
Dear Julia,


I wish to express my gratitude for your assistance in navigating the publication process of 
our paper, 'Optimizing CH4 Simulations from the LPJ-GUESS Model v4.1 Using an 
Adaptive MCMC Algorithm'. Your efforts in identifying suitable reviewers for our paper are 
greatly appreciated.


We are appreciate to have received constructive feedback from both reviewers. We 
believe that their careful assessments and insightful comments have significantly 
contributed to the enhancement of our manuscript's quality.


I'm pleased to inform you that we have now addressed the feedback from both reviewers 
and have submitted our responses (author's comments). In line with the reviewers' 
recommendations, we have made significant revisions and restructured the text, ensuring 
that all relevant details remain in the paper. Furthermore, we have included a detailed 
description of the technical aspects of the G-RB Algorithm in the paper and have added 
additional details and plots to both the paper and the appendix to address some of the 
comments.


Once again, I would like to express our gratitude to you and the dedicated reviewers for 
the time and effort in helping to improve our manuscript.


Best regards,

Jalisha


Note: The copy of both AC replays are attached below  



Anonymous Referee #1 
We are very thankful to the Referee for the constructive comments. In the 
following, we have addressed the Referee's comments. The manuscript has 
also been revised accordingly. 
  
Note: The reviewer comments are referred to in black font type throughout the texts, and 
the authors’ responses are referred to as blue font. 
This is an interesting study on the optimization of the methane emission parameterization 
in LPJ-GUESS using flux measurements. The Bayesian optimization method that is used 
provides a more objective basis to derive unknown parameters in the model than the 
initial approach taken by Wania et al when designing the parameterization.  The authors 
rightly regard the currently reported step as an initial effort towards this goal, as 
measurements from only one site are used. However, it serves the purpose of 
documenting a promising method and provides a reference for future work. A few issues 
remain to be resolved, as explained below. 


1. The text is quite long :a stronger focus on the most important findings would help.


We have the same comment also from referee #2. Considering this, along with the editor's 
suggestion to keep the relevant details somewhere in the paper, we have made the 
following changes to the paper.


• Only the main model processor is now included in the paper, and we have moved a 
significant portion of the model description to the appendix. We have retained the 
model description because we believe it is important when discussing the results.


• We have rewritten the discussion in accordance with the comments of the referee #2, 
resulting in a significant reduction in text length. The discussions on parameter 
correlations, process parameter correlations, and process-process correlations have 
been combined into a single short section with more clarity.


• At the request of the referee #2 we have moved the technical details of the MCMC 
framework from the appendix to the main paper.


2. The discussion of parameter correlations is sometimes difficult to follow, and needs 
further clarification as explained below. 


As mentioned above, the discussion of parameter-parameter and parameter-process 
components has now been combined, reduced, and simplified.


The optimized model shows significant non-random misfits to the data, in particular 
regarding interannual variability, in a way that cannot easily be explained by data 
uncertainty. Some further discussion or analysis is needed for the reader to understand 
what it means. Is the state vector incomplete?. 6. Is there any correlation between the 
misfit and driving environmental variables (temperature, water availability, vegetation 
productivity, …). Currently this issue is kind of glossed over in a way that calls the 
sophisticated new mathematical machinery that is presented into question.


Many thanks for pointing these things out. We have observed that in the real data 
experiment, for some years (2010, 2012, and 2013), there are systematic 



underestimations of emissions. Since in the twin experiment we do not such systematic 
errors we have added a new figure in the main paper, Figure 3, showing the time series 
estimates of the twin experiments in Scenario 1. The simulations, using four sets of 
posterior parameter values obtained from the twin experiments, are plotted against the 
twin observations used. Our assumption for these systematic errors in the real data 
experiment is that these are likely caused by a model structural error, i.e. we think there 
are inherent structural issues in LPJ-GUESS. While the methane module within LPJ-
GUESS is relatively comprehensive when compared to many other similar models, the 
model's process description and parameterisation remain incomplete. For instance, in the 
real world, wind plays a crucial role in methane emissions and its atmospheric 
concentration. However, in LPJ-GUESS, wind speed is set to zero for modelling 
convenience, which presents a significant limitation. Similarly, the lack of representation 
of atmospheric pressure and simplified implementation of the ebullition component is also  
limitations.


