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Abstract. The processes responsible for methane (CHy4) emissions from boreal wetlands are complex, and hence their model
representation is complicated by a large number of parameters and parameter uncertainties. The arctic-enabled dynamic global
vegetation model LPJ-GUESS is one such model that allows quantification and understanding of the natural wetland CHy
fluxes at various scales ranging from local to regional and global, but with several uncertainties. The model contains detailed
descriptions of CH, production, oxidation, and transport controlled by several process parameters.

Complexities in the underlying environmental processes, warming-driven alternative paths of meteorological phenomena,
and changes in hydrological and vegetation conditions highlight the need for a calibrated and optimised version of LPJ-GUESS.
In this study we formulated the parameter calibration as a Bayesian problem, using knowledge of reasonable parameters val-
ues as priors. We then used an adaptive Metropolis Hastings (MH) based Markov Chain Monte Carlo (MCMC) algorithm to
improve predictions of CHy emission by LPJ-GUESS and to quantify uncertainties. Application of this method on uncertain
parameters allows greater search of their posterior distribution, leading to a more complete characterisation of the posterior dis-
tribution with reduced risk of sample impoverishment that can occur when using other optimisation methods. For assimilation,
the analysis used flux measurement data gathered during the period 2005 to 2014 from the Siikaneva wetlands in southern Fin-
land with an estimation of measurement uncertainties. The data are used to constrain the processes behind the CH4 dynamics,
and the posterior covariance structures are used to explain how the parameters and the processes are related. To further support
the conclusions, the CHy4 flux and the other component fluxes associated with the flux are examined.

The results demonstrate the robustness of MCMC methods to quantitatively assess the interrelationship between objective
function choices, parameter identifiability, and data support. The experiment using real observations from Siikaneva resulted in
a reduction of RMSE from 0.044 ¢Cm 2 d~' t0.0.023 ¢Cm 2 d~! along with a 93.89% reduction in the cost function value,

As a part of this work, knowledge about how the CH, data can constrain the parameters and processes is derived. Though the
optimisation is performed based on a single site’s flux data from Siikaneva, the algorithm is useful for larger-scale multi-site
studies for more robust calibration of LPJ-GUESS and similar models, and the results can highlight where model improvements

are needed.
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1 Introduction

CHy, is the second most important long-lived greenhouse gas after carbon dioxide (CO,) (Ciais-et-alk(2043); Kirsehkeet-al-2013)
HCiais et al., 2013; Kirschke et al., 2013). It has been reported that the global atmospheric CH4 concentration has been grow-
ing since the pre-industrial time. In 2021 it reached a value of 1908 parts per billion (ppb), nearly 2.62 times greater than
its estimated value in 1750 (Dlugokencky, 2021). This increase in the atmospheric concentration of CHy is responsible for
around 16.5 % of the total effective radiative forcing (in W m~2) of the well-mixed greenhouse gases (IPCC AR6: Forster
et al. (2021)). Despite-itsrelati i : i

Among the biogenic sources, wetlands contribute around 19-33% of current global terrestrial CH4 emissions and are the

largest and the most uncertain (Kirsehke-et-al-2043):-Saunoeiset-al-(2020); Bousquet-et-al-2006)(Kirschke et al., 2013; Saunois et al., 2

. Wetlands occupy around 3.8% of the Earth’s land surface and are mainly located in high latitude regions. There is approxi-

mately 455 Pg of carbon stored in boreal and subarctic wetland peat/histosolswhich-is-aceumulated-by-absorbing-atmespherie
€O by plants-as-part-of their photosynthesis(Gorham;+991)—. Under long-term anaerobic soil situations, this carbon will be

metabolised by the anaerobic microorganisms called methanogens and will eventually be emitted back as CHy to the atmo-
sphere (Aurela et al., 2009).

In the future, climate change may cause a positive feedback on emissions from wetlands CH4 due to a warmer and wetter
climate Johansson-etal(2006); Bridgham-et-al(2668))(Johansson et al., 2006; Bridgham et al., 2008). According to Zhang
et al. (2017) at the end of the twenty-first century, 38-56% of the CH, production from the wetlands would be climate change
induced. It is also expected to have increased uncertainty in CH4 emission from boreal wetlands (Christensen et al., 2007) partly
due to expected spatio-temporal changes in wetland extent (Saunois et al., 2016). Considering the fragility of boreal wetlands
and-the-possibility-that they-fail-to-maintain-their-stability-in a changing environment (Jacob et al., 2007), one way to quantify
their carbon budget is to model their carbon dynamics, including their-CH4 emission. Realistic and optimised process-based
vegetation models can be used to reach a more precise estimation of emission variability and trends. However, representa-
tion of the complex biogeochemical processes, including soil carbon turnover, vegetation dynamics, hydrology, soil thermal
dynamics, and defining wetland boundaries are complex, so, estimating the contribution from multiple pathways for CHy

production, consumption, and release complicates wetlands CHs modelling (Melton-etal+2043);—Wania-et-al(2010,2013)
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varying-degrees-of complexity-(Ahti et al., 1968 2010, 2013; Susilu 2018).
The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) (Smith et al., 2014) is one of a few available process-

; Wania et al. oto et al.

3

P

based dynamic global vegetation model (DGVM) that simulates local to global vegetation dynamics and soil biogeochemistry
Smith-(2001);-Siteh-et-al+2003))(Smith, 2001; Sitch et al., 2003). Taking the information about the climate and concentration
of CO, in the atmosphere, it predicts the structural, compositional, and functional properties of the native ecosystems of major
climate zones of the Earth. Considering the complexity of LPJ-GUESS with its large number of uncertain process parameters

the model requires a mathematically robust framework for parameter optimisation (Wramneby et al., 2008). Data assimila-
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tion using Bayesian statistics can be seen as a way of combining observations with prior information (i.e. model process
formulation and prior model parameter values) to derive posterior parameter and emission estimates {Susilueto-et-al-+2048);
. The Markov Chain Monte Carlo (MCMC) (Metropolis et al., 1953b) is a powerful and convenient Bayesian framework
(Tarantola, 1987) for data assimilation as it can combine prior information with observations to sample from the posterior dis-
tributions in complex models. This study has developed an Adaptive MCMC Metropolis Hasting (AMCMC-MH) framework
Hastings-(1976b); Farantota(1987))-(Hastings, 1970b; Tarantola, 1987) with Rao-Blackwellised adaptation of the multivari-
ate Gaussian random walk proposals (Andrieu and Thoms, 2008). The algorithm minimises the model-data misfit, i.e. a cost
function, by sampling from the probability density function (PDF) of the posterior parameters. The adaptation allows the al-
gorithm to learn the shape of the posterior, improving sampling efficiency. The main objective of this paper is to evaluate

the capabilities and limitations of the AMCMC-MH framework to optimise CH4 wetland emissions simulated by the LPJ-

GUESS model by analysing the posterior parameter distributions, the parameter correlations and the processes they control.

2 Data and Methodology
2.1 Siikaneva wetland and measurements

The Siikaneva wetland is located at 61° 49°N, 24° 11°E, at 160 m a.s.l and is the second-largest un-drained wetland complex
in Southern Finland (Ahti-et-al-1968); Rinne-et-al+(20071)(Ahti et al., 1968; Rinne et al., 2007). This boreal wetland complex

has an area of 12 km?, including minerotrophic and ombrotrophic sites with over 6 meters-m of peat deposition under the sur-
. The estimated average annual total precipitation is about 707 mm. The average temperature for January and July are approx-
imately -7.2°C —and 17.1°C, respectively. The estimated mean annual temperature is around 4.2°C (Korrensalo et al., 2018).
The total annual CHy4 emissions from the Siikaneva wetland varies between 6.0 gCm~2 and 14 gC'm ™2 and net CO, fluxes
vary between -96 gC'm =2 and 27 gC'm ™2 (Rinne et al., 2018).

Daily measurements of incoming shert-wave-radiation-short-wave radiation (swr), precipitation, and air temperature col-
lected at the wetland are used as input to the model. Since the meteorological data measured directly at the Siikaneva wetland
have several significant gaps, which made them unsuitable as inputs to the model, we used precipitation and temperature
data collected from a nearby station called Juupajoki-Hyytidld (around 5.5 kilometres away from Siikaneva, open data by
Finnish Meteorological Institute (FMI): https://en.ilmatieteenlaitos.fi/download-observations) and the shert-waveradiation
swr_data collected from the Hyytidld weather station (SMEAR II station around 6 kilometres away from Siikaneva, https:
//smear.avaa.csc.fi/download (Hari et al., 2013) ). Given the short distances between these sites and Siikaneva, we assumed
that the meteorological variables are representative of Siikaneva. To verify the assumption, we have analysed the available

data from Siikaneva and the datasets collected from Juupajoki and Hyytiéla sites. The air temperature and precipitation of the
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Juupajoki and the Siikaneva showed a Pearson correlation of 0.998 and 0.706, respectively. Shert-waveradiation-The swr data
collected at Hyytiéld and Siikaneva showed a correlation of 0.98. Still, there were some minor gaps in the shert-wave-swr
data collected at Hyytiéld, which were therefore gap-filled using the available data collected at Siikaneva for the corresponding
periods. Additional inputs to the model are atmospheric CO, concentration as described by McGuire et al. (2001) and updated
until recent years using data from the NOAA Global Monitoring Laboratory (https://gml.noaa.gov/ccgg/trends). Daily water

table depth (wtd) and soil temperature at 5 cm depth collected at the Siikaneva site are used for evaluating the modelled values.

