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Abstract
This paper discusses the newly developed Decision Support System version 1.0 (DSS v1.0) for air quality  
management activities in Delhi,  India. In addition to standard air quality forecasts,  DSS provides the 
contribution of Delhi,  its  surrounding districts,  and stubble-burning fires in the neighboring states of  
Punjab and Haryana to the PM2.5 load in Delhi. DSS also quantifies the effects of local and neighborhood 
emission-source-level interventions on the pollution load in Delhi. The DSS-simulated Air Quality Index 
for the post-monsoon and winter seasons of 2021-22 shows high accuracy (up to 80%) and a very low 
false alarm ratio (~20%) from Day 1 to Day 5 of the forecasts, especially when the ambient AQI is > 300. 
During the post-monsoon season (winter season), emissions from Delhi, the rest of the National Capital  
Region’s  districts,  biomass-burning  activities,  and  all  other  remaining  regions  on  average  contribute 
34.4% (33.4%), 31% (40.2%), 7.3% (0.1%), and 27.3% (26.4%), respectively, to PM 2.5 load in Delhi. 
During peak pollution events (stubble-burning periods), however, the contribution from sources within 
Delhi (farm fires in Punjab-Haryana) could reach 65% (69%). According to DSS, a 20% (40%) reduction 
in anthropogenic emissions across all NCR districts would result in a 12% (24%) reduction in PM2.5 in 
Delhi  on  a  seasonal  mean  basis.  DSS  is  a  critical  tool  for  policymakers  because  it  provides  such 
information daily through a single simulation with a plethora of emission reduction scenarios.

1. Introduction
The national capital of India, Delhi, is one of the most populated capitals in the world with an 

estimated count of more than 18.7 million (UIDAI, 2021). Immense population density, urbanization, and 
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industrialization within the city have resulted in many urban issues, including air pollution (Molina and 
Molina,  2004;  Chopra,  2016;  Zhang  et  al.,  2022).  The  primary  sources  of  pollutants  are  vehicles,  
industries, power plants, waste-burning practices, construction and demolition activities, road dust, etc. 
On top of this, the post-monsoonal (October-November) harvesting of the paddy crops and the associated  
burning of the paddy residue in the neighboring states of Haryana and Punjab also contribute to the  
degradation of air quality in Delhi and the surrounding region (Bikkina et al., 2019; Bray et al., 2019;  
Choudhury et al., 2019; Kulkarni et al., 2020; Nair et al., 2020). Besides, the geographical location and 
the local meteorological conditions, especially during the winter months, aggravate the pollution levels in 
the city (Guttikunda and Gurjar, 2012; Tiwari et al., 2014; Kumar et al., 2020). The pollution in the city is  
at its peak during the post-monsoon and the winter seasons, though the summer (April-June) months also 
bring severe dust storms and the associated degradation of Delhi’s air quality (Banerjee et al.,  2021;  
Chakravarty et al.,  2021;  Parde et  al.,  2022).  The air quality in Delhi  is so poor that  it  occasionally 
(especially during the post-monsoon and winter seasons) crosses the national air quality standards by 
more than ten times (Kanawade et al., 2020; Jena et al., 2021; Roozitalab et al., 2021). Owing to the ever-
increasing pollution, Delhi has been topping the list of the most polluted national capital cities in the 
world (Meteosim, 2019). It has been estimated that the air pollution in Delhi is causing more than 7,000  
premature mortalities every year (Guttikunda and Goel,  2013; Ghude et al.,  2016; Saini and Sharma,  
2020). The loss of average life expectancy in the city is also estimated to be around two years in Delhi  
(Ghude et al., 2016; Guo et al., 2018). 

The primary solution to this problem lies in the reduction of anthropogenic emissions happening 
in and around the city. However, permanent mitigation of emissions is a long-term objective due to the  
involvement of multiple socio-economic factors (Riahi et al., 2017). A short-term and effective solution to 
this problem could be related to creating awareness in the common public about air pollution,  releasing 
early  warnings  about  the  air  pollution  episodes  that  are  likely  to  happen,  and  imposing  temporary 
emission controls so that the exposure of the common people to acute levels of air pollution  could be  
avoided. With this motivation, the Government of India, in the year 2018, directed the Ministry of Earth  
Sciences (MoES) to develop an early warning system for air pollution events happening in Delhi. With 
this  mandate,  the  Indian Institute  of  Tropical  Meteorology (IITM),  Pune,  and the India  Meteorology 
Department (IMD) developed the ‘Air Quality Early Warning System’ (AQEWS) in collaboration with 
the National Center for Atmospheric Research (NCAR), USA, in 2018. AQEWS is a dynamical modeling  
system that simulates air quality over the entire India with a special focus on Delhi (Ghude et al., 2020;  
Kumar et al., 2020; Jena et al., 2021; Sengupta et al., 2022). The forecasting for Delhi is carried out with  
a spatial grid spacing of 400 m x 400 m. The system is capable of delivering forecasts for three days and 
at a slightly coarser resolution (10 km) for the next ten days. The skill of these forecasts has been found to 
be  excellent,  especially  when  the  air  quality  is  beyond  the  ‘very-poor’ category  (Jena  et  al.,  2021;  
Sengupta et al., 2022). The forecast has been found to be very useful to policymakers and has helped 
them manage the air  quality  in  the  city,  especially  when severe  air  pollution  episodes  are  predicted  
(Ghude et al., 2022). 

However, the governing authorities require more specific information about the emission sources 
contributing to forthcoming air pollution events occurring in the near future besides the actual forecasts.  
They also want to know the solution on how to reduce the impact of an air pollution event forecasted to 
affect   the  city.  These requirements were put  forth by the Commission for Air  Quality  Management 
(CAQM) in the National Capital  Region and Adjoining Areas, constituted by the honorable Supreme 
Court  of  India  in  2021.  While  there  exist  some  recent  source-apportionment-related  studies  on  air 
pollution in Delhi (e.g., Gadi et al., 2019; Guo et al., 2019; Shivani et al., 2019; Rai et al., 2020; Tobler et  
al., 2020; Yadav et al., 2020; Hama et al., 2021; Lalchandani et al., 2021), there does not exist a  system 
that can provide source apportionment information about the city’s pollution either in near-real-time or 72 
h in advance.  Even globally, a very few such systems exist (Denby et al., 2020; Colette et al., 2022)  
which give real-time and forecast of region-wise source apportionment of air pollution. Such a capability 
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is highly essential to suggest possible short-term immediate-relief-based solutions to the pollution menace 
happening  in  Delhi,  especially  during  the  post-monsoon  and  winter  seasons.  Responding  to  this 
requirement from the CAQM, we have come up with a dynamical modeling system named ‘Decision 
Support System’ (DSS) for air quality management in Delhi. The DSS is a new armor in our AQEWS that 
has  already  been  providing  neighborhood  scale  forecasts  in  Delhi  (Jena  et  al.,  2021)  and  provides  
quantitative information about the 
a) the contribution of emissions from 20 districts of the National Capital Region (NCR) (including Delhi) 
to the air pollution (PM2.5 and CO) in Delhi,
b) the contribution of eight different emission sectors within Delhi to the air pollution in the city, 
c) the contribution of emissions from the biomass-burning activities happening in the neighboring states 
of Punjab and Haryana to the degradation of air quality in Delhi, and
d) the efficacy of the possible emission source-level interventions on the forecasted air pollution event  
occuring in Delhi.
The DSS was operationalized during the post-monsoon and the winter seasons of the year 2021. It has 
been found to be very helpful for the governing authorities and the policy-makers. It has been estimated 
that the governing authorities avoided a severe air pollution event in Delhi by improving the air quality 
index (AQI) in the city by 20-22%, taking guidelines from the AQEWS and DSS (Ghude et al., 2022). 
Keeping in mind the usefulness of DSS, the CAQM has recommended that DSS must be an integral part 
of the decision-making process for reducing air pollution in the NCR (CAQM, 2022). 

In this paper, we describe DSS by explaining its underlying modeling system, the various input  
datasets needed for the simulations, and the chemical data assimilation occurring in the system, in section 
2. In the results section (section 3), we first evaluate the performance of DSS in capturing air pollution  
load in Delhi during the post-monsoon and the winter seasons of the year 2021-22. This is followed by  
the source-apportionment-related results from DSS for both the seasons of interest. We further discuss the  
findings from the ‘scenarios of emission reductions’  from DSS. In section 4, we summarize the main  
results from the paper. 