Furthermore, the state vector is indeed incomplete. LPJ-GUESS is a complex model 
encompassing numerous ecosystem processes. These processes are interconnected, 
and there exists a large set of parameters directly or indirectly linked to methane fluxes. 
There are two primary reasons for selecting a limited number of parameters within the 
methane model of the system: Firstly, our aim was to assess the feasibility of the 
framework we developed around LPJ-GUESS. Consequently, we opted to avoid the 
complications arising from an excessive number of dimensions and parameter 
correlations. Representing the indirect parameters can be intricate, as they may depend 
on other fluxes or model components. For instance, LPJ-GUESS's soil module is 
intricately connected to the Century model, featuring ten soil compartments. Introducing 
a parameter related to soil temperature or water table into the framework would 
necessitate accounting for the intricacies of the Century model. And secondly, this would 
require the inclusion of additional observations, such as soil temperature profiles or water 
table profiles otherwise the optimisation problem would be heavily underdetermined. This 
would significantly  increase  the complexity of the problem, exceeding the scope of this 
paper.


Considering the suggestion to examine the correlation between the misfit and driving 
environmental variables (Air temperature, Precipitation, and Short Wave Radiation), we 
have now examined these correlations and added the plots and results in the appendix 
(see S3 of the appendix), as well as to the discussion in Section 4.4 (Model Inputs and 
Uncertainty) of the main paper. We have also examined the observed and simulated soil 
temperature and water table depth. See S4 of the appendix and section 4.5 (Optimised 
simulation from LPJ-GUESS). Despite explaining the misfit with the observed correlations, 
it might be necessary to conduct future studies to include soil temperature, NEE, Water 
Table Depth, and other factors. Again, incorporating additional observations and 
parameters would exceed the scope of this paper.  

3. Section 2.2. provides ‘brief descriptions’ of the main processes in the model of a bit 
more than 8 pages. I understand that there are many components and that this is the 
consequence of describing them all briefly. 


Yes, the methane model description in LPJ-GUESS is relatively extensive. We found it 
challenging to discuss the parameters and their correlation without the description of the 
underlying model equations and processes. However, as mentioned above, we have now 
moved a significant portion of the model description to the appendix.




As I understand it, there is a detailed description of the current model setup in Gustafson 
(2022), but details are also in McGuire (2012). It raises questions about where the reader 
should turn to for a full description of a particular component of the model and if the 
information about the model that is provided here is only repeating that information in a 
summarized form or also includes actual modifications. It may be better to summarize the 
main processes with references to papers that describe the details for each of them and 
only show detailed equations later to explain the parameters that have been selected for 
optimization.  Right now, something in between a full and summarized model description 
is provided, from which it is difficult to infer if this model version is the same or not than 
what was used before, and where one should turn to for details about any specific 
component of it.


It is true that the detailed description can be found in Gustafson (2022), and a few details 
in McGuire (2012). The description in McGuire (2012) cannot be considered a reference 
for the model processes, as it is incomplete and differs in the representation of the 
processes. The actual model description can be found in Wania (2009a, 2009b, and 
2010), originally written for LPJ-WHYME (This has been mentioned in the paper). This 
code was later adapted and modified for LPJ-GUESS with some adjustments and 
additional details (see the Section 2.2 of the paper). This is one of the reasons for 
including the detailed model description in this manuscript. Also, when we initially 
submitted the manuscript to GMD, Gustafson (2022) had not yet been published, and 
there was no citable reference for the actual methane description in LPJ-GUESS. 
Additionally, the LPJ-GUESS model code is now publicly available, including the 
description of the methane module, which was not the case earlier. 


As mentioned above, we have moved a significant portion of the model description to the 
appendix. While we appreciate the suggestion to summarise the main processes and 
provide detailed comments, we found it very challenging to include only a portion of the 
processes, as we believe it might confuse readers and make it difficult to follow the 
discussion. Since the model code is now publicly available and will continue to be 
updated with new releases, we recommend that interested parties refer to the latest 
versions of the model.


4. Section 4 presents the parameters that are selected for optimization. For the 
parameters from Wania et al (2010) it is clear why they were selected, but not for the 
seven other parameters. They were selected for their high SI value, but how was that 
determined? How many parameters were tested? 


We tested 16 parameters directly associated with the methane module of the model 
(based on expert opinion) and ultimately incorporated 11 of them into our study due to 
their high Sensitivity Index (SI). We acknowledge the mistake of not including the 
eliminated parameters in the paper. Figure 2 in the paper has now been modified to 
include the less sensitive parameters. A brief description of these eliminated parameters 
can be found in the paper, Section 2.3, as follows:


“We considered five of the seven parameters Wania et al (2010) tested in their sensitivity 
analysis (two parameters related to the root exudate decomposition are not used in LPJ-
GUESS) together with eleven other parameters used in LPJ-GUESS. Based on their high 
SI values we chose eleven of them for the optimisation (Figure:02, Table:01). Among the 
five eliminated parameters ag_frac is the fraction of ANPP (Annual Net Primary 
Production) used to calculate number of tillers, DT_min is the minimum temperature 
(degree C) for heterotrophic decomposition, por_org is the porosity of organic material, 



C_con is the carbon  content of biomass and U_10 is the possible constant value of wind 
speed at 10m height.”