2.2 CHj4 model description in LPJ-GUESS

and/or-temporal-signature—Compared to version 4 of the medel-LPJ-GUESS described by Smith et al. (2014), version 4.1
which we used for this study, has more detailed representations of plant functional types (PFTs) characteristics and processes in

wetlands(Gustafson(2022))—This-inetude-, This includes improved descriptions of peatland-specific PFTs, peatland hydrology,

soil temperature estimation, and CH,4 emissions. Fhese-proeess-deseriptions-and-developments{with-seme-miner-modif on

in-detai-Hin-MeGuire-et-al(2012)-Brief descriptions of the important wetland processes in LPJ-GUESS version 4.1 are given
below -fer-and in Supplement S1, for a more detailed description see Gustafson (2022).

2.2.1 Aetivepeateolumn-andproeperties

The active wetlands peat in the LPJ-GUESS is represented by a 1.5 m deep column further divided into 15 layers of 0.1 m
thickness each (see Figure 1). The uppermost three layers comprise the acrotelm, within which the water table can vary. The
underlying 12 layers of catotelm are saturated with water permanently Waniaet-al-(2009a);-Gustafson{(2022)-
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Figure 1. Schematic representation of the CHy model in LPJ-GUESS coupled with the CENTURY soil organic model. Carbon for

methanogens is allocated to soil layers based on the distribution of roots in each layer. The root density decreases from top to bottom of

eat. The assigned carbon in each layer is divided into CH4 and CO,. Oxygen (O,) either directly diffuses or is transported through plants.

The availability of O, determines the amount of CHy in the soil as it oxidises a fraction of CH4. Similarly CHy also can either directly diffuse

or be transported to the atmosphere in bubbles, or it can be transported by vascular plants. The equilibrium between gaseous bubbles of

CH,4 and dissolved CHy in water is controlled by the maximum solubility of CH4. Any CH4 that exists in gaseous form will escape to the

atmosphere via ebullition.
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Wania et~ The decomposed organic carbon in each day (explained in Section 22S13dn-the Supplement) is distributed verti-
¢8By-in different peat soil layers weighted by an assumed static root distribution, exponentially declining from the surface to
the deeper layers, see Equation ??. In-high-latitude wetlands,this This-carbon pool is considered as ’potential carbon pool’ for
methanogenic archaea, and is the basic concept behind the CH4 model in LPJ-GUESS. The total available carbon is decom-
posed into two components, CO, and CH,4 depending on the availability of O, in the soil. The dissolved CH4 concentration
and the gaseous CHy fraction are calculated based on the estimated CH,4 content in each layer. A portion of the estimated CHy
i86xidised by the soil O, and the remaining is transported to the atmosphere by either diffusion, ebullition, or plant-mediated
transport. Apart from being the key factor in estimating the ’potential carbon pool’, root biomass in each soil layer also plays a
role in the transport of O, and CHy into and out of each layer as-this-transpert is mediated by-the plants. From different studies
of various wetland PFTs Wania et— observed an exponential decrease of root biomass with depth proportional to the degree of

anoxia, which is expressed by the following equation, also used in LPJ-GUESS;

190—

where f,.,o¢ is the fraction of root biomass at a certain depth zz, A\;oo = 0.2517 m is the decay length and C,.,,; = 0.025 is a
normalisation constant. This distribution ensures that approximately 60% of the roots are distributed within the acrotelm, and

the root fraction in the lowest soil layer is adjusted to achieve a total root distribution of 1 across all 15 soil layers.

Due to its wide ranges, the CH4/CO, ratio from decomposition is a challenging task to predict. For example, Segers (1998)
observed a high variation in the molar ratio of CH4 to CO, production between 0.001 to 1.7 in anaerobic conditions. Hence it
is taken in the model as an adjustable parameter weighted by the degree of anoxia «, determined as o = 1-(F -+ f4ir), Where
Fu;r is the fraction of air in the soil layers and f,;, is the fraction of air in peat (Wania et al., 2009a) (see the-Seetion-22-Section

S1 in Supplement for details).
The production of CHy in each day in each layer is determined as,

CH4p’r‘Od = 04(2) X fmot(z) X CH4/002 X Rh (2)

where a(z) is the degree of anoxia at depth 2z, f,..0(2) is the fraction of root in the peat at depth zz, C Hy /C Oz =0.085 (prior
value in the model), is the tuning parameter for the CH4 to CO, production ratio and [?j, is the daily heterotrophic respiration.
Note that the model is set to SHaproa CHapppg = 0 when Fyqier<0.1, assuring zero CHy production in frozen and/or dry soils,

i.e, the model assume there is no water when the water is frozen, hence F,,zer 1S O.

2.2.2 CH, oxidation

The CHy, fraction that is oxidised depends-on-the-availability-of-O--(represented by the parameter f,,;4= 0.5 as the prior value
in the model) depends on the availability of O, in the soil. A part of the O, transported to the soil will be consumed by the plant
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roots and non-methanotrophic microorganisms. The remaining part is then used to oxidise CHy. The oxidised CHy4 is added to

the CO; pool, and the remainder stays in the CH4 pooland-wil-get-transperted-at-each-time-step.

2.2.3 Total CH4 flux

Diffusion, ebullition and plant-mediated transport are the three pathways through which CHy is transported to the atmosphere.

The total CH, flux from high-latitude wetland patches in the model is represented as,

FCH4 = CH4dsz + CH4plant + CH4ebul (3)

where CHigr77-CHy g4 is the CHy flux component from diffusion, €Hapranr CHypapy is the CHy flux component from
plant-mediated transport and GHzep-CHa .y, is the CHy flux component from ebullition. Since the daily CH,4 production in
each layer is dependent on R, (Equation 2), Fcp, is subtracted from R before-saving-it. Any CO, generated, whether from

heterotrophic respiration or CHy oxidation, is released into the atmosphere.

Diffusion

The fractions of CHy, CO; and O, that are transported to the atmosphere and from the atmosphere through diffusion are
calculated by solving the gas diffusion equation within the peat layers using a Crank-Nicolson numerical scheme with a time
step of 15 minutesminutes. The molecular diffusivities of these gases in soil depend on temperature, soil porosity and the
water and air contents in the soil. Diffusivity in water is derived by fitting a quadratic curve to observed diffusivities at different
temperatures as described in Broecker and Peng (1974); diffusivity in the air and its temperature dependency is derived from the
values taken from Lerman et al. (1979), and diffusivity in soil and its temperature dependency is estimated from the Millington
and Quirk model described in Millington and Quirk (1961). A detailed description can be seen-found in Wania et al. (2010).

At the water-air surface the gas diffusivities ehanges-change by minimum four orders of magnitude, hence at the water-air

boundary, the flux is calculated by the following equation,

J = —p(Cuurf — Ceq) @)

where C,,, ¢ is the surface water gas concentration, and C,, is the concentration of gas in equilibrium with the atmospheric
partial pressure, estimated using Henry’s law. v, the gas exchange coefficient, also called piston velocity, is usually difficult to
estimate for different gases. In this case, the piston velocities of CHy, CO, and O, are calculated by relating them to the known

piston velocity of SF¢ by the following equation,

Sex

h* = 1Pgoo ( 600

) ®)
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where 1g00 = 2.07+0.215 x U- 1107 is the piston velocity of SFg normalised to a Schmidt number of 600 (subjected to the wind
speed Uy at 10 m from the ground, which is considered as zero in the model), Sc* represents the Schmidt number of the gas
under consideration, and n = - 1/2-See-2, see Wania et al. (2010) for details.

As mentioned above the diffusion through the soil is affected by soil porosity, hence by the value of F;,.(t,2). When F;,. <
0.05 in sei a given soil layer, the diffusivity values of water are used —When-otherwise (Fy;- > 0.05;
the-diffusivitiesin-) the diffusivity values of air, which are four orders of magnitude larger than those in-water,-become-meore

te i Ti—<-0-05; iffasivities -of water, are used. When—F5;7—>-0:05;the-diffusivities

7-At each daily time
step, before diffusion is calculated, the gas flux J at the boundary is used to update the dissolved gas content. The surface

concentration Cs,,¢ of CHs will mostly be greater than C4; hence J will be negative, denoting a flux to the atmosphere,
though it is possible for CH4 to diffuse into the soil in small amounts if the concentrations at the surface are suitable. The

resulting daily flux of CHy is determined as the total CHzzi77CHy g, ¢
Ebullition

“Ebullition depends on the solubility of CH, at a given temperature and pressure and occurs when the water table reaches the
surface during periods of high CH4 emission. Following Wania et al. (2010), in LPJ-GUESS, the best-fitted curve is represented

as;

Sp = 0.05708 — 0.001545T 4 0.000020697"> (6)

where Sp is the Bunsen solubility coefficient, i.e. the volume of gas dissolved per volume of liquid at atmospheric pressure
and a given temperature (Wania et al., 2010).

The CHy in each layer is converted to a maximum allowable dissolved mass, and this limit is used to separate the CH4 in
the form of dissolved and gaseous components. If there is any CHy that exceeds the maximum solubility of a layer, it will be

released into the atmosphere. The CHyep,,; is calculated by adding this ebullition fluxes from all layers.
Plant-mediated transport

Plant-mediated transport of CHy4 occurs via the aerenchyma (the gas-filled tissues) of vascular plants either through concentra-
tion gradient or active pumping from soil to the atmosphere. Only the passive mechanism (through concentration gradient) is
considered in the model as it is the most dominant one (Cronk and Fennessy, 2016). Abundance, biomass, phenology and the
rooting depth of aerenchymatous plants are considered to calculate this. Only the flood-tolerant Cs gramineid-is-graminoids are
considered for plant-mediated gas transport in the model (Fable-2?see Table 2 in Supplement); hence plant-mediated transport

of O, and CHy4 can only occur when C's graminoids are present in a simulated patch.