2. Details of the Modeling System

2.1 Domain and Meteorological Formulation
The DSS holds  the  fully  coupled regional  chemistry transport  model  ‘Weather  Research and 

Forecasting coupled with Chemistry’ (WRF-Chem) (Grell et al., 2005) in its core. The model’s version  
3.9.1 has been used. The model domain is centered in Delhi with a horizontal grid spacing of 10 km x 10  
km with 50 vertical levels with eight levels in the first 1 km from the surface, and the model top is set at 
50 hPa. The simulation uses a time step of 1 minute for temporal integration with radiation calculations  
done every 12 minutes. The model domain mainly covers the north Indian region spanning from 62 0E - 
930E and 210N-360N (see supplementary figure 1). We use the Rapid Radiative Transfer Model for Global 
Circulation Models (RRTMG) scheme (Mlawer et al., 1997; Iacono et al., 2000, 2008; Clough et al., 
2005) to parameterize the short-wave and long-wave radiative interactions. The choice of the scheme for 
the parameterization for boundary layer turbulence is vital for the simulations of atmospheric particulate 
pollutants (Govardhan et al., 2015, 2016, 2019; Sengupta et al., 2022; and the reference therein). The 
boundary layer processes in the DSS modeling framework are parameterized using the Mellor-Yamada-
Nakanishi-Niino  2.5  (MYNN2.5)  scheme (Nakanishi  and  Niino,  2005),  which  is  a  turbulent  kinetic 
energy-based  scheme  that  puts  a  local  closure  of  level  1.5  on  the  turbulent  fluxes.  For  the  
parameterization of the microphysical processes, we use the WRF single-moment six-class microphysics 
scheme (Hong and Lim, 2006). The scheme includes six prognostic water substances, including cloud 
water, rain, snow, graupel, water vapor, and cloud ice. We parameterize the sub-grid scale convective  
processes using the Grell-Freitas scheme (Grell and Freitas, 2014). A recent study (Debnath et al., 2022)  
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highlights  the  ability  of  the  Grell-Freitas  scheme in capturing rainfall  characteristics  over  the  Indian 
region. The DSS uses Noah Land Surface Model (Ek et al., 2003; Niu et al., 2011) to parameterize land-
surface  processes  with  the  Monin-Obukhov  scheme  to  take  into  account  the  surface  layer  physics 
(Jiménez et al., 2012). The DSS utilizes the IITM Global Forecasting System model (GFS) to generate the 
meteorological initial and the boundary conditions for the study domain every 3 hours. This is a global  
atmospheric model of IITM, Pune, based on the Global Forecasting System of the National Centers for 
Environmental Prediction (NCEP), USA. The IITM GFS runs in an operational forecasting framework at 
a horizontal grid spacing of 12 km employing ensemble Karman filtering for assimilating observational 
data  (Mukhopadhyay et al., 2019). The IITM GFS provides the required conditions of the atmospheric 
state  variables  like  pressure,  temperature,  winds,  specific  humidity,  etc.,  to  the  model  domain.  The  
stationary geographic fields like topographical height, surface albedo, land-use, leaf area index, etc., are 
interpolated from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset to the model’s 
grid. 

2.2 Anthropogenic Emissions
We use version 2.2 of the Emission Database for Global  Atmospheric Research Hemispheric  

Transport  of Air  Pollutants (EDGAR‐HTAP) (Janssens‐Maenhout et al.,  2015) for the prescription of  
anthropogenic emissions of aerosols and trace gases in the DSS. This global emissions inventory has been  
constructed  by  combining  multiple  regional  emission  inventories  like  the  Environmental  Protection 
Agency (EPA)  for  the  USA,  the  European Monitoring and Evaluation  Programme (EMEP),  and the 
Netherlands Organisation for Applied Scientific Research (TNO) for Europe,   EPA and Environment 
Canada for Canada, and the Model Intercomparison Study for Asia (MICS-Asia III) for China, India, and 
other  Asian  countries.  The  inventory  also  provides  sector-wise  emissions  for  the  five  main  sectors,  
including transport, industries, power, residential, and agricultural. The emissions are provided at a spatial  
resolution of 0.10 in latitude and longitude space. The emissions are available for the aerosols and their  
precursor gases, including sulfur-di-oxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), non-
methane volatile organic compounds (NMVOC), ammonia (NH3), BC, OC, PM2.5, and PM10. 

For  Delhi  and  the  surrounding 19  districts  of  the  National  Capital  Region (NCR),  including 
Jhajjar,  Rohtak,  Sonipat,  Panipat,  Bagpat,  Muzzaffarnagar,  Meerut,  Gautam Buddh Nagar,  Faridabad,  
Ghaziabad, Alwar, Bharatpur, Bulandshahar, Gurgaon, Rewari, Mahendragarh, Rewari, Jind, and Karnal 
we use the anthropogenic emissions inventory prepared by The Energy and Resources Institute (TERI) for 
the year 2016. This fine-gridded (4km x 4km) emissions inventory (TERI and ARAI, 2018) provides 
anthropogenic  emissions  of  SO2,  NOx,  NMVOC,  CO,  PM10,  and  PM2.5.  The  PM2.5 has  been  further 
speciated  in  OC,  BC,  Sulphates,  Ammonium,  Chlorides,  and  Nitrates.  The  inventory  also  provides 
emissions on a sectoral basis. The sectors could be broadly classified into eight major sectors, including 
transport, residential, industries, waste burning, construction, road dust, energy, and others (which include 
the emissions from the sectors like Crematoria, Airports, Restaurants, Non-energy solvent use, and Diesel 
Generator sets).  Moreover,  the inventory also includes a monthly variation in emissions from all  the  
aforementioned sectors. For this study, we have re-gridded this emission inventory to a horizontal grid 
spacing of 0.10 x 0.10 and have subsequently replaced the EDGAR emission fields with this inventory 
over  the  NCR region.  In  general,  for  Delhi-NCR,  there  is  an  increasing  trend in  the  anthropogenic 
emissions in the recent years. Sahu et al., 2023 reports changes in sectoral emissions over Delhi in 2020  
in comparison with 2010. The study suggests that  for PM2.5,  the emissions from transport  sector and 
industries  have  increased  by  37%  and  25%  respectively.  On  the  other  hand,  the  residential  sector 
emissions show a slight decrease (1-2%). However, due to lack of any such data for the period 2016 to  
2022, we have stick to the original inventory of the year 2016 for this study.  

For the emissions from agricultural burning activities, we use a combination of the Fire Inventory 
from NCAR (FINN) database (Wiedinmyer et al., 2011) and the active fire count data from the Visible 
Infrared Imaging Radiometer  Suite  (VIIRS)  instrument  (Schroeder  et  al.,  2014)  on-board  the Suomi  
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National  Polar-Orbiting Partnership (Suomi NPP) satellite.  We have prepared a daily climatology for 
year-long fire emissions using the FINN data-set for the years 2002 to 2018. On each day of the forecast, 
we superimpose the near-real time daily active fire count data from the VIIRS instrument on-board the 
Suomi NPP satellite on the climatological fire emissions file for that day.  For day 1 of the forecast, the 
fire emissions only over those grids are activated where we get non-zero active fire counts on that day  
with a confidence level  greater  than 70%. The other  points  in the  domain are supplied with no fire 
emissions. For day 2 – day 5 of the forecast, the climatological fire emissions over only those grids are  
activated where we get non-zero values in the climatological VIIRS fire count data for that day. This 
dataset is prepared using the VIIRS data  the years 2011–2018. Thus, while the Day 1 fire emission 
forecasts are generated by amalgamation of near-real time fire count and climatological fire emissions,  
the Day 2-- Day 5  fire emission forecasts are generated using the climatological information about the  
fire  emissions  and  the  active  fire  counts.  In  Supplementary  Figure  2,  we  compare  the  prescribed 
emissions of OC from fires in the DSS framework with the corresponding emissions from the long-term 
climatological  data  from  FINN,  and  from  the  Copernicus  Atmosphere  Monitoring  Service  (CAMS) 
Global Fire Assimilation System (GFAS) (Kaiser et al., 2012) for the period of October 2021—November  
2021.  It  may be noted that  the  fire emissions employed in the DSS framework do show day-to-day 
variability. They are not overly driven by long-term FINN climatology. However, the peak in the absolute 
magnitudes of the emissions in DSS looks to reach a week earlier compared to that in GFAS. The fire  
emissions  in  DSS  and  GFAS  show  a  good  agreement  with  the  availability  of  VIIRS  fire  count 
information. It is particularly evident around 19th October and 28th October when VIIRS fire counts are  
zero and the corresponding prescribed fire emissions in the DSS and GFAS are also zero. 

2.3 Chemical boundary conditions and the mechanism employed
The boundary conditions for the chemistry variables in DSS are set using the climatological data 

from the global chemistry transport model ‘Model for Ozone and Related Tracers version 4’ (MOZART‐
4; Emmons et al., 2010). The climatologies are specifically used as the real-time forecast from MOZART-
4 is not available. In the future, we plan to replace these climatological boundary conditions using global 
atmospheric composition forecasts such as the Copernicus Atmosphere Monitoring Service (CAMS) and 
the  Whole  Atmosphere  Community  Climate  Model  (WACCM).  Dynamic  chemical  lateral  boundary 
conditions are essential for capturing air pollution events related to dust storms originating outside our 
domain. The gas-phase chemistry in DSS is simulated using the MOZART-4 chemical mechanism. This  
mechanism takes  into account  85 gas-phase species  with 39 photolysis  and  157 gas-phase reactions 
(Emmons  et  al.,  2010). The  aerosol  processes  are  simulated  by  employing  the  Goddard  Chemistry 
Aerosol Radiation and Transport (GOCART) model that includes five major tropospheric aerosol species, 
viz., sulfate, organic carbon (OC), black carbon (BC), dust, and sea salt (Chin et al., 2000, 2002; Ginoux 
et al., 2001). While sulfate, BC, and OC are simulated as bulk aerosol species, dust and sea salts are 
resolved into five and four size bins, respectively. The carbonaceous aerosols (BC and OC) are assumed  
to  be  present  in  both  the  hydrophobic  and  hydrophilic  modes.  The  conversion  of  hydrophobic  to 
hydrophilic is assumed to take place with an e-folding lifetime of 2.5 days. The aerosols are assumed to 
be deposited down by dry deposition (for all  aerosols)  and wet deposition (for hydrophilic aerosols)  
pathways.  While it  is  noted that  the GOCART mechanism does not  take into account  the  secondary 
organic aerosols and the nitrate aerosols, we stick to it as it is computationally less expensive and thus  
useful in an operational air quality forecasting set-up.

