overestimations (Ji, 2017). As algal kinetics were accurately parameterized during the decade with a PBIAS of 36% 

in recalibrated YRWQM, satisfactory results were also obtained for TP and DO concentrations with PBIASs of 36% and -2% 320 

respectively (Table 1). 

It should be noted that the modeled TP concentration peaks were not recorded in the observations in late 2010 and 2011 

(Fig. 3). This may have been caused by the year-end water transfer, with inflow TP concentrations reaching 460 µg/L and 

960 µg/L in December 2010 and 2011 respectively. It may also demonstrate that recalibrated YRWQM can provide a higher 

temporal resolution than observations and be potential as a hindcast model for reservoir management. Overall, the accuracy 325 

and robustness of the YRWQM have taken a solid step forward over a meticulous, long-term recalibration with EFDC-ACT. 

4.2 Why does the recalibrated YRWQM have better-performing parameters? Impact of the hydrological variability 

on calibration results 

Whereas it has been discussed above how updating parameter values improved the model accuracy and robustness of 

YRWQM, it is now more intriguing to see how this parameter updating was achieved by recalibration. We suppose that the 330 

observations with a wide hydrological variability may have contributed to the better-performing parameters, as the original 

YRWQM was calibrated and validated in the only dry situation while the recalibrated YRWQM used decadal observations 

with a wide range of hydrological variability. Hydrological variability is one of the main causes of varying biogeochemical 

processes (Delpla et al., 2009; Li et al., 2020), and the changes in parameter values reflect the variability of these processes 

(Robson et al., 2018). James (2016) recalibrated the Lake Okeechobee Water Quality Model using 30 years of observations 335 

including a series of extreme hydro-meteorological events, thereby improving the quality of the parameters and the ability to 

model nitrogen and phytoplankton. Many studies have also shown that the improvement in model parameters may be 



16 

 

triggered by calibration using long-term observations with greater hydrological variability (Cerco et al., 2004; Lung and Nice, 

2007). 

Among the four models, the parameters of the recalibrated YRWQM showed a proper trade-off with values almost 340 

falling within the range determined by the other models calibrated in specific hydrological years (Fig. 5). The model 

calibrated in dry years performed as well as the recalibrated YRWQM for Chl a but failed to reproduce DO with a PBIAS of 

-21% (Fig. 4). This may be due to the highest algal growth rate (PM) causing excessive net photosynthesis (Fig. 5). The 

drastic water level fluctuations of the Yuqiao Reservoir in dry years (Fig. 3) probably caused the decline of submerged 

macrophytes and the increase of phytoplankton, like other shallow water bodies (Furey et al., 2004; Krolová et al., 2013; Lu 345 

et al., 2018). However, it is necessary to analyze more observations of submerged macrophytes and couple the recalibrated 

YRWQM with M-SAVM to gain a definite conclusion (Zhang et al., 2015). In the case of the model calibrated in wet years, 

the model performed poorly in modeling Chl a (Fig. 4) and the carbon-to-chlorophyll ratio (CChl) was the lowest (Fig. 5). 

Unlike a fixed value in the model, the value of CChl is more variable and depends on the makeup of the algae population, 

typically ranging from 0.015 to 0.1 (Bowie et al., 1985). Ren et al. (2019) also noted the differences in microbial 350 

composition between the dry and wet periods in Poyang Lake. A multi-species phytoplankton module that enables variable 

CChl may contribute to more robust algal modeling. The above discussion pointed out the risks inherent in employing a 

model calibrated with a single hydrological year for climate change studies or management decisions. From the point of 

model accuracy and robustness, the use of long-term observations with sufficient hydrological variability to calibrate 

hydrodynamic and water quality models is probably the best option. 355 

4.3 Highly efficient calibration with EFDC-ACT 

The newly developed autocalibration toolkit, EFDC-ACT, eliminated a lot of hindrances to the recalibration of YRWQM. 

Compared to the conventional manual calibration method, it not only reduces a great deal of uncertainty from the subjective 

choice of parameters but also accelerates the convergence of the optimization process. As a generic autocalibration toolkit 

developed for models based on the EFDC framework, the EFDC-ACT supports the autocalibration of any combination of 360 

more than 200 parameters in the EFDC model. Meanwhile, the EFDC-ACT also incorporates automatic model evaluation 

and advanced visualization of simulations and observations. Some process patterns can only be seen by time series plots and 

2D plots. Statistics alone cannot reveal this kind of pattern (Bennett et al., 2013; Hipsey et al., 2020). The automated time 

series plots make the model results more visual and transparent at this point. The generated output files after each 

optimization iteration are overwritten and only the model parameters and evaluation results of each iteration are retained. 365 

This design ensures reproducibility while avoiding a large usage of hard disk space (Luo et al., 2018). The entire automatic 

calibration framework proposed with EFDC-ACT can also be a reference to develop other automatic calibration tools for 

hydrodynamic and water quality models. 