10



The transport depends on the cross-sectional area of plant tillers! in each soil layer, assuming that a significantly high
265 percentage of CHy is oxidized in the highly oxic zone near the roots, where methanotrophs flourish, before they enter into the

plantsplant tissue.
The mass of their-the tiller is calculated as,

Mtiller = bgra'rninoid X P(leaf) (7)

where byrqminoia 18 the leaf biomass of graminoids, and P’ represents the daily phenology, which is the fraction of potential
270 leaf cover that has reached full development. To calculate number of tillers (1n4;.,-) total weight of tillers, myzer, is divided

by the average weight of an individual tiller (wy;,-). The cross-sectional area of tillers, Ay, then can be obtained by,

2
Atiller = Ntiller X (btiller X T Giller (8)

where 75¢, 18 the tiller radius and ¢y, is the tiller porosity. Based on the optimisation of McGuire et al. (2012), Tang
et al. (2015) and Zhang et al. (2013) the value of 7., is estimated as 0.0035 m, and based on the-Wania-et-al(2010)~
275 Wania et al. (2010) the values of ¢jizer and Wiy, are estimated as as-70% and 0.22 gCltiller respectively. Each soil layer is
allocated a fraction of the total cross-sectional area of tillers based on the root fraction estimated in that layer. The CHypiqn: is

estimated by adding the plant-mediated CH, fluxes from all layers.
2.3 Parameters selected for optimisation

Parameter values related to the processes of CHs emission in LPJ-GUESS are mostly adopted from the parameter values

280 described in Wania et al. (2010). Since Wania et al. (2010) had difficulties finding the optimal parameter values for many of

the parameters, they performed some preliminary analysis for seven uncertain parameters, for which there were little or no

data available. They performed a simple initial sensitivity test by taking four sets of values for each of the seven parameters,

followed by a parameter fitting exercise with three sets of values for every seven parameters. They ran the model with all their

2187 different combinations for seven sites for one year. As a result, they got a Root-mean-square-error-Root-Mean-Square

285 Error (RMSE) range between 226.4 and 18.3 (mg CHy m~2 d~! ) for the different sites, which clearly indicates loosely fitted
parameters with a high degree of uncertainty.

In this study, parameters for the optimisation are selected based on their sensitivity to the model output (CH4) and expert

opinion. We used a simple method to calculate the percentage difference in output (single simulation) when varying only one in-
put parameter at a time from its permitted minimum value to its maximum (Heffman-and-Miller (1983); Baver-and-Hamby- (1991
290 YHoffman and Miller, 1983; Bauer and Hamby, 1991). The ’sensitivity index’ (SI) is calculated using the equation,

D — Dy
SI — max mn 9
Dma:z: ( )

I Tiller refers to all the secondary shoots produced by grasses (Poaceae or Gramineae). Each tiller stem is segmented with its own two-part leaf.

11
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Figure 2. Selected-Tested parameters for the optimisation and their SI values. The red and blue colours indicate the increase and decrease in

total CHy4 flux, respectively, when the value of the parameter increases.

where D,,;, and D,,,, represent the model output values corresponding to the minima and maxima of the corresponding

parameter range. The values are taken based on expert opinion.

We considered five of the seven parameters Wania et al. (2010) tested in their sensitivity analysis (two parameters related to the
root exudate decomposition are not used in LPJ-GUESS) together with six-eleven other parameters used in LPJ-GUESSbased
. Based on their high SI values we chose eleven of them for the optimisation (Figure 2, Table 1).

Among the selected-parameters-five eliminated parameters ag is the fraction of Annual Net Primary Production (ANPP
used to calculate number of tillers, DT, is the minimum temperature (°C) for heterotrophic decomposition, por,,., is the

orosity of organic material, C,,,, is the carbon content of biomass and U is the possible constant value of wind speed at
10m height. Among the selected parameters are Rmoist and Rmvotstanaeronicltinoist .y, the response of soil organic matter
decomposition to the soil moisture content in acrotelm and catotelm conditions respectively (Eguation—2?see Equation 8 in

Supplemnt); CH4/CO,, the CHy4 to CO; ratio in the anaerobic conditions (Equation 2); fq;,, the fraction of air in peat (Section
2.2.1 and Equation 2); porgcro and porcqo, the porosity in acrotelm and catotelm respectively (Seetion—2?see Section S1
in Supplement); A.o0:, the decay length of root biomass in peat (Equation ??). These are the parameters related to the CHy
production. The parameter f,z;q, fraction of available-O,-usedforCHyoxidationoxidised CHy, (Section 2.2.2) is the-parameter
related to the CHy oxidation. wy;er, the average weight of an individual tiller; 74y, the tiller radius; and ¢y5¢,, the tiller

porosity (Equation 8), are the parameters related to the CHy transportation.

2.4 Parameter optimisation framework

12
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Table 1. Selected parameters for the assimilation related to the CHy flux from LPJ-GUESS. Prior values, prior standard-deviation—ste)std,

units, and description used for the prior distribution are given.

‘ Number ‘ Parameter Prior value | Prior std-std ‘ Unit ‘ Description
1. Rmoist 0.4 0.396 - Moisture response in acrotelm
2. CH4/CO, 0.085 0.236 - Anaerobic CHy4 to CO ratio
3. fowid 0.5 0.36 - Litter-COofraetionFraction of oxidised CHy
4. Btiller 70 36 % Tiller porosity in percentage
5. Ttiller 0.0035 0.004 m Tiller radius in meter
6. fair 0 4 % Fraction of air in peat
7. POTacro 0.98 0.06 - Porosity in acrotelm
8. POT cato 0.92 0.076 - Porosity in catotelm
9. Rmotstan—IRMoistay, 0.025 0.04 - Moisture response in catotelm
10. Weiller 0.22 0.24 gC Tiller weight in gram carbon
11. Aroot 25.17 12 cm Decay length of root biomass in centimeter

ters and the deviation between model and observations. The resulting model can be formulated as,

Y|z~ N(M(x),R),

x ~ N(zp,B), (10)

where Y are the observations, M (z) is the LPJ-GUESS output given parameters x, x,, is-are the prior values of the parameters,
and R and B are error covariance matrices describing the uncertainty in observations and priors, respectively.

The prior uncertainties, B, are based on expert opinion and were kept relatively large to reduce the prior’s influence on the
posterior parameter estimates. We have assumed prior variance for each parameters as 40% of their expected range, see Table
1. The parameters are also assumed to be a prior uncorrelated, due to lack of good and consistent expert opinions regarding

dependence.
2.4.1 Cost Function

Using the Bayesian framework the posterior for the parameters becomes

P(Y|z)p(z)
p(Y)

which in log-scale results in the quadratic cost function as (Farantela;1+987)-Tarantola (1987

P(z]Y) = x P(Y|z)p(z), (11)

log P(x|Y') = —J(x) + const.

T@) = 5V = M) R (Y = M(@) + 3 (&~ 2,)' B (2~ 2,) (12

13
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where const. represents normalising constants not depending on the unknown parameters. The two terms in J(z) represent
data-model misfit and the prior information on the parameters. A number of experiments aim to achieve the smallest cost

function values to locate the optimal parameter set within the parameter space.

2.4.2 Adaptive Metropolis-Hastings

2.5 Adaptive Metropolis-Hastings

To search for the optimal posterior parameters, we used a MCMC-MH algorithm (Metropolis-et-al-1953a) Hastings(1970a)
»—The-algerithm-(Metropolis et al., 1953a; Hastings, 1970a). A standard Metropolis-Hastings (MH) generates samples from a

target distribution by, in each iteration, drawing from a proposal distribution and then either accepting the new state or copying

the old state. The-For a Gaussian random walk proposals, 7, are generated by adding a mean-zero normal random variable to

T=m¢ +e, e~ N(0,\Y), (13)

here \X is a scaling and covariance matrix describing the spread of the added random variable, The new value is accepted with
a probability that compares the likelihood (or cost function) of the proposed and old sample

o PEY)Y N

If the value is accepted, set x = 7 otherwise keep the previous value, z = x;. The resulting sequence of states will

represent dependent samples from the target distribution.

ng-The Adaptive Metropolis algorithm used
here contains three key concepts explained in the following sections. Transformed proposals, providing a natural way of
including limits on the parameters; the adaptive random walk, allowing the algorithm to estimate A and 3. from the target
distribution; and tempering of the target distribution, to reduce the effects of local maxima and allowing better exploration of
the target.

2.5.1 Transformed proposals

The standard proposal in Equation 13 does not include any restrictions on the parameters. To handle parameter limits we
transformed the parameters, resulting in an adjusted random walk proposal

2t = gil(xt)a
Z=2z+e€, e~ N(0,\Y), (15)
T=g(2),

where a list of possible limits and corresponding functions are given in Table 2. Note that different functions can be applied to




Table 2. Summary of transformations and corresponding adjustments to the acceptance probability for the three cases of variables with

low-limit, upper-limit, and variables constrained to an intervall.

Constrain Functions Acceptance
z<a  |ezem@) logle-g) k=4
€ [a,b] bexp(z)+a log (=2 (Z—a)(b—2)

Having a transformed proposal requires an adjustment of the acceptance probability (Hastings, 1970a) in Equation 14 to

. (D) | 2(3)
| w17
oa=min | 1, p(z¢]Y) 1:[ q (E(i) | xii))

) (16)
(1) | =)
R qlz’ |2
=min | 1,exp(—J(Z)+ J(x¢) + Zlog —_— <
- 70 | x(%)
2 q t
355 Here 2\” denotes the i parameter in the z;-vector and the sequence-and-slow-mixing,i—e—the-sequence-will-take-verylong
to-produce-samplesfrom-thecorreet-distributiong-terms are given in Table 2. Note that each transformation results in one
adjustment for that parameter and that all adjustments have to be multiplied together.