2.3 Chemical Data Assimilation
The DSS improves the initialization of aerosol species and thus  PM2.5 field via assimilation of 

satellite observations of aerosol optical depth (AOD) using the three-dimensional variational (3DVAR) 
scheme of the community Gridpoint Statistical Interpolation system (version 3.5). The system assimilates 
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the observations into the model by minimizing the cost function J (x )  (equation 1), which is the sum 
of the deviation of the final state of the model from its background state and the observations. The cost  
function takes the following form, 

J (x )=
1
2

( x− xb )
T B− 1

( x − xb )  + 
1
2

( H (x ) − y )
T

R− 1
( H ( x ) − y )  …. (1)

Where x  is the state vector which is composed of aerosol chemical composition and meteorological  
parameters  needed for  AOD calculation,  xb  is  the  information about  x  available  prior  to  the 
assimilation (also known as background information),  B  is the background error covariance (BEC) 
matrix,  H  is  the  forward  operator  that  calculates  AOD  from  the  WRF-Chem  aerosol  chemical 
composition  following  Liu  et  al.  (2011),  y is  the  AOD  retrieved  by  MODIS,  and  R  is  the 
observational error covariance matrix. More details about each of the terms in equation 1 can be found in 
Kumar et al. (2020). The assimilation of MODIS AOD (from both TERRA and AQUA satellites) in the 
model  is  done at 9 UTC every day in the DSS. In addition to assimilation of satellite data,  we also  
assimilate surface measurements of PM2.5 into the model at 9 UTC. The data comes from 43 stations of 
the  Central  Pollution  Control  Board  (CPCB)  and  the  Delhi  Pollution  Control  Committee  (DPCC), 
spanned across Delhi. The exact names and the locations of the stations can be found in supplementary 
figure 1 of Sengupta et al. (2022). 

2.4 Tagged-tracers in DSS
We  have  added  a  variety  of  passive  tagged-tracers  in  WRF-Chem,  which  assist  us  in 

understanding the region- and source-specific contribution to PM2.5 mass concentration over Delhi. The 
passive tracer of a regular species is that species introduced in the model which undergoes all physio-
chemical  processes  identical  to  a  regular  chemical  species  (e.g.,  emissions,  transport,  chemical 
transformation, deposition, etc.) without providing feedback to the model (Bhardwaj et al., 2021; Kumar 
et  al.,  2015).  In  other  words,  the  tracer  species  does  not  take part  in  radiation or  droplet  formation 
processes, as its effect in such feedback processes is already taken into account by the parent regular  
species. The difference between a regular chemical species and a tracer chemical species is illustrated in  
fig.1.

Figure 1: The life-cycle of a regular chemical species and a tracer chemical species is illustrated. The 
main difference lies in the feedback and the chemistry sections. The tracer species does not have feedback  
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on the radiation processes in the model, and it does not affect the chemistry of regular species in the  
model. Two such examples of non-interactive chemistry are given. The CO tracer species gets oxidized by 
OH- radical, but it does not change the mass budget of the OH- radical in the model. Similarly, the tracer 
hydrophobic  BC (BC1_tracer)  species gets  aged into the  tracer  hydrophilic BC species  (BC2_tracer)  
while keeping the mass of the regular hydrophilic BC in the model intact. 

Since PM2.5 is not a prognostic species in the model, we employ tracers for hydrophobic black 
carbon (BC1), hydrophilic black carbon (BC2), hydrophobic organic carbon (OC1), hydrophilic organic 
carbon (OC2),   non-speciated primary PM2.5 (P25), and carbon monoxide (CO). The GOCART scheme 
employed in the WRF-Chem model used in this study calculates PM2.5 as follows, 

PM2.5=BC 1+BC 2+(OC 1+OC2 ) ×1.8+P 25+DUST 1+SEAS 1 +

                (0.286 × DUST 2 )+ (0.942× SEAS 2 )+1.375× Sulfate      …. (2)
Where, 

DUST 1 = Mineral dust aerosol species falling in the first bin with the effective radii equal to 0.73 μm
DUST 2 = Mineral dust aerosol species falling in the second bin with the effective radii equal to 1.4 

μm
SEAS1= Sea-salt aerosol species falling in the first bin with the effective radii equal to 0.3 μm
SEAS2= Sea-salt aerosol species falling in the second bin with the effective radii equal to 1.0 μm
Sulfate= Sulfate aerosol species,
In this study, we employ tracers for five of the ten species involved in the calculation of PM 2.5 in the 
GOCART scheme (equation 2).  In figure 2,  we examine the contribution of those ten species to the  
simulated PM2.5 in the model. 

Figure 2: Speciation of the WRF-Chem simulated near-surface PM2.5 mass concentration over Delhi 
during January 2021. Contribution from SEAS1 and SEAS2 to PM2.5 in Delhi is negligible during the 
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study period and thus it is not shown in the figure. 

It may be noted that the chosen five species (BC1, BC2, OC1, OC2, and P25) together contribute around 
85-90% of the total PM2.5 in the model. Thus, our five tracers would together represent, on an average, 85-
90% of the corresponding PM2.5 mass concentrations. Therefore, practically we can interpret those five 
tracers together as a PM2.5 tracer. Adding tracers for SO4

--, DUST1, DUST2, SEAS1, and SEAS2 would 
not drastically affect the overall results as their contribution to PM 2.5 over Delhi, specifically during the 
winter season, is negligible, especially in the model simulations (however, the fractional contribution of  
different species during April-September could be different due to dust storms and monsoon circulation 
affecting this region). Moreover, since the forecasting system is operational on a daily basis, one needs to  
limit the computational load and thus the total number of species in the model configuration to keep avoid 
daily run-time as short as possible. Keeping all these constraints in mind, we chose to put tracers only for 
the five selected species. 

2.4.1 Tracers for Anthropogenic PM2.5 in the model
We introduce regional tracers for the total emitted anthropogenic PM2.5 from Delhi and the 19 

districts surrounding it. These districts, along with Delhi, form the NCR. The following are the districts  
included:  Delhi,  Jhajjar,  Sonipat,  Bagpat,  Ghaziabad,  Gautam  Buddha  Nagar,  Faridabad,  Gurgaon, 
Rohtak, Jind, Panipat,  Karnal,  Muzaffarnagar, Meerut,  Bulandshahr, Bharatpur, Alwar, Mahendragarh, 
Rewari, and Bhiwani. In figure 3, we show the locations of these 20 districts. 
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Figure 3: The locations of the 20 districts of NCR whose anthropogenic PM2.5 emissions are tagged in 
DSS. 

In addition to  those 20 districts, we also trace PM2.5 from eight broad source-based categories 
exclusively in Delhi. These individual broad categories are a group of several sub-categories put together.  
The broad categories and the included sub-categories are listed in table 1. As mentioned in section 2.2, the  
emissions inventory provides extensive sub-categorical information for the entire NCR domain. However, 
version 1.0 DSS does not trace the PM2.5 emissions from the individual broad categories from the NCR 
districts other than Delhi. Even for Delhi, the emissions from the individual sub-categories are not traced.  
All these ensure the computational speed and cost for the operational DSS system. Moreover, the tagged 
sources fulfill the current requirements of the policymakers with regards to the air quality managment in  
the city.  
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Broad categories Included sub-categories

Transport Diesel vehicles, Gasoline vehicles, and CNG vehicles 

Industries Industries, stone crushers, Brick industry, and Refineries

Construction Construction activities

Road dust Dust emissions from paved roads

Waste burning Refuse burning, Landfill fires, and Incinerators

Energy Power Plants in NCR, Badarpur power plant in Delhi, and Flyash ponds

Residential Domestic-biomass, and other fuels

Others Crematoria, Airport, Restaurant, Non-energy solvent use, and Diesel Generator sets

Table 1: The source-based PM2.5 tracers employed only for Delhi in this version of DSS. It is to be further 
noted that we employ tracers for the eight broad source categories (column 1) in Delhi. We do not employ 
tracers for the individual sub-categories in this version of DSS.  

2.4.2 Tracers for biomass-burning activities
Along with the anthropogenic emissions of PM2.5,  we also trace the biomass-burning generated 

emissions  of  PM2.5.  Similar  to  the  anthropogenic  PM2.5,  we  introduce  tracers  for  biomass-burning 
generated BC1, BC2, OC1, OC2, and P25. These tracers hold significant importance in DSS, as the post-
monsoonal harvesting of paddy generates a large amount of stubble which gets burnt and generates a 
thick layer of smoke in the upwind regions of Delhi, which eventually travels to Delhi. So, the tracers  
representing those burning activities help us identify the contribution of biomass-burning to the PM2.5 

load in Delhi and thus are critical for air quality management in Delhi.

2.4.3 Scenario tracers for Anthropogenic PM2.5

Apart from tracing the anthropogenic and the biomass-burning generated PM2.5, DSS offers a very 
unique  feature,  which  we term ‘scenario  tracers’.  The  scenario  tracers  are  very  similar  to  the  other  
anthropogenic PM2.5 tracers, with the main difference laying in the emission magnitudes of these tracers.  
In DSS, a scenario tracer of a regular species has its emission 20 or 40% lesser than the regular species.  
Therefore, the scenario tracer represents a scenario in which the emissions of the corresponding regular  
species are reduced by 20 or 40%. We have introduced these scenario tracers for all the 20 districts and all 
the  eight  broad  source  categories  in  Delhi.  These  scenario  tracers  play  a  vital  role  in  guiding  the  
authorities about the possible effects of the source-level interventions. The advantage of scenario tracers  
is that it gives an opportunity to generate numerous emission reduction scenarios, which would guide the 
policy-makers in finalizing the intervention targets. The use of these tracers for air quality management 
purposes will be shown in the results section. 

2.4.4 Chemical data-assimilation for tracers
Another important feature of DSS is chemical data-assimilation applied for the tracer species. In 

DSS, for every grid point in the model domain, we identify the ratio by which the regular species like  
BC1, BC2, OC1, OC2, and P25 are modified due to the assimilation of satellite as well as ground-based 
data. We multiply all the corresponding tracers species by the same ratios to get them closer to reality.  
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2.5 Post-processing of the output
With the aforementioned tracers of different categories, we introduce a total of 470 new tracers in 

WRF-Chem for the purpose of DSS. Upon running DSS in an operational forecasting setup, we generate 
an enormous amount  of data that  needs to  be processed to  get  meaningful  information.  In  the post-
processing and analysis of the output, we extract the surface level data for all the tracers and the main  
regular species. Since our focus of analysis is Delhi, we mask out all other regions from the variable  
fields. By doing this, we estimate the contribution of PM2.5 emitted from all the regions of interest to 
PM2.5 in Delhi. Moreover, we also get to know the contribution from the sources in Delhi to PM2.5 in 
Delhi. The change in PM2.5 due to the emission reduction scenarios is subsequently found. All the analysis 
is made publicly available daily at https://ews.tropmet.res.in/dss/. 

