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Abstract. The processes responsible for methane (CH4) emissions from boreal wetlands are complex, and hence their model

representation is complicated by a large number of parameters and parameter uncertainties. The arctic-enabled dynamic global

vegetation model LPJ-GUESS is one such model that allows quantification and understanding of the natural wetland CH4

fluxes at various scales ranging from local to regional and global, but with several uncertainties. The model contains detailed

descriptions of CH4 production, oxidation, and transport controlled by several process parameters.5

Complexities in the underlying environmental processes, warming-driven alternative paths of meteorological phenomena,

and changes in hydrological and vegetation conditions highlight the need for a calibrated and optimised version of LPJ-GUESS.

In this study we formulated the parameter calibration as a Bayesian problem, using knowledge of reasonable parameters val-

ues as priors. We then used an adaptive Metropolis Hastings (MH) based Markov Chain Monte Carlo (MCMC) algorithm to

improve predictions of CH4 emission by LPJ-GUESS and to quantify uncertainties. Application of this method on uncertain10

parameters allows greater search of their posterior distribution, leading to a more complete characterisation of the posterior dis-

tribution with reduced risk of sample impoverishment that can occur when using other optimisation methods. For assimilation,

the analysis used flux measurement data gathered during the period 2005 to 2014 from the Siikaneva wetlands in southern Fin-

land with an estimation of measurement uncertainties. The data are used to constrain the processes behind the CH4 dynamics,

and the posterior covariance structures are used to explain how the parameters and the processes are related. To further support15

the conclusions, the CH4 flux and the other component fluxes associated with the flux are examined.

The results demonstrate the robustness of MCMC methods to quantitatively assess the interrelationship between objective

function choices, parameter identifiability, and data support.
:::
The

::::::::::
experiment

::::
using

::::
real

::::::::::
observations

:::::
from

::::::::
Siikaneva

:::::::
resulted

::
in

:
a
::::::::
reduction

::
of

::::::
RMSE

::::
from

:::::
0.044

:::
gC

::::
m−2

::::
d−1

:
to

:::::
0.023

:::
gC

::::
m−2

::::
d−1

:::::
along

::::
with

:
a
:::::::
93.89%

::::::::
reduction

::
in

:::
the

:::
cost

:::::::
function

::::::
value.

As a part of this work, knowledge about how the CH4 data can constrain the parameters and processes is derived. Though the20

optimisation is performed based on a single site’s flux data from Siikaneva, the algorithm is useful for larger-scale multi-site

studies for more robust calibration of LPJ-GUESS and similar models, and the results can highlight where model improvements

are needed.
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1 Introduction

CH4 is the second most important long-lived greenhouse gas after carbon dioxide (CO2) (Ciais et al. (2013); Kirschke et al. (2013)25

)
::::::::::::::::::::::::::::::::
(Ciais et al., 2013; Kirschke et al., 2013). It has been reported that the global atmospheric CH4 concentration has been grow-

ing since the pre-industrial time. In 2021 it reached a value of 1908 parts per billion (ppb), nearly 2.62 times greater than

its estimated value in 1750 (Dlugokencky, 2021). This increase in the atmospheric concentration of CH4 is responsible for

around 16.5 % of the total effective radiative forcing (in W m−2) of the well-mixed greenhouse gases (IPCC AR6: Forster

et al. (2021)). Despite its relatively shorter turnover time of less than ten years in the troposphere, CH4 has a much stronger30

infrared radiation absorption capacity compared to CO2 (Prather et al., 2012).

Among the biogenic sources, wetlands contribute around 19-33% of current global terrestrial CH4 emissions and are the

largest and the most uncertain (Kirschke et al. (2013); Saunois et al. (2020); Bousquet et al. (2006))
:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kirschke et al., 2013; Saunois et al., 2020; Bousquet et al., 2006)

. Wetlands occupy around 3.8% of the Earth’s land surface and are mainly located in high latitude regions. There is approxi-

mately 455 Pg of carbon stored in boreal and subarctic wetland peat/histosolswhich is accumulated by absorbing atmospheric35

CO2 by plants as part of their photosynthesis (Gorham, 1991).
:
. Under long-term anaerobic soil situations, this carbon will be

metabolised by the anaerobic microorganisms called methanogens and will eventually be emitted back as CH4 to the atmo-

sphere (Aurela et al., 2009).

In the future, climate change may cause a positive feedback on emissions from wetlands CH4 due to a warmer and wetter

climate (Johansson et al. (2006); Bridgham et al. (2008))
:::::::::::::::::::::::::::::::::::::
(Johansson et al., 2006; Bridgham et al., 2008). According to Zhang40

et al. (2017) at the end of the twenty-first century, 38-56% of the CH4 production from the wetlands would be climate change

induced. It is also expected to have increased uncertainty in CH4 emission from boreal wetlands (Christensen et al., 2007) partly

due to expected spatio-temporal changes in wetland extent (Saunois et al., 2016). Considering the fragility of boreal wetlands

and the possibility that they fail to maintain their stability in a changing environment (Jacob et al., 2007), one way to quantify

their carbon budget is to model their carbon dynamics, including their CH4 emission. Realistic and optimised process-based45

vegetation models can be used to reach a more precise estimation of emission variability and trends. However, representa-

tion of the complex biogeochemical processes, including soil carbon turnover, vegetation dynamics, hydrology, soil thermal

dynamics, and defining wetland boundaries are complex, so, estimating the contribution from multiple pathways for CH4

production, consumption, and release complicates wetlands CH4 modelling (Melton et al. (2013); Wania et al. (2010, 2013)

; Susiluoto et al. (2018)), thus, different models represent these biogeochemical and biophysical processes differently with50

varying degrees of complexity.
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ahti et al., 1968; Wania et al., 2010, 2013; Susiluoto et al., 2018)

:
.

The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) (Smith et al., 2014) is one of a few available process-

based dynamic global vegetation model (DGVM) that simulates local to global vegetation dynamics and soil biogeochemistry

(Smith (2001); Sitch et al. (2003))
::::::::::::::::::::::::::
(Smith, 2001; Sitch et al., 2003). Taking the information about the climate and concentration

of CO2 in the atmosphere, it predicts the structural, compositional, and functional properties of the native ecosystems of major55

climate zones of the Earth. Considering the complexity of LPJ-GUESS with its large number of uncertain process parameters

the model requires a mathematically robust framework for parameter optimisation (Wramneby et al., 2008). Data assimila-

2



tion using Bayesian statistics can be seen as a way of combining observations with prior information (i.e. model process

formulation and prior model parameter values) to derive posterior parameter and emission estimates (Susiluoto et al. (2018);

Ghil and Malanotte-Rizzoli (1991); Dee (2005); Carrassi et al. (2018))
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Susiluoto et al., 2018; Ghil and Malanotte-Rizzoli, 1991; Dee, 2005; Carrassi et al., 2018)60

. The Markov Chain Monte Carlo (MCMC) (Metropolis et al., 1953b) is a powerful and convenient Bayesian framework

(Tarantola, 1987) for data assimilation as it can combine prior information with observations to sample from the posterior dis-

tributions in complex models. This study has developed an Adaptive MCMC Metropolis Hasting (AMCMC-MH) framework

(Hastings (1970b); Tarantola (1987))
:::::::::::::::::::::::::::::
(Hastings, 1970b; Tarantola, 1987) with Rao-Blackwellised adaptation of the multivari-

ate Gaussian random walk proposals (Andrieu and Thoms, 2008). The algorithm minimises the model-data misfit, i.e. a cost65

function, by sampling from the probability density function (PDF) of the posterior parameters. The adaptation allows the al-

gorithm to learn the shape of the posterior, improving sampling efficiency. The main objective of this paper is to evaluate

the capabilities and limitations of the AMCMC-MH framework to optimise CH4 wetland emissions simulated by the LPJ-

GUESS model by analysing the posterior parameter distributions, the parameter correlations and the processes they control.

Considering the complexity of LPJ-GUESS with its large number of uncertain process parameters (Wramneby et al. (2008);70

Wania et al. (2010)), there is a need for a mathematically robust framework for parameter optimisation.

2 Data and Methodology

2.1 Siikaneva wetland and measurements

The Siikaneva wetland is located at 61◦ 49◦N, 24◦ 11◦E, at 160 m a.s.l and is the second-largest un-drained wetland complex

in Southern Finland (Ahti et al. (1968); Rinne et al. (2007))
::::::::::::::::::::::::::::::
(Ahti et al., 1968; Rinne et al., 2007). This boreal wetland complex75

has an area of 12 km2, including minerotrophic and ombrotrophic sites with over 6 meters
:
m

:
of peat deposition under the sur-

face (Mathijssen et al. (2016); Aurela et al. (2007); Rinne et al. (2007))
::::::::::::::::::::::::::::::::::::::::::::::::::
(Mathijssen et al., 2016; Aurela et al., 2007; Rinne et al., 2007)

. The estimated average annual total precipitation is about 707 mm. The average temperature for January and July are approx-

imately -7.2◦C . and 17.1◦C, respectively. The estimated mean annual temperature is around 4.2◦C (Korrensalo et al., 2018).

The total annual CH4 emissions from the Siikaneva wetland varies between 6.0 gCm−2 and 14 gCm−2 and net CO2 fluxes80

vary between -96 gCm−2 and 27 gCm−2 (Rinne et al., 2018).

Daily measurements of incoming short wave radiation
:::::::::
short-wave

:::::::
radiation

::::::
(swr), precipitation, and air temperature col-

lected at the wetland are used as input to the model. Since the meteorological data measured directly at the Siikaneva wetland

have several significant gaps, which made them unsuitable as inputs to the model, we used precipitation and temperature

data collected from a nearby station called Juupajoki-Hyytiälä (around 5.5 kilometres away from Siikaneva, open data by85

Finnish Meteorological Institute (FMI): https://en.ilmatieteenlaitos.fi/download-observations) and the short wave radiation

:::
swr

:
data collected from the Hyytiälä weather station (SMEAR II station around 6 kilometres away from Siikaneva, https:

//smear.avaa.csc.fi/download (Hari et al., 2013) ). Given the short distances between these sites and Siikaneva, we assumed

that the meteorological variables are representative of Siikaneva. To verify the assumption, we have analysed the available

data from Siikaneva and the datasets collected from Juupajoki and Hyytiälä sites. The air temperature and precipitation of the90

3
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Juupajoki and the Siikaneva showed a Pearson correlation of 0.998 and 0.706, respectively. Short wave radiation
:::
The

::::
swr data

collected at Hyytiälä and Siikaneva showed a correlation of 0.98. Still, there were some minor gaps in the short wave
::::
swr

data collected at Hyytiälä, which were therefore gap-filled using the available data collected at Siikaneva for the corresponding

periods. Additional inputs to the model are atmospheric CO2 concentration as described by McGuire et al. (2001) and updated

until recent years using data from the NOAA Global Monitoring Laboratory (https://gml.noaa.gov/ccgg/trends).
:::::
Daily

:::::
water95

::::
table

:::::
depth

:::::
(wtd)

:::
and

:::
soil

::::::::::
temperature

::
at
::
5

:::
cm

:::::
depth

:::::::
collected

::
at

:::
the

::::::::
Siikaneva

::::
site

::
are

:::::
used

::
for

:::::::::
evaluating

:::
the

::::::::
modelled

::::::
values.

2.2 CH4 model description in LPJ-GUESS

LPJ-GUESS contains a number of well-defined modules to represent the related ecosystem processes with a distinct spatial

and/or temporal signature. Compared to version 4 of the model
::::::::::
LPJ-GUESS

:
described by Smith et al. (2014), version 4.1100

which we used for this study, has more detailed representations of plant functional types (PFTs) characteristics and processes in

wetlands(Gustafson (2022)). This include .
::::
This

:::::::
includes

:
improved descriptions of peatland-specific PFTs, peatland hydrology,

soil temperature estimation, and CH4 emissions. These process descriptions and developments (with some minor modification)

were adopted from the wetlands and CH4 module in the LPJ-WHyMe model (Wania et al. (2009a, b, 2010)), and are described

in detail in McGuire et al. (2012). Brief descriptions of the important wetland processes in LPJ-GUESS version 4.1 are given105

below , for
:::
and

::
in

::::::::::
Supplement

:::
S1,

:::
for

::
a more detailed description see Gustafson (2022).

2.2.1 Active peat column and properties

The active wetlands peat in the LPJ-GUESS is represented by a 1.5 m deep column further divided into 15 layers of 0.1 m

thickness each (see Figure 1). The uppermost three layers comprise the acrotelm, within which the water table can vary. The

underlying 12 layers of catotelm are saturated with water permanently Wania et al. (2009a); Gustafson (2022).110

The acrotelm layers have a porosity (poracro) of 0.98, while the catotelm layers, assumed to be made of older, denser peat,

have a porosity (porcato) of 0.92. Each layer consists of constant proportions of peat and varying proportions of water (Fwater),

ice (Fice), and air (Fair), all with distinct thermal characteristics given in Table ??. The active column is covered by a maximum

of five snow layers, with a depth that can reach 10 m water equivalent, and five extra padding layers that extend to a depth of

48 m. These layers are thermally active, but, hydrologically inactive, with the bottom three layers having thermal properties of115

bedrock (Table ??).

2.2.1 Peat temperature

Temperature in each active peat layer is calculated daily by solving the heat diffusion equation;

∂T

∂t
=

∂

∂x

(
D(z, t)

∂T

∂z

)

4
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Figure 1.
::::::::
Schematic

:::::::::::
representation

::
of

:::
the

::::
CH4:::::

model
:::

in
:::::::::
LPJ-GUESS

:::::::
coupled

::::
with

:::
the

:::::::::
CENTURY

::::
soil

::::::
organic

::::::
model.

::::::
Carbon

:::
for

:::::::::
methanogens

::
is
:::::::
allocated

::
to
::::

soil
::::
layers

:::::
based

:::
on

::
the

:::::::::
distribution

::
of

::::
roots

::
in
::::

each
:::::
layer.

:::
The

::::
root

:::::
density

::::::::
decreases

::::
from

:::
top

::
to

::::::
bottom

::
of

:::
peat.

::::
The

::::::
assigned

::::::
carbon

::
in

::::
each

::::
layer

:
is
::::::
divided

:::
into

::::
CH4:::

and
::::
CO2.

:::::::
Oxygen

:::
(O2)

:::::
either

::::::
directly

::::::
diffuses

::
or

::
is

::::::::
transported

::::::
through

::::::
plants.

:::
The

::::::::
availability

::
of

:::
O2 ::::::::

determines
::
the

::::::
amount

::
of

::::
CH4 ::

in
::
the

:::
soil

::
as

::
it

::::::
oxidises

:
a
::::::
fraction

::
of

::::
CH4.

:::::::
Similarly

::::
CH4 :::

also
:::
can

::::
either

::::::
directly

::::::
diffuse

:
or
:::

be
:::::::::
transported

::
to

::
the

:::::::::
atmosphere

::
in
:::::::
bubbles,

::
or

::
it

:::
can

::
be

:::::::::
transported

::
by

:::::::
vascular

:::::
plants.

::::
The

:::::::::
equilibrium

::::::
between

::::::
gaseous

:::::::
bubbles

::
of

:::
CH4:::

and
::::::::
dissolved

:::
CH4::

in
:::::
water

::
is

:::::::
controlled

:::
by

:::
the

:::::::
maximum

::::::::
solubility

::
of

::::
CH4.

::::
Any

:::
CH4::::

that
::::
exists

::
in

::::::
gaseous

::::
form

::::
will

:::::
escape

::
to

:::
the

::::::::
atmosphere

:::
via

::::::::
ebullition.

where T represents the temperature of the soil at a a specific depth z (m) and time t, while D(z,t) (m2s−1) denotes the thermal120

diffusivity at depth z and time t, defined as:

D(z, t) =
K(z, t)

C(z, t)
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where K(z,t) (W m−1K−1) represents the thermal conductivity, and C(z,t) (Jm−3K−1) represents the soil layer component’s

heat capacity (Table ??), each at a depth z and time t, more details can be seen in Wania et al. (2009a, b).

Heat capacities (106Jm−3K−1) and thermal conductivities (Wm−1K−1) of the soil layer components. The values are125

originally adopted from, Wania et al. (2009a, b); Bonan et al. (2002); Granberg et al. (1999); and Chadburn et al. (2015).

ComponentHeat capacity Thermal conductivityPeat 0.580.06Water4.180.57 Ice 1.942.2 Air 0.0012 0.025Bedrock 2.18.6

Water plays a major role in the wetland’s soil temperature because of the dynamics of latent heat during its phase change

(Wania et al. (2009a, b)). When temperature changes over time and depth, T(z,t) in the soil, the values of Fwater and Fair also

change due to phase change, with a similar spatial (0.1 m) and temporal (1 day) resolution.130

The calculation for freezing and thawing of water in version 4.1 of LPJ-GUESS is different from that described in Wania et al. (2010)

. It calculates them below the wilting point and freezing of the water stored above the wilting point can occur only after all the

water below the wilting point has frozen. Likewise, melting of the ice stored above the wilting point can only take place once

all the ice below the wilting point has melted.