2.5.2 Adaptive random walk

It has been shown that optimal behaviour of the MH-algorithm is obtained when about 20% to 30% of samples are accepted

360 (Gelman et al., 1996; Roberts et al., 1997). For the proposal in Equation 13, this is achieved when . corresponds to the posterior

2

2

covariance matrix of the target distribution, P(z|Y), and the scaling is A = 2.382 /d, where d is the number of parameters in z.

The key idea of the adaptive algorithms suggested in Andrieu and Thoms (2008) is to recursively estimate both > and A from
revious samples. An important note for the transformed proposal in Equation 15 is that > and A relate to the transformed

variable 2 and not .
365 i

A Rao-Blackwellised update of the covariance matrix will consider both the proposal, Z, and the previous value, z;, weighted
according to the acceptance probability, «v, computed in Equation 16. The expectation and covariance matrix are updated
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370  recursively as,

Hea= (L2 deadte £ ens (021

(17a)
Dot = (1= Y1) St +Yetr | @ (F— 1) (= pegr) | (1) (2 — pesr) (2 — pusr) | |, (17b)
where ~; is an adaptation factor and we have used ~; = t—9-51,
The Global Adaptive Scaling then updates the scaling factor \ as
375 log A1 = (1~ 1) log A + 741 (@ — Qtarger) - (18)

The update is in log-scale to ensure that \; stays positive; the second part of the equation compares the current acceptance
robability with a target probability, a.ec = 0.234, and adjust A\, to obtain this desired overall acceptance probability.
To limit the effect of initial values, we first ran 5000 steps of the chain without adaptation and taking ¥ as 102 times an

identity matrix (i.e. very small initial steps). Thereafter a covariance matrix > was estimated based on the initial samples and

380 the chain run for a further 15 000 steps adapting only A and not 2. Finally, for the last 80 000 steps both )\ and Y were updated
as described inAndrieu and Thoms (2008). We call the resulting framework the Global Rao-Black-wellised-Rao-Blackwellised

Adaptive Metropolis (G-RB AM) algorithm;sinee-itcombines-the Rao-Black-wellised A

385 2.6 Experimentdesign-
2.5.1 Tempering the target distribution

For large amounts of data the cost function J(x) can have very deep local minima causing the MH-algorithm to get stuck
even with the two already outlined adjustments. To reduce the scale of the cost function we temper the target distribution
Jennison, 1993).

90 Paly) = PlY)"" = (- J(@)/T), 19)

where 7' is a suitably large value.
Having run a MH-algorithm for N samples, the first /N, samples are discarded as burn-in and expectations or variances
can be computed as averages of the remaining samples. However, with a tempered target distribution we have samples from

P(x]Y) and need to use importance sampling to adjust for the difference in distributions (Jennison, 1993) resulting in weighted
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400

2.6 Experiment design

We have designed a set of twin experiments and a real data experiment. For both the twin and real data experiments, we

generated MCMC chains with a length of 100,000 samples. MCMC approaches are computationally intensive and time-consuming.
405  In this study, each model simulation took approximately 9 seconds to complete (using an AMD Ryzen Threadripper processor).

As aresult, for the 100,000 iterations, it consumed nearly 250 computational hours. However, it should be noted that this study.

involves the model running for a single site, and the computational speed is highly dependent on the performance of the

processors being used.

Twin experiment

410 A simple twin experiment is designed to assess the performance of the developed G-RB AM and its ability to recover the
parameter values. The daily CHy4 output simulated by the LPJ-GUESS using randomly chosen true parameter values (Zs;y.)
within their permitted range of variation are used as the synthetic observation. Since the synthesized observation conforms
completely to the model, any potential errors in the model or uncertainties in observations have not influenced the parameter
optimization process, ensuring unbiased posteriors. It is expected that the assimilated parameters converge to the Z;,,,. values

415 when the MCMC chain pregress-progresses in time. To freely recover the Z;,,. values, the prior parameter value-values
(zp) in the cost function (Equation 12) is-are set as Z,.,.. Two scenarios are considered for the twin experiment to test the
identifiability of the parameters under different conditions. Scenario 1 with a shorter temporal scale from 2005 to 2014 (10
years); scenario 2 with a longer temporal scale from 1901 to 2015 (115 years). Scenario 1 is more realistic and is chosen to
mimic the real data at Siikaneva, whereas scenario 2 constitutes an ideal, hypothetical case with observations over the entire

420 simulation period.

the scenarios, the optimisation started from a different initial point in parameter space randomly selected from their prescribed

ranges.
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Real Data experiment

To estimate the posterior parameter values, an experiment with-achainlength-of100;000-iterations-using the real observation

from Siikaneva is designed. The observed daily averages are compared with the model simulation in the cost function only when
more than 90% of the hourly observation were available each day. When there are gaps in the daily observation, we eliminate
them, and their corresponding modelled values from the cost function calculation. In principle the error covariance matrix
R should include both observation uncertainties and their correlations. From the fact that the latter is difficult to estimate,
we neglected them, and the observation uncertainties are estimated as 30% for the daily observations greater than 0.01 gC

m~2d~!, and a floor value of 0.3 for the observations less than 0.01 gC m~2d 1.
2.7 Parameter value estimation

For all the experiments conducted in this study, the first 75% of the G-RB AM chains are discarded as the *burn-in’. The
PDFs generated after the *burn-in’ are used to estimate each parameter’s maximum a posteriori probability (MAP), posterior
mean and standard deviation (stdstd). Following the idea used in Braswell et al. (2005) the parameter distributions are grouped
into three categories: *well-constrained’, ’poorly constrained’, and ’edge-hitting” parameters. The well-constrained parameters
are the ones that exhibit a well-defined uni-modal distribution, with low stdstd. The poorly constrained parameters are the
ones that exhibit a relatively flat multi-modal distribution with large stestd. To be more precise with the estimation, for the
posterior parameter distributions appeared multi-model if the ste-std of the distribution is greater than 20% of its total range,

we classified them as poorly constrained. The edge-hitting parameters are the ones that cluster near one of the edges of their

prior rangeBraswell-et-al52005)—. b
2.8 Posterior re-sampling experiment

To examine the effect of parameter optimisation on flux components, we designed a re-sampling experiment from the posterior
parameter distributions. From the experiment conducted using site observation, 1000 sets of parameters are randomly selected
and used to run the model to simulate the CH4 flux components. The outputs from each simulation of the experiment are used

to analyse the process correlations and process-parameter relationships.

3 Results

3.1 Twin experiment using G-RB AM

The-trace-plotresultedfrom-the-We ran a set of four different twin experiments

eonvergenceof-each-chain-te-the Zrz—valses-for each scenarios mentioned in Section 2.6. Each of them shows a reasonabl
good convergence, regardless of their chosen initial values. The-resultshows-a-good-convergenee-of-In scenario 1, all param-
eters except the CH,/COy and \,...¢ —Posterior-showed good convergence (see Figure 1 in Supplement, posterior parameter
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Figure 3. Time series estimates of the twin experiments in scenario 1. The simulations, using four sets of posterior parameter values obtained

from the twin experiments are plotted against the twin observation used.

correlations of the experimentt-shown-infirst experiment in this has given in Figure S2:

The result of scenario 2 is not shown, as it also followed the same pattern. The resulting PDFs of the-experiment 1 in scenario
1 after the *burn-in’ are represented in Figure 4 —This-figure-shows-showing the mean and MAP values as well as the std-std of

the parameters;-theirnumerical-values-, The parameter values and related statistics are given in Table 3. In-general-

In general, the twin experiments have resulted in ‘well-constrained’ and ‘poorly constrained” parameter classes. Examples
of the different classes of the distributions for the-experiment 1 of scenario 1 are shown in Figure 4. Based on the posterior
distributions estimated from all the four G-RB AM chains the parameters Rmoist , CHy/COs, forids Ttillers fairs POTacros
POTcato and Apoor are well constrained in scenario 1 and the parameters Rmoist , CHy/COsa, forids Ttillers fairs POTacros
POT cator Weiller aNd Ay.oo¢ are well constrained in scenario 2 (Table 3).

The parameter retrieval capacity of the G-RB AM algorithm is estimated as the ’retrieval score’ by dividing the posterior
mean estimates of the parameters from all the chains in each scenario by Z;,,. parameter values. The idea behind the retrieval
score is that in an ideal case of complete recovery, the posterior parameter estimate and the Z;,.,,. value are the same; hence the
retrieval score would be one. Figure 5 shows the retrieval scores obtained for each parameter and their 1 o value. In scenario

1 the @itiers POTacro» POTcato> Weiller AN Apoor are well retrieved with a low stestd. Scenario 2 performed better in parameter
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Table 4. Cost function reduction observed from the G-RB AM twin experiments using two different scenarios (Sc). Prior and posterior cost
function values obtained from four sets of experiments for each scenario are given. The misfit ef-between observed and expected (zero) cost

function values are represented as the reduced x? value.

2

Experiment Prior Posterior X
Set 1 12486.4 301.6 0.17
Sel Set 2 49674.0 759.6 0.422
Set 3 29535.6 294.0 0.17
Set 4 8476.8 428.0 0.24
Set 1 86140.0 6170.0 0.31
S 2 Set 2 619172.0  8040.0 0.38
c
Set 3 68792.0 33724 0.16

Set 4 109888.0  8646.0 0.41

score estimation is based on the ratio of the estimated and true values, given a value of 0.95 with a std-std of 0.19 for scenario

1, and a value of 1 with ste-std 0.21 for scenario 2 (see Figure 5);-which-is-again-an-indicationfor-the-good-performance-of-the
G-RBAM.