2.6 Overall flow of DSS
Figure 4 depicts the operational functioning of DSS. The input data needed for the chemistry part 

(white  boxes,  fig.4),  i.e.,  the  anthropogenic  and  biomass-burning  emissions  and  chemical  boundary 
conditions, are generated using the utilities like anthro, FINN, and mozbc as explained in sections 2.2 and 
2.3. Note that biomass-burning emissions are generated using FINN and the VIIRS active fire count data.  
The meteorological input component (white boxes with a circle in their left corner, fig.4) consists of the 
meteorological boundary forcing data (IITM GFS model output) and the stationary geographical data, 
both of which are processed by the WRF Preprocessing System (WPS) to create the model compatible  
input and boundary forcing. Both the chemistry and meteorological input data are then processed by the  
core  part  of  the  DSS  (gray  boxes,  fig.4)  to  create  the  initial  and  the  boundary  condition  files.  
Subsequently, DSS carries out the chemical data assimilation using the CPCB and the satellite data (gray 
blocks with a circle in their right corner, fig.4). After this step, the actual WRF-Chem run with 400 tracers 
is carried out for the next five days. Upon the completion of the simulation, the outputs are suitably post-
processed to generate two main results (gray boxes with a rectangle in their right corner, fig.4) a) source  
apportionment of PM2.5 in Delhi to understand the contribution of the surrounding 19 districts and the 
eight sectors in Delhi, and b) the effects of the various emission reduction scenarios on PM 2.5 in Delhi. 
The results  are then sent  to the governing and decision-making authorities,  which could take certain 
policy-level  decisions in order to manage the air  quality in Delhi.  If  the  decision-making authorities 
decide to carry out certain source-level interventions (e.g., Ghude et al., 2022), then those interventions 
are then incorporated into the DSS through the feedback section (gray block with a triangle in its right  
corner, fig.4). 
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Figure 4: Block diagram for DSS: The white boxes denote input data needed for the chemistry part, the  
white  boxes  with  a  circle  in  their  left  corner  stand  for  the  input  data  related  to  the  meteorological  
component. The gray blocks represent the core part of DSS, which is mainly related to the running of the 
WRF-Chem model. The gray blocks with a circle in their right corner denote the input data needed for 
chemical data-assimilation purposes. The gray boxes with a rectangle in their right corner stand for the  
standard outputs from the DSS, which are communicated to the decision-makers (white block with a 
rectangle  in  its  right  corner).  The feedback (gray block with a  triangle  in  its  right  corner)  from the  
decision-makers and the model’s post-processed output are analyzed, and accordingly, the emissions of  
the anthropogenic activities are modified. A more detailed explanation of the working principle of each 
block can be found in sections 2 and section 2.6.

3. Results and discussion: 

3.1 Performance evaluation for DSS:
We examine the DSS-simulated near-surface PM2.5  mass concentration against the corresponding 

observations carried out  at  the CPCB and DPCC stations in Delhi.  We divide the entire period of 5  
months  into the  post-monsoon (October–November)  and winter  (December–February)  seasons as  the 
stubble-burning activities are prevalent mainly during the post-monsoonal season, while the winter season 
pollution is primarily governed by the local as well as distant anthropogenic emissions and the pollution-
conducive meteorology. Thus, such a division is essential to  help us understand the performance of DSS 
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in  capturing  the  season-specific  emission  sources  and  the  associated  pollutants’ concentrations.  We 
evaluate the performance of DSS for Day 1 to Day 5 of every day’s forecasts. During the post-monsoonal 
period (fig.  5a),  the simulated daily-mean PM2.5 closely matches the measurements for the month of 
October 2021. The sharp reduction in the PM2.5 during mid-October (17–20 October) is well captured by 
the model for all the lead times (i.e., Day 1 to Day 5). In the first week of November (black cricles, fig.5a  
and fig.5c), the model shows a large underestimation with respect to the observations. This period was 
mainly associated with the peak of stubble-burning activities (Govardhan et al., 2022) and the Diwali 
festival in 2021. Both these events result in emissions of a significant amount of particulate pollutants and  
their precursor gases (Singh et al., 2010; Parkhi et al., 2016; Cusworth et al., 2018; Chowdhury et al.,  
2019;  Kulkarni  et  al.,  2020;  Saxena  et  al.,  2020).  The  large  uncertainty  associated  with  both  these 
emission sources (Vadrevu et al., 2015; Liu et al., 2018; Mukharjee et al., 2020; Kumar et al., 2020) 
results  in  the  under-estimated  PM2.5 mass  concentrations  by  DSS.  The  improvements  in  emission 
inventories such as the use of Fire Radiative Power (FRP) for estimating and temporally allocating fire  
emissions,  incorporation  of  emissions  from fire  crackers  would help  improve  the  estimates. On  the 
contrary, the model simulations over-estimate PM2.5 during the following week. Owing to the persistent 
severe  air  pollution  days  and  a  forecast  of  a  similar  scenario  from  15 h–19th November  2021,  the 
Government of Delhi and the CAQM had issued certain restrictions on the traffic in the city, banned 
construction activities, ordered remote schooling and working guidelines, and had banned the entry of the 
heavy vehicles into the city (CAQM 2021). As a result, the PM2.5  concentration in the city showed a 
reduction in the following week. The simulations did not implement such restrictions in the modeling 
framework and thus overestimated the PM2.5 concentration during this week.  We further note that the fire 
activity in the neighboring states of Punjab and Haryana during that period was also on a declining trend  
(Fig.1, Govardhan et al., 2023), so the associated fire emissions may not be completely responsible for  
this behavior of the model. For the entire duration, the mean overstimation is found to be 21.94%. This 
overestimation is consistent with the previous estimation put forth by Ghude et al., 2022. Towards the end 
of November, the model captures the day-to-day variations in the observed PM2.5 but underestimates the 
actual magnitudes. Such a behavior could be associated with the coarse grid-spacing of the model (10  
km), which limits its ability to simulate higher PM concentrations. For the AQIPM2.5 (fig.5b), the model has 
more  tendency  to  generate  AQI  up  to  300  (barring  the  episode  of  15 th–19th November  2021).  The 
disagreements with observations in PM2.5 get reflected in the AQI as well. It may well be noted that the 
model’s performance does not drastically degrade from Day 1 to Day 5. A detailed analysis of the model’s 
ability to capture PM2.5  and the associated AQI has been shown in tables 2–5, which will be discussed 
further. 

 For the winter period (fig.5c), DSS shows a better agreement with the observation up to the mid 
of December, beyond which the model starts to under-perform in comparison with the observations. The 
model simulations are capable of simulating the PM2.5 concentrations as high as 200 μg m-3 however, they 
are not able to simulate the values greater than that. Improvements in the emission inventory would be  
vital to achieve that.  This issue is likely to be related to the coarser grid spacing in the simulations,  
unrealistic  simulations  of  meteorological  parameters  (like  the  planetary  boundary  layer  height,  near-
surface winds, etc.) (Govardhan et al., 2015, 2016), and limitations associated with the chemistry scheme  
in the model which may not adequately represent the ambient air pollution chemistry in Delhi (Jena et al., 
2020;  Pawar et  al.,  2022),  and under-representation of the emission sources in the region due to the 
unavailability  of  the  real-time  dynamic  emissions  inventory  (Sengupta  et  al.,  2022).  The  current 
emissions inventory used in the model though does have some information about the sources like open 
waste burning and brick kilns, in and around Delhi, this information is likely to be underestimating the  
reality in 2021. The emissions inventory employed in this study was compiled using surveys done in 
2016. There are significant changes that have occurred in the emissions magnitudes from 2016 to 2021.  
We note that these uncertainties will affect the model simulations. Moreover, during the January month 
the temperatures of the region fall down. The residents of Delhi burn biomass or solid wood for space  
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heating  purposes.  Such sources  are  missing  in  the  employed emissions inventory.  Additionally,  such 
burning activities  occur  at  a  very fine spatial  scales  which can  not  be identified by remote  sensing 
techniques. Thus, a part of the underestimation during the month of January would be related to these  
factors. In addition to this, the lower temperatures bring foggy conditions into the picture. Such weather  
conditions  promote  a  large  number  of  atmospheric  chemical  reactions  resulting  in  gas-to-particle 
conversion of volatile gas phase species into secondary aerosols. Such processes are currently missing the 
models’ chemical mechanism. This further enhances the underestimations in the model. All these factors 
put together result in the underestimated PM2.5 in the model vis-a-vis the measurements.  Nonetheless, 
DSS does a better job in the month of February when the ambient PM2.5 concentration is mostly below 
200  μg m-3. The AQIPM2.5  is also better captured in the winter season (fig. 5d) compared to the post-
monsoon period (fig.5b). The model does capture some events of very poor AQI conditions (300 < AQI ≤ 
400). However, the severe AQI values (AQI > 400) are missed by the model. Overall, the model captures 
the air quality conditions up to the very-poor AQI category, but it can not quantitatively capture the severe  
air pollution events. However, it is also to be noted that during an observed severe air pollution event  
(AQI > 400), the simulated AQI lies only one category below (i.e., in the very poor AQI category). Thus,  
the model does show signatures of severe air pollution but fails to capture the actual magnitudes. It may  
also be noted that whenever the modeled AQI is in or above the very-poor category, the observed AQI 
almost always lies in or above the very-poor category, i.e., our system is able to capture extreme events 
very well.  This point is illustrated further in tables 4 and 5. The supplementary figure 3 clearly depicts  
that the simulated AQI captures the overall trend of the observed AQI, however the magnitudes of AQI  
are not captured by the model.   