2.2.1 Peat hydrology135

The hydrology of acrotelm layers follow the description of Wania et al. (2009a, b) originally following Granberg et al. (1999)

. As mentioned above, it is assumed that the catotelm layers remain saturated permanently with no inflow or outflow, but to

maintain saturation, water is added to these layers on a daily basis, if necessary. This is because PFTs such as graminoid species

can absorb water from the catotelm layers via their roots.

Thus, the model updates only the daily water content in acrotelm, and predicts the water table depth (wtd), where 0<= (wtd)140

<= 300 mm, i.e. (wtd) is positive below the surface, and standing water is not permitted. Each day the change in total volume

of water in acrotelm (V) is calculated as:

∆V = runon/off + rainmelt− evap− aetacro− runoffacr0

where evap represents the amount of water that gets evaporate from the bare peat soil fraction, rainmelt represents the daily

amount of water input to the patch as rainfall and/or snowmelt, runoffacro is the runoff from the acrotelm and aetacro is145

the transpiration from the acrotelm based on the root distributions in the acrotelm layers. The user has the option to include a

site-specific runon/off, which enables them to mimic local conditions by either adding (runon/off> 0 m) or removing (runon/off

< 0 m) water from the acrotelm, if they are known.

Once the total volume of water is determined, the water table depth ((wtd)) in the acrotelm is assumed to be linear

in the first top interval (0-0.1 m) and constant below this depth and up to the lower limit of the acrotelm, i.e. 0.1-0.3 m150

(Granberg et al., 1999). Hence if 0.1 m >= (wtd) >= 0 the (wtd) is calculated as:

wtd=

√
3(poracro× 0.3−V )

2× az
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And for (wtd) > 0.1 m the (wtd) is calculated as:

wtd=
1.5× (poracro× 0.3−V )

poracro− fsurfmin

where fsurfmin = 0.00025 is the surface minimum fractional water content in m3/m3, poracro is the porosity in the acrotelm155

and az = poracro - fsurfmin/0.1 is the gradient in the uppermost 0.1 m suction interval, The water profile of soil θ(z) in each

layer of 0.1 m is calculated as,

θ(z) =min(poracro, θsurf + (poracro-θsurf )×
(

z
wtd

)
2) ∗ 0wheretheθsurf , the surface water content is calculated as, θsurf =max(fsurfmin,poracro−wtd× az) Once θ(z) in each 0.01 m layer is known, the average of ten 0.01 m layers is used to calculate the fractional water content (Fwater) in each of the three 0.1 m sublayers of the acrotelm, which will then used for calculating the thermal properties, i.e. for the soil temperature calculations described above. Schematic representation of the CH4 model in LPJ-GUESS coupled with the CENTURY soil organic model. Carbon for methanogens is allocated to soil layers based on the distribution of roots in each layer. The root density decreases from top to bottom of peat. The assigned carbon in each layer is divided into CH4 and CO2. Oxygen (O2) either directly diffuses or is transported through plants. The availability of O2 determines the amount of CH4 in the soil as it oxidises a fraction of CH4. Similarly CH4 also can either directly diffuse or be transported to the atmosphere in bubbles, or it can be transported by vascular plants. The equilibrium between gaseous bubbles of CH4 and dissolved CH4 in water is controlled by the maximum solubility of CH4. Any CH4 that exists in gaseous form will escape to the atmosphere via ebullition. 2.2.1 Peatland PFTs

Table ?? provides the properties of four types of PFTs that can exist on peatland stands. The descriptions of Sphagnum mosses160

and C3 graminoids in model is taken from Wania et . The model includes a generic herbaceous cushion lichen moss PFT (pCLM), low deciduous and evergreen shrubs (pLSE

and pLSS, respectively). Both of these PFTs are parameterized to favor dry peatlands that have low water tables.

Important parameter values used for defining Wetland PFTs. Here the WTDinun (mm) is the maximum (wtd) threshold, and inunddays (days) that are the number of days wetland PFTs can tolerate inundated conditions.

PFT WTDinun inunddays Aerenchyma Photosynthesis stress due to lower (wtd)

pLSE, pLSS 250 5 No N/A Sphagnum moss 50 15 No 0.3 C3 graminoids N/A N/A Yes 0.0pCLM 200 10 No N/A165

The leaf area index (LAI) of nearby trees or shrubs is a limiting factor on PFTs. The model sets a maximum LAI limit of 2 m2m−2

for mosses and graminoids, and exceeding this limit leads to increased shade mortality.

Similarly a daily desiccation stress factor 0,1and an inundation stress factor are also introduced in the model. A desiccation stress factor of 1 indicates that there is no stress, whereas a value of 0 signifies complete suspension of photosynthetic activity for that day (applies only to mosses and graminoids). Inundation stress factor is implemented to control assimilation when the rooting zone experiences anoxia. The model restricts PFTs with a maximum (wtd) threshold and the number of inundated days (inunddays) they can tolerate before assimilation (Table ??).

2.2.1 SOM dynamics and daily decay rates

The Soil organic matter (SOM) scheme in the LPJ-GUESS is adopted from the CENTURY model (Parton ; Smith et al. (2014)170

) with eleven distinct pools of different carbon : nitrogen (C : N) stoichiometry and base decay rates (Figure 1). The decomposition rates in the acrotelm, which is often wet and sometimes saturated, are slow. In the catotelm, where conditions are permanently saturated and anaerobic, decomposition rates are particularly slow (Frolking et al. (2001, 2010)

). The decomposition rate for wetlands is computed daily for each pool using the following equation:

where Cj is the carbon content in pool j, kj,max is maximum decay rate, f(Tsoil), f(W) (from here on-wards called Rmoist) and f(S) are dimensionless scalars between 0− 1 related to soil temperature, soil moisture and soil fractional silt plus clay content (S) respectively. Considering the negligible soil fractional silt plus clay content in peat (S = 0), f(S) = 1.

From the parameter sensitivity test conducted by Wania et , the value of Rmoist in LPJ-GUESS is adopted as 0.4 for carbon in the acrotelm. After the acrotelm soil carbon is fully established, which involves a peat layer 0.3 m deep with a carbon density of 25 kg C175

m−3, corresponding to a total soil carbon amount of 7.5 kg Cm−2 across all pools, the value of Rmoist will be reduced from the weighted average 0.4 to 0.025, hence in anaerobic catotelm conditions the moisture response Rmoistanaerobic = 0.025; following Ise et

and Frolking et al. (2001, 2010).

2.3 CH4 dynamics in high-latitude wetland stands (above 40◦ latitude)
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:::::::::(Wania et , :. The decomposed organic carbon in each day (explained in Section ??::::::::::::::::::S1.3 in the Supplement) is distributed verti-

cally in different peat soil layers weighted by an assumed static root distribution, exponentially declining from the surface to180

the deeper layers, see Equation ??. In high-latitude wetlands, this ::::This carbon pool is considered as ’potential carbon pool’ for

methanogenic archaea, and is the basic concept behind the CH4 model in LPJ-GUESS. The total available carbon is decom-

posed into two components, CO2 and CH4 depending on the availability of O2 in the soil. The dissolved CH4 concentration

and the gaseous CH4 fraction are calculated based on the estimated CH4 content in each layer. A portion of the estimated CH4

is oxidised by the soil O2 and the remaining is transported to the atmosphere by either diffusion, ebullition, or plant-mediated185

transport. Apart from being the key factor in estimating the ’potential carbon pool’, root biomass in each soil layer also plays a

role in the transport of O2 and CH4 into and out of each layer :::::::::::::as this transport is mediated by:::the plants. From different studies

of various wetland PFTs Wania et observed an exponential decrease of root biomass with depth proportional to the degree of

anoxia, which is expressed by the following equation, also used in LPJ-GUESS;

190

where froot is the fraction of root biomass at a certain depth z:z, λroot = 0.2517 m is the decay length and Croot = 0.025 is a

normalisation constant. This distribution ensures that approximately 60% of the roots are distributed within the acrotelm, and

the root fraction in the lowest soil layer is adjusted to achieve a total root distribution of 1 across all 15 soil layers.

Due to its wide ranges, the CH4/CO2 ratio from decomposition is a challenging task to predict. For example, Segers (1998)195

observed a high variation in the molar ratio of CH4 to CO2 production between 0.001 to 1.7 in anaerobic conditions. Hence it

is taken in the model as an adjustable parameter weighted by the degree of anoxia α, determined as α = 1-(Fair+fair), where

Fair is the fraction of air in the soil layers and fair is the fraction of air in peat (Wania et al., 2009a) (see the Section ??
::::::
Section

::
S1

::
in

::::::::::
Supplement

:
for details).

The production of CH4 in each day in each layer is determined as,200

CH4prod = α(z)× froot(z)×CH4/CO2×Rh (2)

where α(z) is the degree of anoxia at depth z
:
z, froot(z) is the fraction of root in the peat at depth z

:
z, CH4/CO2 =0.085 (

::::
prior

::::
value

:
in the model), is the tuning parameter for the CH4 to CO2 production ratio and Rh is the daily heterotrophic respiration.

Note that the model is set to CH4prod :::::::
CH4prod:

= 0 when Fwater<0.1, assuring zero CH4 production in frozen and/or dry soils,

i.e, the model assume there is no water when the water is frozen, hence Fwater is 0.205

2.2.2 CH4 oxidation

The CH4 fraction that is oxidised depends on the availability of O2 (represented by the parameter foxid= 0.5
::
as

:::
the

::::
prior

:::::
value

in the model)
:::::::
depends

::
on

:::
the

:::::::::
availability

::
of

:::
O2 in the soil. A part of the O2 transported to the soil will be consumed by the plant

8



roots and non-methanotrophic microorganisms. The remaining part is then used to oxidise CH4. The oxidised CH4 is added to

the CO2 pool, and the remainder stays in the CH4 pooland will get transported at each time step.210

2.2.3 Total CH4 flux

Diffusion, ebullition and plant-mediated transport are the three pathways through which CH4 is transported to the atmosphere.

The total CH4 flux from high-latitude wetland patches in the model is represented as,

FCH4
= CH4diff + CH4plant + CH4ebul (3)

where CH4diff ::::::::
CH4diff is the CH4 flux component from diffusion, CH4plant :::::::

CH4plant:
is the CH4 flux component from215

plant-mediated transport and CH4ebul :::::::
CH4ebul is the CH4 flux component from ebullition. Since the daily CH4 production in

each layer is dependent on Rh (Equation 2), FCH4
is subtracted from Rhbefore saving it. Any CO2 generated, whether from

heterotrophic respiration or CH4 oxidation, is released into the atmosphere.

Diffusion

The fractions of CH4, CO2 and O2 that are transported to the atmosphere and from the atmosphere through diffusion are220

calculated by solving the gas diffusion equation within the peat layers using a Crank-Nicolson numerical scheme with a time

step of 15 minutes
:::::::
minutes. The molecular diffusivities of these gases in soil depend on temperature, soil porosity and the

water and air contents in the soil. Diffusivity in water is derived by fitting a quadratic curve to observed diffusivities at different

temperatures as described in Broecker and Peng (1974); diffusivity in the air and its temperature dependency is derived from the

values taken from Lerman et al. (1979), and diffusivity in soil and its temperature dependency is estimated from the Millington225

and Quirk model described in Millington and Quirk (1961). A detailed description can be seen
:::::
found in Wania et al. (2010).

At the water-air surface the gas diffusivities changes
::::::
change by minimum four orders of magnitude, hence at the water-air

boundary, the flux is calculated by the following equation,

J =−ψ(Csurf −Ceq) (4)

where Csurf is the surface water gas concentration, and Ceq is the concentration of gas in equilibrium with the atmospheric230

partial pressure, estimated using Henry’s law. ψ, the gas exchange coefficient, also called piston velocity, is usually difficult to

estimate for different gases. In this case, the piston velocities of CH4, CO2 and O2 are calculated by relating them to the known

piston velocity of SF6 by the following equation,

ψ∗= ψ600(
Sc∗
600

)n (5)

9



where ψ600 = 2.07 + 0.215×U1.7
10 is the piston velocity of SF6 normalised to a Schmidt number of 600 (subjected to the wind235

speed U10 at 10 m from the ground, which is considered as zero in the model), Sc* represents the Schmidt number of the gas

under consideration, and n = - 1/2. See
::
2,

:::
see

:
Wania et al. (2010) for details.

As mentioned above the diffusion through the soil is affected by soil porosity, hence by the value of Fair(t,z). When Fair ≤
0.05 in soil layers the diffusivities in a

:::::
given

::::
soil

:::::
layer,

:::
the

::::::::
diffusivity

::::::
values

::
of water are used . When

:::::::
otherwise

::
(Fair > 0.05,

the diffusivities in
:
)
:::
the

:::::::::
diffusivity

:::::
values

::
of
:

air, which are four orders of magnitude larger than those in water, become more240

significant. For soil layers where Fair ≤ 0.05, the diffusivities in water
::
of

:::::
water,

:
are used. When Fair > 0.05, the diffusivities

in air, which are four orders of magnitude larger than those in water, become more important. Each day
::
At

::::
each

:::::
daily

::::
time

::::
step, before diffusion is calculated, the gas flux J at the boundary is used to update the dissolved gas content. The surface

concentration Csurf of CH4 will mostly be greater than Ceq; hence J will be negative, denoting
:
a
:
flux to the atmosphere,

though it is possible for CH4 to diffuse into the soil in small amounts if the concentrations at the surface are suitable. The245

resulting daily flux of CH4 is determined as the total CH4diff :::::::
CH4diff .

Ebullition

"Ebullition depends on the solubility of CH4 at a given temperature and pressure and occurs when the water table reaches the

surface during periods of high CH4 emission. Following Wania et al. (2010), in LPJ-GUESS, the best-fitted curve is represented

as;250

SB = 0.05708− 0.001545T + 0.00002069T 2 (6)

where SB is the Bunsen solubility coefficient, i.e. the volume of gas dissolved per volume of liquid at atmospheric pressure

and a given temperature (Wania et al., 2010).

The CH4 in each layer is converted to a maximum allowable dissolved mass, and this limit is used to separate the CH4 in

the form of dissolved and gaseous components. If there is any CH4 that exceeds the maximum solubility of a layer, it will be255

released into the atmosphere. The CH4ebul is calculated by adding this ebullition fluxes from all layers.

Plant-mediated transport

Plant-mediated transport of CH4 occurs via the aerenchyma (the gas-filled tissues) of vascular plants either through concentra-

tion gradient or active pumping from soil to the atmosphere. Only the passive mechanism (through concentration gradient) is

considered in the model as it is the most dominant one (Cronk and Fennessy, 2016). Abundance, biomass, phenology and the260

rooting depth of aerenchymatous plants are considered to calculate this. Only the flood-tolerantC3 graminoid is
:::::::::
graminoids

:::
are

considered for plant-mediated gas transport in the model (Table ??
:::
see

:::::
Table

:
2
::
in

::::::::::
Supplement); hence plant-mediated transport

of O2 and CH4 can only occur when C3 graminoids are present in a simulated patch.
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The transport depends on the cross-sectional area of plant tillers1 in each soil layer, assuming that a significantly high

percentage of CH4 is oxidized in the highly oxic zone near the roots, where methanotrophs flourish, before they enter into the265

plants
::::
plant

:
tissue.

The mass of their
:::
the tiller is calculated as,

mtiller = bgraminoid×P (leaf) (7)

where bgraminoid is the leaf biomass of graminoids, and ’P’ represents the daily phenology, which is the fraction of potential

leaf cover that has reached full development. To calculate number of tillers (ntiller) total weight of tillers, mtiller, is divided270

by the average weight of an individual tiller (wtiller). The cross-sectional area of tillers, Atiller then can be obtained by,

Atiller = ntiller ×φtiller ×πr2tiller (8)

where rtiller is the tiller radius and φtiller is the tiller porosity. Based on the optimisation of McGuire et al. (2012), Tang

et al. (2015) and Zhang et al. (2013) the value of rtiller is estimated as 0.0035 m
:
,
:
and based on the Wania et al. (2010) ,

::::::::::::::::
Wania et al. (2010) the values of φtiller and Wtiller are estimated as as 70% and 0.22 gC/tiller respectively. Each soil layer is275

allocated a fraction of the total cross-sectional area of tillers based on the root fraction estimated in that layer. The CH4plant is

estimated by adding the plant-mediated CH4 fluxes from all layers.

2.3 Parameters selected for optimisation

Parameter values related to the processes of CH4 emission in LPJ-GUESS are mostly adopted from the parameter values

described in Wania et al. (2010). Since Wania et al. (2010) had difficulties finding the optimal parameter values for many of280

the parameters, they performed some preliminary analysis for seven uncertain parameters, for which there were little or no

data available. They performed a simple initial sensitivity test by taking four sets of values for each of the seven parameters,

followed by a parameter fitting exercise with three sets of values for every seven parameters. They ran the model with all their

2187 different combinations for seven sites for one year. As a result, they got a Root-mean-square error
::::::::::::::::
Root-Mean-Square

::::
Error

:
(RMSE) range between 226.4 and 18.3 (mg CH4 m

−2 d−1 ) for the different sites, which clearly indicates loosely fitted285

parameters with a high degree of uncertainty.