The reduced posterior cost function values and their x? values are given in Table 4. Here, the reduced x? values are calculated

by dividing twice the cost function by the number of observations used in the assimilation. Overall, the x? values indicate a

statisticall
robust reduction in the s—cost function in all the experiments, although a systematic

behaviour of being below one is observed.

3.2 Real data experiments and optimised parameters

For the experiment with the real data, the observations collected at the Siikaneva wetland are assimilated using the G-RB AM
algorithm. The
6.

MCMC trace plots are exemplified in Figure

3.2.1 Optimised parameter values and distributions

The posterior parameter PDFs are shown in Figure ??. The shapes of the distributions are used to interpret the results of
the parameter optimisation as explained in Section 2.4. In contrast to the twin experiments, the parameters fell into three
categories: ‘well-constrained’, ‘poorly constrained’, and ‘edge-hitting’; the classifications are given in Table ??. The PDFs for
parameters Rmoist, CHy/COa, dritier, fair> POTacro» Wiiller a0d Apo0p are classified as well constrained distributions. The

PDFs for r41er, POTcato and f2imotstanaeraric 12Moist,, are classified as poorly constrained distributions, and the one for
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Figure 5. Twin experiments-resualtexperiment results in terms of mean retrieval score based on the ratio of the estimated and Z;,... values
of the parameters. The horizontal red lines indicate a complete retrieval, and the error bar shows the std-std from different chains in different

scenarios. Scl and Sc2 indicate the two scenarios.

foxia 1s classified as a edge-hitting distribution. Both in the well-constrained and poorly constrained parameters, high kurtosis
is observed. The values of f,.;q, which is the edge-hitting parameter, lay near the higher bound of the edges of the prior
range, and most of the retrieved values were clustered near this edge. The parameter also exhibited large positive kurtosis and

negative skewness. —The estimated

posterior parameter values and their 1o stds-stds along with the prior values are shown in Table ??. The MAP and posterior
mean estimates of-the-parameter-agree on the value for the parameters CHy/COa, foir and porgcro. FOr fogid, Griner and
Ttiller» DOth the MAP and posterior mean estimates stayed out of 1/3 of the 1o range of the posterior distribution, which we
consider a large difference;-and-for-, For the remaining parameters, the MAP and posterior mean estimates stayed within 1/3
of the 1o of their posterior distribution; hence we consider this as a small difference.

For the parameters Rmoist and C H,/CO- the posterior values appeared very close to, but slightly below the prior values.

The posterior values of -Rmoist,, appeared very close to, but slightly above the prior values. For the param-

(2] anaeroobic
eter ¢u11er the MAP estimate appeared very close to but above the prior value and posterior mean estimate appeared very close
to but below the prior value. For these four parameters, the posterior mean stayed within 1/3 of the 1o range of the assumed
prior uncertainty. The parameters fo.id, T#iiter, and fq; posterior values appeared slightly above the prior values, but out of

the 1/3 of the 1o range of the prior uncertainty. The prior and posterior values of the parameter por,.,, remained the same. In
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Figure 6. An example of the G-RB AM chains for the experiment with real observations showing all the +6100,000 values in the chain. The
first 75 % was-were discarded as burn-in’ and is greyed out in the figures. The remaining 25% (from the red vertical lines) is-were used for

the analyses.

contrast, the parameters porcqto, Weiller and Aroor appeared far distant from, and below the prior values, out of 1/3 of the 1o

range of prior uncertainty, but stayed within the prior range (see Section 4.2 for details).
3.2.2 Posterior parameter correlation

The 2D distributions of the posterior parameters and their Pearsen-correlations are illustrated in Figure ??. Overall, the majority

of the parameters showed weak positive or negative correlations with a few exceptions with extreme correlations (the values

v2tanaerootc

 Bmoistanaceonic Showed high

negative correlation to R,;,0;s¢, and porgcr, showed high positive correlation to the-f,;,. The 2D marginal distributions (scatter

and corresponding colour code in the triangle above depict this). For example
plots), illustrated in the lower triangle, showed a general tendency of high clustering within the 1o range for all the parameters;

in general, the 1D histograms (on the diagonal, also shown in Figure ??) appeared as well-constrained uni-modal distributions.

For further details, see Section 224.2.1.
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Figure 7. PDFs of parameters from G-RB AM real data experiment after the *burn-in’. The green curves shown are the smoothed Gaussian
kernel estimates of the posterior distribution on the posterior histograms, and the black curves are the prior distributions. The dotted vertical
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estimate of the PDFs.

3.2.3 Cost function reduction

The prior parameter—vatues-and-cost-funetion—value—as-wel-as—the-and posterior parameter values and cost function vatues

value corresponding to both posterior MAP and mean estimates are listed in Table ??. The prior cost function value calculated
with the default model parameters showed a high-cost value of 48424.4 with a model overestimation of around four times the
observed flux. After the optimisation, the cost function value was reduced to 2959.8 (reduced x*=3.82) with the MAP estimate
of parameters and to 3002.6 (reduced y?=3.88) with the posterior mean estimate of parameters.

As anticipated, the cost function was marginally lower for the MAP estimate when compared to the posterior mean estimate,

which can be seen in Figure 10b. It can
also be observed from the Figure-figure that the cost function reduction has not only fitted the total model sum to the total

observational sum but also has reduced the misfit between each year.
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Figure 8. Schematic summery of the ’re-sampling experiment’. The image on the left side shows the process-parameter correlation and
regression slope. Three different flux components of CHy4 together with the total flux are labelled on the vertical axis, and the parameters are
labelled on the horizontal axis. The different colours of the circles represent the regression slopes (3) scaled between -1 and 1 (in 11 steps).
The blue colour indicates a steeper negative slope hence a strong decrease, and the red colour indicates steeper positive slopes hence a strong
increase in CHy fluxes with the increasing parameter value. The eorretation—coefficient of determination (R?) scaled between 0.05 and 1 (in
11 steps) is represented by the size of the circles, with larger circles indicating higher {R> )-values. The image on on the right side shows
the process-process correlations. Numeric labels on the upper triangle correspond to Pearson’s-Pearsons correlation coefficient values. The
diagonal of the matrix shows the 1-D histogram for each flux components and the total flux. 2-D marginal distributions of the sum of the
processes and total flux are represented in the lower triangle with contours to indicate 1o, 20 and 30 confidence levels. The points in the

plots indicates the sums of flux components (black dots). Ranges of the distributions are labelled on the left and bottom of the figure.

Yearly variations in fractional contributions of flux components simulated using prior and posterior parameter estimates are
examined to understand the impact of the optimisation on the composition of the inter-annual emissions. The time series of the
annual sums of flux components as a function of their total flux (in pereentage%) are shown in Figure 10a. The result shows

that among the flux components, diffusion contributes the most to the total CHy flux both in prior and posterior estimates,

with a slightly higher contribution in the posterior estimate, followed by plant-mediated transport —But-in-the-ease-of-the

contribution-of-diffusienis-very low-in-the-case-of the-pestertor(see Section 4.2.2 for a-mere-detailed discussion).

The time series model-observation mismatch of prior and posterior estimates for the annual total fluxes can be seen in Figure

10b; the values are in percentage of the observed CHy flux. The prior estimate showed a mismatch of around 600% for the first
two years. Also, a considerably high mismatch is observed in the years 2011, 2012 and 2014. The MAP estimate remained

near zero, while the posterior mean estimate exhibited a slightly negative values indicating an underestimation of the flux.
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Figure 10. Flux component fractions and percentage model-data difference. Figure (a) shows the proportions of annual flux components
plotted as a function of the total yearly flux. The different flux estimates are represented in solid lines of different colours, and the symbols on
them correspond to each flux component. Figure (b) shows the annual model-observation mismatch in percentage with respect to the yearly

total CH4 observation.

Interestingly, the MAP followed the same pattern as the prior estimation by showing an increase whenever the prior increased
and a decrease whenever the prior decreased; however, the posterior mean estimate did not show this relation.

The fraction of the annual errors of the flux components of the total flux (in %) is shown in Figure 11. The effect of opti-
misation on the individual contributions of each component can be seen from the annual means (solid dots) of their fractional
contribution to the total flux. The-error-barsrepresent-theto—stdsfrom-the-mean—valaes—Among the prior estimates of flux
components, the prior plant-mediated transport showed the largest error (22.5%), and the ebullition showed the smallest error
(9.1%). In the MAP estimate, ebullition showed the highest error with a value of 12.3%, followed by diffusion and ebullition
with around the same value of error, 6.9% and 6.8%, respectively. For the estimate using posterior mean values, diffusion and

plant-mediated transport showed around the same errors, 7.5% and 7.4%, and the ebullition showed the least error (2.6%). On
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Figure 11. The first three columns of the figure show the fractions of the annual fluxes from process components of the total fluxes. The
vertical solid lines represent the 1o error bars of each component, and the dots represent the mean of the annual fluxes. The fourth column

(correspond to y axis on the right side) shows the annual mean and annual errors for the inter-annual variation of the total fluxes.

the right-hand side of the figure, the fourth column displays the mean and errors for the inter-annual variation of the total fluxes
obtained by prior parameter values and posterior estimates. The prior total estimate showed an error of 4.2%, and the mean and

MAP showed an error of 0.66% and 0.72%, respectively.
3.3 Fit to the observation

Figure 10b illustrates the percentage model-data misfit, and Figure 12 shows the time series of the assimilated observations

together with the model prior and posterior estimates with their uncertainties. As—expected;-the-pesterior-estimatefitted-the
observations-better thanthe prior-estimate-The total RMSE estimated between the prior and observations were 0.044 gC m 2
d~1, which got reduced to a value of 0.023 gC m =2 d~*! for the posterior case. The result indicates that most of the mismatch
between the prior model estimates and observations was contributed by the large overestimation in the initial years. This
overestimation disappeared in the posterior, showing a better agreement with the observation. There are years for which the
observations show large peaks during the summer (such as 2010, 2043-and-26442012 and 2013), and the posterior estimates
succeeded in capturing these peaks to a large extent, see-but not completely. See Section 4.5 for details.