In my understanding, the CH4  flux variability at Siikaneva is largely controlled by 
temperature, water table, and vegetation productivity. It is not so clear to me that the 
chosen parameters reflect the main uncertainties in each of these. 


We agree that the variability in CH4 flux at Siikaneva is primarily influenced by 
temperature, water table depth, and vegetation productivity. As mentioned above to limit 
the number of parameters and keep the problem’s dimension smaller (to test the usability 
of the framework, which we think is the primary objective of the paper), we selected 
parameters directly connected to the CH4 module of the model. The parameters directly 
linked to temperature and water table depth are not fully represented by our chosen 
parameters. On the other hand, since some Plant Functional Types (PFTs) are exclusively 
added to the wetland CH4 model, we considered many parameters related to vegetation 
productivity, such as w_tiller, r_tiller, phi_tiller, and lambda_root. Therefore, it's important 
to acknowledge that while our parameter selection reflects key elements influencing CH4 
flux, further investigation with more parameters and fluxes may be necessary to 
comprehensively capture the main sources of uncertainty.


Even though the temperature and humidity response of the emission may arise from 
underlying model parameters, it would nevertheless by useful to know the sensitivity of 
the model to those drivers and if the optimized model behaves different than the prior. 
Quantifying those sensitivities would also facilitate the comparison with other studies and 
models.


Considering the suggestion, to examine the sensitivity of the LPJ-GUESS to the input 
variables before and after the optimisation, we have now conducted a sensitivity analysis. 
Sensitivity is estimated by increasing the air temperature by one degree and short wave 
radiation and precipitation by 10% of the original site values. The estimates of sensitivity 
consistently decreased after optimisation. However, the change was relatively small, with 
a reduction of less than 10% for all three variables. The details are given in the S5 of 
appendix with a mention in the paper (Section: 4.4) as below: 


“The results of the sensitivity study indicate that both the prior and posterior model 
estimates are significantly sensitive to the input variables. However, the posterior model 
estimate exhibited a reduction in sensitivity especially for short wave radiation and 
precipitation (see Appendix S5 ).”


5. In section 2.5 the parameter optimization framework is explained. From the description 
I conclude that it is iterative only on the prolongation of the Markov chain, but not in the 
starting point of the optimization process. For the Twin experiment different starting 
points were used, but not for the real data experiment. It raises the question if the 
convergence is similar using synthetic and real data. Some further discussion is needed 
about this. 


We appreciate your valuable comment, and it highlights an important aspect of our study. 
The twin experiment was designed to assess the applicability of the G-RB AM framework 
within LPJ-GUESS. To test the convergence capability of the framework, we initiated 
each twin experiment with different starting points for the parameters. Once we confirmed 
that the framework could converge consistently regardless of the initial parameter values, 
we proceeded with a single set of real data experiments. Given the valid question 



regarding starting from different points in the real data experiment, we revisited some of 
our preliminary analyses that were not included in this study. This allowed us to verify that 
the parameters indeed exhibited convergence behaviour towards the posterior parameter 
values obtained in our final analysis (though we observed somme issues of equifinality).


For the resampling experiment it is unclear how the random selection was done. Is it 
drawn from the full posterior error covariance matrix? In this case, the correlations that 
are examined are not sensitivities of one parameter to another, but error correlations, so 
the sensitivity of the error in one parameter to the error in another. 

The discussion that follows in the results section is very difficult to follow without knowing 
exactly how to interpret parameter to parameter correlations. If the aim is to determine 
the sensitivity of a flux component to a certain parameter, then why not perturb only that 
parameter relative to the optimal solution?


1000 sets of parameters are randomly selected from the posterior distribution (the last 
25% of samples from the MCMC chain).  Interpreting the MCMC from a Bayesian 
perspective, samples from the last part of the chain correspond to samples from the 
posterior parameter distribution, and will thus be a representative draw of "reasonable" 
parameters  given the observations. Strong  correlation in the posterior should  be 
interpreted as combinations of  parameters that produce similar outputs, and thus 
represent combinations  that are  not wel l constrained/identified by the 
available observations rather than as parameter errors. These parameters are then used 
to run the model and simulate the total CH4 flux and its components. The outputs from all 
1000 simulations are then analysed to understand the correlations among processes and 
the influence of each parameter on the flux components and total emissions. In response 
to the feedback regarding the difficulty in understanding the posterior correlation matrix, 
we have revised the text to make it more straightforward.