Figure 5: Performance of the DSS in simulating near-surface PM2.5 mass concentration (μg m-3) over 
Delhi in comparison with the observations averaged over the 39 observational locations across the city. a).  
Model Vs Observation comparison for the simulated daily mean PM2.5  mass concentration during the 
post-monsoonal season of 2021. The error bars on the black line indicate the one standard deviation range  
for the observations. b).  Model Vs Observation comparison for the daily mean AQI associated with PM 2.5 

during the post-monsoonal period c). similar comparison as a, for the winter season. d). similar to b, for 
the winter period. The black circles mark the days of Diwali festival during the post-monsoon period of  
2021.
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We further compute the relevant statistical parameters, namely mean bias (MB), mean error (ME), root  
mean square error (RMSE), normalized mean bias (NMB), normalized mean error (NME), fractional bias  
(FB),  and fractional  error (FE) for the model-observation comparison of the near-surface PM 2.5 mass 
concentration for post-monsoon 2021 (table 2) and winter  2021-22 (table 3).  We report  the statistics 
individually for moderate (100 < AQI ≤ 200), poor (200 < AQI ≤  300), and ‘very poor and above’ (AQI >  
300)  AQI categories  for  Day 1 to  Day 5 forecasts.  The formulae used for  calculating the statistical  
parameters are listed in section 4 of the supplementary material. For the post-monsoon season (table 2), 
DSS shows the least MB under poor AQI conditions. Expectedly, ME and RMSE are higher for very poor 
and above AQI categories. Moreover, they gradually increase from Day 1 to Day 5 forecasts for all the  
scenarios. Nevertheless, the change in ME or RMSE from Day 1 to Day 5 is within 30% of the ME or  
RMSE of Day 1 forecasts,  especially for the very poor and above AQI conditions. This signifies the  
accuracy of the forecasts over a longer time horizon. The NMB and NME values are limited to ±0.30 and 
±0.50, suggesting that DSS depicts an acceptable accuracy for the simulated PM2.5 mass concentrations 
(Emery et al., 2017)  for all the AQI categories through Day 1 to Day 5 forecasts. Specifically, NMB 
(NME)  values do not cross 0.1 (0.37) for the poor AQI category,  highlighting the accuracy of DSS and 
its ability to match the best model in the community (Emery et al., 2017). Like MB and NMB, FB is the 
least for the poor AQI conditions. The DSS tends to over-predict (under-predict) the PM2.5 with positive 
(negative)  MB,  NMB,  and FB values  during moderate  (poor  and above conditions)  AQI  conditions. 
Nevertheless, the system can simulate the observed PM2.5 during the post-monsoonal months with an 
acceptable deviation (Emery et al.,  2017), especially when the observed AQI is in the poor or above 
categories.
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AQI category Day
MB

(μg m-3)
ME

(μg m-3)
RMSE
(μg m-3)

NMB NME FB FE

Moderate Day 1 16.34 18.48 25.18 0.23 0.26 0.20 0.23

Day 2 13.37 17.24 23.87 0.19 0.24 0.17 0.22

Day 3 17.61 20.93 27.70 0.23 0.28 0.22 0.26

Day 4 24.52 27.51 36.60 0.30 0.33 0.29 0.33

Day 5 24.02 26.84 33.73 0.27 0.30 0.28 0.32

Poor Day 1 -19.97 31.99 38.61 -0.17 0.28 -0.19 0.31

Day 2 -17.27 27.85 37.18 -0.15 0.24 -0.16 0.26

Day 3 -20.49 27.18 36.51 -0.18 0.24 -0.20 0.26

Day 4 -10.53 27.25 37.00 -0.09 0.24 -0.10 0.25

Day 5 -1.20 29.20 40.08 -0.01 0.26 -0.01 0.26

Very poor and above Day 1 -65.59 76.10 101.26 -0.31 0.36 -0.37 0.42

Day 2 -67.11 79.76 110.05 -0.32 0.38 -0.38 0.45

Day 3 -72.82 86.71 115.57 -0.34 0.41 -0.42 0.49

Day 4 -67.02 85.77 107.39 -0.32 0.40 -0.38 0.48

Day 5 -68.11 85.06 112.84 -0.32 0.40 -0.38 0.48

Table 2: The statistical parameters associated with the model evaluation for the simulated near-surface  
PM2.5 mass concentration for the post-monsoonal season of 2021. The meaning of the acronyms can be  
found in section 3.1. The ideal value for all the statistical parameters is zero. The units of MB, ME, and  
RMSE are μg m-3, while the other parameters are unitless.  

For the winter season of 2021-22, the MB values for the moderate category (table 3) are twice 
that of the post-monsoonal period, indicating a higher overestimation of the moderate AQI conditions in 
the model in the winter period. On the other hand, the MBs for poor and ‘very poor and above’ AQI  
scenarios  are  comparable  to  that  in  the  post-monsoonal  months.  The ME,  RMSE,  and NME remain 
roughly the same for Day 1 through Day 5 forecasts, which increases the trustworthiness of the forecasts  
on short to medium-range time scales. Similar to the post-monsoon season, the NMB and NME values for 
the winter season are lesser than ±0.3 and 0.5, respectively, underscoring the ability of the system to  
capture the observed PM2.5 mass concentrations very adequately (Emery et al., 2017). Similarly, for the 
‘poor’ AQI category, the NMB and NME values are less than ±0.1 and 0.35, respectively, suggesting an 
outstanding performance by DSS in this category (Emery et al., 2017). It is to be noted that the NMB 
values for the ‘very poor and above’ scenarios are higher compared to the poor scenario. This is likely  
because the ‘very poor and above’ category holds a broader range of AQI values (AQI > 300) compared  
to the ‘poor’ AQI bracket (200 < AQI ≤  300), which results in the higher NMB in the former compared to  
the  latter.  Similar  to  the  post-monsoonal  period,  the  system  has  a  tendency  to  overestimate 
(underestimate) the PM2.5 under moderate (very poor and above) AQI conditions, which is reflected in the 
positive (negative) MB, NMB, and FB values. Overall, the performance of the DSS is improved in the 
winter  season compared to the post-monsoonal  season (indicated by the lower values of the relevant 
statistical parameters in table 2 and table 3). 

16

550

555

560

565

570



AQI category  Day
MB 

(μg m-3)
ME

(μg m-3)
RMSE
(μg m-3)

NMB NME FB FE

Moderate Day 1 22.25 32.66 44.25 0.29 0.43 0.26 0.37

Day 2 20.43 32.56 42.38 0.27 0.43 0.24 0.38

Day 3 25.78 36.70 49.92 0.34 0.48 0.29 0.41

Day 4 24.29 35.50 47.93 0.32 0.47 0.28 0.40

Day 5 22.31 34.92 44.73 0.29 0.46 0.26 0.40

Poor Day 1 4.50 27.20 34.50 0.04 0.26 0.04 0.26

Day 2 6.75 29.95 40.25 0.06 0.29 0.06 0.28

Day 3 7.40 33.96 44.84 0.07 0.33 0.07 0.32

Day 4 3.75 33.58 42.16 0.04 0.32 0.04 0.32

Day 5 4.84 34.70 44.99 0.05 0.33 0.05 0.33

Very poor and above Day 1 -58.66 75.54 97.63 -0.28 0.36 -0.33 0.42

Day 2 -60.70 76.96 101.21 -0.29 0.37 -0.34 0.43

Day 3 -65.98 83.00 107.70 -0.32 0.40 -0.38 0.47

Day 4 -67.49 80.42 106.76 -0.32 0.39 -0.39 0.46

Day 5 -65.21 80.20 106.45 -0.31 0.39 -0.37 0.46

Table 3: Similar to table 2 but for the winter period of 2021-22.

We  have  also  examined  the  ability  of  DSS  to  capture  the  AQI  associated  with  PM 2.5 mass 
concentration  values  in  comparison  with  the  corresponding  observations.  To  assess  the  model’s 
performance, we have computed the statistical parameters, namely Accuracy, False Alarm Ratio (FAR),  
Probability  of  Detection  (POD),  Critical  Success  Index  (CSI),  Success  Ratio  (SR),  and  Bias.  These 
parameters are calculated for the individual AQI categories using the contingency table and the formulae  
presented in section 5 of the supplementary material. From table 4, it can be seen that, during the post-
monsoon season,  the Accuracy is generally high for all the AQI scenarios. For the poor and moderate 
categories, this could be an artifact of the correct forecasts of the non-events, while for the ‘very poor and 
above’ AQI category, this behavior could be attributed to the correct forecasts for both the events and the 
non-events  (fig.5b).  Please  note  that  here  the  ‘event’  (non-event)  refers  to  the  occurrence  (non-
occurrence)  of  the  observed  AQI  in  the  desired  AQI  range.  The  Probability  of  Detection  (POD) 
comprehends the ability of the model in giving correct forecast for occurrence of an event. On the other  
hand, ‘Accuracy’, describes the ability of the model in giving correct forecast of an event or a non-event  
too. Thus, Accuracy encompasses the event and non-event space, while POD cover only the event space.  
For the ‘Poor’ AQI category, it may be noted that during the post-monsoonal season (fig.5b) after 27 th 

October 2021, the observed AQI is always greater than 200 i.e. above the ‘poor’ category. Thus, as far as  
the ‘Poor’ AQI category is concerned, all those instances are recognized  as ‘non-events’. The model  
simulated AQI on most of those instances (if not all) is seen to be greater than 200, thus correctly giving 
forecasts  of  non-event.  This  correct  forecasts  of  non-events  mainly  results  in  respectable  value  of 
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Accuracy for the model forecasts as far as ‘Poor’ AQI category is concerned. On the other hand, from 27 th 

October 2021 to 30th November 2021, the POD for ‘Poor’ AQI does not exist as the observed AQI does 
not exist in ‘Poor’ category. Prior to 27th October, the Observed AQI does exist in the ‘Poor’ category, the 
model forecasts for Day-4 and Day-5 fail to capture that on certain occasions. This failure results in lesser 
POD for Day-4 and Day-5 forecast in capturing AQI in ‘Poor’ Category.
The FAR is higher for moderate and poor categories suggesting false forecasts of the non-events; this  
could be partly related to the fact that the model-simulated AQI does not reach the very poor and above  
categories  as  frequently  as  the  observations  but  remains  in  the  poor  category  on  more  instances  as 
compared to the observations. This results in a higher FAR for the poor category. On the other hand, the 
FAR for the ‘very poor and above’ AQI category is drastically low, which enhances the confidence in the  
simulated AQI in the very poor and above category. The POD is low for the poor and moderate, while it is  
relatively higher  for  the  ‘very poor and above’ category.  The CSI values,  which indicate the overall  
success of the forecasting system, are relatively high for the ‘very poor and above’ category and lower for 
the poor category. Thus, during the post-monsoon season, DSS shows trustworthy performance for the 
AQI ranging beyond very-poor conditions. 