4 Discussion
4.1 Twin experiment

A common problem with the adaptive MH algorithm is its inability to widely explore the target distribution if the set-up is not

well tuned. This can then result in a poor approximation of the target distribution, hence poor adaptation. The resulting trace

plots shown in Figure 6 and Figure-S2:Supplement Figure 1 {see-supplemental-information)-depict a set of well-explored pa-
rameters on their permitted space ranges during the progression of the random walk, which indicates a well-tuned assimilation
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Figure 12. Total CH4 simulation from the LPJ-GUESS model (red dots) after optimising with the G-RB AM algorithm. The black dots are
the real CH4 observations from Siikaneva with prior observation error (grey shade). The light red shade around the posterior model simulation
is the 95% confidence interval (CI) of the simulations. The blue dots are the prior simulation with the prior default model parameters. A few
outliers above 0.3 gCm 2 on the vertical axis have been removed from the figure for better visualisation. While most of the observations
fall within the confidence intervals, it’s important to note that the effects of parameter variations in the posterior are part of these confidence

intervals.

framework. The use of the Adaptive, Blackwellised learning (as explained above) of the posterior distribution appeared bene-
ficial during the transients of the chains whenever the acceptance probability has been dropped to low values at low probability
regions of the parameter space.

Figures 5 and Figure-S2:Supplement Figure 1 show almost complete convergence of some parameters to Zy,.,. regardless
of the scenarios. Given the complexity and non-linearity of the model, it is not surprising that not all parameters converged
completely. It is also not surprising that different chains estimated slightly different posterior solutions for the parameters.

However, most poorly retrieved parameters still have their true values within the 1 o range of the Gaussian PDFs of the

optimized-vales—optimised values. Even when the parameters are slightly off from the Zy.. values. Figure 3 shows the
capability of the twin experiments in capturing the structure of the observations including the observed spikes in it.

The systematic low y* values observed for the twin experiment doesn’t necessarily affect the framework’s ability to be set
up for the real data experiment (Section 3.1). As the twin experiments here are under the assumption of an "idealised model’,
meaning the model perfectly reproduces the observations without any errors or uncertainty, and ’error-free data,” where the

2

data perfectly represents the environmental conditions without any systematic or measurement errors, it’s expected to have
values systematically below 1 . Also, the y2 value is highly sensitive to the number of observations and parameters. Havin
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3650 observations in scenario 1 and 41610 observations in scenario 2, and only 11 parameters, can lead to low Y2 values.
However, the comparatively smaller values of v for sets 1 and 3 in scenario 1 and set 3 in scenario 2 indicates a tendency to

over fitting the results and being overconfident in the estimated posterior values and uncertainties.
The analysis of the cost function reduction (Table 4), the ability to constrain the parameters (Figure 4), the ability to capture

the structure of the model (Figure 3), and the parameter retrieval ability (Figure 5) of the twin experiments showed that the
developed G-RB AM algorithm is capable of optimizing-optimising the process parameters related to CH4 emissions in LPJ-
GUESS. The results from the eight experiments conducted assuming observations from two different scenarios indicate the
capability of the algorithm for parameter retrieval regardless of the initial guesses and temporal scales used. The resulting
posterior PDE-distributions;—characterized-PDFs, characterised mostly as uni-modal distributions, illustrate the ability of the
developed framework to solve the multi-dimensional problem of reducing a complex cost function based on a highly non-linear

model.
4.2 Parameter estimation using real observations

As described in Section 3.2.1 the experiment using real data resulted in three poorly constrained and one edge-hitting pa-
rameter. The poorly constrained or edge-hitting parameters, however, are not uncommon in MH parameter search and rather
expected with a complex and highly non-linear model such as LPJ-GUESS. The correlation of parameters to other parameters
can affect the result; i.e— e. the number of parameters that can optimised within this data assimilation framework is limited.
Though the twin experiments showed good parameter retrieval and-non-equifinalitycapabilities, assimilating the eomplex-real-
world observations into a complex ecosystem model like LPJ-GUESS is expected to have parameter retrieval and equifinality
problems. This is ene-of-the-another reasons for selecting a small subset of the parameters associated with wetland CHy4 flux
simulations for this study. As-deseribed-in-Seetion3-2-1-considerable-Considerable changes have occurred to the prior param-
eter values after optimisation. Here it should be considered that, in

is-trying-this study, the assimilation aims to reduce the CHzflax-te-minimise-the-magnitude of the prior CHy flux simulation to
minimise its misfit with the observed data, which is areund-nearly half of the prior model estimate (see Table 6).

4.2.1 Posterior correlation estimates

The following discusses the possible impact of the posterior parameters on CHy flux simulation shown in Table ??, the
interactions between the optimised parameters and the component fluxes shown in Figure 22, as well as parameter-parameter
correlations in Figure ?? (we distinguishes between strong (> 0.5) and weak (< 0.2) parameter correlations; we focus on the
strong ones here).

The very slight reduction, i.e— e. , within 1/3 of the 1o error observed in the posterior mean estimate of fRrrotst-Ry, g5t

Table ??). This indicates a slight decrease of-in the moisture response in-under aerobic conditions, henee-a-stightly-reduced

which would likely result in a slower soil carbon turnover time with a slight decrease in CHy emission. BnlikeRmoist—the
The weak R? value and the weak positive 3 value of Rmoist
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with all the flux components indicate that a decrease in this parameter value decreases the emission and explains some of the
variances in the flux components (Figure ?7?).
In contrast, Rmoist,,, obtained a higher posterior value (Table ??) compared to the prior Va}ue—w&h—a*hgh%(\/@igvav

slightly asymmetric multi-modal distribution:

in—the-anaerobic—conditions—of-, see Figure ??) indicating an increase in the moisture response in the anaerobic catotelm.

(Figure ??)

Together with this, the strong (-0.8) negative correlation observed between Rmoist and Rmoist indicates

2

reduced decomposition in acrotelm and increased decomposition in catotelm. Rimoistq, had a positive effect on diffusion
and a negative effect on plant-mediated transport (Figure ?2). An increase in Rmoistq, could enhance CHy production in
the eatotelm-—The-catotelm. Since catotelm has low plant root abundance, this increase would lead to more diffusion and a
reduction in total plant-mediated transport. The increase in Bimoist,, contributed very little to ebullition, This is most likely

due to the negligible contribution of ebullition to the overall flux, having zero contribution most of the time.
The posterior C H,/C O, parameter, which is the CH4 to CO, ratio in an anaerobic environment, was found te-be-lower as

compared to the prior (Table ??). This indicates a high fraction of C02 production from the peat compared to CH4 production.

or-deereases-the-flux—dueto-compaet-peat—As-deseribed-in-Seetien3-2-+Hor diffusion and plant-mediated transport (which
represent the two diffusive pathways) indicates that a significant portion of the p@Wemaiﬁed—aﬁeh&nged—heﬂee—neﬁsh&nges
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value for diffusion and plant-mediated

transport indicates a substantial linear increase in emissions through these pathways if the parameter is increased. The increase
in_ebullition is marginally less than the other fluxes, most likely because ebullition is limited by the availability of gaseous
gaseous phase for ebullition, The C'H,/CO> ratio is negatively correlated :
the parameters Rmoist,, and A,oo¢. This indicates a reduetion-in-lower CHy fraction produced by decomposition in deep soil

porgao(Figure 2?).

The prior parameter value for f,;. was zero, which means there is no ’permanent’ gas fraction in peat (Table ??). The

high positive correlation to fa7por 0. Which can simply be explained as more porous soil allows for more air in the soil
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increase in the f,;. value would increase all the flux components;
had-apesitive-, with a notably larger effect on diffusion an

O ad O a asoen—o d a-€aroo t OV

ime(Figure ?2). As stated
in Section 2.2.3, the diffusivity of CHy in air is four orders of magnitude greater than that in water, indicating that a higher
fraction of air in the soil results in the rapid and easy transport of CHy to the atmosphere. The larger increase in diffusion can
be directly attributed to the fy;, since this parameter directly controls diffusion.