SPECIFIC COMMENTS


Line 84: ‘The air temperature …’ Correlation of data on what timescale? For rainfall the 
relevant timescale may be a bit longer, for which the correlation could be higher.


Ten years of meteorological data were collected from both Siikaneva and Hyytiala. In the 
data collected from Siikaneva, out of the expected 4017 daily data points, 793 data 
points were missing for Temperature, 1326 were missing for Precipitation, and 19 were 
missing for shortwave radiation, see Figure. 1.


(Figure : 1)




Equation 10: ‘..CH4/CO2..‘ I thought the model kept track of oxygen in the soil. Then why 
is CH4/CO2 treated as a constant in the model? Line 214: the same question as the 
previous for f_oxid.


The model keeps track of oxygen in the soil. In wetlands, the oxygen in the soil is 
determined by the fraction of air in the soil, and the degree of anoxia is defined as 1 - (Fair 
+ fair). Were, Fair is the fraction of air in the soil layers and fair is the fraction of air in peat 
(Wania et al., 2009a) (see Sections 2.21 (CH4 production) and S1 in Supplement for 
details). The fraction of plant roots in the soil influences the transport of oxygen into and 
out of the soil. So, the molar ratio of CH4 to CO2 production is weighted by these two 
factors to estimate CH4 production. Depending on the oxygen availability, a part of this 
CH4 will get oxidised, denoted as foxid. The CH4 to CO2 ratio is an adjustable parameter 
in the model due to the wide variation in the molar ratio of CH4 to C02. 


Line 326: Why is the cost function called a loss function? (here for the first time but also in 
other places)


Technically both the cost function and loss function are correct terms. Both terms are 
used to describe a mathematical function that quantifies how well a model's predictions 
match the observation. In our manuscript, we initially used both terms interchangeably. 
However, we have since updated the terminology to use 'cost function' exclusively.


Line 353: Why are the prior values set to Ztrue if the performance of the twin experiment 
is determined by the ability of the MCMC to recover Ztrue?


The cost function is a combination of model fit and deviation from the prior. For the twin 
experiment we have taken the prior-mean  equal to the true parameters to ensure that the 
true minimum of the combined cost function coincides with the minimum of only the 
model fit part. If the prior-mean does not equal the true parameters it is conceivable that 
the combined minimum could deviate from the minimum for the model fit part. For a real 
world application the prior implies a weighting between prior knowledge and 
guesses about the parameters and information obtained from the current observations. 
Here, the difference in prior variance and observational variance as well as the amount of 
data will determine how that weighting is done. The prior sensitivity and selection of 
suitable prior means and variances is an interesting question, but outside the scope of 
this study.


Line 370 – 375: Which criteria are used to classify as ‘large’ or ‘low’ std?


If the standard deviation of the distribution is greater than 20% of its total range (ie, total 
range of the parameters), it is considered as a large standard deviation. This 20% 
threshold is based on expert opinion and is discussed in detail in Section 2.7 of the paper 
(Parameter value estimation ) as:


“To be more precise with the estimation, for the posterior parameter distributions 
appeared multi-model if the std of the distribution is greater than 20% of its total range, 
we classified them as poorly constrained. The edge-hitting parameters are the ones that 
cluster near one of the edges of their prior range (Braswell et al., 2005). ”




Figure 3: which of the optimization chains is chosen here? The same question for for 
S2:2.


It is of the experiment one of the scenario1. We have mentioned it in the Section 3.1 (Twin 
experiment using G-RB AM) as:


“The resulting PDFs of the experiment 1 after the ’burn-in’ are represented in Figure 4.” 


And,

“Posterior parameter correlations of the experiment 1 shown in Figure S2:1 are given in 
S2:2. “


Figure S2:1 The choice of initial points seem biased low for most parameters. Is this by 
accident? Could the biased convergence of lambda_root and CH4/CO2 be explained by 
this?


This happened partially by accident. However, In principle, a good initial guess can 
significantly speed up the convergence of the MCMC algorithm. Therefore, we were 
randomly searching for better starting points independently for each parameter. This 
situation arose when we encountered large differences between the proposed and 
previous cost values, making it difficult to calculate the logarithm of the difference. To 
address this issue, we decided to implement tempering. We then sought a few sets of 
parameters with a moderately good cost values to begin with.