In this study, parameters for the optimisation are selected based on their sensitivity to the model output (CH4) and expert

opinion. We used a simple method to calculate the percentage difference in output (single simulation) when varying only one in-

put parameter at a time from its permitted minimum value to its maximum (Hoffman and Miller (1983); Bauer and Hamby (1991)

)
:::::::::::::::::::::::::::::::::::::::::::
(Hoffman and Miller, 1983; Bauer and Hamby, 1991). The ’sensitivity index’ (SI) is calculated using the equation,290

SI =
Dmax−Dmin

Dmax
(9)

1Tiller refers to all the secondary shoots produced by grasses (Poaceae or Gramineae). Each tiller stem is segmented with its own two-part leaf.
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Figure 2. Selected
:::::
Tested parameters for the optimisation and their SI values. The red and blue colours indicate the increase and decrease in

total CH4 flux, respectively, when the value of the parameter increases.

where Dmin and Dmax represent the model output values corresponding to the minima and maxima of the corresponding

parameter range.
:::
The

::::::
values

:::
are

::::
taken

:::::
based

:::
on

:::::
expert

:::::::
opinion.

:

We considered five of the seven parameters Wania et al. (2010) tested in their sensitivity analysis (two parameters related to the295

root exudate decomposition are not used in LPJ-GUESS) together with six
:::::
eleven

:
other parameters used in LPJ-GUESSbased

:
.
:::::
Based on their high SI values

::
we

:::::
chose

::::::
eleven

::
of

:::::
them

::
for

:::
the

:::::::::::
optimisation (Figure 2, Table 1).

Among the selected parameters
::
five

:::::::::
eliminated

::::::::::
parameters

:::::
agfrac::

is
:::
the

:::::::
fraction

::
of

::::::
Annual

::::
Net

:::::::
Primary

:::::::::
Production

:::::::
(ANPP)

::::
used

::
to

::::::::
calculate

::::::
number

:::
of

:::::
tillers,

:::::::
DTmin::

is
:::
the

::::::::
minimum

::::::::::
temperature

::
(◦

::
C)

:::
for

:::::::::::
heterotrophic

:::::::::::::
decomposition,

::::::
pororg ::

is
:::
the

:::::::
porosity

::
of

::::::
organic

::::::::
material,

:::::
Ccon ::

is
:::
the

::::::
carbon

::::::
content

:::
of

:::::::
biomass

:::
and

::::
U10::

is
:::
the

:::::::
possible

::::::::
constant

:::::
value

::
of

::::
wind

::::::
speed

::
at300

::::
10m

::::::
height.

::::::
Among

:::
the

:::::::
selected

:::::::::
parameters

:::
are

:
Rmoist and Rmoistanaerobic:::::::::

Rmoistan, the response of soil organic matter

decomposition to the soil moisture content in acrotelm and catotelm conditions respectively (Equation ??
:::
see

::::::::
Equation

:
8
:::

in

:::::::::
Supplemnt); CH4/CO2:, the CH4 to CO2 ratio in the anaerobic conditions (Equation 2); fair, the fraction of air in peat (Section

2.2.1 and Equation 2); poracro and porcato,
:

the porosity in acrotelm and catotelm respectively (Section ??
::
see

:::::::
Section

:::
S1

::
in

::::::::::
Supplement); λroot, the decay length of root biomass in peat (Equation ??).

::::::
These are the parameters related to the CH4305

production. The
::::::::
parameter

:
foxid, fraction of available O2 used for CH4oxidation

:::::::
oxidised

::::
CH4, (Section 2.2.2) is the parameter

related to the CH4 oxidation. wtiller, the average weight of an individual tiller; rtiller, the tiller radius
:
; and φtiller,

:
the tiller

porosity (Equation 8)
:
, are the parameters related to the CH4 transportation.

2.4 Parameter optimisation framework

After selecting the parameters to be optimized and the physical possible range of values for each parameter, we assumed310

Gaussian probability density functions (PDF)
::
We

::::::::
assumed

::::::::
Gaussian

::::
PDFs

:
to depict both the prior distributions of the parame-
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Table 1. Selected parameters for the assimilation related to the CH4 flux from LPJ-GUESS. Prior values, prior standard deviation (std)
::
std,

units, and description used for the prior distribution are given.

Number Parameter Prior value Prior std
::
std Unit Description

1. Rmoist 0.4 0.396 - Moisture response in acrotelm

2. CH4/CO2 0.085 0.236 - Anaerobic CH4 to CO2 ratio

3. foxid 0.5 0.36 - Litter CO2 fraction
::::::
Fraction

::
of

::::::
oxidised

::::
CH4

4. φtiller 70 36 % Tiller porosity in percentage

5. rtiller 0.0035 0.004 m Tiller radius in meter

6. fair 0 4 % Fraction of air in peat

7. poracro 0.98 0.06 - Porosity in acrotelm

8. porcato 0.92 0.076 - Porosity in catotelm

9. Rmoistan∗::::::::
Rmoistan: 0.025 0.04 - Moisture response in catotelm

10. wtiller 0.22 0.24 gC Tiller weight in gram carbon

11. λroot 25.17 12 cm Decay length of root biomass in centimeter

ters and the deviation between model and observations. The resulting model can be formulated as,

Y |x∼N(M(x),R),

x∼N(xp,B), (10)

where Y are the observations, M(x) is the LPJ-GUESS output given parameters x, xp is
::
are

:
the prior values of the parameters,315

and R and B are error covariance matrices describing the uncertainty in observations and priors, respectively.

The prior uncertainties, B, are based on expert opinion and were kept relatively large to reduce the prior’s influence on the

posterior parameter estimates. We have assumed prior variance for each parameters as 40% of their expected range, see Table

1. The parameters are also assumed to be a prior uncorrelated, due to lack of good and consistent expert opinions regarding

dependence.320

2.4.1 Cost Function

Using the Bayesian framework the posterior for the parameters becomes

P (x|Y ) =
P (Y |x)p(x)

p(Y )
∝ P (Y |x)p(x), (11)

which in log-scale results in the quadratic cost function as (Tarantola, 1987)
::::::::::::::
Tarantola (1987)

logP (x|Y ) =−J(x) + const.

J(x) =
1

2
(Y −M(x))tR−1(Y −M(x)) +

1

2
(x−xp)tB−1(x−xp) (12)325
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where const. represents normalising constants not depending on the unknown parameters. The two terms in J(x) represent

data-model misfit and the prior information on the parameters. A number of experiments aim to achieve the smallest cost

function values to locate the optimal parameter set within the parameter space.

2.4.2 Adaptive Metropolis-Hastings

2.5
:::::::

Adaptive
::::::::::::::::::
Metropolis-Hastings330

To search for the optimal posterior parameters, we used a MCMC-MH algorithm (Metropolis et al. (1953a); Hastings (1970a)

) . The algorithm
::::::::::::::::::::::::::::::::::
(Metropolis et al., 1953a; Hastings, 1970a)

:
.
::
A

:::::::
standard

:::::::::::::::::
Metropolis-Hastings

:::::
(MH) generates samples from a

target distribution by, in each iteration, drawing from a proposal distribution and then either accepting the new state or copying

the old state. The
:::
For

::
a

::::::::
Gaussian

::::::
random

:::::
walk

::::::::
proposals,

:::
x̂,

:::
are

::::::::
generated

::
by

::::::
adding

::
a
:::::::::
mean-zero

::::::
normal

:::::::
random

:::::::
variable

::
to

::
the

:::::::
current

:::::
value,

:::
xt:335

x̂
:
= xt + ε,
:::::::

ε∼N(0,λΣ),
::::::::::

(13)

:::
here

::::
λΣ

:
is
::
a

::::::
scaling

:::
and

:::::::::
covariance

::::::
matrix

:::::::::
describing

:::
the

:::::
spread

::
of

:::
the

:::::
added

:::::::
random

:::::::
variable.

::::
The

::::
new

::::
value

::
is
::::::::
accepted

::::
with

:
a
:::::::::
probability

::::
that

::::::::
compares

:::
the

::::::::
likelihood

:::
(or

::::
cost

::::::::
function)

::
of

:::
the

::::::::
proposed

:::
and

:::
old

::::::
sample

:

α= min

(
1,
P (x̂|Y )

P (xt|Y )

)
= min(1,exp(−J(x̂) +J(xt)))

::::::::::::::::::::::::::::::::::::::::::::::

(14)

:
If
::::

the
:::::
value

::
is

::::::::
accepted,

:::
set

::::::::
xt+1 = x̂

::::::::
otherwise

:::::
keep

:::
the

::::::::
previous

:::::
value,

::::::::::
xt+1 = xt. :::

The
:

resulting sequence of states will340

represent dependent samples from the target distribution.

Tuning the proposal distribution is important for obtaining an efficient sampling
:::
The

::::::::
Adaptive

:::::::::
Metropolis

::::::::
algorithm

:::::
used

:::
here

::::::::
contains

:::::
three

:::
key

::::::::
concepts

:::::::::
explained

::
in

:::
the

:::::::::
following

::::::::
sections.

:::::::::::
Transformed

:::::::::
proposals,

::::::::
providing

::
a
::::::
natural

::::
way

:::
of

::::::::
including

:::::
limits

:::
on

:::
the

::::::::::
parameters;

:::
the

:::::::
adaptive

:::::::
random

:::::
walk,

::::::::
allowing

:::
the

::::::::
algorithm

:::
to

:::::::
estimate

::
λ
::::
and

::
Σ from the target

distribution
:
;
:::
and

:::::::::
tempering

::
of

:::
the

:::::
target

::::::::::
distribution,

::
to
::::::

reduce
:::
the

::::::
effects

::
of

:::::
local

:::::::
maxima

:::
and

::::::::
allowing

:::::
better

::::::::::
exploration

::
of345

::
the

::::::
target.

2.5.1
:::::::::::
Transformed

:::::::::
proposals

:::
The

::::::::
standard

:::::::
proposal

:::
in

::::::::
Equation

::
13

:::::
does

:::
not

:::::::
include

:::
any

::::::::::
restrictions

:::
on

:::
the

::::::::::
parameters.

:::
To

::::::
handle

::::::::
parameter

::::::
limits

:::
we

::::::::::
transformed

:::
the

:::::::::
parameters,

::::::::
resulting

::
in

::
an

:::::::
adjusted

:::::::
random

::::
walk

::::::::
proposal

zt = g−1(xt),

ẑ = zt + ε, ε∼N(0,λΣ),

x̂= g (ẑ) ,
::::::::::::::::::::::::::

(15)350

:::::
where

:
a
:::
list

::
of

:::::::
possible

:::::
limits

::::
and

::::::::::::
corresponding

::::::::
functions

:::
are

:::::
given

::
in

::::
Table

::
2.
:::::
Note

:::
that

::::::::
different

::::::::
functions

:::
can

::
be

:::::::
applied

::
to

::::
each

::::::::
parameter

::
in

::
x. A badly tuned MH algorithm will result in poor or incomplete convergence of
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Table 2.
:::::::
Summary

::
of

::::::::::::
transformations

:::
and

:::::::::::
corresponding

:::::::::
adjustments

::
to
:::

the
:::::::::

acceptance
::::::::
probability

:::
for

:::
the

::::
three

:::::
cases

::
of

:::::::
variables

::::
with

:::::::
low-limit,

:::::::::
upper-limit,

:::
and

:::::::
variables

:::::::::
constrained

::
to

::
an

:::::::
intervall.

:::::::
Constrain

:
Functions

:::::::::
Acceptance

:::
g(x)

: :::::
g−1(x)

:::::::::::::::
q (xt | x̂)/q (x̂ | xt)

::::
x > a

: :::::::::
exp(x)+ a

::::::::
log(x− a)

: ::::

x̂−a
xt−a:

::::
x < a

: :::::::::
a− exp(x)

::::::::
log(a−x)

: ::::

a−x̂
a−xt:

:::::::
x ∈ [a,b]

:::::::

bexp(x)+a
exp(x)+1 : ::::::::

log
(

x−a
b−x

)
: :::::::::

(x̂−a)(b−x̂)
(xt−a)(b−xt):

::::::
Having

:
a
::::::::::
transformed

::::::::
proposal

:::::::
requires

::
an

:::::::::
adjustment

:::
of

:::
the

:::::::::
acceptance

:::::::::
probability

:::::::::::::::
(Hastings, 1970a)

::
in

::::::::
Equation

::
14

::
to

:

α= min

1,
p(x̂|Y )

p(xt|Y )

∏
i

q
(
x
(i)
t | x̂(i)

)
q
(
x̂(i) | x(i)t

)
=

= min

1,exp(−J(x̂) +J(xt) +
∑
i

log

q
(
x
(i)
t | x̂(i)

)
q
(
x̂(i) | x(i)t

)
 .

::::::::::::::::::::::::::::::::::::::::::::::::::::

(16)

::::
Here

:::
x
(i)
t :::::::

denotes
:::
the

:::
ith

::::::::
parameter

::
in

:::
the

::::::::
xt-vector

::::
and the sequence and slow mixing, i. e. the sequence will take very long355

to produce samples from the correct distribution
::::::
q-terms

:::
are

:::::
given

::
in
::::::

Table
::
2.

::::
Note

::::
that

::::
each

:::::::::::::
transformation

::::::
results

::
in

::::
one

:::::::::
adjustment

:::
for

:::
that

:::::::::
parameter

:::
and

:::
that

:::
all

::::::::::
adjustments

::::
have

::
to

:::
be

::::::::
multiplied

::::::::
together.

2.5.2
::::::::
Adaptive

:::::::
random

:::::
walk

:
It
:::
has

:::::
been

::::::
shown

:::
that

:::::::
optimal

::::::::
behaviour

:::
of

:::
the

::::::::::::
MH-algorithm

::
is

:::::::
obtained

:::::
when

:::::
about

::::
20%

:::
to

::::
30%

::
of

:::::::
samples

:::
are

::::::::
accepted

::::::::::::::::::::::::::::::::::
(Gelman et al., 1996; Roberts et al., 1997).

:::
For

:::
the

:::::::
proposal

::
in
::::::::
Equation

:::
13,

:::
this

::
is

:::::::
achieved

:::::
when

::
Σ

::::::::::
corresponds

::
to

:::
the

:::::::
posterior360

:::::::::
covariance

:::::
matrix

::
of

:::
the

:::::
target

::::::::::
distribution,

::::::::
P (x|Y ),

:::
and

:::
the

::::::
scaling

::
is

:::::::::::
λ= 2.382/d,

:::::
where

::
d
::
is

:::
the

::::::
number

::
of

::::::::::
parameters

::
in

::
x.

:::
The

:::
key

::::
idea

:::
of

:::
the

:::::::
adaptive

:::::::::
algorithms

::::::::
suggested

::
in

:::::::::::::::::::::::
Andrieu and Thoms (2008)

::
is

::
to

:::::::::
recursively

:::::::
estimate

::::
both

::
Σ

::::
and

:
λ
:::::
from

:::::::
previous

:::::::
samples.

::::
An

::::::::
important

::::
note

:::
for

:::
the

:::::::::::
transformed

:::::::
proposal

::
in

::::::::
Equation

:::
15

::
is

:::
that

:::
Σ

:::
and

::
λ
:::::
relate

::
to

:::
the

:::::::::::
transformed

::::::
variable

:::
zt :::

and
::::

not
::
xt. Manual tuning of the proposal distribution is often time-consuming and prone to errors, especially

for complex non-linear models, such as LPJ-GUESS, which can be sensitive to initial values and have complex posterior365

distributions with multiple local minima. Instead we used an adaptive scheme where the MCMC MH automatically learns

features of the target distribution (Andrieu and Thoms (2008), Roberts and Rosenthal (2009)).

:
A
::::::::::::::::
Rao-Blackwellised

::::::
update

::
of

:::
the

:::::::::
covariance

:::::
matrix

::::
will

:::::::
consider

::::
both

:::
the

::::::::
proposal,

::̂
z,

:::
and

:::
the

:::::::
previous

:::::
value,

:::
zt,::::::::

weighted

::::::::
according

::
to

:::
the

::::::::::
acceptance

::::::::::
probability,

::
α,

:::::::::
computed

::
in
::::::::

Equation
::::

16.
:::
The

::::::::::
expectation

::::
and

:::::::::
covariance

::::::
matrix

::::
are

:::::::
updated
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:::::::::
recursively

::
as,

:
370

µt+1
:::

= (1− γt+1)µt + γt+1 (αẑ+ (1−α)zt) ,
:::::::::::::::::::::::::::::::::

(17a)

Σt+1 = (1− γt+1)Σt + γt+1

[
α(ẑ−µt+1)(ẑ−µt+1)

>
+ (1−α)(zt−µt+1)(zt−µt+1)

>
]
,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(17b)

::::
where

:::
γt :

is
:::
an

:::::::::
adaptation

:::::
factor

:::
and

:::
we

::::
have

::::
used

:::::::::::
γt = t−0.51.