AQI category Day Accuracy (%) FAR (%) POD (%) CSI (%)

Moderate Day 1 75.62 50.99 39.87 28.18

Day 2 82.41 35.64 59.81 44.93

Day 3 79.86 41.20 53.70 39.02

Day 4 77.55 45.76 41.16 30.55

Day 5 74.61 55.56 23.15 17.96

Poor Day 1 67.67 86.76 59.79 12.16

Day 2 69.75 83.91 72.16 15.15

Day 3 63.35 87.80 62.89 11.38

Day 4 65.12 92.57 31.96 6.42

Day 5 60.88 95.35 21.65 3.98

Very Poor and above Day 1 80.86 0.36 69.48 69.31

Day 2 78.86 0.00 66.01 66.01

Day 3 72.07 0.00 55.09 55.09

Day 4 72.92 9.30 62.90 59.09

Day 5 70.06 13.46 61.41 56.06

Table 4: The statistical parameters associated with the evaluation of the simulated AQI associated with 
PM2.5 mass concentration for the post-monsoonal season of 2021. The meaning of the acronyms can be  
found in section 3.1, and details about the formulae are mentioned in section 5 of the supplementary 
material. The ideal values for Accuracy, FAR, POD and CSI are 100.0, 0.0, 100.0, and 100.0, respectively. 

For  the winter  season (table  5),  the  model's  behavior roughly remains  the same as  the post-
monsoon, with the only difference occurring in the poor AQI category. The FAR for the ‘poor’ category 
drops with a consequent increase in CSI. Nevertheless, the model still behaves the best when AQI goes to  
‘very poor’ and above, with FAR limiting only to as high as 21% and the POD and CSI crossing 60%. 
Thus, the analysis assures that the model-simulated AQI is trustworthy for values beyond 300. 

The Graded Response Action Plan (GRAP) includes a variety of predefined temporary emission 
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control measures for all the PM2.5 and PM10 AQI categories. Expectedly, the GRAP regulations become 
more stringent when the AQI goes beyond very poor and above (CAQM, 2022). Starting from October  
2022, the GRAP in Delhi will be made operational based on the AQI forecast released by the air quality 
forecasting  models  (CAQM, 2022).  The  low FAR for  DSS in  the  ‘very  poor  and above’ categories 
certainly increases the confidence about the simulated AQI in this range and thus permits us to use the  
model data to implement GRAP in the city. Additionally, the FAR values for the ‘very poor and above’ 
categories remain within 20% for day one to day five forecasts for both seasons. This further assures the  
use of short to medium-range DSS forecasts for implementation of GRAP when AQI goes beyond very-
poor conditions.

AQI category Day
Accuracy 

(%)
FAR (%) POD (%) CSI (%)

Moderate Day 1 82.35 65.39 53.13 26.51

Day 2 83.29 62.29 60.55 30.27

Day 3 84.46 62.18 46.09 26.22

Day 4 84.13 68.78 26.95 16.91

Day 5 84.41 65.98 32.03 19.76

Poor Day 1 69.34 63.43 46.22 25.65

Day 2 70.41 60.41 55.62 30.09

Day 3 60.86 70.01 53.17 23.72

Day 4 57.49 72.17 53.78 22.46

Day 5 59.55 70.23 56.44 24.21

Very Poor and above Day 1 76.03 15.47 73.44 64.74

Day 2 75.66 12.52 69.30 63.04

Day 3 68.49 17.40 60.08 53.33

Day 4 64.98 20.96 56.56 49.18

Day 5 66.01 19.36 56.95 50.10

Table 5: Similar to table 4 but for the winter period of 2021-22.

To shed more light on the model’s performance in the simulation of AQI, we have drawn the 
performance diagrams (figure 6) for the model simulated AQI in different categories for both seasons,  
using the SR, Bias, CSI, and POD. The performance diagram (Roebber, 2009; Sengupta et al., 2022) 
provides  a  quick  visualization  of  the  model’s  performance  for  multiple  statistical  parameters.  The  
category-wise  statistical  parameters  have  been  plotted  for  Day  1  through  Day  5  forecasts  for  post-
monsoon (fig.6a) and winter (fig. 6b) seasons. In the performance diagram, an ideal model simulation 
would fall in the upper right corner. It is to be noted that the ideal value of Bias is 1, which indicates that 
the  POD and  SR  match  each  other  (Roebber,  2009;  Sengupta  et  al.,  2022).  This  signifies  that  the 
probability of getting a false forecast for a non-event from the model is equal to that of a false forecast for  
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an event from the same model. For the post-monsoonal period, the forecasts for very poor and above AQI  
fall relatively closer to the upper right corner, with POD values going up to 70% and SR reaching 100%.  
The model is highly (moderately) skillful in capturing the ‘very poor and above’ (moderate) air quality  
conditions. It depicts lower SR values (and thus higher FAR and Bias) for the poor AQI conditions; this is  
likely  to  be  related  to  the  underestimation  of  the  very-poor  AQI  by  the  model  resulting  in  higher 
occurrences  of  the  simulated  AQI  in  the  poor  category  (in  comparison  with  the  observations),  thus 
resulting in lower SR values for poor conditions, as noted in table 4.

For the winter season (fig. 6b), the model's performance shows large improvements, especially 
for poor AQI conditions (as noted in table 5). The POD and SR for ‘very poor and above’ conditions cross 
the 80% mark, indicating an excellent performance for Day 1 through Day 5 forecasts. Even for the poor 
category,  the  model  shows  large  improvements  with  greater  SR  (~40%)  and  POD  (~60%)  values 
compared to the post-monsoon. Interestingly, as noted in tables 4 and 5, for both seasons, the model  
shows the highest performance ratings for the very poor and above AQI conditions. The implications of 
this have already been discussed in the analysis of tables 4 and 5.  It is to be noted that, throughout section 
3.1, we do not evaluate the model’s performance for good (AQI ≤ 50) and satisfactory (50 ≤ AQI < 100) 
categories as the observed AQI hardly ever falls in these categories. Nonetheless, the ability of the model  
to capture AQI in very poor and above conditions is encouraging as the air quality forecasting capabilities 
are mainly needed for such air quality conditions and not when the air quality is in a good or satisfactory 
category. 

Figure 6. Performance diagram for model simulations of Air Quality Index for a) post-monsoon season 
2021 and b) winter season 2021-22. The details about the calculation of the statistical parameters like 
Bias, and CSI can be found in section 5 of the supplementary material. 

3.2 Region and sector-wise source apportionment of PM2.5 in Delhi:
One of the main features of DSS is its ability to quantify the contribution of the different NCR 

districts and emissions sources to the PM2.5 pollution load in Delhi. The tagged tracers employed in the 
system  help  achieve  this  objective.  To  facilitate  ease  in  visualization  and  understanding  of  these  
contributions we divide them in six broad categories as follows a) Delhi transport sector, b) All other  
emission sectors within Delhi, c) Bordering districts (which include Jhajjar, Faridabad, Gurgaon, Gautam 
Buddha Nagar,  Rohtak, Sonipat,  Bagpat and Ghaziabad districts  of  NCR),  d)  Other districts  of NCR 
(which include the remaining districts of NCR, the details of which can be found from figure 3) e) stubble  
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burning , and f). all other remaining regions. In figure 7, we show the daily mean and seasonal mean 
contribution of those six broad source-categories to the simulated PM2.5 in Delhi for the post-monsoon 
and winter seasons of the year 2021. For the post-monsoonal period (fig. 7a-b), 34% contribution to PM 2.5 

in  Delhi  comes  from Delhi’s  own sources,  including  the  transport,  peripheral  industries,  residential,  
construction, waste burning, road dust, and energy sectors. The next major contribution comes from the 
bordering districts and the stubble-burning activities, with their seasonal mean contributions going up to  
25% and 8% respectively.  The  stubble/biomass-burning  activities  impact  the  pollution load  in  Delhi  
roughly  for  a  month  i.e.,  from  mid-October  to  mid-November.  The  daily  mean  biomass-burning 
contribution goes as high as 37% in the first week of November when the biomass-burning activities in  
Punjab and Haryana are recorded to be at their peak (Govardhan et al., 2022). It is important to note that  
around 26% of Delhi’s PM2.5  comes from the other regions (excluding the biomass burning activities), 
which are not included in the 20 districts considered in this analysis. Within Delhi, the major contribution
comes from the transport sector with a seasonal mean of 17%. 