2). The foziq —ttshowed a negative eerrelation-3 value to diffusion and ebullition and a slight positive eerretation-3 value with
comparatively high R? value to plant-mediated transport (Figure ??). A decrease in diffusion-and-ebullition can be explained

by a-greaterfraction-of-available-oxygen—used-the increased availability of oxygen for CHy4 oxidationleading—to-less-CHa—,
resulting in less CHy4 being emitted via ebullition. Significant-A significant decrease occurs in diffusion sinee-because the

diffusive flux cannot eireumvent-bypass the top layer, into which oxygen diffuses. Direet-explanation-of-Directly explaining
the increase in plant-mediated transport is hard-difficult due to the complex process formulation in the model;-but-it-sheuld-be
noted-, However, it can be accounted that the aerenchymas could transport a part of the oxygen deep down to the soil layers
where it plays less of a role in oxidation, but contributes more to the total gas pressure, which can escalate the passive plant

mediated transport to the atmosphere.
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TFransport;-

#As mentioned before the parameters The optimisation of plant-related parameters depends on the specific plant species present
in the wetland. A slight reduction in the posterior mean estimate of ¢yiyier ~#rrerend-suggests that the tillers may be slightly
more compact, with reduced porosity for CHy transport. A considerable reduction, more than 1/3 of the prior uncertainty, is

o L . - indicating
lower leaf biomass (Table ??). This reduction in potential leaf cover would lead to less carbon added to the “potential carbon
pool” for methanogens, resulting in lower CHy emissions. A decrease in tiller weight would add less organic carbon to the
soil, leading to a less compact peat accumulation in the bottom soil layers with more porosity for water. This could explain
the negative correlation between wyiie, and poreao (Figure 22). In contrast to the values of the two above-mentioned CHy
transport-related parameters, 7yuer, Which represents the tiller radius of plants, showed a value more than twice the prior
value (Table ??). This increase indicates more cross-sectional area of tiller for a
plant-mediated CHy transport (see Equation 8). These three parameters related to plant-mediated transport showed strong
positive correlation with each other. They also exhibited positive J values in relation to plant-mediated transport (Figure 2?).

These parameters could-can have two effects on the-emissions-Having-emissions. On the one hand, having aerenchyma cells
with more porous space, radiusand-biomass;—on-the-one-hand;—enhanees—the—, and biomass enhances CHy transport to the

atmosphere;-but-en-, On the other hand, through the same spacious aerenchyma cells, it is also possible for plants to transport

observed in wyie,a

iven biomass, resulting in an increase in

more O, to the soil. This enhanced O, transport to the soil could be-the-reasenfor-the-explain the slight reduction in diffusion

and ebullition observed in the cases of ¢y and wy;er-

As—stated-above—The posterior value for the porosity in the catotelm (por.,:,) was significantly lower than the prior (Table
??), suggesting a more compact catotelm with less water (as it is assumed to be saturated). This change could have a dual

effect on CHy. Variations in water content can slightly affect soil temperature, potentially leading to an increase in the flux
if the temperature rises, or a decrease in the flux due to the compact peat. As described in Section 3.2.1, the porosity of the

observed in the PDF of this parameter indicates a well-constrained single solution, while the negative skewness indicates a
more probabilistic region below the posterior estimate. Similar to fg;,, the-por,.., also had-a-pesterior-value-thatinereased-the
fluxesfrom-all-components-exhibited positive 3 values for all flux components, but with a ratherlow-correlation—Thereasen

atrelatively low R? value (Figure ??). This
ositive relationship may be attributed to the increased presence of air in the soit-and-henee-more-ebullitionacrotelm soil, which
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could facilitate CHy emissions. In contrast, the-an increase in porcq:, shghtly-redueed-the-could lead to a slight reduction in

ebullition. This could be because more water can potentially occupy the pores of permanently saturated catotelm which will

indirectly affect ebullition through phase change and by affecting on soil temperature.
Deeaylength;-
The posterior value for A, is estimated to be much smaller than the prior (higher than the value reported in Wania et al. (2010

and in Susiluoto et al. (2018)
indicates a low decay length of root biomass in the soil, means more of the decomposition and CH4 production occurs in the
acrotelm, and less in the catotelm. The emission of CH4 produced mainly by peat decomposition in the acrotelm would be

facilitated by a low posterior value for \,.,.;, with around 60% in the first layer of acrotelm followed by 22% and 8% in the
second and third layers of acrotelm. \,,,; played a key role in this optimisation. Figure ?? showed-shows that A, has a strong

negative regression-slope-te-3 value for diffusion and a weak positive regression-slope-to-3 value for plant-mediated transport-

i. e. more than 1/3 of 1o of the prior estimate (Table ??). This small posterior value for \,.,

-, both with relatively strong R?
values (Figure ??). Since most of the peat decomposition activities are assumed to happen-in-aeretelm-occur in the acrotelm, the

reduction in the magnitude of ;... facilitated-could facilitate diffusion, especially as it is the largest component. On the other

hand, the-plant-mediated transport got-could get reduced due to the reduction in the root depth-eontroting-depth-controlling

parameter A\;oo;.
4.2.1 Posterior flux components

In Figure 13, the time series of process components are-is shown for the posterior mean estimate. In general, the optimisation
of the model parameters leads to areund-an approximately 50% decrease in the production of CH4 compared to the prior, with a
constderable-significant reduction in plant-mediated and ebullition components, leaving diffusion as the dominant component.
Diffusion is reduced by around 30%and-the-, and plant-mediated transport redueces-around-is reduced by approximately 86%.
The low contribution of plant transport is mainly due to the tew-reduced value of the root depth-controling-depth-controlling
parameter Ao, which gotredueced-decreased from 25.17 to a-vatue-of-10.58. This lowerpropertion-of-the-smaller proportion
of plant-mediated transport is hewever-somewhat surprising for a fen wetland site like Siikanevawith-the-greater—, which
features a significant aerenchymous leaf area throughout the growing season. The result is contradictory to the results obtained
from optimising the modet-sgHIMMEEFHIMMELI model (Susiluoto et al., 2018), in which the largest fraction of CHy is
contributed by the plant-mediated transport. However, from-the-field experiments conducted at-Sitkaneva-to-estimate-the-to
estimate plant-mediated transport s Kerrensale-et-ak+(2022)-has-by Korrensalo et al. (2022) have observed a smaller proportion
of the ecosystemseale-CHzefflux-ecosystem-scale CHy flux attributable to plant CHy transport in the Siikaneva fen site;-which

The largest reduction, however, was for ebullition by around 92%. This result is not surprising since Wania et al. (2010), who

provide the basic foundation of the CH4 model in LPJ-GUESS, also reported almost virtually no ebullition to the surface at
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Figure 13. Time series for diffusion, ebullition, and plant transport using parameter values from the posterior mean estimate. A few outliers

above 0.08 gC'm ™2 on the vertical axis have been removed from the figure for the better visualisation.

several sites. Figure 13 shows that during the years 2008, 2010 and 2012, there-isno-ebulitionno ebullition is estimated. Here,
it should alse-be considered that the representation of ebullition in LPJ-GUESS is somewhat simplified as-it-isrepresented-by
a-eurve-fitting-equation-forcaleulating-using a curve-fitting equation to calculate the solubility, and using the ideal gas law is
apphied-to convert the volume of CHy per volume of water into the corresponding number of moles. Due to this lack of detail
and its fast timescale occurrence (mostly depends on the physical parameters such as temperature and pressure), and with no
relevant parameters in the control vector, the optimisation could not alter the ebullition component directly. But-on-the-other
hand;-the-However, ebullition is indirectly controlled by parameters related to CH,4 production and transport when there is high
saturated CHy available in the soil water;-and-thtis-. Thus, the optimisation can ehange-the-ebullittoncomponentindireetly—The
overal-total-of-the-indirectly affect the ebullition, The total observed CHy4 flux from Siikaneva during the period of 2005 to
2014 was 56.0 gCm 2, ¢ tor-estime - -while the prior model estimate was 98.5 gCm ™2 (Table 6). After
the optimisation, with the posterior mean estimate of parameter values, the model estimated a flux of 53.5 gC'm~2 with an

estimated posterior uncertainty of  4.82 ¢Cm 2. This shows a reduced model-data error after optimisation with a difference

of only 2.5 gCm~2.
4.2.2 Posterior process-process correlation

After the optimisation, the air fraction in the peat got increased, which is likely the cause of the enhanced diffusion. Diffusion
is estimated in the model based on the soil porosityand-, water, temperate and air fractions in the soil. Correlating the diffusion
to the ebullition showed a negative result, i. e. illustrating the dominance of diffusion over ebullition under more air in peat (see
Figure ??b). A larger air fraction in the soil can also lead to an increase in plant-mediated emissions-emission as the passive
diffusion of air through the plant tissues depends on the amount of air in the soil/peat water (see Section 2.2.3). This can be

seen in Figure ??b as a comparatively high correlation between diffusion and plant-mediated transport. The increased tiller
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Table 6. Total emission-emissions from flux components for all ten years estimated from the MAP, posterior mean, and prior parameter

values for the eptimisation-optimization time period. The unit is in gCm ™2,

Component MAP  Posterior mean Prior Observation
Diffusion 49.5 49.6 70.7
Ebullition 0.15 0.28 4.1
Plant-mediated 35 3.7 23.6
Total 53 53.5 98.5 56.0

radius 745, in plants increases the Ay value (Equation 8), and hence also favours faster diffusion through the aerenchyma
cells. Ebullition is positively correlated to plant-mediated transport, indicating the occurrence of both these components when
there is a high concentration of CHy in the soil. This occurs when the water table is located close to the surface and when
there are-more-is a higher density of graminoids. An increase in plant-mediated transport of gases to the soil increases the net

pressure imposed by the gases in soil/peat water, which likely-Jeads-could also lead to increased ebullition.
4.3 Model error and fit to the observation

The annual mean errors for the prior parameter values, MAP, and posterior mean values are shown in Figure 11 as one stdstd.
Except for ebullition, all the prior process components exhibited larger variances of the annual errors compared to the posterior
estimates. The plant-mediated transport is the component with the largest error in the prior estimate. The posterior error
estimates for this component showed nearly equal values with a slightly higher value for the posterior mean estimate. A similar
pattern can also be seen for diffusion. In contrast to this, the MAP error estimate for ebullition showed a higher value compared
to the posterior mean error but interestingly also to the prior. The posterior mean error estimate for ebullition showed the lowest
value.