:::
The

::::::
Global

::::::::
Adaptive

::::::
Scaling

::::
then

:::::::
updates

:::
the

::::::
scaling

:::::
factor

::
λ

::
as,

:

logλt+1 = (1− γt+1) logλt + γt+1 (α−αtarget) .
:::::::::::::::::::::::::::::::::::::::

(18)375

:::
The

::::::
update

::
is

::
in

::::::::
log-scale

::
to
::::::

ensure
::::
that

::
λt:::::

stays
::::::::
positive;

:::
the

::::::
second

::::
part

::
of

:::
the

::::::::
equation

::::::::
compares

:::
the

::::::
current

::::::::::
acceptance

:::::::::
probability

::::
with

:
a
:::::
target

::::::::::
probability,

::::::::::::
αtarget = 0.234,

::::
and

:::::
adjust

::
λt:::

to
:::::
obtain

:::
this

:::::::
desired

::::::
overall

:::::::::
acceptance

::::::::::
probability.

::
To

::::
limit

:::
the

::::::
effect

::
of

:::::
initial

::::::
values,

:::
we

::::
first

:::
ran

:::::
5 000

::::
steps

:::
of

:::
the

:::::
chain

::::::
without

:::::::::
adaptation

::::
and

:::::
taking

::
Σ
:::
as

::::
10−3

:::::
times

:::
an

::::::
identity

::::::
matrix

::::
(i.e.

::::
very

::::
small

::::::
initial

:::::
steps).

:::::::::
Thereafter

::
a
:::::::::
covariance

::::::
matrix

::
Σ

:::
was

::::::::
estimated

::::::
based

::
on

:::
the

:::::
initial

:::::::
samples

::::
and

::
the

:::::
chain

:::
run

:::
for

::
a

::::::
further

:::::
15 000

:::::
steps

:::::::
adapting

::::
only

::
λ

:::
and

:::
not

:::
Σ.

::::::
Finally,

:::
for

:::
the

:::
last

::::::
80 000

:::::
steps

::::
both

:
λ
::::
and

::
Σ

::::
were

:::::::
updated380

::
as

::::::::
described

::::::::::::::::::::::::
inAndrieu and Thoms (2008).

:
We call the resulting framework the Global Rao-Black-wellised

:::::::::::::::
Rao-Blackwellised

Adaptive Metropolis (G-RB AM) algorithm, since it combines the Rao-Black-wellised Adaptive Metropolis algorithm with the

Global Adaptive Scaling Metropolis algorithm, both described in Andrieu and Thoms (2008). See Supplement S1 for technical

details.
:
.

2.6 Experiment design385

2.5.1
:::::::::
Tempering

:::
the

::::::
target

::::::::::
distribution

:

:::
For

::::
large

::::::::
amounts

::
of

::::
data

:::
the

::::
cost

:::::::
function

:::::
J(x)

::::
can

::::
have

::::
very

:::::
deep

::::
local

:::::::
minima

:::::::
causing

:::
the

::::::::::::
MH-algorithm

::
to

:::
get

::::::
stuck,

::::
even

::::
with

:::
the

::::
two

::::::
already

::::::::
outlined

::::::::::
adjustments.

:::
To

::::::
reduce

:::
the

:::::
scale

:::
of

:::
the

::::
cost

:::::::
function

:::
we

::::::
temper

::::
the

:::::
target

::::::::::
distribution

:::::::::::::
(Jennison, 1993)

:
.

P̃ (x|Y ) = P (x|Y )1/T = exp(−J(x)/T ),
:::::::::::::::::::::::::::::::::

(19)390

:::::
where

::
T

::
is

:
a
:::::::
suitably

::::
large

::::::
value.

::::::
Having

:::
run

::
a
::::::::::::
MH-algorithm

:::
for

:::
N

:::::::
samples,

:::
the

::::
first

:::
Nb::::::::

samples
:::
are

::::::::
discarded

::
as

:::::::
burn-in

::::
and

::::::::::
expectations

:::
or

::::::::
variances

:::
can

::
be

:::::::::
computed

::
as

::::::::
averages

::
of

:::
the

:::::::::
remaining

:::::::
samples.

::::::::
However,

:::::
with

:
a
::::::::
tempered

:::::
target

::::::::::
distribution

:::
we

::::
have

:::::::
samples

:::::
from

::::::
P̃ (x|Y )

::::
and

::::
need

::
to

:::
use

:::::::::
importance

::::::::
sampling

::
to

:::::
adjust

:::
for

:::
the

::::::::
difference

::
in
:::::::::::
distributions

::::::::::::::
(Jennison, 1993)

:::::::
resulting

::
in

::::::::
weighted
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:::::::
averages395

E(x|Y )
::::::

≈
N∑

i=Nb

wixi,

::::::::::

V (x|Y )
::::::

≈
N∑

i=Nb

wi(xi−E(x|Y ))2,

:::::::::::::::::::::

:::::
where

:::
the

:::::::
weights

::
are

:::::
given

:::
by,

:

wi
::

=
exp

(
−T−1

T (J(xi)− Jmin)
)∑N

i=Nb
exp

(
−T−1

T (J(xi)− Jmin)
) .

:::::::::::::::::::::::::::::::

:::
and

::::::::::::::::
Jmin = miniJ(xi).

:::
The

::::::::::
subtraction

::
by

::::
Jmin::

is
:::
for

:::::::::
numerical

:::::::
stability

::
to

:::::
avoid

:::::
cases

::
of

:::
0/0

:::::
when

::
all

::::::
J(xi) :::

are
::::
very

:::::
large.400

:::
For

:::
the

::::
case

::
of

::
no

:::::::::
tempering,

:::
i.e.

::::::
T = 1

:::
the

::::::
weights

::::::::
simplify

::
to

:::::::::::::::
wi = 1/(N −Nb),

::::::::
resulting

::
in

::::::::::
unweighted

::::::::
averages.

2.6
::::::::::
Experiment

::::::
design

:::
We

::::
have

::::::::
designed

::
a

:::
set

::
of

::::
twin

:::::::::::
experiments

:::
and

::
a
::::
real

::::
data

::::::::::
experiment.

:::
For

:::::
both

:::
the

::::
twin

::::
and

::::
real

::::
data

:::::::::::
experiments,

:::
we

::::::::
generated

::::::
MCMC

::::::
chains

::::
with

:
a
:::::
length

::
of
:::::::
100,000

::::::::
samples.

::::::
MCMC

::::::::::
approaches

:::
are

:::::::::::::
computationally

:::::::
intensive

::::
and

::::::::::::::
time-consuming.

::
In

:::
this

:::::
study,

::::
each

::::::
model

::::::::
simulation

::::
took

::::::::::::
approximately

::
9
:::::::
seconds

::
to

:::::::
complete

::::::
(using

::
an

:::::
AMD

::::::
Ryzen

::::::::::
Threadripper

::::::::::
processor).405

::
As

::
a

:::::
result,

:::
for

:::
the

:::::::
100,000

::::::::
iterations,

::
it

::::::::
consumed

::::::
nearly

:::
250

::::::::::::
computational

:::::
hours.

::::::::
However,

::
it
::::::
should

::
be

:::::
noted

::::
that

:::
this

:::::
study

:::::::
involves

:::
the

::::::
model

:::::::
running

:::
for

:
a
::::::

single
::::
site,

::::
and

:::
the

::::::::::::
computational

:::::
speed

::
is
::::::

highly
:::::::::

dependent
:::

on
:::
the

:::::::::::
performance

:::
of

:::
the

::::::::
processors

:::::
being

:::::
used.

:

Twin experiment

A simple twin experiment is designed to assess the performance of the developed G-RB AM and its ability to recover the410

parameter values. The daily CH4 output simulated by the LPJ-GUESS using randomly chosen true parameter values (Ztrue)

within their permitted range of variation are used as the synthetic observation. Since the synthesized observation conforms

completely to the model, any potential errors in the model or uncertainties in observations have not influenced the parameter

optimization process, ensuring unbiased posteriors. It is expected that the assimilated parameters converge to the Ztrue values

when the MCMC chain progress
::::::::
progresses

:
in time. To freely recover the Ztrue values, the prior parameter value

:::::
values415

(xp) in the cost function (Equation 12) is
:::
are set as Ztrue. Two scenarios are considered for the twin experiment to test the

identifiability of the parameters under different conditions. Scenario 1 with a shorter temporal scale from 2005 to 2014 (10

years); scenario 2 with a longer temporal scale from 1901 to 2015 (115 years). Scenario 1 is more realistic and is chosen to

mimic the real data at Siikaneva, whereas scenario 2 constitutes an ideal, hypothetical case with observations over the entire

simulation period. Four sets of chains for both scenarios with a chain length of 100,000 iterations are analysed. In each set of420

the scenarios, the optimisation started from a different initial point in parameter space randomly selected from their prescribed

ranges.
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Real Data experiment

To estimate the posterior parameter values, an experiment with a chain length of 100,000 iterations using the real observation

from Siikaneva is designed. The observed daily averages are compared with the model simulation in the cost function only when425

more than 90% of the hourly observation were available each day. When there are gaps in the daily observation, we eliminate

them, and their corresponding modelled values from the cost function calculation. In principle the error covariance matrix

R should include both observation uncertainties and their correlations. From the fact that the latter is difficult to estimate,

we neglected them, and the observation uncertainties are estimated as 30% for the daily observations greater than 0.01 gC

m−2d−1, and a floor value of 0.3 for the observations less than 0.01 gC m−2d−1.430

2.7 Parameter value estimation

For all the experiments conducted in this study, the first 75% of the G-RB AM chains are discarded as the ’burn-in’. The

PDFs generated after the ’burn-in’ are used to estimate each parameter’s maximum a posteriori probability (MAP), posterior

mean and standard deviation (std
:::
std). Following the idea used in Braswell et al. (2005) the parameter distributions are grouped

into three categories: ’well-constrained’, ’poorly constrained’, and ’edge-hitting’ parameters. The well-constrained parameters435

are the ones that exhibit a well-defined uni-modal distribution, with low std
:::
std. The poorly constrained parameters are the

ones that exhibit a relatively flat multi-modal distribution with large std
::
std. To be more precise with the estimation, for the

posterior parameter distributions appeared multi-model if the std
::
std of the distribution is greater than 20% of its total range,

we classified them as poorly constrained. The edge-hitting parameters are the ones that cluster near one of the edges of their

prior range(Braswell et al., 2005). .
::
b440

2.8 Posterior re-sampling experiment

To examine the effect of parameter optimisation on flux components, we designed a re-sampling experiment from the posterior

parameter distributions. From the experiment conducted using site observation, 1000 sets of parameters are randomly selected

and used to run the model to simulate the CH4 flux components. The outputs from each simulation of the experiment are used

to analyse the process correlations and process-parameter relationships.445

3 Results

3.1 Twin experiment using G-RB AM

The trace-plot resulted from the
:::
We

:::
ran

:
a
:::
set

::
of

:
four different twin experiments of scenario 1 is illustrated in Figure S2:1 (see

supplemental information). The result of scenario 2 is not shown, as it also followed the same pattern. The Figure shows the

convergenceof each chain to the Ztrue values
:::
for

::::
each

::::::::
scenarios

:::::::::
mentioned

::
in

:::::::
Section

:::
2.6.

:::::
Each

::
of

:::::
them

:::::
shows

:
a
::::::::::

reasonably450

::::
good

:::::::::::
convergence,

:
regardless of their chosen initial values. The result shows a good convergence of

::
In

:::::::
scenario

::
1,

:
all param-

eters except the CH4/CO2 and λroot . Posterior
::::::
showed

::::
good

:::::::::::
convergence

::::
(see

:::::
Figure

::
1
::
in

:::::::::::
Supplement,

:::::::
posterior

:
parameter
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Figure 3.
::::
Time

::::
series

::::::::
estimates

:
of
:::
the

::::
twin

:::::::::
experiments

::
in

::::::
scenario

::
1.

:::
The

:::::::::
simulations,

::::
using

::::
four

:::
sets

::
of

:::::::
posterior

:::::::
parameter

:::::
values

:::::::
obtained

:::
from

:::
the

::::
twin

:::::::::
experiments

:::
are

:::::
plotted

::::::
against

::
the

::::
twin

:::::::::
observation

::::
used.

correlations of the experiment 1 shown in
:::
first

:::::::::
experiment

::
in

:::
this

::::
has

::::
given

::
in
:
Figure S2:1 are given in S2:2. Among the poorly

retrieved parameters six of them except φtiller are observed as weak positively correlated to each others. The φtiller showed a

weak negative correlation to Rmoist but positive correlation to all the other poorly retrieved parameters
:
2
:::
of

::
the

::::::::::::
Supplement).455

:::
The

:::::
result

::
of

:::::::
scenario

::
2
::
is

:::
not

::::::
shown,

::
as

::
it

::::
also

:::::::
followed

:::
the

:::::
same

::::::
pattern. The resulting PDFs of the experiment 1

::
in

:::::::
scenario

:
1 after the ’burn-in’ are represented in Figure 4 . This figure shows

::::::
showing

:
the mean and MAP values as well as the std

:::
std of

the parameters; their numerical values .
::::
The

:::::::::
parameter

:::::
values

::::
and

:::::
related

::::::::
statistics are given in Table 3. In general

::
In

:::::::
general,

:::
the twin experiments have resulted in ‘well-constrained’ and ‘poorly constrained’ parameter classes. Examples

of the different classes of the distributions for the experiment 1 of scenario 1 are shown in Figure 4. Based on the posterior460

distributions estimated from all the four G-RB AM chains the parameters Rmoist , CH4/CO2, foxid, rtiller, fair, poracro,

porcato and λroot are well constrained in scenario 1 and the parameters Rmoist , CH4/CO2, foxid, rtiller, fair, poracro,

porcato, wtiller and λroot are well constrained in scenario 2 (Table 3).

The parameter retrieval capacity of the G-RB AM algorithm is estimated as the ’retrieval score’ by dividing the posterior

mean estimates of the parameters from all the chains in each scenario by Ztrue parameter values. The idea behind the retrieval465

score is that in an ideal case of complete recovery, the posterior parameter estimate and the Ztrue value are the same; hence the

retrieval score would be one. Figure 5 shows the retrieval scores obtained for each parameter and their 1 σ value. In scenario

1 the φtiller, poracro, porcato, wtiller and λroot are well retrieved with a low std
:::
std. Scenario 2 performed better in parameter
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Table 4. Cost function reduction observed from the G-RB AM twin experiments using two different scenarios (Sc). Prior and posterior cost

function values obtained from four sets of experiments for each scenario are given. The misfit of
::::::
between observed and expected (zero) cost

function values are represented as the reduced χ2 value.

Sc 1

Experiment Prior Posterior χ2

Set 1 12486.4 301.6 0.17

Set 2 49674.0 759.6 0.422

Set 3 29535.6 294.0 0.17

Set 4 8476.8 428.0 0.24

Sc 2

Set 1 86140.0 6170.0 0.31

Set 2 619172.0 8040.0 0.38

Set 3 68792.0 3372.4 0.16

Set 4 109888.0 8646.0 0.41

score estimation is based on the ratio of the estimated and true values, given a value of 0.95 with a std
:::
std of 0.19 for scenario

1, and a value of 1 with std
::
std 0.21 for scenario 2 (see Figure 5), which is again an indication for the good performance of the

G-RB AM.

The reduced posterior cost function values and their χ2 values are given in Table 4. Here
:
, the reduced χ2 values are calculated

by dividing twice the cost function by the number of observations used in the assimilation. Overall
:
, the χ2 values indicate a475

statistical robust cost function reduction given the prescribed uncertainties. The comparatively smaller values of χ2 for sets 1

and 3 in scenario 1 and set 3 in scenario 2 indicates a tendency to over fitting the results and being overconfident in
:::::::::
statistically

:::::
robust

::::::::
reduction

::
in

:
the estimated posterior values and uncertainties.

::::
cost

:::::::
function

::
in

::
all

:::
the

:::::::::::
experiments,

:::::::
although

::
a
:::::::::
systematic

::::::::
behaviour

::
of

:::::
being

:::::
below

::::
one

::
is

::::::::
observed.

3.2 Real data experiments and optimised parameters480

For the experiment with the real data, the observations collected at the Siikaneva wetland are assimilated using the G-RB AM

algorithm. The trace plots with 100,000 iterations obtained after the optimisation
::::::
MCMC

:::::
trace

::::
plots

:
are exemplified in Figure

6.

3.2.1 Optimised parameter values and distributions

The posterior parameter PDFs are shown in Figure ??. The shapes of the distributions are used to interpret the results of485

the parameter optimisation as explained in Section 2.4. In contrast to the twin experiments, the parameters fell into three

categories: ‘well-constrained’, ‘poorly constrained’, and ‘edge-hitting’; the classifications are given in Table ??. The PDFs for

parameters Rmoist, CH4/CO2, φtiller, fair, poracro, wtiller and λroot are classified as well constrained distributions. The

PDFs for rtiller, porcato and Rmoistanaerobic ::::::::
Rmoistan:

are classified as poorly constrained distributions, and the one for
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Figure 5. Twin experiments result
::::::::
experiment

::::::
results in terms of mean retrieval score based on the ratio of the estimated and Ztrue values

of the parameters. The horizontal red lines indicate a complete retrieval, and the error bar shows the std
::
std from different chains in different

scenarios.
::
Sc1

:::
and

:::
Sc2

:::::::
indicate

::
the

:::
two

::::::::
scenarios.

foxid is classified as a edge-hitting distribution. Both in the well-constrained and poorly constrained parameters, high kurtosis490

is observed. The values of foxid, which is the edge-hitting parameter, lay near the higher bound of the edges of the prior

range, and most of the retrieved values were clustered near this edge. The parameter also exhibited large positive kurtosis and

negative skewness. Apart from their shapes, the MAP and the posterior mean estimates were also computed. The estimated

posterior parameter values and their 1σ stds
:::
stds

:
along with the prior values are shown in Table ??. The MAP and posterior

mean estimates of the parameter agree on the value for
::
the

::::::::::
parameters CH4/CO2, fair and poracro. For foxid, φtiller and495

rtiller, both the MAP and posterior mean estimates stayed out of 1/3 of the 1σ range of the posterior distribution, which we

consider a large difference, and for .
::::
For the remaining parameters, the MAP and posterior mean estimates stayed within 1/3

of the 1σ of their posterior distribution; hence we consider this as a small difference.