(Figure: 2)


We examined our other experiments that we have not used for this study to see if it is 
possible to explain the biased convergence of lambda_root and CH4/CO2 by the initial 
points chosen. Figure 2 shows experiments with different starting points than the one we 
used for this study. The figure indicates a trade off between CH4/CO2 and lambda_root, 
where when one converges, the other one is staying away from the true value. It should 
be noted that when lambda_root increases, the total emissions tend to strongly decrease, 
and when CH4/CO2 increases, the total emissions tend to strongly increase, see Figure : 
2 above.




Line 410: It is not clear from the setup if the flux measurements are perturbed with 
random noise or not. It seems not to be the case as the expectation is that the solution 
converges to Ztrue (rather than to Ztrue within the posterior uncertainty margin). It might 
explain why chi2 is systematically below 1. This should be explained clearer, as well as 
the implication for the representativeness of the Twin Experiment for the performance of 
the optimization using real data.


Many thanks for pointing this out. No, we have not perturbed the flux measurement with 
any random noise. The expectation is that the parameters converge to the Ztrue values, 
without any model or observational error, and that is definitely a reason why the χ² is 
systematically below 1. A reduced χ² value systematically below 1 for different twin 
experiments might suggest an issue with the representation of uncertainty or errors in 
both the model and observation. As the twin experiments here are run under the 
assumption of an 'idealised model'—meaning the model perfectly reproduces the 
observations without any errors or uncertainty—and 'error-free data,' where the data 
perfectly represents the environmental conditions without any systematic or measurement 
errors, it's expected to have χ² values systematically below 1. In this case, we expect the 
model to fit the observations without considering any uncertainty. Also, the χ² value is 
highly sensitive to the number of observations and parameters. With 3650 observations  
in Scenario1 and 41610 observations in Scenario 2, and only 11 parameters, this can lead 
to low χ² values. So, considering these facts, we believe that having low χ² values for the 
twin experiment doesn't necessarily affect the framework's ability to be set up for the real 
data experiment. We have now mentioned this in Section 4.1.


Table 6: Why has the cost function value not been translated into its corresponding chi2 
value, which would provide more insight in the optimization process (e.g. compared with 
that of the twin experiment)


Thank you for bringing this to our attention. In response, we have made the following 
change to the Section 3.2.3 to address this concern:


 “After the optimisation, the cost function value was reduced to 2959.8 (reduced χ2=3.82) 
with the MAP estimate of parameters and to 3002.6 (reduced χ2=3.88) with the posterior 
mean estimate of parameters.”


Line 534: ‘… which is around half the prior model estimate’ What do you mean here?


We are sorry for the confusion. The total magnitude of the observation is around half of 
the prior estimate. The details are in Table 6, i.e. the magnitude of total observation is 56, 
whereas the total prior is 98.5. For the clarity we now have changed the text to:


“Here, it should be considered that, in this study, assimilation aims to reduce the 
magnitude of the prior CH4 simulation to minimise its misfit with the observed data, which 
is nearly half of the prior model estimate (see Table 6).“


Figure 12: ‘.. The figure illustrates the change in … optimization’ But the results shown are 
the posterior contributions to the flux, not the difference with the prior, right? In that case 
it is not the ‘change’ that is shown.


Yes. That is correct. Many thanks for noticing it. It is not the changes, rather the 
component decomposition of the total flux. We have corrected it now in the paper.




Figure 12: What explains that plant mediated transport is only important early in the 
season? You would expect the plant-mediated transport to become more important as 
the growing season progresses.

This is true. But what the posterior resulted is that the plant mediated emission is 
observed only in some years. And in the years it is present, it seems more pronounced 
early in the summer of these years. We assume this could be due to the reduced value of 
the root depth-controlling parameter lambda_root, which decreased from 25.17 to 10.58 
after the optimisation.


Line 635: What signal in the measured fluxes becomes easier to fit by the model if the 
ratio between diffusion and plant mediated transport changes? Can we understand why 
this happens?


Predicting this is challenging. In LPJ-GUESS, processes are represented in a complex 
manner, connecting environmental, vegetation, and climatic variables. In cases where the 
prior model overestimates real fluxes (as we had in this study), the assimilation attempts 
to reduce the modelled flux by decreasing emissions from the components. If we could 
utilise complete state vectors and additional related fluxes, the posterior should derive the 
most plausible proportions of each component. However, if the state vector and process 
description are incomplete, the optimisation attempts to find the most viable solution by 
adjusting emissions from different components. One way to achieve the accurate 
proportion of fluxes from the optimisation could be by adding observed data from all the 
flux components, however, this is not practical due to the lack of observational data for 
the flux components.