The annual sums of flux components mentioned above are illustrated in Figure 10a. It is clear from this figure that the prior
process components had large inter-annual variance, especially for the first three years and last year. Considerable reduction
in variance is observed for both the MAP and posterior mean estimates. The reduction of the variance observed in posterior
estimates is not proportional to the prior, but still, the posterior estimates showed comparatively high variance in the first and
last years. In Figure 10b (as described in Section 3.2.4) the posterior mean estimate shows a comparatively high variance
(w.r.t the MAP estimate) of the annual errors with a negative bias throughout the time period. In contrast to this, the MAP
estimate showed a positive bias throughout the time period. Compared to the posterior mean estimate, the MAP estimate
has considerably larger parameter values for the ¢¢;jje, and 4., Which could possibly be interpreted as slightly more CHy4
emission through the increased tillers of plants, hence the reason for the positive bias of the MAP estimate. Figure 11 also
indicates a high percentage of annual plant-mediated emissions for the MAP estimate. The negative bias of the posterior mean

estimate could be due to the additional wintertime emission from the real-world wetlands, which is not captured in the model. In
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the model, the emissions start around early summer, once the soil is not frozen anymore. In addition, the large daily variability
in the observations of the summertime fluxes is also not represented in the model. Overall the posterior estimates of the annual
fluxes are in good agreement with the observations leading to a small model-data mismatch for both MAP and posterior mean

estimates.

4.4 Model inputs and uncertainty

2:5-96m=>-One- As mentioned in the Section 4.1, a somewhat pronounced systematic underestimation in emissions was
observed in the years 2010, 2012, and 2013. None of the twin experiments exhibited these systematic errors, which indicates
that the issue could be attributed to a structural model error (see Figure 3). While the CHy module within LPJ-GUESS is
relatively comprehensive when compared to many other similar models, the model’s process description and parameterisation
remain incomplete. For instance, in the real world, wind plays a crucial role in CHy emissions and its atmospheric concentration.
However, in LPJ-GUESS, wind speed is set to zero for modelling convenience, which presents a significant limitation.

Similarl

representation of CHy production (see Equation 2) are also a major limitation. Another reason for this mismatch could be the
dathy-variations in the input climate data. The § i S i i
ehanges-—correlation plots of the input environmental variables of LPJ-GUESS and the CHy residuals (Supplement Figure 3)
indicate that, in these years, it showed a comparatively high correlation with swr and air temperature, though precipitation did
not show any significant relation. The results of the sensitivity study indicate that both the prior and posterior model estimates
are significantly sensitive to the input variables. However, the posterior model estimate exhibited a considerable reduction in
sensitivity especially for swr and precipitation (see S5 and Figure 5 in Supplement).

As mentioned in Wania et al. (2010), the flux components are determined by complex processes that depend on changes in

many environmental factors. The model is unable to represent peak emissions caused by these micro-environmental changes.
For instance, ebullition (one of the more complex CH4 emissions processes in LPJ-GUESSas-shown-, as explained in previous

the lack of representation of air pressure, simplified representation of ebullition (see Section 4.2.1) and simplified

sections) depends on the volumetric content of wind and various gases—and-, hydrostatic and atmospheric pressure;-but-the

modelisnotusing-. However, the model does not use them as forcing variables. Ebullition is also affected by the concentration

AAAAARARRAAAANAAARARAANAI A AAANARS
of CHy and the density of nucleation sites, which are difficult to represent in the model. Apart-from—these-potential-bias

o ho CEN R S home—and—<o ampe o and hudro

It should be considered that the state vector used for optimisation is somewhat incomplete, which might have affected
the optimised model result. The process representations in LPJ-GUESS are complex and interconnected, with a multitude
of parameters directly or indirectly linked to CHy fluxes. Representing the indirect parameters can be intricate, as they may
depend on other fluxes or model components. For instance, LPJ-GUESS’ soil module is intricately connected to the Century.
model, featuring ten soil compartments. Introducing a parameter related to soil temperature or the wtd into the framework
would necessitate accounting for the intricacies of the Century model. Furthermore, it might require the inclusion of additional
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flux species, such as Net Primary Production (NPP), Soil temperature profiles, or wtd. This would significantly increase the
complexity of the problem, exceeding the scope of this paper. Given these caveats, the small negative biases obtained for the
posterior mean estimates when compared with-the-observation-against the observations (see Figure 10 b) are reasonable when

considering the quality and uncertainty of the input data used (see Section 2.1) and the complexity and structural issues of
LPJ-GUESS.

4.5 Optimised simulation from LPJ-GUESS

A detailed time series distribution of prior and posterior model simulations plotted against the ebservation—observations is
shown in Figure 12. The posterior model predictions were adjusted by the optimisation to eapture-the-observation-fit the
observations with considerable adjustment to the summer peaks. For example, the large peaks in the modelled emissions in
2005 and 2006, which largely contributed to the prior cost function, disappeared in the posterior emissions. In the following
years, 2007 and 2008, the prior model simulations underestimated the observation, which also got corrected in the posterior.
Also, the posterior emissions largely capture the comparatively high peaks in the observations for the years 2010 and 2012,
though the model still underestimated the ebservationobservations. In 2013, the observations were high and the optimisation
failed to capture this peak; rather, it tried to compensate for the underestimation by releasing a sudden high spike at the end
of the summer that year. In winter months, the model simulated zero fluxes (as discussed before), whereas, the observations
showed a small emission (around 8.3 % of the assimilated total), often with some small spikes possibly from the ebullition.
This inability of the model to capture the wintertime emission has contributed to the posterior model uncertainty and model

data misfit.

A significant mismatch in soil temperature and wtd has been observed between the model and observations, especially
during the wintertime (see S4 and Figure 4 in Supplement). The model tends to overestimate wintertime temperatures and
underestimate the wintertime wtd, indicating completely frozen soil with a very low wtd. This discrepancy could be a reason
for the complete suspension of model CHy emissions during the winter. Observations show many days with wtd above the
ground level, both in summer and winter. Since wid is a key factor that can affect all flux components, this error could
contribute to the misfits observed after the optimisation, though it cannot explain the systematic under estimation observed in
posterior. It should be noted that there are no considerable differences observed between the prior and posterior soil temperature

orwtd.

As discussed in Section 4.2.2, the contribution of ebullition to the posterior estimate is comparatively negligible. Compared
to the posterior, there were many emissions spikes observed in the prior estimate, especially during the beginning and the end
of the summer months. Apart from these spikes the prior CH, estimates during the summer were a bit low in most of the years.
The posterior estimate has considerably reduced these high spikes and adjusted the summer peaks to match the observation
observations better. On the other hand, while compromising with the summer peaks in the observation;-the-optimized-parameter
observations, the model with the optimized parameters often failed to capture the abrupt high fluxes in the daily observation
and simulated them at slightly wrong times. The spike shown at the end of 2013 is an example of such a mis-timing. This is

likely to be caused by errors in the meteorological input data and missing wind and pressure representation.
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It can be seen from the Figure 12 that the majority of the observations lie within the 95 % confidence interval of the posterior
estimate. Often the observation uncertainty overlaps the confidence interval except for the summer peak times of 2010, 2012
and 2013, in which the ebservation-observations showed strong peaks compared to the average values. The few outliers in the
observations are not captured by the model; these could likely be measurement artefacts and/or due to environmental forcing

not considered here, again such as wind speed or air pressure.

4.6 Merits and shortcomings of G-RB AM framework

Advantages of the developed G-RB AM framework includes the ability of MCMC method to escape local maxima or minima,
making it more robust to these than gradient descent based methods. Further the MCMC method is derivative free avoiding
issues with computing gradients for very rough functions and the adaptive part of the MCMC learns about parameter correlations
and utilises these dependencies in the proposal allowing it to better explore the parameter space. Potential issues for the MCMC
is that very uneven cost functions can lead to the chain getting stuck (essentially the local minima is too deep for the algorithm
to escape). Here, we have alleviated this issue by the tapering of the cost function. We also acknowledge that the cost function
could be improved, the squared cost function essentially assumes Gaussian errors with equal variance for all values and ignores
any temporal correlations. The observations are measured as time-series and concentration/flux observations are known to have
relative errors. i.e. larger observations have larger observational uncertainty. Adapting the cost function to account for these
factors would be of interest and is likely to have a larger impact on the posterior parameter uncertainties than on the estimates
of the parameters.

5 Conclusions

This study marks-the-represents an initial effort to optimize the model process parameters controlling the simulation of wetland
CH, fluxes within the LPJ-GUESS model using the Rao-Blackwellised adaptive MCMC technique based on Bayesian statis-
tics. The assimilation framework has been shown to be able to retrieve correct parameter values by performing a set of twin
experiments. Furthermore, we used eddy-covariance flux measurement data from a boreal wetland to calibrate the LPJ-GUESS
model parameters for a site-specific simulation. The results demonstrated that the fit to the observation of the CH4 simula-
tion of a complex terrestrial DGVM like LPJ-GUESS can be systematically enhanced with a Bayesian parameter calibration.
The results also showed that the modelled processes and the estimated parameters were well constrained by the observations
leading to a substantial reduction in the posterior uncertainty of the simulated CH, emissions. The results of the re-sampling
experiment indicated that there were no redundant processes in the model description, as shown by the parameter and process
correlations.

The robustness of the assimilation framework developed in this study calls for further application of the framework using
observations from multiple sites in a simultaneous assimilation. Further validation of the framework’s performance is neces-
sary to confirm its applicability to other sites with diverse plant functional types and climatic conditions. The relatively strong

roughness in the shape of the cost function observed in this study is expected to be reduced in a multi-site assimilation experi-
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ment, as has been observed by Kuppel et al. (2012), which would allow the retrieval of the global minimum of the cost function

more easily. These further applications are beyond the scope of this paper and will be investigated in future studies.
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