For the parameters Rmoist and CH4/CO2 the posterior values appeared very close to, but slightly below the prior values.

The posterior values of Rmoistanaerobic :::::::::
Rmoistan appeared very close to, but slightly above the prior values. For the param-500

eter φtiller the MAP estimate appeared very close to but above the prior value and posterior mean estimate appeared very close

to but below the prior value. For these four parameters, the posterior mean stayed within 1/3 of the 1σ range of the assumed

prior uncertainty. The parameters foxid, rtiller, and fair posterior values appeared slightly above the prior values, but out of

the 1/3 of the 1σ range of the prior uncertainty. The prior and posterior values of the parameter poracro remained the same. In
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Figure 6. An example of the G-RB AM chains for the experiment with real observations showing all the 10
:::
100,000 values in the chain. The

first 75 % was
:::
were

:
discarded as ’burn-in’ and is greyed out in the figures. The remaining 25% (from the red vertical lines) is

:::
were

:
used for

the analyses.

contrast,
:::
the parameters porcato, wtiller and λroot appeared far distant from, and below the prior values, out of 1/3 of the 1σ505

range of prior uncertainty, but stayed within the prior range (see Section 4.2 for details).

3.2.2 Posterior parameter correlation

The 2D distributions of the posterior parameters and their Pearson correlations are illustrated in Figure ??. Overall, the majority

of the parameters showed weak positive or negative correlations with a few exceptions with extreme correlations (the values

and corresponding colour code in the triangle above depict this). For exampleRmistanaerobic:
,
::::::::::::::
Rmoistanaerobic:showed high510

negative correlation to Rmoist,:and poracro showed high positive correlation to the fair. The 2D marginal distributions (scatter

plots), illustrated in the lower triangle, showed a general tendency of high clustering within the 1σ range for all the parameters;

in general, the 1D histograms (on the diagonal, also shown in Figure ??) appeared as well-constrained uni-modal distributions.

For further details, see Section ??
::::
4.2.1.
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Figure 7. PDFs of parameters from G-RB AM real data experiment after the ’burn-in’. The green curves shown are the smoothed Gaussian

kernel estimates of the posterior distribution on the posterior histograms, and the black curves are the prior distributions. The dotted vertical

green and black lines are the posterior and prior means, respectively. The shaded green area of the distributions represents the 1 σ error

estimate of the PDFs.

3.2.3 Cost function reduction515

The prior parameter values and cost function value, as well as the
:::
and

:
posterior parameter values and cost function values

::::
value

:
corresponding to both posterior MAP and mean estimates are listed in Table ??. The prior cost function value calculated

with the default model parameters showed a high-cost value of 48424.4 with a model overestimation of around four times the

observed flux. After the optimisation, the cost function value was reduced to 2959.8
:::::::
(reduced

::::::::
χ2=3.82) with the MAP estimate

of parameters and to 3002.6
:::::::
(reduced

::::::::
χ2=3.88) with the posterior mean estimate of parameters.520

As anticipated, the cost function was marginally lower for the MAP estimate when compared to the posterior mean estimate,

resulting in a better model-data fit regarding the error model with the MAP estimate, which can be seen in Figure 10b. It can

also be observed from the Figure
::::
figure

:
that the cost function reduction has not only fitted the total model sum to the total

observational sum but also has reduced the misfit between each year.
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Figure 8. Schematic summery of the ’re-sampling experiment’. The image on the left side shows the process-parameter correlation and

regression slope. Three different flux components of CH4 together with the total flux are labelled on the vertical axis, and the parameters are

labelled on the horizontal axis. The different colours of the circles represent the regression slopes
::
(β) scaled between -1 and 1 (in 11 steps).

The blue colour indicates a steeper negative slope hence a strong decrease, and the red colour indicates steeper positive slopes hence a strong

increase in CH4 fluxes with the increasing parameter value. The correlation coefficient
:
of
:::::::::::
determination (R2) scaled between 0.05 and 1 (in

11 steps) is represented by the size of the circles, with larger circles indicating higher (R2 ) values. The image on on the right side shows

the process-process correlations. Numeric labels on the upper triangle correspond to Pearson’s
:::::::
Pearsons correlation coefficient values. The

diagonal of the matrix shows the 1-D histogram for each flux components and the total flux. 2-D marginal distributions of the sum of the

processes and total flux are represented in the lower triangle with contours to indicate 1σ, 2σ and 3σ confidence levels. The points in the

plots indicates the sums of flux components (black dots). Ranges of the distributions are labelled on the left and bottom of the figure.

Yearly variations in fractional contributions of flux components simulated using prior and posterior parameter estimates are540

examined to understand the impact of the optimisation on the composition of the inter-annual emissions. The time series of the

annual sums of flux components as a function of their total flux (in percentage
::
%) are shown in Figure 10a. The result shows

that among the flux components, diffusion contributes the most to the total CH4 flux both in prior and posterior estimates,

with a slightly higher contribution in the posterior estimate, followed by plant-mediated transport . But in the case of the

prior estimate, the diffusion contributed comparatively less for the first two and the last years compared to the remaining545

years. In contrast to this, the contribution of plant-mediated transport was high for these first two and last years. The observed

contribution of diffusion is very low in the case of the posterior (see Section 4.2.2 for a more detailed discussion).

The time series model-observation mismatch of prior and posterior estimates for the annual total fluxes can be seen in Figure

10b; the values are in percentage of the observed CH4 flux. The prior estimate showed a mismatch of around 600% for the first

two years. Also, a considerably high mismatch is observed in the years 2011, 2012 and 2014. The MAP estimate remained550

near zero, while the posterior mean estimate exhibited a slightly negative values indicating an underestimation of the flux.
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Figure 10. Flux component fractions and percentage model-data difference. Figure (a) shows the proportions of annual flux components

plotted as a function of the total yearly flux. The different flux estimates are represented in solid lines of different colours, and the symbols on

them correspond to each flux component. Figure (b) shows the annual model–observation mismatch in percentage with respect to the yearly

total CH4 observation.

Interestingly, the MAP followed the same pattern as the prior estimation by showing an increase whenever the prior increased

and a decrease whenever the prior decreased; however, the posterior mean estimate did not show this relation.

The fraction of the annual errors of the flux components of the total flux (in %) is shown in Figure 11. The effect of opti-

misation on the individual contributions of each component can be seen from the annual means (solid dots) of their fractional555

contribution to the total flux. The error bars represent the 1σ stds from the mean values. Among the prior estimates of flux

components, the prior plant-mediated transport showed the largest error (22.5%), and the ebullition showed the smallest error

(9.1%). In the MAP estimate, ebullition showed the highest error with a value of 12.3%, followed by diffusion and ebullition

with around the same value of error, 6.9% and 6.8%, respectively. For the estimate using posterior mean values, diffusion and

plant-mediated transport showed around the same errors, 7.5% and 7.4%, and the ebullition showed the least error (2.6%). On560
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Figure 11. The first three columns of the figure show the fractions of the annual fluxes from process components of the total fluxes. The

vertical solid lines represent the 1σ error bars of each component, and the dots represent the mean of the annual fluxes. The fourth column

(correspond to y axis on the right side) shows the annual mean and annual errors for the inter-annual variation of the total fluxes.

the right-hand side of the figure, the fourth column displays the mean and errors for the inter-annual variation of the total fluxes

obtained by prior parameter values and posterior estimates. The prior total estimate showed an error of 4.2%, and the mean and

MAP showed an error of 0.66% and 0.72%, respectively.

3.3 Fit to the observation

Figure 10b illustrates the percentage model-data misfit, and Figure 12 shows the time series of the assimilated observations565

together with the model prior and posterior estimates with their uncertainties. As expected, the posterior estimate fitted the

observations better than the prior estimate. The total RMSE estimated between the prior and observations were 0.044 gC m−2

d−1, which got reduced to a value of 0.023 gC m−2 d−1 for the posterior case. The result indicates that most of the mismatch

between the prior model estimates and observations was contributed by the large overestimation in the initial years. This

overestimation disappeared in the posterior, showing a better agreement with the observation. There are years for which the570

observations show large peaks during the summer (such as 2010, 2013 and 2014
::::
2012

::::
and

::::
2013), and the posterior estimates

succeeded in capturing these peaks to a large extent, see
:::
but

:::
not

::::::::::
completely.

:::
See

:
Section 4.5 for details.

4 Discussion

4.1 Twin experiment

A common problem with the adaptive MH algorithm is its inability to widely explore the target distribution if the set-up is not575

well tuned. This can then result in a poor approximation of the target distribution, hence poor adaptation. The resulting trace

plots shown in Figure 6 and Figure S2:
:::::::::
Supplement

::::::
Figure 1 (see supplemental information) depict a set of well-explored pa-

rameters on their permitted space ranges during the progression of the random walk, which indicates a well-tuned assimilation
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Figure 12. Total CH4 simulation from the LPJ-GUESS model (red dots) after optimising with the G-RB AM algorithm. The black dots are

the real CH4 observations from Siikaneva with prior observation error (grey shade). The light red shade around the posterior model simulation

is the 95% confidence interval (CI) of the simulations. The blue dots are the prior simulation with the prior default model parameters. A few

outliers above 0.3 gCm−2 on the vertical axis have been removed from the figure for better visualisation. While most of the observations

fall within the confidence intervals, it’s important to note that the effects of parameter variations in the posterior are part of these confidence

intervals.

framework. The use of the
:::::::
Adaptive,

:
Blackwellised learning (as explained above) of the posterior distribution appeared bene-

ficial during the transients of the chains whenever the acceptance probability has been dropped to low values at low probability580

regions of the parameter space.

Figures 5 and Figure S2:
::::::::::
Supplement

::::::
Figure 1 show almost complete convergence of some parameters to Ztrue regardless

of the scenarios. Given the complexity and non-linearity of the model, it is not surprising that not all parameters converged

completely. It is also not surprising that different chains estimated slightly different posterior solutions for the parameters.

However, most poorly retrieved parameters still have their true values within the 1 σ range of the Gaussian PDFs of the585

optimized values.
::::::::
optimised

::::::
values.

:::::
Even

:::::
when

:::
the

::::::::::
parameters

:::
are

:::::::
slightly

:::
off

::::
from

::::
the

:::::
Ztrue::::::

values.
::::::
Figure

::
3
::::::
shows

:::
the

::::::::
capability

::
of

:::
the

::::
twin

::::::::::
experiments

::
in
::::::::
capturing

:::
the

::::::::
structure

::
of

:::
the

:::::::::::
observations

::::::::
including

:::
the

:::::::
observed

::::::
spikes

::
in

::
it.

:::
The

:::::::::
systematic

::::
low

::
χ2

::::::
values

::::::::
observed

:::
for

:::
the

::::
twin

:::::::::
experiment

:::::::
doesn’t

:::::::::
necessarily

:::::
affect

:::
the

:::::::::::
framework’s

:::::
ability

::
to
:::

be
:::
set

::
up

:::
for

:::
the

:::
real

::::
data

::::::::::
experiment

:::::::
(Section

::::
3.1).

:::
As

:::
the

::::
twin

::::::::::
experiments

::::
here

:::
are

:::::
under

:::
the

::::::::::
assumption

::
of

:::
an

::::::::
’idealised

:::::::
model’,

:::::::
meaning

:::
the

::::::
model

:::::::
perfectly

::::::::::
reproduces

:::
the

:::::::::::
observations

::::::
without

::::
any

:::::
errors

:::
or

::::::::::
uncertainty,

:::
and

:::::::::
’error-free

:::::
data,’

::::::
where

:::
the590

:::
data

::::::::
perfectly

:::::::::
represents

:::
the

:::::::::::
environmental

:::::::::
conditions

:::::::
without

:::
any

:::::::::
systematic

::
or

::::::::::::
measurement

:::::
errors,

:::
it’s

::::::::
expected

::
to

::::
have

:::
χ2

:::::
values

::::::::::::
systematically

::::::
below

:
1
:
.
:::::
Also,

:::
the

:::
χ2

:::::
value

::
is

::::::
highly

:::::::
sensitive

::
to

:::
the

:::::::
number

::
of

:::::::::::
observations

:::
and

::::::::::
parameters.

:::::::
Having
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::::
3650

:::::::::::
observations

::
in

:::::::
scenario

::
1
::::
and

:::::
41610

:::::::::::
observations

::
in

::::::::
scenario

::
2,

:::
and

:::::
only

::
11

::::::::::
parameters,

::::
can

::::
lead

::
to

::::
low

::
χ2

:::::::
values.

::::::::
However,

:::
the

::::::::::::
comparatively

::::::
smaller

::::::
values

::
of

::
χ2

:::
for

::::
sets

:
1
::::
and

:
3
::
in
::::::::

scenario
:
1
::::
and

::
set

::
3
::
in

:::::::
scenario

::
2
:::::::
indicates

::
a
::::::::
tendency

::
to

:::
over

::::::
fitting

:::
the

:::::
results

::::
and

:::::
being

:::::::::::
overconfident

::
in

:::
the

::::::::
estimated

::::::::
posterior

::::::
values

:::
and

:::::::::::
uncertainties.

:
595

The analysis of the cost function reduction (Table 4), the ability to constrain the parameters (Figure 4),
:::
the

:::::
ability

::
to

:::::::
capture

::
the

::::::::
structure

::
of

:::
the

::::::
model

:::::::
(Figure

::
3),

:
and the parameter retrieval ability (Figure 5) of the twin experiments showed that the

developed G-RB AM algorithm is capable of optimizing
:::::::::
optimising the process parameters related to CH4 emissions in LPJ-

GUESS. The results from the eight experiments conducted assuming observations from two different scenarios indicate the

capability of the algorithm for parameter retrieval regardless of the initial guesses and temporal scales used. The resulting600

posterior PDF distributions, characterized
:::::
PDFs,

::::::::::::
characterised

::::::
mostly as uni-modal distributions, illustrate the ability of the

developed framework to solve the multi-dimensional problem of reducing a complex cost function based on a highly non-linear

model.

4.2 Parameter estimation using real observations

As described in Section 3.2.1 the experiment using real data resulted in three poorly constrained and one edge-hitting pa-605

rameter. The poorly constrained or edge-hitting parameters, however, are not uncommon in MH parameter search and rather

expected with a complex and highly non-linear model such as LPJ-GUESS. The correlation of parameters to other parameters

can affect the result; i.e.
::
e. the number of parameters that can optimised within this data assimilation framework is limited.

Though the twin experiments showed good parameter retrieval and non-equifinality
:::::::::
capabilities, assimilating the complex real-

world observations into a complex ecosystem model like LPJ-GUESS is expected to have parameter retrieval and equifinality610

problems. This is one of the
::::::
another

:
reasons for selecting a small subset of the parameters associated with wetland CH4 flux

simulations for this study. As described in Section 3.2.1 considerable
::::::::::
Considerable

:
changes have occurred to the prior param-

eter values after optimisation. Here it should be considered that, in general, while optimising the parameters, the assimilation

is trying
:::
this

:::::
study,

:::
the

::::::::::
assimilation

::::
aims

:
to reduce the CH4 flux to minimise the

:::::::::
magnitude

::
of

:::
the

::::
prior

::::
CH4::::

flux
:::::::::
simulation

::
to

:::::::
minimise

:::
its misfit with the observed data, which is around

:::::
nearly half of the prior model estimate (see Table 6).615

4.2.1
::::::::
Posterior

::::::::::
correlation

::::::::
estimates

:::
The

:::::::::
following

::::::::
discusses

:::
the

::::::::
possible

::::::
impact

::
of

::::
the

::::::::
posterior

:::::::::
parameters

:::
on

::::
CH4::::

flux
::::::::::

simulation
::::::
shown

::
in

:::::
Table

:::
??,

::::
the

:::::::::
interactions

::::::::
between

:::
the

::::::::
optimised

:::::::::
parameters

::::
and

:::
the

:::::::::
component

:::::
fluxes

::::::
shown

::
in

::::::
Figure

:::
??,

::
as

::::
well

:::
as

:::::::::::::::::
parameter-parameter

:::::::::
correlations

:::
in

:::::
Figure

:::
??

:::
(we

:::::::::::
distinguishes

::::::::
between

:::::
strong

:::
(>

::::
0.5)

:::
and

:::::
weak

:::
(<

:::
0.2)

:::::::::
parameter

::::::::::
correlations;

:::
we

:::::
focus

:::
on

:::
the

:::::
strong

:::::
ones

:::::
here).