Table 7: Is the reduction of the posterior flux compared with the prior only driven by the 
observations 2005 and 2006? In the other years it is not clear that the flux should go 
down.


We apologise for the lack of clarity. It is the total reduction obtained by summing all the 
ten years. We now have changed the caption of the figure to make it clear (Please note 
that the table number is changed from 7 to 6 now).  


Figure 11: Is there a reason why the posterior model has difficulty reproducing the 
observed inter-annual variability? It does a good job on the multi annual mean flux. That it 
cannot reproduce short-term variability is understandable and probably not so critical. 
However, it would be useful to understand the drivers of inter-annual variability and why 
the model has difficulty capturing them.


Many thanks for the comment. Yes, there are some systematic misfits observed in the 
posterior estimate. The wetland module is connected to several biogeochemical cycles 
and environmental variables. Hundreds of parameters contribute to it. As we have 
mentioned before, there could be many reasons for this, such as an incomplete state 
vector, incomplete process representation, variability in the model inputs, etc. We have 
mentioned this in the context of discussing the correlation between observed model 
inputs and posterior CH4 residuals as an answer to the comment 2 above. We intend to 
extend future studies to include soil temperature, NEE, WTD, and other factors.




TECHNICAL CORRECTION

Line 7: delete ‘are’

Line 76: ‘… measurements’

Line 85: ‘… therefor …’

Line 102: ‘.. are are …’

Line 106: in the current formulation the 10m water depth seems to refer to the snow 
layers

Line 129: ‘.. ((wtd)) ..’ Somehow wtd always appears in parentheses.

Line 276: ‘… divdied …’

Line 525: ‘… resulted three …’

584: 'A larger value ... would ... result'


Many thanks for pointing out the technical errors they are truly valuable. We have now 
corrected them in the revised paper. 




Anonymous Referee #2 

We are very thankful to the Referee for the constructive comments. In the 
following, we have addressed the Referee's comments. The manuscript has 
also been revised accordingly. 
  
Note: The reviewer comments are referred to in black font type throughout the texts, and 
the authors’ responses are referred to as blue font. 

The study “Optimising CH4 simulations from the LPJ-GUESS model v4.1 using an 
adaptive MCMC algorithm” presents a parameter calibration methodology and example 
case targeting methane emissions simulated by the LPJ-GUESS model. The goal of this 
study, parameter optimization for simulations of complex processes is important and 
timely in the field of ecosystem modeling.

However, the manuscript is very long, with detailed descriptions of model structure and 
individual parameter responses to optimization. The study would be greatly improved by 
clearer and more high-level descriptions of the key points, a more explicit evaluation of 
the parameter optimization methodology, and fewer less-relevant details.  


 
For me, this would include:


1. Less description of the LPJ-GUESS model since Wania et al 2010 includes much of 
the same information. It is mostly important to highlight key differences between the 
version of the model used here and previously published model descriptions.


We have the same comment also from the referee #1. And the comment is addressed as 
the response to the first comment of referee #1. The key differences between the 
methane modules of the LPJWHyMe and LPJ-GUESS can be found in Section 2.2 in the 
main paper and S1 of the appendix.

 

2. A better description of the G-RB AM framework, since this is the primary subject of the 
study. Some of the information in the supplementary could be moved to the main text, 
and the algorithms described in Andrieu and Thoms 2008 could be presented/
summarized here.


The primary reason we opted not to include the technical details in the main paper is due 
to our concern that it might lead to further increase in its length. Also, the algorithms we 
used, a mixture of the Rao-Black-wellised Adaptive Metropolis (AM) algorithm and the 
Global Adaptive scaling AM algorithm are comprehensively described in Andrieu and 
Tomas (2008). However it is true that the primary objective of the study is the 
development and testing of our framework. Taking into careful consideration your 
valuable feedback, we have relocated the description of G-RB AM framework to the main 
paper.




3. Twin Experiment: this is a very useful test of the parameter optimization methodology, 
but the interpretation of the results of this experiment could use some improvement. To 
my eye, the methodology did not do a great job at recovering the parameters in an 
application that is much much easier than one involving real field data. For example, the 
CH4/CO2 is a very key parameter in the LPJ-GUESS methane model, since it directly 
tunes methane production. Why was there such difficulty recovering this parameter?