Figure 7:  Source apportionment of PM2.5 mass concentration in Delhi for a) post-monsoon 2021 on a 
daily mean basis b) post-monsoon 2021 on a seasonal mean basis c) winter 2021-22 on a daily mean 
basis, and d) winter 2022 on a seasonal mean basis. The numbers written on the pie charts indicate the  
percentage contribution of the particular source to PM2.5 in Delhi. Day 1 forecasts have been used to 
generate this figure.  

During the winter season (fig. 7c-d), Delhi’s own contribution roughly remains the same (34%). 
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This  estimate  is  comparable  to  a  previous  study carried  out  by TERI  and ARAI,  which  reports  the  
contribution to be around 36% (TERI and ARAI, 2018).  The contribution from the neighboring districts 
increases to 20% from 17% in the post-monsoon season. Within Delhi, the transport sector contributes the 
highest  (14%).  The  industries  in  and  around  Delhi  also  contribute  around  9.5%.  The  increased 
contribution of the industries could be associated with the emissions coming from the brick kilns located 
on the periphery of the city. The kilns are not operational during the post-monsoon season, but  they 
become operational during the winter season (TERI, 2018). The contribution from the ‘other’ regions 
remains roughly the same (26%) as in the post-monsoon season. Overall, on the seasonal mean basis, for  
the post-monsoonal season (winter season), contributions from the different regions could be listed as 
follows: Delhi: 34.4% (33.4%), NCR districts: 33% (40.2%), Biomass burning 7.3% (~0.1%) and the  
other regions: 27.3% (26.4%). Those bordering districts of Delhi contribute to around 25% in the post-
monsoon season and 32% in the winter season. Thus a majority of the PM2.5 in Delhi comes from its 
immediate neighbors. Thus, Delhi’s air pollution load does not look like a local issue, but it seems to be a  
regional  issue,  and  cooperation  among  various  stakeholders  is  required  to  address  this  problem 
effectively. 

3.3 Impacts of emission reductions: 
The most unique feature of DSS is the availability of ‘scenario’ tracers. This feature estimates the 

impacts  of  reduction in  the  individual  source/district-wise  emissions on the PM2.5 load in  Delhi.  We 
include 50 such PM2.5 tracers, which carry the reduced emissions from 25 different sources, including 19 
surrounding districts  and the six individual  emission sectors  (namely transport,  peripheral  industries,  
waste burning, construction, road dust, and energy) in Delhi. We form two sets of scenario tracers with a)  
emissions reduced by 20% and b) emissions reduced by 40%. Using the scenario tracers one can compute 
the changes in the PM2.5 mass concentration in Delhi upon a 20 or 40% reduction in one or a combination 
of the 25 emissions sources (19 surrounding districts and six sectors in Delhi). The reduction in PM2.5 

mass concentration in Delhi  upon a 20% and 40% reduction in  all  those emissions during the post-
monsoon and the winter seasons of 2021 have been plotted in figure 8. Similar to figure 7, we have 
divided the sources in four different categories i.e. the categories a to d from section 3.2. 

During the post-monsoon season, a 20% reduction in all the sources (fig.8a) results in a seasonal 
mean reduction of ~12.1%  in PM2.5 Delhi. While around 5.7% of it would result from a 20% reduction in 
the sources within Delhi, the remaining 6.4% would come from the reduction in the neighboring districts 
of NCR. Similarly, a 40% reduction in all the concerned emissions sources (fig.8c) would result in an 
overall  24.3% reduction in  the  seasonal  mean PM2.5 load in Delhi,  of  which 11.5% comes from the 
reduction in the sources within Delhi, while the remaining 12.8% would result from 40% reduction in the 
emissions from other districts of NCR.  It is to be noted that the change in PM 2.5 in Delhi roughly scales 
linearly from a 20% reduction to a 40% reduction. During the period when biomass burning activities are  
the highest (on 6th and 7th November 2021), the 20% (40%) reduction in other sources of PM 2.5 reduces 
the PM2.5 in Delhi only by 7-8% (14-16%). Thus, it is to be noted that when such activities are at their  
peak, any control measure on the anthropogenic emissions of PM2.5 will not have a drastic effect on the air 
quality in Delhi.   

For the winter season, the 20% reduction scenarios result in a mean reduction of 13.8% in PM2.5 

in Delhi, of which 5.8% comes from Delhi’s sources while the remaining 8% comes from the neighboring 
districts of NCR. Similarly, the 40% reduction scenarios result in a mean reduction of 27.75% in PM 2.5 in 
Delhi. Out of this, 11.5% comes from Delhi’s own sources, while the remaining 16.25% comes from the 
other  districts  of  NCR.  In  the  winter  season,  the  improvements  in  Delhi’s  PM2.5  by  controlling  the 
emissions  in  the  neighboring  district  of  Jhajjar  (see  supplementary  figure  4)  are  comparable  to  the 
improvements achieved by controlling the transport sector emissions within Delhi. However, in the post-
monsoon season, the emission reductions in Jhajjar have a relatively lesser impact. This signifies the need 
for change in the emission reduction strategy from season to season for air quality management in Delhi.  
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The same policy for both seasons may not give the same amount of reductions. 
On a daily mean basis, the reduction scenarios can reduce the PM2.5  in Delhi by as high as 16% 

(for 20% reduction scenarios) and 32% (for 40% reduction scenarios) in either of the seasons. These 
control measures, when operated during severe air pollution events like the ones noticed during the last  
week of December 2021, the first week of January 2022, and the third week of January 2022, would result 
in  a  substantial  reduction  in  Delhi’s  PM2.5.  The  measurements  of  daily  mean PM2.5  suggest  that  the 
maximum values of PM2.5 during those events were 334 μg m-3, 310 μg m-3, and 362 μg m-3, respectively. 
The 40% reduction scenario for all  the sources would result  in ~25-30% reduction in PM 2.5 in Delhi 
during those days, which would roughly result in a reduction of 80-110 μg m -3 in PM2.5 in Delhi on those 
days. This would result in the modulation of air quality from the ‘severe’ category to the ‘very poor’  
category. This is a satisfactory gain considering the already elevated air pollution level in the city. Thus, 
such information about the possible emission-reduction scenario would be critical from the air quality 
management perspective. Moreover, since the performance of the DSS in capturing the broad category of  
air quality scenario does not drastically drop from Day 1 to Day 5 (figure 5, table 2–5), such information 
would certainly help the decision-makers in managing the air quality in the city in a timely manner.

Figure 8: Fractional reduction in the PM2.5 load in Delhi due to a). a 20% reduction in all the 
considered emission sources  for  the post-monsoon season of  2021,  b)  same as  a)  but  for the  winter 
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season, c). same as a) but with a 40% reduction scenario, and d) same as c) but for the winter season. Day  
1 forecasts have been used to generate this figure.

A practical  example  of  the  use  of  DSS  for  air  quality  management  purposes  in  Delhi  was 
witnessed in the month of November 2021. Based on the air quality forecast, source attribution of PM2.5 in 
Delhi,  and the associated scenario analysis,  the  CAQM and the Government  of  Delhi  issued certain  
restrictions  on trans-boundary and internal  vehicular  traffic  and construction activities  in  Delhi.  This  
resulted in an 18-20% reduction in PM2.5 and a 20-22% reduction in the AQI of Delhi (Ghude et al., 
2022). This clearly signifies the role DSS played (and would play in the future) in the short-term air  
quality management in Delhi. This is one of the rare air quality forecasting systems in the world that offer  
a utility like the ‘scenarios’ tool that would inform the decision-makers about the efficacy of their source-
level interventions on the air pollution occurring in a city. With the help of the ‘scenario’ tool, users can  
create their own strategy for emission reduction to get an idea of how to possibly avoid the forecasted 
severe air pollution event for the city. We certainly note that DSS currently provides all such information  
only for the city of Delhi; however, there is an equal demand for such information from the neighboring  
towns of NCR like Ghaziabad, Faridabad, Noida, Gurgaon, etc, as outlined in the recently formed air 
pollution control policy for the NCR (CAQM, 2022). In the next version of DSS, we plan to cater to this  
requirement and explore machine learning-based approaches to maximize computational efficiency. In the 
current configuration, the DSS runs with a relatively coarser resolution (10 km x 10 km). This is mainly  
due to the computational cost it carries associated with a large number of three-dimensional tagged tracers  
and the upper bound on the daily run time due to the daily forecasting requirements. Nevertheless, in the  
next version, we are planning to increase the spatial resolution of the simulations. Another artifact of the 
coarse spatial resolution is the limited accuracy of the forecasts with respect to the observed PM2.5 values. 
However, in the case of DSS, one is more interested in the relative contributions of the sources to the 
PM2.5 load  and  the  relative  reduction  in  the  PM2.5  upon  employing  the  various  emission  reduction 
scenarios. This focus on the relative contribution comes from the basic assumption that the contributions 
would  roughly  remain  similar  even when the  DSS-simulated  PM2.5 matches  the  observations  with  a 
greater  agreement.  However,  we  acknowledge  that  if  the  models  underestimates  the  absolute 
concentration of PM2.5, it is likely to erroneous source apportionment.   Especially, during a severe air 
quality episode in the winter season, the contribution from the local sources would be much higher owing 
to the stable atmospheric conditions. In such a situation, if the model fails to capture the peak, it will  
certainly underestimate the contribution from the local sources and overestimate the contribution coming 
from the relatively distant sources. We agree that the source apportionment in that situation would not be 
correct.  However,  we would also like to mention that,  in situations where the model  has missed the  
observational peaks, the modeled attribution for the local sources would represent a lower bound than the  
reality.  Thus,  any  intervention,  if  applied  to  the  local  sources,  will  certainly  result  in  an  enhanced 
reduction in PM2.5 in the city in reality than that suggested by the model. Thus, in other words, in such 
situations, the modeled source attributions and the scenario analysis would represent a lower bound.