:
620

The very slight reduction, i.e.
::
e.
:
,
:
within 1/3 of the 1σ error

:::::::
observed in the posterior mean estimate of Rmoist

::::::
Rmoist

:::::
(Table

::::
??).

::::
This

:
indicates a slight decrease of

:
in

:
the moisture response in

:::::
under aerobic conditions, hence a slightly reduced

:::::
which

:::::
would

::::::
likely

:::::
result

::
in

:
a
::::::
slower

::::
soil

::::::
carbon

:::::::
turnover

::::
time

::::
with

::
a
:::::
slight

:::::::
decrease

:::
in CH4 emission. Unlike Rmoist, the

posterior mean estimate for Rmoistanaerobic got a higher value
:::
The

::::
weak

:::
R2

:::::
value

:::
and

:::
the

:::::
weak

:::::::
positive

::
β

::::
value

:::
of

:::::::
Rmoist
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::::
with

::
all

:::
the

::::
flux

::::::::::
components

:::::::
indicate

:::
that

::
a
:::::::
decrease

::
in
::::
this

::::::::
parameter

:::::
value

::::::::
decreases

:::
the

::::::::
emission

::::
and

:::::::
explains

:::::
some

::
of

:::
the625

::::::::
variances

::
in

:::
the

:::
flux

::::::::::
components

:::::::
(Figure

:::
??).

:

::
In

:::::::
contrast,

::::::::::
Rmoistan :::::::

obtained
::

a
::::::
higher

::::::::
posterior

:::::
value

::::::
(Table

:::
??)

:
compared to the prior value, with a slight

::::
(with

::
a

::::::
slightly

:
asymmetric multi-modal distribution. The higher posterior value of Rmoistanaerobic indicates the production of CH4

in the anaerobic conditions of ,
:::
see

::::::
Figure

::::
??)

:::::::::
indicating

::
an

:::::::
increase

:::
in

:::
the

::::::::
moisture

::::::::
response

::
in

:::
the

:::::::::
anaerobic

::::::::
catotelm.

:::::::
Together

::::
with

:::::
this,

:::
the

:::::
strong

::::::
(-0.8)

:::::::
negative

::::::::::
correlation

::::::::
observed

:::::::
between

:::::::
Rmoist

::::
and

:::::::::
Rmoistan:::::::

(Figure
::::
??),

::::::::
indicates630

::::::
reduced

:::::::::::::
decomposition

::
in

::::::::
acrotelm

:::
and

:::::::::
increased

::::::::::::
decomposition

::
in
::::::::

catotelm.
::::::::::
Rmoistan :::

had
::

a
:::::::
positive

:::::
effect

:::
on

::::::::
diffusion

:::
and

:
a
::::::::

negative
:::::
effect

:::
on

::::::::::::
plant-mediated

::::::::
transport

:::::::
(Figure

::::
??).

:::
An

:::::::
increase

::
in

:::::::::
Rmoistan::::::

could
:::::::
enhance

::::
CH4:::::::::

production
:::

in

the catotelm. The
:::::::
catotelm.

:::::
Since

::::::::
catotelm

:::
has

::::
low

:::::
plant

::::
root

:::::::::
abundance,

::::
this

:::::::
increase

::::::
would

::::
lead

::
to

:::::
more

::::::::
diffusion

:::
and

::
a

::::::::
reduction

::
in

::::
total

::::::::::::
plant-mediated

::::::::
transport.

::::
The

:::::::
increase

::
in
:::::::::
Rmoistan::::::::::

contributed
::::
very

::::
little

:::
to

::::::::
ebullition.

::::
This

::
is
:::::
most

:::::
likely

:::
due

::
to

:::
the

::::::::
negligible

:::::::::::
contribution

::
of

::::::::
ebullition

::
to

:::
the

::::::
overall

::::
flux,

::::::
having

::::
zero

::::::::::
contribution

::::
most

:::
of

:::
the

::::
time.

:
635

:::
The

::::::::
posterior CH4/CO2 parameter, which is the CH4 to CO2 ratio in an anaerobic environment, was found to be lower as

compared to the prior
:::::
(Table

:::
??). This indicates a high fraction of CO2 production from the peat compared to CH4 production.

The prior parameter value for fair was zero, which means there is no ’permanent’ gas fraction in peat. After the optimisation,

the posterior value for fair was slightly positive (0.032), indicating a small air fraction in the peat. The high value of foxid and

fair which indicates a high available air fraction and/hence O2 concentration in the soil to convert the available carbon into640

CO2 respectively, could explain this reduction in
::::
very

::::
high

:::
R2

:::::
value

::
of CH4/CO2 as a balancing effect (Equation 2).

Among the CH4 transport-related parameters, a slight reduction was observed in the posterior mean estimate of φtiller, which

indicates slightly more compact tillers with less porosity to transport the CH4. A considerable reduction, more than 1/3 of the

prior uncertainty, is observed in wtiller, which indicates low leaf biomass. A decrease in the fraction of potential leaf cover

would lead to a reduction in the amount of carbon added to the ’potential carbon pool’ for methanogens, which will cause low645

CH4 emission. Contradictory to the values of the two above-mentioned CH4 transport-related parameters, rtiller, which is the

tiller radius of plants, showed a value of more than twice the prior value, means more tillers for a given biomass, i.e. ntiller

increases, which means Atiller increases, thus an increase in CH4 emission (see Equation 8) . Here it should be considered that

the optimisation of plant related parameters depends on the plant species present in the wetland.

The posterior value for the porosity at the catotelm (porcato)was observed considerably below the prior, indicating a more650

compact catotelm with less water (as we assume it is saturated). Change in water content will affect soil temperature slightly.

This could have a dual effect for CH4 such that it either increases the flux if the temperature increases in anaerobic condition,

or decreases the flux due to compact peat. As described in Section 3.2.1,
:::
for

::::::::
diffusion

:::
and

:::::::::::::
plant-mediated

::::::::
transport

::::::
(which

:::::::
represent

:::
the

::::
two

:::::::
diffusive

:::::::::
pathways)

:::::::
indicates

::::
that

:
a
:::::::::
significant

::::::
portion

::
of

:
the poracro remained unchanged; hence no changes

in acrotelm porosity occurred. The positive kurtosis observed in the PDF of this parameter indicates a well constrained single655

solution, and the negative skewness indicates a more probabilistic region below the posterior estimate.

The posterior value for λroot is estimated to be much smaller than the prior (more than 1/3 of 1σ of the prior estimate). This

small posterior value for λroot indicates a low decay length of root biomass in the soil, means more of the decomposition and

CH4production occurs in the acrotelm, and less in the catotelm. The emission of CH4 produced mainly by peat decomposition
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in the acrotelm would be facilitated by a low posterior value for λroot, with around 60% in the first layer of acrotelm followed660

by 22% and 8% in the second and third layers of acrotelm.

4.3 Posterior correlation estimates

This study conducted a detailed analysis of posterior parameter-parameter correlations, parameter-process correlation, and

process-process correlation. The detailed discussion is given below.

4.2.1 Posterior parameter-parameter correlations665

Figure ?? provides an overview of the posterior parameter characteristics. The following discussion distinguishes between

strong (> 0.5) and weak (< 0.2) parameter correlations. A strong negative correlation is observed between Rmoist and

Rmoistanaerobic. The posterior estimate of the parameter values also shows an opposite tendency in these parameters (Table

??), indicating reduced CH4 production in acrotelm and increased CH4 production in catotelm. The parameter
:::::::
variance

::
in

:::::
these

::::::::
pathways

:::
can

::
be

::::::::
explained

:::
by

:::
this

:::::::::
parameter

::::::
(Figure

::::
??).

::::::::
Similarly,

:::
the

::::
high,

:::::::
positive

::
β

::::
value

:::
for

::::::::
diffusion

:::
and

:::::::::::::
plant-mediated670

:::::::
transport

::::::::
indicates

:
a
:::::::::
substantial

:::::
linear

:::::::
increase

::
in

::::::::
emissions

:::::::
through

:::::
these

::::::::
pathways

:
if
:::
the

:::::::::
parameter

::
is

::::::::
increased.

::::
The

:::::::
increase

::
in

::::::::
ebullition

::
is

:::::::::
marginally

::::
less

::::
than

:::
the

:::::
other

::::::
fluxes,

::::
most

:::::
likely

:::::::
because

:::::::::
ebullition

::
is

::::::
limited

:::
by

:::
the

:::::::::
availability

:::
of

:::::::
gaseous

::::::
fraction

:::
of

:::::
CH4.

::::
The

::::::::
dissolved

::::
CH4::::

will
::::
first

::::
emit

::::
via

::::::::
diffusive

::::::
fluxes;

::::::
hence,

::::
there

::::::
could

::
be

:::::
very

::::
little

:::::
CH4 :::

left
::
in
::::

the

::::::
gaseous

::::::
phase

:::
for

::::::::
ebullition.

::::
The

:
CH4/CO2 :::

ratio
:

is negatively correlated to the parameters Rmoistanaerobic, and to
::::
with

::
the

::::::::::
parameters

:::::::::
Rmoistan :::

and
:
λroot. This indicates a reduction in

:::::
lower CH4 fraction produced by decomposition in deep soil675

. Increase in tiller weight would add more organic carbon to the soil, which will result in a more compact peat accumulation in

the bottom layers of soil with less porosity. This might be the reason for the negative correlation between wtiller and porcato.

poracro ::::::
(Figure

:::
??).

:

:::
The

:::::
prior

::::::::
parameter

:::::
value

::::
for

::::
fair :::

was
:::::

zero,
::::::
which

:::::
means

:::::
there

::
is
:::

no
:::::::::::
’permanent’

:::
gas

:::::::
fraction

::
in

::::
peat

::::::
(Table

::::
??).

::::
The

:::::::
posterior

:::::
value

::
of

::::
fair:::::::

showed
:::::::
slightly

:::::::
positive

:::::::
(0.032),

::::::::
indicating

::
a
:::::
small

:::
air

:::::::
fraction

::
in

:::
the

::::
peat.

::::
The

::::
fair:showed a very680

high positive correlation to fair::::::
poracro, which can simply be explained as more porous soil allows for more air in the soil

::::::
(Figure

:::
??). wtiller showed a strong positive correlation with φtiller and rtiller indicating an overall positive correlation

among the parameters related to the plant-mediated transport. All the other parameters showed rather weak positive or negative

correlations.

4.2.1 Posterior parameter-process correlation685

As described in Section 2.2, the total CH4 flux simulated by LPJ-GUESS is calculated by summing up the component fluxes

from diffusion, ebullition and plant-mediated transport. The following discusses (based on the Figure ?? )the interactions

between the optimised process parameters and the component fluxes.

Moisture response,
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A larger value of Rmoist would likely result in a faster soil carbon turnover time, which makes more carbon available for690

CH4 production, hence a slight increase in emission. The weak positive correlation and regression slope of Rmoist with
:::
An

:::::::
increase

::
in

::
the

::::
fair:::::

value
:::::
would

:::::::
increase

:
all the flux componentscould be due to this enhanced turnover time.Rmoistanaerobic

had a positive ,
::::
with

::
a
::::::
notably

:::::
larger

:
effect on diffusion and a negative effect on plant-mediated transport. The positive effect

is because of the same reason of enhanced carbon turnover time, but the negative effect is due to the low plant root abundance

in saturated catotelm. Increase in Rmoistanaerobic contributed very less to the ebullition. This is most likely because of the695

negligible contribution of ebullition to the overall flux, having zero contribution for most of the time
::::::
(Figure

:::
??).

:::
As

::::::
stated

::
in

::::::
Section

:::::
2.2.3,

:::
the

:::::::::
diffusivity

:::
of

::::
CH4 ::

in
:::
air

::
is

::::
four

:::::
orders

:::
of

:::::::::
magnitude

::::::
greater

::::
than

::::
that

::
in

:::::
water,

:::::::::
indicating

:::
that

::
a
::::::
higher

::::::
fraction

::
of

:::
air

::
in

:::
the

::::
soil

:::::
results

::
in
:::
the

:::::
rapid

:::
and

::::
easy

::::::::
transport

::
of

::::
CH4:::

to
::
the

:::::::::::
atmosphere.

:::
The

::::::
larger

:::::::
increase

::
in

:::::::
diffusion

::::
can

::
be

::::::
directly

:::::::::
attributed

::
to

:::
the

:::
fair:::::

since
:::
this

:::::::::
parameter

:::::::
directly

::::::
controls

::::::::
diffusion.

Methane/carbon dioxide ratio,700

The very high positive correlation and regression slope of theCH4/CO2 parameter with diffusion and plant-mediated transport

(which are the two diffusive pathways) indicates that a large part of the total emission of CH4 are through these pathways.

Higher the value ofCH4/CO2, the more carbon is channelled into the CH4 pool. Especially the plants with a larger tiller radius

after the optimisation are able to transport more CH4 when there is more dissolved CH4 available
:::
The

:::::::
fraction

::
of

::::::::
available

::::::
oxygen

::::::
utilised

:::
for

::::
CH4::::::::

oxidation
::
is

:::::::::
determined

:::
by

:::
the

::::::::
parameter

:::::
foxid,

::::::
which

:::
has

:
a
::::::
higher

:::::
value

::::
after

:::
the

::::::::::
optimisation

::::::
(Table705

:::
??).

::::
The

::::
high

:::::
values

::
of

:::::
foxid:::

and
::::
fair,

:::::::::
indicating

:
a
::::
high

::::::::
available

::
air

::::::::
fraction,

:::
and

:::::
hence,

::::
high

:::
O2:::::::::::

concentration
:
in the soil. The

increase in ebullition is marginally less (smaller circle) than the other fluxes, most likely because ebullition is limited by the

availability of gaseous CH4, produced when the solubility reaches the maximum. However, the dissolved CH4 is first emitted

via diffusive fluxes; hence, there is very little CH4 left in the gaseous phase for ebullition.

Oxidation fraction,710

The fraction of available oxygen utilized for CH4 oxidation is determined by the parameter ,
:::::
result

::
in

:::
the

:::::::::
conversion

::
of

:::::
most

::
of

::
the

::::::::
available

::::::
carbon

:::
into

:::::
CO2.

::::
This

:::::
could

::::::
explain

:::
the

:::::
above

:::::::::
mentioned

::::::::
reduction

::
in

::::::::::
CH4/CO2 ::

as
:
a
::::::::
balancing

:::::
effect

:::::::::
(Equation

::
2).

::::
The foxid . It showed a negative correlation

:
β

:::::
value to diffusion and ebullition and a slight positive correlation

:
β

:::::
value

::::
with

:::::::::::
comparatively

::::
high

:::
R2

:::::
value

:
to plant-mediated transport

::::::
(Figure

:::
??). A decrease in diffusion and ebullition can be explained

by a greater fraction of available oxygen used
::
the

::::::::
increased

::::::::::
availability

::
of

:::::::
oxygen

:
for CH4 oxidationleading to less CH4 :

,715

:::::::
resulting

::
in

::::
less

::::
CH4:::::

being
:

emitted via ebullition. Significant
::
A

:::::::::
significant

:
decrease occurs in diffusion since

:::::::
because the

diffusive flux cannot circumvent
:::::
bypass

:
the top layer, into which oxygen diffuses. Direct explanation of

:::::::
Directly

:::::::::
explaining

the increase in plant-mediated transport is hard
::::::
difficult

:
due to the complex process formulation in the model, but, it should be

noted
:
.
::::::::
However,

:
it
::::

can
::
be

:::::::::
accounted

:
that the aerenchymas could transport a part of the oxygen deep down to the soil layers

where it plays less of a role in oxidation, but contributes more to the total gas pressure, which can escalate the passive plant720

mediated transport to the atmosphere.
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Transport,

As mentioned before the parameters
:::
The

:::::::::::
optimisation

::
of

:::::::::::
plant-related

:::::::::
parameters

:::::::
depends

::
on

:::
the

:::::::
specific

::::
plant

::::::
species

:::::::
present

::
in

:::
the

:::::::
wetland.

::
A

:::::
slight

::::::::
reduction

::
in

:::
the

::::::::
posterior

::::
mean

::::::::
estimate

::
of φtiller , rtiller and

::::::
suggests

::::
that

:::
the

:::::
tillers

::::
may

::
be

:::::::
slightly

::::
more

::::::::
compact,

::::
with

:::::::
reduced

:::::::
porosity

:::
for

::::
CH4:::::::::

transport.
::
A

::::::::::
considerable

:::::::::
reduction,

:::::
more

::::
than

:::
1/3

::
of

:::
the

:::::
prior

::::::::::
uncertainty,

::
is725

:::::::
observed

::
in

:
wtillerare positively correlated to each others. They are also positively correlated (with a positive slope) ,

:::::::::
indicating

:::::
lower

:::
leaf

:::::::
biomass

::::::
(Table

::::
??).