You are right that in principle the twin experiment should be able to recover the 
parameters completely. To verify the robustness of twin experiment, now we have added 
a new plot to the paper (Figure: 3, explained in Section 3.1 and Section 4.1) that displays 
all the posterior time series from our four twin experiments in Scenario 1 in comparison to 
the twin observation we used. The figure shows how effectively the optimised 
parameters, following the twin experiment, capture the structure of the twin observation 
and the majority of its spikes.  The broader parametrisation challenges we observed in the 
real data experiment, that most likely are related to issues with the parametrisation, are 
not observed in the twin experiment. For example, it can be noted from this figure that 
none of these experiments display the systematic underestimation of the flux observed in 
the real data experiment.


In general, we agree that the twin experiment did not completely recover the true values 
of these parameters. We mentioned the parameters CH4/CO2 and lambda_root 
particularly in the paper because these were the two parameters that were not recovered 
to their true values at least once in the posterior distribution. The LPJ-GUESS model is 
very complex and extremely non-linear in its behaviour. When we mentioned the good 
convergence of all parameters except for CH4/CO2 and lambda_root, we were 
considering this fact about the model, hence the possibility of different parameter 
combinations yielding similar results for the same problem (equifinality).


And, in addition to the parameters mentioned in L386, I see poor convergence for Rmoist, 
fair, porcato, and maybe foxid too in Figure S1. Why is the optimization framework 
encountering these difficulties, and what would be needed to improve it?


This could be attributed to the following problems :

1. The high dimensionality of the problem and limited variability in the data for its 

resolution. For instance, regarding the parameter CH4/CO2, one reason for the poor 
recovery could be that we are only optimising the CH4 component, and the proportion 
of CO2 is significantly off. If we incorporate both CH4 and CO2 fluxes to address both 
sides of the ratio, it will lead to a more accurate convergence.


2. The high degree of non-linearity and complexity in the model, which results in 
equifinality.


3. Limited dimensions in the data. Achieving complete convergence may require 
different types of observations with climatic and geographical variations. Here the 
model is not fully constrained by the limited observations.


A possible solution we are considering is that a single type of flux from a single site might 
not be sufficient for identifying these parameters due to the high degree of non-linearity in 
the model. Therefore, additional sites with spanning a large climatic variability and/or 
different species of fluxes (for example, in addition to assimilating CH4 observations also 
assimilating CO2 observations) from the same site may be necessary. However, a 
challenge in this approach would involve formulating cost functions for different 
observations in a manner that properly weights them to equally represent the information 



without diminishing its significance, and these considerations are beyond the scope of 
this paper.


Also, what are the 4 experiments in Figure S1?


We have considered two scenarios for the twin experiment to test the identifiability of the 
parameters under different conditions. Scenario 1 with a shorter temporal scale from 2005 
to 2014 (10 years), and scenario 2 with a longer temporal scale from 1901 to 2015 (115 
years). Four sets of chains for both scenarios with a chain length of 100,000 iterations 
were analysed. In each set of the scenarios, the optimisation started from a different initial 
point in parameter space randomly selected from their prescribed ranges. This has been 
described in Section 2.6, and Section 3.1 in the paper.  

4. Real Data experiment: This is the central result of the study, so I think that some 
summary statistics (RMSE, R2) of model performance before and after parameter 
optimization should be included in the abstract. 

This is a very valid comment we somehow neglected. We now have added the line “The 
experiment using real observations from Siikaneva resulted in a reduction of RMSE from 
0.044 gC/m2/d1 to 0.023 gC/m2/d1 along with a 93.89% reduction in the cost function 
value” to the abstract.


Further, I think the discussion of this experiment should focus more on the final fit of 
model to data, and less on the responses of individual parameters to optimization. 


We have now merged most of the discussion about the parameter-parameter correlations 
and process parameter correlations into one section (Section 4.2.1). We have also 
considerably revised the Sections 4.1 and 4.4.


Discussion of the various causes of model/data mismatch (which is quite large in 2010, 
2012, and 2013) should be strengthened, and should include some discussion of 
incomplete or incorrect process representation (e.g. methane production (eq. 10) is fairly 
simplistic). Some comparison of measured vs modeled soil temperature, VWC etc. would 
also be quite helpful, and may help to explain some of the model/data mismatch. 


Thank you, this is an important comment about the misfit we have received from both the 
referees. Carefully considering this, we have now revised Section 4.4 (Model Inputs and 
Uncertainty) to address the misfits observed in the above-mentioned years. We have also 
discussed the possible issues with the process representation and parameterisation.