Another  reason  for  the  underestimated  PM2.5 in  DSS  is  the  static  nature  of  the  emissions 
inventory.  However,  the  anthropogenic  emission sources  vary in  a dynamic manner.  Any forecasting 
model which does not take those dynamic changes into account is expected to miss the sudden rise in 
PM2.5 associated with the dynamic changes in the emissions. Even though the chemical data assimilation 
operational in DSS bridges this gap at the start of the model run, it fails to capture the sudden rise in  
emissions happening during the other hours. The incursion of the dynamic emissions inventory, though, 
remains a challenge; there are a few recent efforts done on that front (Liu et al., 2018; Zhang et al.,2019;  
Meng et al., 2020; Li et al., 2021). Using the daily Visible Infrared Imaging Radiometer Suite (VIIRS) 
thermal  anomaly  product,  Zhang  et  al.  (2019)  and  Li  et  al.  (2021)  have  shown  the  capabilities  of 
generating dynamic emissions for industrial sources. Meng et al. (2020) have utilized web-based traffic 
maps and real-time traffic data to generate a dynamic inventory of vehicular traffic emissions in China. 
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Such techniques could be used in future versions of DSS to get better estimates of real-time traffic. The  
emissions inventory used in this version of DSS does not take into account emissions associated with 
space heating. These emissions would be non-negligible, especially in the winter months. Thus, in the 
next version, we would explore the possibility of including such sources of emissions. 

Additionally, we do acknowledge that the model’s chemistry currently lacks the representation of 
the secondary aerosols in the ambient. There are several studies which have focused on understanding the 
chemical composition of PM2.5 in Delhi (Sharma et al., 2016; Sharma and Mondal, 2017; Jain et al., 2020; 
Yadav et al., 2022). A study by Sharma and Mondal, 2017 reports that, the particulate organic matter,  
soil/crustal matter, ammonium sulphate, ammonium nitrate, sea-salt and light absorbing carbon contribute 
27.5%, 16.1%, 16.1%, 13.1%, 17.1% and 10.2%  respectively to the city’s PM 2.5. The study was carried 
out for a period of 2 years (January 2013 to December 2014). Jain et al., 2020 reported the chemical  
composition of PM2.5 for the period of 4 years (January 2013 to December 2016). The average PM2.5 mass 
concentration  for  post-monsoon (winter)  season was  186 (183)  ug  m-3,  out  of  which  sulphates  were 
reported to be 18.1 (18.6) ug m-3, nitrates were 18.4 (20.2) ug m-3, chlorides and ammonium were 11.4 
(11) and 14.9 (16.6) ug m-3 respectively. The elemental carbon and organic carbon were measured to 11.4 
(10.6) and 25.2 (23.6) ug m-3 respectively. Thus, it may be seen that the missing aerosol species (mainly 
the nitrates, ammonium and chlorides) in the GOCART mechanism of  WRF-Chem contribute to around 
24-30% of PM2.5 in Delhi. Thus a part of the underestimation in the model could be associated with these 
missing species. An artefact of the missing secondary aerosols in the model is that the tracers are mainly  
put on the primary species BC and OC. However, the secondary species are not tagged effectively. This 
results in underestimated impacts of the source levels interventions on the ambient PM2.5. For example, in 
reality, the traffic emission reductions might lead to a significant reduction in nitrate aerosols, but this is  
not  captured  by  the  model.  Thus,  the  model  currently  underestimates  the  impacts  of  source-level 
interventions. In the next version, we are aiming to include the missing secondary aerosols by using a  
simple parameterization (Hodzic and Jimenez, 2011). This would include nitrate and secondary organic 
aerosols in the model set-up without hampering the model runtime drastically. 

The biomass-burning emissions, on the other hand, have even more uncertainties. The limitations 
associated  with  satellite  detection  of  stubble-burning  fires  due  to  the  cloud cover  (Liu  et  al.,  2020; 
Cusworth et al., 2018), the limited number of passes in a day (Liu et al., 2020; Kumar et al., 2021),  
smarter burning practices (Kumar et al., 2021), unrealistic estimation of emissions from the fires (Kumar 
et al., 2021), etc., lead to multiple orders of uncertainty in the emission estimates from fires. We have seen  
that biomass-burning fires contribute as high as 37% to the daily mean PM2.5 load in Delhi during the peak 
burning periods;  however, this number certainly represents a lower bound due to the aforementioned 
uncertainties. Therefore, more work is needed to constrain the estimates of the emissions from biomass-
burning activities in the region. Additionally, stronger policies are needed to reduce the amount of stubble  
that is being burnt,  especially in the post-monsoonal season in this region. In DSS, we carry out the  
chemical data assimilation only once in the forecasting cycle in this setup; in the future, we can carry out 
assimilation at least twice to correct the model concentrations even at night times. This will  help the  
model capture higher PM concentrations which usually occur during the night hours due to shallower 
mixed layers. In the next version of DSS, we are planning to incorporate a few new scenario tracers, like  
the ‘odd-even’ scenario for vehicular traffic, which allows only those vehicles to ply on the road with an 
odd (even) number as the last digit of their registration number on odd (even) dates. This policy has been  
used by the Government of Delhi in the past to control vehicular movement and the associated emissions  
(Sud and Iyengar, 2016; Kumar et al., 2017; Choudhary et al., 2018; Tiwari et al., 2018). Thus, while the 
first version of DSS has proven to be beneficial for the policy-makers, we have identified its limitations  
as well, and we will attempt to overcome those limitations in the next version. 

Additionally,  we understand the the day-4 and day-5 forecasts would be more useful  for the  
policy makers. We acknowledge that the implementation of source-level intervention may not start from 
day-1, so in reality, one also needs to account for a time delay in implementing those. This is currently  

25

820

825

830

835

840

845

850

855

860

865



missing in the framework. However, we would also like to mention that including such time-delays, even 
for the interventions only on the major sources, if not all, would substantially increase the number of 
tracers in the modeling framework. Currently, we have more than 400 three-dimensional tracers in an 
operational forecasting set-up. Keeping in mind our operational commitments, we will certainly include 
some sense of the time delay for the scenario tracers in the next version of DSS.

4. Conclusions: 
In order to assist the governing authorities in managing the air quality in the capital of India,  

Delhi, we have designed an operational air quality forecasting framework with certain unique features 
that  help  the  decision-makers  to  form policies  for  managing  the  air  quality  in  the  city.  This  newly 
developed Decision Support System (DSS) for air quality management in Delhi, besides forecasting the  
air  quality  in  the  north  Indian  region  for  the  next  five  days,  quantifies  the  contributions  of  the  19 
surrounding districts, individual emission sectors in Delhi, and the biomass burning activities (occurring 
primarily in the northwestern states of India in the post-monsoon season) to the PM 2.5 mass concentration 
in Delhi. The system also quantifies the effects of emission source-level interventions on the forecasted 
air pollution in the city. Thus, with the help of DSS, the policy-makers not only get a warning about future 
severe air pollution events but also understand the possible causes for the event and get a quantitative idea 
about the efficacy of the source-level interventions on the forecasted event. In this paper, we evaluated the  
performance of DSS in simulating near-surface PM2.5 mass concentration and the associated air quality 
index in  Delhi  for  the  post-monsoon and winter  seasons  of  2021-22.  We also  carry  out  the  source 
apportionment of PM2.5 in Delhi during the two seasons. The key results are listed as follows:
1. The performance of the model in simulating the air pollution in Delhi noticeably improves from post-
monsoon to the winter season, owing primarily to the uncertainty in the emission estimates from the 
biomass burning activities and the anthropogenic activities during the Diwali festival, which occur in the 
post-monsoon season. 
2. For both seasons (post-monsoon and winter), the DSS satisfactorily captures the observed air quality  
index (AQI) in Delhi, especially when the AQI crosses a very poor or above that mark. Under such a  
situation, DSS depicts a very low false alarm ratio (~20%), which increases the trustworthiness of the 
simulated AQI. For all the AQI categories (moderate, poor, and very poor and above), DSS shows a very  
high accuracy (~80%). However, the critical success index for the simulated AQI is seen to be the highest  
for the ‘very-poor and above’ category, i.e., extreme pollution events are captured very well. 
3. The performance of the model does not deviate largely from Day 1 to Day 5 forecasts, which highlights 
the applicability of the DSS forecasts in short to medium-range air quality management activities. 
4. The region-wise source apportionment of PM2.5 mass concentration in Delhi carried out with the help of 
DSS suggests that during the post-monsoon season (winter season), on average, Delhi itself contributes 
34.4% (33.4%) to its PM2.5 load. The NCR districts contribute 31% (40.2%). The emissions from the 
biomass burning activities on the seasonal  mean basis contribute 7.3% (~0.1%) of the PM2.5 mass in 
Delhi, while the other regions contribute around 27.3% (26.4%). The districts of NCR which share their 
border with Delhi (namely Jhajjar, Gurgaon, Faridabad, Ghaziabad, Gautam Buddha Nagar, Bagpat, and 
Sonipat) contribute about 22% in the post-monsoon season and 30% in the winter season. 
5. The ‘scenario’ tracers employed for PM2.5 in DSS suggest that a 20% reduction in all the tagged sources 
in Delhi and the NCR districts results in a seasonal mean reduction of ~12 - 14 %  in PM 2.5 mass in Delhi. 
While around 5.8% of that comes from controlling Delhi’s own emission sources, the remaining comes 
from control measures applied in the NCR districts. As expected, during the peak biomass burning events,  
such control measures on the anthropogenic emissions yield a relatively lesser gain. 
6. The reduction in Delhi’s PM2.5 load scales roughly linearly with the magnitude of emission reductions, 
i.e., the reduction in Delhi’s PM2.5 for a 40% control on the anthropogenic emission sources within Delhi 
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and the NCR districts is roughly twice that of the reductions associated with a 20% cut on emissions.  
In short, DSS is a highly effective tool for decision-makers and the masses.
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