::::
This

::::::::
reduction

::
in

:::::::
potential

::::
leaf

:::::
cover

:::::
would

::::
lead

::
to
::::

less
::::::
carbon

:::::
added

::
to
:::

the
:::::::::

’potential
::::::
carbon

::::
pool’

:::
for

::::::::::::
methanogens,

::::::::
resulting

::
in

:::::
lower

::::
CH4:::::::::

emissions.
::
A
::::::::

decrease
::
in

:::::
tiller

::::::
weight

:::::
would

::::
add

::::
less

::::::
organic

::::::
carbon

:::
to

:::
the

:::
soil,

:::::::
leading

::
to

::
a

:::
less

::::::::
compact

::::
peat

:::::::::::
accumulation

::
in

:::
the

:::::::
bottom

:::
soil

:::::
layers

:::::
with

::::
more

::::::::
porosity

:::
for

:::::
water.

::::
This

:::::
could

:::::::
explain

::
the

::::::::
negative

:::::::::
correlation

:::::::
between

::::::
wtiller::::

and
::::::
porcato:::::::

(Figure
::::
??).

::
In

:::::::
contrast

::
to

:::
the

::::::
values

::
of

:::
the

::::
two

:::::::::::::::
above-mentioned

::::
CH4730

:::::::::::::
transport-related

::::::::::
parameters,

::::::
rtiller,

::::::
which

:::::::::
represents

:::
the

::::
tiller

::::::
radius

::
of

::::::
plants,

:::::::
showed

::
a
:::::
value

:::::
more

::::
than

:::::
twice

:::
the

:::::
prior

::::
value

::::::
(Table

::::
??).

::::
This

:::::::
increase

::::::::
indicates

:::::
more

:::::::::::::
cross-sectional

::::
area

::
of

::::
tiller

:::
for

::
a
:::::
given

::::::::
biomass,

:::::::
resulting

:::
in

::
an

:::::::
increase

:::
in

::::::::::::
plant-mediated

::::
CH4::::::::

transport
::::
(see

::::::::
Equation

:::
8).

::::::
These

::::
three

::::::::::
parameters

::::::
related

::
to
:::::::::::::

plant-mediated
::::::::

transport
:::::::
showed

::::::
strong

::::::
positive

:::::::::
correlation

:::::
with

::::
each

:::::
other.

::::
They

::::
also

::::::::
exhibited

:::::::
positive

::
β

:::::
values

:::
in

::::::
relation

:
to plant-mediated transport

::::::
(Figure

:::
??).

These parameters could
::
can

:
have two effects on the emissions: Having

::::::::
emissions.

:::
On

:::
the

:::
one

:::::
hand,

::::::
having

:
aerenchyma cells735

with more porous space, radiusand biomass, on the one hand, enhances the
:
,
::::
and

:::::::
biomass

::::::::
enhances

:
CH4 transport to the

atmosphere, but on .
:::
On

:
the other hand, through the same spacious aerenchyma cells, it is also possible for plants to transport

more O2 to the soil. This enhanced O2 transport to the soil could be the reason for the
::::::
explain

:::
the slight reduction in diffusion

and ebullition observed in the cases of φtiller and wtiller.

Fraction of air and porosity,740

The slightly positive posterior value fair increased all the flux components with a comparatively larger effect on diffusion.

As stated above,
:::
The

::::::::
posterior

:::::
value

:::
for

:::
the

:::::::
porosity

::
in

:::
the

::::::::
catotelm

::::::::
(porcato)

::::
was

::::::::::
significantly

:::::
lower

::::
than

:::
the

:::::
prior

::::::
(Table

:::
??),

:::::::::
suggesting

::
a
:::::
more

:::::::
compact

::::::::
catotelm

::::
with

::::
less

:::::
water

:::
(as

::
it

::
is

:::::::
assumed

::
to

:::
be

:::::::::
saturated).

::::
This

:::::::
change

:::::
could

::::
have

::
a

::::
dual

:::::
effect

::
on

:::::
CH4.

:::::::::
Variations

::
in

:::::
water

::::::
content

::::
can

:::::::
slightly

:::::
affect

:::
soil

:::::::::::
temperature,

:::::::::
potentially

:::::::
leading

::
to

::
an

::::::::
increase

::
in

:::
the

::::
flux

:
if
:::
the

::::::::::
temperature

:::::
rises,

:::
or

:
a
::::::::
decrease

::
in

:::
the

::::
flux

:::
due

::
to

:::
the

::::::::
compact

::::
peat.

:::
As

::::::::
described

::
in
:::::::

Section
:::::
3.2.1,

:::
the

:::::::
porosity

:::
of the745

diffusivity of CH4 in air is four orders of magnitude larger than that in water, indicating fast and easy transport of CH4 to

the atmosphere. The slight increase in diffusion could be the direct influence of fair as this parameter is the main controlling

parameter of this component flux in the model.

:::::::
acrotelm

::::::::
(poracro)

:::::::::
remained

::::::::::
unchanged,

:::::::::
indicating

::
no

::::::::
changes

::
in

::::::::
acrotelm

:::::::
porosity

::::::
(Table

::::
??).

::::
The

::::::::
positive

:::::::
kurtosis

:::::::
observed

::
in
::::

the
::::
PDF

::
of

::::
this

::::::::
parameter

::::::::
indicates

::
a
::::::::::::::
well-constrained

:::::
single

::::::::
solution,

:::::
while

:::
the

:::::::
negative

::::::::
skewness

::::::::
indicates

::
a750

::::
more

:::::::::::
probabilistic

:::::
region

:::::
below

:::
the

::::::::
posterior

::::::::
estimate. Similar to fair, the poracro also had a posterior value that increased the

fluxes from all components
:::::::
exhibited

:::::::
positive

::
β

:::::
values

:::
for

:::
all

:::
flux

:::::::::::
components,

:
but with a rather low correlation. The reason

for this is, as explained above, that a larger parameter value means a higher amount
:::::::
relatively

::::
low

:::
R2

::::
value

:::::::
(Figure

::::
??).

::::
This

::::::
positive

::::::::::
relationship

::::
may

::
be

::::::::
attributed

::
to
:::
the

::::::::
increased

::::::::
presence of air in the soil and hence more ebullition

:::::::
acrotelm

:::
soil,

::::::
which
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::::
could

::::::::
facilitate

::::
CH4:::::::::

emissions. In contrast, the
::
an

::::::::
increase

::
in porcato slightly reduced the

:::::
could

::::
lead

::
to

:
a
:::::
slight

:::::::::
reduction

::
in755

ebullition. This could be because more water can potentially occupy the pores of permanently saturated catotelm which will

indirectly affect ebullition through phase change and by affecting on soil temperature.

Decay length,

:::
The

::::::::
posterior

::::
value

:::
for λroot :

is
::::::::
estimated

::
to

:::
be

::::
much

:::::::
smaller

:::
than

:::
the

:::::
prior

::::::
(higher

::::
than

::
the

:::::
value

:::::::
reported

::
in

::::::::::::::::
Wania et al. (2010)

:::
and

::
in

::::::::::::::::::
Susiluoto et al. (2018)

::
),

:
i.
::
e.

:::::
more

::::
than

:::
1/3

::
of

:::
1σ

::
of

:::
the

:::::
prior

:::::::
estimate

::::::
(Table

:::
??).

:::::
This

::::
small

::::::::
posterior

:::::
value

:::
for

:::::
λroot760

:::::::
indicates

::
a

:::
low

:::::
decay

::::::
length

::
of

::::
root

:::::::
biomass

::
in

:::
the

::::
soil,

::::::
means

::::
more

:::
of

:::
the

::::::::::::
decomposition

:::
and

:::::
CH4 :::::::::

production
::::::
occurs

::
in

:::
the

:::::::
acrotelm,

::::
and

::::
less

::
in

:::
the

::::::::
catotelm.

::::
The

::::::::
emission

::
of

::::
CH4::::::::

produced
::::::
mainly

:::
by

::::
peat

:::::::::::::
decomposition

::
in

:::
the

::::::::
acrotelm

:::::
would

:::
be

::::::::
facilitated

:::
by

:
a
::::
low

:::::::
posterior

:::::
value

:::
for

:::::
λroot,:::::

with
::::::
around

::::
60%

::
in

:::
the

::::
first

::::
layer

:::
of

:::::::
acrotelm

::::::::
followed

:::
by

::::
22%

:::
and

::::
8%

::
in

:::
the

::::::
second

:::
and

::::
third

:::::
layers

::
of

::::::::
acrotelm.

:::::
λroot played a key role in this optimisation. Figure ?? showed

:::::
shows that λroot has a strong

negative regression slope to
:
β

:::::
value

::
for

:
diffusion and a weak positive regression slope to

::
β

::::
value

:::
for

:
plant-mediated transport.765

The value got reduced considerably (higher than the value reported in Wania et al. (2010) and in Susiluoto et al. (2018))after

the optimisation and resulting in a much shallower soil profile for most of the root decay. As
:
,
::::
both

::::
with

::::::::
relatively

::::::
strong

:::
R2

:::::
values

::::::
(Figure

::::
??).

:::::
Since most of the peat decomposition activities are assumed to happen in acrotelm

::::
occur

::
in

:::
the

::::::::
acrotelm, the

reduction in the magnitude of λroot facilitated
:::::
could

:::::::
facilitate

:
diffusion, especially as it is the largest component. On the other

hand, the plant-mediated transport got
::::
could

:::
get

:
reduced due to the reduction in the root depth controlling

::::::::::::::
depth-controlling770

parameter λroot.

4.2.1 Posterior flux components

In Figure 13, the time series of process components are
:
is
:
shown for the posterior mean estimate. In general, the optimisation

of the model parameters leads to around
::
an

::::::::::::
approximately 50% decrease in the production of CH4 compared to the prior, with a

considerable
::::::::
significant reduction in plant-mediated and ebullition components, leaving diffusion as the dominant component.775

Diffusion
:
is
:
reduced by around 30%and the

:
,
:::
and

:
plant-mediated transport reduces around

::
is

:::::::
reduced

::
by

::::::::::::
approximately

:
86%.

The low contribution of plant transport is mainly due to the low
::::::
reduced value of the root depth controlling

::::::::::::::
depth-controlling

parameter λroot, which got reduced
::::::::
decreased from 25.17 to a value of 10.58. This lower proportion of the

::::::
smaller

:::::::::
proportion

::
of plant-mediated transport is however

::::::::
somewhat

:
surprising for a fen wetland site like Siikanevawith the greater ,

::::::
which

::::::
features

::
a

::::::::
significant

:
aerenchymous leaf area throughout the growing season. The result is contradictory to the results obtained780

from optimising the model sqHIMMELI
:::::::::
HIMMELI

:::::
model

:
(Susiluoto et al., 2018), in which the largest fraction of CH4 is

contributed by the plant-mediated transport. However, from the field experiments conducted at Siikaneva to estimate the
::
to

:::::::
estimate plant-mediated transport , Korrensalo et al. (2022) has

::
by

::::::::::::::::::::
Korrensalo et al. (2022)

:::
have

:
observed a smaller proportion

of the ecosystem scale CH4 efflux
:::::::::::::
ecosystem-scale

::::
CH4::::

flux attributable to plant CH4 transport in the Siikaneva fen site, which

is well in agreement with the result we observed.
::::
This

::::::::::
observation

:::::
aligns

::::
well

::::
with

:::
the

::::::
results

:::
we

:::::::
obtained.785

The largest reduction, however, was for ebullition by around 92%. This result is not surprising since Wania et al. (2010), who

provide the basic foundation of the CH4 model in LPJ-GUESS, also reported almost virtually no ebullition to the surface at
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Figure 13. Time series for diffusion, ebullition, and plant transport using parameter values from the posterior mean estimate. A few outliers

above 0.08 gCm−2 on the vertical axis have been removed from the figure for the better visualisation.

several sites. Figure 13 shows that during the years 2008, 2010 and 2012, there is no ebullition
::
no

::::::::
ebullition

::
is
:
estimated. Here,

it should also be considered that the representation of ebullition in LPJ-GUESS is somewhat simplified as it is represented by

a curve fitting equation for calculating
:::::
using

:
a
:::::::::::
curve-fitting

:::::::
equation

::
to

::::::::
calculate the solubility, and

:::::
using the ideal gas law is790

applied to convert the volume of CH4 per volume of water into the corresponding number of moles. Due to this lack of detail

and its fast timescale occurrence (mostly depends on the physical parameters such as temperature and pressure)
:
, and with no

relevant parameters in the control vector, the optimisation could not alter the ebullition component directly. But on the other

hand, the
:::::::
However,

:
ebullition is indirectly controlled by parameters related to CH4 production and transport when there is high

saturated CH4 available in the soil water, and thus
:
.
:::::
Thus, the optimisation can change the ebullitioncomponent indirectly. The795

overall total of the
:::::::
indirectly

:::::
affect

::::
the

::::::::
ebullition.

::::
The

::::
total

:
observed CH4 flux from Siikaneva during the period of 2005 to

2014 was 56.0 gCm−2, and the prior estimate of the model
:::::
while

:::
the

::::
prior

::::::
model

:::::::
estimate

:
was 98.5 gCm−2 (Table 6). After

the optimisation, with the posterior mean estimate of parameter values, the model estimated
:
a flux of 53.5 gCm−2 with an

estimated posterior uncertainty of ∓ 4.82
:::::::
gCm−2. This shows a reduced model-data error after optimisation with a difference

of only 2.5 gCm−2.800

4.2.2 Posterior process-process correlation

After the optimisation, the air fraction in the peat got increased, which is likely the cause of the enhanced diffusion. Diffusion

is estimated in the model based on the soil porosityand
:
, water, temperate and air fractions in the soil. Correlating the diffusion

to the ebullition showed a negative result, i. e. illustrating the dominance of diffusion over ebullition under more air in peat (see

Figure ??b). A larger air fraction in the soil can also lead to an increase in plant-mediated emissions
:::::::
emission

:
as the passive805

diffusion of air through the plant tissues depends on the amount of air in the soil/peat water (see Section 2.2.3). This can be

seen in Figure ??b as a comparatively high correlation between diffusion and plant-mediated transport. The increased tiller
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Table 6. Total emission
:::::::
emissions

:
from flux components

::
for

::
all

:::
ten

::::
years

:
estimated from

::
the MAP

:
, posterior mean

:
, and prior parameter

values for the optimisation
:::::::::
optimization time period. The unit is in gCm−2.

Component MAP Posterior mean Prior Observation

Diffusion 49.5 49.6 70.7

Ebullition 0.15 0.28 4.1

Plant-mediated 3.5 3.7 23.6

Total 53 53.5 98.5 56.0

radius rtiller in plants increases the Atiller value (Equation 8), and hence also favours faster diffusion through the aerenchyma

cells. Ebullition is positively correlated to plant-mediated transport, indicating the occurrence of both these components when

there is a high concentration of CH4 in the soil. This occurs when the water table is located close to the surface and when810

there are more
:
is
::

a
::::::
higher

::::::
density

::
of

:
graminoids. An increase in plant-mediated transport of gases to the soil increases the net

pressure imposed by the gases in soil/peat water, which likely leads
:::::
could

::::
also

:::
lead

:
to increased ebullition.

4.3 Model error and fit to the observation

The annual mean errors for the prior parameter values, MAP, and posterior mean values are shown in Figure 11 as one std
::
std.

Except for ebullition, all the prior process components exhibited larger variances of the annual errors compared to the posterior815

estimates. The plant-mediated transport is the component with the largest error in the prior estimate. The posterior error

estimates for this component showed nearly equal values with a slightly higher value for the posterior mean estimate. A similar

pattern can also be seen for diffusion. In contrast to this, the MAP error estimate for ebullition showed a higher value compared

to the posterior mean error but interestingly also to the prior. The posterior mean error estimate for ebullition showed the lowest

value.820

The annual
:::::
sums

::
of flux components mentioned above are illustrated in Figure 10a. It is clear from this figure that the prior

process components had large inter-annual variance, especially for the first three years and last year. Considerable reduction

in variance is observed for both the MAP and posterior mean estimates. The reduction of the variance observed in posterior

estimates is not proportional to the prior, but still, the posterior estimates showed comparatively high variance in the first and

last years. In Figure 10b (as described in Section 3.2.4) the posterior mean estimate shows a comparatively high variance825

(w.r.t the MAP estimate) of the annual errors with a negative bias throughout the time period. In contrast to this, the MAP

estimate showed a positive bias throughout the time period. Compared to the posterior mean estimate, the MAP estimate

has considerably larger parameter values for the φtiller and rtiller which could possibly be interpreted as slightly more CH4

emission through the increased tillers of plants, hence the reason for the positive bias of the MAP estimate. Figure 11 also

indicates a high percentage of annual plant-mediated emissions for the MAP estimate. The negative bias of the posterior mean830

estimate could be due to the additional wintertime emission from the real-world wetlands, which is not captured in the model. In
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the model, the emissions start around early summer, once the soil is not frozen anymore. In addition, the large daily variability

in the observations of the summertime fluxes is also not represented in the model. Overall the posterior estimates of the annual

fluxes are in good agreement with the observations leading to a small model-data mismatch for both MAP and posterior mean

estimates.835

4.4 Model inputs and uncertainty

After the optimisation, the model result showed a small underestimation of the cumulative emission between 2005-2014 around

2.5 gCm−2. One
::
As

:::::::::
mentioned

::
in

:::
the

:::::::
Section

::::
4.1,

:
a
:::::::::

somewhat
::::::::::
pronounced

:::::::::
systematic

::::::::::::::
underestimation

::
in

:::::::::
emissions

::::
was

:::::::
observed

::
in

:::
the

:::::
years

:::::
2010,

:::::
2012,

::::
and

:::::
2013.