None of the parameters we optimised in this study are directly related to the model's soil 
temperature or the water table depth. Therefore, comparing observed versus modelled 
soil temperature or water table depth may not provide substantial insights in this context. 
However, in response to the comment suggesting the usefulness of such comparisons for 
explaining certain model-data discrepancies, we now examined the observed and 
modelled soil temperature (at 5 m depth) and water table depth to see if there is any 
relation. We did not observe any major differences between the prior and posterior of 
these components. However, a significant mismatch with the observations is observed. 
This mismatch is likely the reason for the zero simulated emission estimate during the 
winter, and it could partially explain some of the observed misfits. Still, it may not be able 
to explain the systematic misfit observed. The result can be seen in the Appendix S4 and 



is discussed in Section 4.5 (Optimised simulation from LPJ-GUESS). The observed data 
used are mentioned at the end of the Section 2.1  (Siikaneva wetland and measurements).


According to the suggestion of referee #1 we have also examined the model's input data 
(Solar Radiation, Temperature, and Precipitation) in relation to the simulated flux residuals  
(S3 in the Supplement) and have discussed this in Section 4.4. 


And, why not directly compare simulated vegetation mediated fluxes to those measured 
by Korrensalo et al (2022)? 


Comparing the individual components of flux simulated by LPJ-GUESS with actual 
observations can be a valuable approach for refining the optimization process and gaining 
insights into simulation variabilities. However, the data provided by Korrensalo et al. 
(2022) is not technically usable in this context for the following reasons:


1. We wanted our approach to keep more general and transferable to other site. It could 
be hard to find observation of different component fluxes from other sites to 
assimilate.


2. They provided daily data for plant-mediated CH4 transport from the Siikaneva fen for 
a limited time period, specifically May to October (a duration of 5 months) in the year 
2014. To achieve meaningful comparisons and interpretations, a more extensive 
dataset covering inter annual variability is required.


3. The measurement of plant CH4 transport rate, expressed as mg CH4 per gram of 
plant dry mass within the chamber per day (mg CH4 g−1 day−1), was conducted 
using custom-made cylinder-shaped chambers and then scaled up to the ecosystem 
level. This upscaling process introduces certain uncertainties that need to be 
addressed.


4. We assimilated the entire CH4 flux into the model and examined its individual 
components to gain a better understanding of the variabilities in the simulation. While 
it is possible to assimilate all the components of the fluxes individually to provide 
stronger model constraints, this would require additional data for all the flux 
components, which falls slightly outside the scope of this study.


5. One of the main difficulties of parameter optimization is that it is computationally 
intensive, and the optimization algorithm used in this study is designed to reduce the 
number of chains, and therefore the computing time, needed for convergence. For others 
interested in applying a similar approach in different contexts, information about 
computing time would be very useful - i.e. approx. how much computing time is needed 
for one model run and how much for the entire optimization procedure. Estimated 
improvements on running time vs an unoptimized MCMC approach would also be of 
interest.


It is indeed true that parameter optimization methods in general, and especially the 
MCMC approach, are computationally intensive and time-consuming. In this specific 
case, each LPJ-GUESS model simulation took approximately 9 seconds to finish. 
Consequently, for the 100,000 iterations, it consumed nearly 250 computational hours. 
However, it's important to take into account that in this study, the model has been running 
for a single site, and the computational speed is highly dependent on the performance of 
the processors being used.


We have now added these details in Section 2.6 (Experiment design) as “We have 
designed a set of twin experiments and a real data experiment. For both the twin and real 



data experiments, we generated MCMC chains with a length of 100,000 samples. MCMC 
approaches are computationally intensive and time-consuming. In this study, each model 
simulation took approximately 9 seconds to complete (using an AMD Ryzen Threadripper 
processor). As a result, for the 100,000 iterations, it consumed nearly 250 computational 
hours. However, it should be noted that this study involves the model running for a single 
site, and the computational speed is highly dependent on the performance of the 
processors being used”


5. The paper would benefit from a general discussion of the merits and shortcomings of 
this method of parameter optimization supported by the experiments performed in 
this study.


Many thanks, we agree with this opinion. To address this, we have now added a 
subsection in the discussion, please see Section 4.6.


Minor comments

1.  L42: repetition: “to model their

2. Table 3: Description of poracro and porcato 

3. Supplementary: tabel -> table

4. Figure 11: why isn’t the 95% confidence interval of the simulations zero in winter, 

since the model can’t simulate methane fluxes then?


Thanks for pointing out the technical error, they are truly valuable. We have now 
addressed them in the revised manuscript. The confidence interval we used here provides 
a range of values within which we believe the true population parameter is likely to fall 
based on our sample data and a specified level of confidence. We used this to 
understand the uncertainty associated with our estimates.