The caRamel algorithm adopted in EFDC-ACT has been demonstrated through case studies to obtain similar 

optimization results while speeding up convergence (Monteil et al., 2020). However, hundreds of parameters and the high 370 
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spatial and temporal complexity of EFDC bring about a time-consuming computation, making it difficult to reach the 

recommended number of iterations of the caRamel algorithm. Furthermore, even with the support of optimization algorithms, 

how to obtain better calibration results faster is still a critical issue for the autocalibration of high-complexity models like 

EFDC. Although with the aid of auto-calibration, modelers should spend time learning and understanding the model system 

and the parameter implications to avoid getting good model error statistics values with the wrong parameters. The auto-375 

calibration should be viewed as an efficient way to refine calibration after learning the model system with the manual 

calibration. 

4.4 Challenging high-complexity model autocalibration problems: a possible hierarchical autocalibration strategy 

introducing expert knowledge 

To enable faster convergence of the model parameter optimization process, we propose a hierarchical autocalibration 380 

strategy based on EFDC-ACT. This strategy requires the modelers to orderly, automatically calibrate the model three times 

for different purposes. First, modelers formulate a large range of parameters based on literature or parameter implications, 

then run EFDC-ACT and perform a sensitivity analysis to find both the sensitive parameters and state variables. Although 

EFDC-ACT does not provide the functions for sensitivity analysis, there are a few R packages for sensitivity analysis, such 

as the sensitivity package. A Bayesian framework integrating sensitivity, uncertainty, and identifiability analysis was also 385 

proposed for EFDC (Jia et al., 2018). The modelers will analyze the interactions between these sensitive variables according 

to expert knowledge, and variables with controlling effects will be the primary target for the second level of autocalibration. 

Next, the modelers target the sensitive variables and parameters identified in the first time and perform the autocalibration 

again until the model performs satisfactorily. Finally, the modelers hold the identified variables and parameters constant, 

then auto-calibrate the model for the third time to determine the other insensitive state variables and parameters. With this 390 

hierarchical autocalibration strategy, EFDC-ACT can handle the parameter estimation of EFDC more competently. This 

strategy is a possible framework in the future, which is suitable not only for EFDC-ACT but also for other automatic 

calibration tools that do not produce sufficient iterations. 

Even in the context of rapid advances in computer technology, expert knowledge is still indispensable to calibrating 

highly complex models (Wood et al., 1990; Ostfeld and Salomons, 2005). With the emergence of automatic calibration tools, 395 

how to combine expert knowledge with them has become a new issue (Krueger et al., 2012; Xia and Shoemaker, 2022). The 

selection of key state variables in the hierarchical autocalibration strategy above is an example of the application of expert 

knowledge in an autocalibration tool. With the evolution of computer technology, the development of autocalibration tools, 

and the accumulation of observations, the hierarchical autocalibration strategy proposed above offers a possible workaround 

to deal with enormous autocalibration problems in high-complexity models. 400 
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5 Conclusion 

We developed a new automatic calibration toolkit, EFDC-ACT, and implemented it into the recalibration of the YRWQM 

with ten years (2006-2015) of observations in a wide range of hydrological variability. In comparison with the original 

YRWQM, the hydrodynamics of the recalibrated YRWQM performed as well over the decade, while the recalibrated model 

performed significantly better in modeling TP, Chl a, and DO concentrations. When compared to the models calibrated with 405 

only dry, normal and wet years, the KGEs improved by a maximum of 196%, 134%, 202% in modeling TP, Chl a, and DO 

respectively. Our analysis indicates that the recalibrated YRWQM accuracy and robustness improvement is derived from the 

constraining effect of observations with a wider hydrological variability. Such information will help to unravel how 

hydrological variability in the calibration periods affects the process-based hydrodynamic and water quality models, 

including their parameters, kinetic processes, performance, and long-term robustness. Moreover, a general autocalibration 410 

toolkit developed in this study, EFDC-ACT, is substantially less time-consuming and more efficient for modelers than the 

conventional manual calibration method. The framework of EFDC-ACT and a possible hierarchical autocalibration strategy 

can also be a reference for future complex hydrodynamic and water quality model calibration. Finally, with our convenient 

autocalibration toolkit, it will be possible to explore the impact of the hydrological variability on more complex process-

based hydrodynamic and water quality models. 415 
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