:::::
None

::
of

:::
the

::::
twin

::::::::::
experiments

::::::::
exhibited

:::::
these

:::::::::
systematic

::::::
errors,

:::::
which

::::::::
indicates

:::
that

:::
the

:::::
issue

:::::
could

:::
be

::::::::
attributed

::
to

::
a
::::::::
structural

::::::
model

::::
error

::::
(see

::::::
Figure

:::
3).

::::::
While

:::
the

::::
CH4:::::::

module
::::::
within

:::::::::::
LPJ-GUESS

::
is840

:::::::
relatively

:::::::::::::
comprehensive

:::::
when

::::::::
compared

::
to

:::::
many

:::::
other

::::::
similar

:::::::
models,

:::
the

:::::::
model’s

::::::
process

:::::::::
description

::::
and

::::::::::::::
parameterisation

::::::
remain

:::::::::
incomplete.

:::
For

::::::::
instance,

::
in

:::
the

:::
real

::::::
world,

::::
wind

:::::
plays

:
a
::::::
crucial

:::
role

::
in

::::
CH4::::::::

emissions
::::
and

::
its

::::::::::
atmospheric

::::::::::::
concentration.

::::::::
However,

::
in

::::::::::::
LPJ-GUESS,

::::
wind

::::::
speed

::
is

:::
set

:::
to

::::
zero

:::
for

:::::::::
modelling

:::::::::::
convenience,

::::::
which

::::::::
presents

:
a
::::::::::

significant
:::::::::
limitation.

::::::::
Similarly,

:::
the

::::
lack

::
of

::::::::::::
representation

::
of

:::
air

::::::::
pressure,

::::::::
simplified

::::::::::::
representation

:::
of

::::::::
ebullition

::::
(see

::::::
Section

::::::
4.2.1)

:::
and

:::::::::
simplified

:::::::::::
representation

:::
of

::::
CH4 :::::::::

production
::::
(see

:::::::
Equation

:::
2)

:::
are

:::
also

::
a
:::::
major

:::::::::
limitation.

:::::::
Another reason for this mismatch could be the845

daily variations in the input climate data. The model is unable to represent peak emissions caused by the micro-environmental

changes.
::::::::
correlation

:::::
plots

::
of

:::
the

:::::
input

::::::::::::
environmental

:::::::
variables

:::
of

::::::::::
LPJ-GUESS

::::
and

:::
the

::::
CH4::::::::

residuals
:::::::::::
(Supplement

:::::
Figure

:::
3)

::::::
indicate

::::
that,

::
in

:::::
these

:::::
years,

::
it

::::::
showed

::
a

:::::::::::
comparatively

:::::
high

:::::::::
correlation

::::
with

::::
swr

:::
and

:::
air

::::::::::
temperature,

::::::
though

:::::::::::
precipitation

:::
did

:::
not

::::
show

::::
any

::::::::
significant

::::::::
relation.

:::
The

::::::
results

::
of

:::
the

:::::::::
sensitivity

:::::
study

::::::
indicate

::::
that

::::
both

:::
the

::::
prior

::::
and

:::::::
posterior

::::::
model

::::::::
estimates

::
are

:::::::::::
significantly

:::::::
sensitive

:::
to

:::
the

::::
input

:::::::::
variables.

::::::::
However,

:::
the

:::::::
posterior

::::::
model

:::::::
estimate

::::::::
exhibited

::
a
::::::::::
considerable

:::::::::
reduction

::
in850

::::::::
sensitivity

:::::::::
especially

:::
for

:::
swr

::::
and

::::::::::
precipitation

::::
(see

:::
S5

:::
and

::::::
Figure

:
5
::
in
::::::::::::
Supplement).

As mentioned in Wania et al. (2010), the flux components are
:::::::::
determined

:::
by complex processes that depend on changes in

many environmental factors.
::::
The

:::::
model

::
is

::::::
unable

::
to

::::::::
represent

::::
peak

:::::::::
emissions

::::::
caused

::
by

:::::
these

:::::::::::::::::
micro-environmental

::::::::
changes.

For instance, ebullition (one of the more complex CH4 emissions processes in LPJ-GUESSas shown
:
,
::
as

::::::::
explained

:
in previous

sections) depends on
::
the

:
volumetric content of wind and various gases. and ,

:
hydrostatic and atmospheric pressure, but the855

model is not using
:
.
::::::::
However,

:::
the

:::::
model

::::
does

:::
not

:::
use

:
them as forcing

:::::::
variables. Ebullition is also affected by the concentration

of CH4 and the density of nucleation sites, which are difficult to represent in the model. Apart from these potential bias

contributors, the CENTURY soil scheme and soil temperature and hydrology calculations used in the model also contributes

to the uncertainty in the model predictions.

:
It
::::::
should

:::
be

:::::::::
considered

::::
that

:::
the

:::::
state

::::::
vector

::::
used

:::
for

:::::::::::
optimisation

::
is

:::::::::
somewhat

::::::::::
incomplete,

::::::
which

:::::
might

:::::
have

:::::::
affected860

::
the

:::::::::
optimised

::::::
model

:::::
result.

::::
The

:::::::
process

:::::::::::::
representations

::
in

:::::::::::
LPJ-GUESS

:::
are

::::::::
complex

:::
and

:::::::::::::
interconnected,

:::::
with

:
a
:::::::::

multitude

::
of

:::::::::
parameters

:::::::
directly

::
or

::::::::
indirectly

::::::
linked

::
to

::::
CH4::::::

fluxes.
:::::::::::
Representing

::::
the

::::::
indirect

::::::::::
parameters

:::
can

:::
be

:::::::
intricate,

:::
as

::::
they

::::
may

::::::
depend

::
on

:::::
other

:::::
fluxes

:::
or

:::::
model

:::::::::::
components.

:::
For

::::::::
instance,

:::::::::::
LPJ-GUESS’

::::
soil

::::::
module

::
is
:::::::::
intricately

:::::::::
connected

::
to

:::
the

:::::::
Century

::::::
model,

::::::::
featuring

::::
ten

:::
soil

:::::::::::::
compartments.

::::::::::
Introducing

:
a
:::::::::
parameter

::::::
related

::
to

::::
soil

::::::::::
temperature

::
or

:::
the

::::
wtd

::::
into

:::
the

::::::::::
framework

:::::
would

:::::::::
necessitate

:::::::::
accounting

:::
for

:::
the

:::::::::
intricacies

::
of

:::
the

:::::::
Century

::::::
model.

:::::::::::
Furthermore,

:
it
:::::
might

::::::
require

:::
the

::::::::
inclusion

::
of

:::::::::
additional865
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:::
flux

:::::::
species,

::::
such

:::
as

:::
Net

:::::::
Primary

:::::::::
Production

:::::::
(NPP),

:::
Soil

:::::::::::
temperature

:::::::
profiles,

::
or

::::
wtd.

::::
This

::::::
would

:::::::::::
significantly

:::::::
increase

:::
the

:::::::::
complexity

::
of

:::
the

::::::::
problem,

:::::::::
exceeding

:::
the

:::::
scope

::
of

:::
this

::::::
paper. Given these caveats, the small negative biases obtained for the

posterior mean estimates when compared with the observation
:::::
against

:::
the

:::::::::::
observations (see Figure 10 b) are reasonable when

considering the quality and uncertainty of the input data used (see Section 2.1)
::
and

::::
the

:::::::::
complexity

::::
and

::::::::
structural

:::::
issues

:::
of

::::::::::
LPJ-GUESS.870

4.5 Optimised simulation from LPJ-GUESS

A detailed time series distribution of prior and posterior model simulations plotted against the observation
::::::::::
observations is

shown in Figure 12. The posterior model predictions were adjusted by the optimisation to capture the observation
::
fit

:::
the

::::::::::
observations

:
with considerable adjustment to the summer peaks. For example, the large peaks in the modelled emissions in

2005 and 2006, which largely contributed to the prior cost function, disappeared in the posterior emissions. In the following875

years, 2007 and 2008, the prior model simulations underestimated the observation, which also got corrected in the posterior.

Also, the posterior emissions largely capture the comparatively high peaks in the observations for the years 2010 and 2012,

though the model still underestimated the observation
:::::::::::
observations. In 2013, the observations were high and the optimisation

failed to capture this peak; rather, it tried to compensate for the underestimation by releasing a sudden high spike at the end

of the summer that year. In winter months, the model simulated zero fluxes (as discussed before), whereas, the observations880

showed a small emission (around 8.3 % of the assimilated total), often with some small spikes possibly from the ebullition.

This inability of the model to capture the wintertime emission has contributed to the posterior model uncertainty and model

data misfit.

:
A
::::::::::

significant
::::::::
mismatch

::
in

::::
soil

::::::::::
temperature

::::
and

::::
wtd

:::
has

:::::
been

::::::::
observed

:::::::
between

:::
the

::::::
model

::::
and

:::::::::::
observations,

:::::::::
especially

:::::
during

:::
the

::::::::::
wintertime

::::
(see

::
S4

::::
and

::::::
Figure

::
4

::
in

:::::::::::
Supplement).

::::
The

::::::
model

:::::
tends

::
to

:::::::::::
overestimate

:::::::::
wintertime

:::::::::::
temperatures

::::
and885

:::::::::::
underestimate

:::
the

:::::::::
wintertime

:::::
wtd,

::::::::
indicating

::::::::::
completely

:::::
frozen

::::
soil

::::
with

:
a
::::
very

::::
low

::::
wtd.

::::
This

::::::::::
discrepancy

:::::
could

:::
be

:
a
::::::
reason

::
for

:::
the

::::::::
complete

::::::::::
suspension

::
of

::::::
model

::::
CH4:::::::::

emissions
:::::
during

::::
the

::::::
winter.

:::::::::::
Observations

:::::
show

:::::
many

::::
days

::::
with

::::
wtd

::::::
above

:::
the

::::::
ground

:::::
level,

::::
both

::
in
::::::::

summer
:::
and

:::::::
winter.

:::::
Since

::::
wtd

::
is

::
a
:::
key

::::::
factor

::::
that

:::
can

:::::
affect

:::
all

::::
flux

:::::::::::
components,

::::
this

::::
error

::::::
could

::::::::
contribute

::
to

:::
the

::::::
misfits

::::::::
observed

::::
after

:::
the

:::::::::::
optimisation,

::::::
though

::
it

::::::
cannot

::::::
explain

:::
the

:::::::::
systematic

:::::
under

:::::::::
estimation

::::::::
observed

::
in

:::::::
posterior.

::
It
::::::
should

::
be

:::::
noted

:::
that

:::::
there

:::
are

::
no

:::::::::::
considerable

:::::::::
differences

:::::::
observed

::::::::
between

::
the

:::::
prior

:::
and

:::::::
posterior

::::
soil

::::::::::
temperature890

::
or

::::
wtd.

As discussed in Section 4.2.2, the contribution of ebullition to the posterior estimate is comparatively negligible. Compared

to the posterior, there were many emissions spikes observed in the prior estimate, especially during the beginning and the end

of the summer months. Apart from these spikes the prior CH4 estimates during the summer were a bit low in most of the years.

The posterior estimate has considerably reduced these high spikes and adjusted the summer peaks to match the observation895

::::::::::
observations better. On the other hand, while compromising with the summer peaks in the observation, the optimized parameter

:::::::::::
observations,

:::
the

:::::
model

::::
with

:::
the

:::::::::
optimized

:::::::::
parameters

:
often failed to capture the abrupt high fluxes in the daily observation

and simulated them at slightly wrong times. The spike shown at the end of 2013 is an example of such a mis-timing. This is

likely to be caused by errors in the meteorological input data and missing wind and pressure
::::::::::::
representation.
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It can be seen from the Figure 12 that the majority of the observations lie within the 95 % confidence interval of the posterior900

estimate. Often the observation uncertainty overlaps the confidence interval except for the summer peak times of 2010, 2012

and 2013, in which the observation
::::::::::
observations showed strong peaks compared to the average values. The few outliers in the

observations are not captured by the model; these could likely be measurement artefacts and/or due to environmental forcing

not considered here, again such as wind speed or air pressure.

4.6
:::::

Merits
::::
and

::::::::::::
shortcomings

::
of

:::::
G-RB

::::
AM

::::::::::
framework905

:::::::::
Advantages

:::
of

::
the

:::::::::
developed

:::::
G-RB

::::
AM

:::::::::
framework

:::::::
includes

:::
the

::::::
ability

::
of

:::::::
MCMC

::::::
method

::
to

::::::
escape

:::::
local

::::::
maxima

:::
or

:::::::
minima,

::::::
making

::
it

::::
more

::::::
robust

::
to

:::::
these

::::
than

:::::::
gradient

:::::::
descent

:::::
based

::::::::
methods.

::::::
Further

::::
the

::::::
MCMC

:::::::
method

::
is

::::::::
derivative

::::
free

::::::::
avoiding

:::::
issues

::::
with

:::::::::
computing

:::::::
gradients

:::
for

::::
very

:::::
rough

::::::::
functions

:::
and

:::
the

:::::::
adaptive

::::
part

::
of

::
the

:::::::
MCMC

:::::
learns

:::::
about

::::::::
parameter

::::::::::
correlations

:::
and

::::::
utilises

:::::
these

:::::::::::
dependencies

::
in

:::
the

:::::::
proposal

:::::::
allowing

::
it

::
to

:::::
better

::::::
explore

:::
the

::::::::
parameter

::::::
space.

:::::::
Potential

:::::
issues

:::
for

:::
the

:::::::
MCMC

:
is
::::
that

::::
very

::::::
uneven

::::
cost

::::::::
functions

:::
can

::::
lead

::
to

:::
the

::::
chain

::::::
getting

:::::
stuck

::::::::::
(essentially

:::
the

::::
local

:::::::
minima

:
is
:::
too

:::::
deep

:::
for

::
the

:::::::::
algorithm910

::
to

:::::::
escape).

::::
Here,

:::
we

::::
have

:::::::::
alleviated

:::
this

:::::
issue

::
by

:::
the

:::::::
tapering

::
of

:::
the

::::
cost

::::::::
function.

:::
We

:::
also

:::::::::::
acknowledge

::::
that

:::
the

::::
cost

:::::::
function

::::
could

:::
be

::::::::
improved,

:::
the

:::::::
squared

::::
cost

:::::::
function

::::::::
essentially

::::::::
assumes

:::::::
Gaussian

:::::
errors

::::
with

:::::
equal

:::::::
variance

:::
for

:::
all

:::::
values

:::
and

:::::::
ignores

:::
any

:::::::
temporal

:::::::::::
correlations.

:::
The

:::::::::::
observations

:::
are

::::::::
measured

::
as

:::::::::
time-series

:::
and

:::::::::::::::
concentration/flux

:::::::::::
observations

:::
are

::::::
known

::
to

::::
have

::::::
relative

::::::
errors,

:::
i.e.

:::::
larger

:::::::::::
observations

::::
have

:::::
larger

::::::::::::
observational

::::::::::
uncertainty.

::::::::
Adapting

:::
the

::::
cost

:::::::
function

::
to

:::::::
account

:::
for

:::::
these

:::::
factors

::::::
would

::
be

::
of
:::::::

interest
:::
and

::
is
:::::
likely

::
to

::::
have

::
a
:::::
larger

::::::
impact

:::
on

::
the

::::::::
posterior

:::::::::
parameter

::::::::::
uncertainties

::::
than

:::
on

:::
the

::::::::
estimates915

::
of

:::
the

:::::::::
parameters.

:

5 Conclusions

This study marks the
::::::::
represents

::
an

:
initial effort to optimize the model process parameters controlling the simulation of wetland

CH4 fluxes within the LPJ-GUESS model using the Rao-Blackwellised adaptive MCMC technique based on Bayesian statis-

tics. The assimilation framework has been shown to be able to retrieve correct parameter values by performing a set of twin920

experiments. Furthermore, we used eddy-covariance flux measurement data from a boreal wetland to calibrate the LPJ-GUESS

model parameters for a site-specific simulation. The results demonstrated that the fit to the observation of the CH4 simula-

tion of a complex terrestrial DGVM like LPJ-GUESS can be systematically enhanced with a Bayesian parameter calibration.

The results also showed that the modelled processes and the estimated parameters were well constrained by the observations

leading to a substantial reduction in the posterior uncertainty of the simulated CH4 emissions. The results of the re-sampling925

experiment indicated that there were no redundant processes in the model description, as shown by the parameter and process

correlations.

The robustness of the assimilation framework developed in this study calls for further application of the framework using

observations from multiple sites in a simultaneous assimilation. Further validation of the framework’s performance is neces-

sary to confirm its applicability to other sites with diverse plant functional types and climatic conditions. The relatively strong930

roughness in the shape of the cost function observed in this study is expected to be reduced in a multi-site assimilation experi-
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ment, as has been observed by Kuppel et al. (2012), which would allow the retrieval of the global minimum of the cost function

more easily. These further applications are beyond the scope of this paper and will be investigated in future studies.
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