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Abstract. Satellite visible (VIS) radiance data contain rich cloud information that are increasingly assimilated for improving 

cloud and precipitation forecasting of numerical weather prediction models. Recently, the Data Assimilation Research Testbed 10 

(DART), a widely used data assimilation resource that supports the Weather Research and Forecasting (WRF) model, was 

facilitated with an interface for the Radiative Transfer for TOVS (RTTOV), which supports radiance assimilation from visible 

(VIS) to microwave wavelength channels. This study evaluates the WRF (ARW v4.1.1)/DART (Manhattan release v9.8.0)-

RTTOV (v12.3) system for assimilating the radiance data of channel 2 (0.55 ~ 0.75 μm) of the Advanced Geostationary 

Radiation Imager (AGRI) onboard FY-4. Observing System Simulation Experiments (OSSEs) were performed for a cyclone 15 

case. The results indicate that assimilating VIS radiance data improves cloud forecast skills in general. Best results were 

achieved for the data assimilation (DA) experiment with dense observations and high updating frequency. The best results 

could capture the “eye” structure of the cyclone system and significantly improves cloud water path and cloud coverage 

simulations. Nevertheless, three main problems were revealed. The first is its inability to improve cloud vertical distribution 

such as layered structures and cloud phases; The second is the its inability to influence atmosphere thermodynamic state 20 

variables positively; The third is a waste of up to 50% observations during the filtering processes. 
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1. Introduction 

Satellite data assimilation (DA) has shown great potential to improve weather forecasts (Bauer et al., 2011). Most DA-related 

studies deal with infrared (IR) and microwave (MW) data, revealing positive effects on cloud and precipitation forecasting by 25 

adjusting the atmospheric state variables such as humidity and temperature (Ma et al., 2017; Geer et al., 2019; Migliorini & 

Candy, 2019) as well as cloud-related parameters such as cloud water/ice content and cloud coverage (Zhang et al., 2013; 

Yang et al., 2016). To further improve cloud forecasts, there are great potentials in assimilating visible (VIS) and shortwave 

infrared (collectively referred to as shortwave, SW) data (Vukicevic et al., 2004; Polkinghorne & Vukicevic, 2011; Scheck et 

al., 2020; Schröttle et al., 2020) because these measurements contain supplementary and unique cloud information other than 30 

the IR and MW radiance data (Kostka et al., 2014; Schröttle et al., 2020). For example, SW radiation can penetrate a certain 

depth of cloud fields, and connotate cloud microphysical properties such as effective particle radius (Re) (Nakajima & King, 

1990). In comparison, satellite IR data only provide cloud top microphysics (Xue, 2009). As a complement to weather radar 

that is much more sensitive to large hydrometeors or precipitation particles (Keat et al., 2019) usually occurring at the mature 

and developing stages of convective systems (Zhang and Fu, 2018), satellite SW signals are closely related to small cloud 35 

droplets. Furthermore, SW data usually have higher spatial resolution than IR and MW data (Yang et al., 2017; Coste et al., 

2017; Schimit et al., 2018). Therefore, SW radiance provides higher-resolution cloud properties that are of great significance 

for cloud-resolving model simulations. 

Many studies have attempted to assimilate the SW radiance data (direct assimilation) rather than the retrieved cloud 

parameters (indirect assimilation). Direct assimilation critically relies on observation operators. Several observation operators 40 

and relevant algorithms have been developed. For example, in Vukicevic et al. (2004)’s study, model state variables were 

mapped to the equivalent radiance by an observation operator for the VIS and IR radiance measurements (VISIROO). 

Polkinghorne and Vukicevic (2011) used the Spherical Harmonic Discrete Ordinate Method Plane Parallel for Data 

Assimilation (SHDOMPPDA) for radiance conversion. SHDOMPPDA solves radiative transfer processes by discrete ordinate 

method (DOM) in Cartesian space while computes source functions using spherical harmonic series in spherical space. 45 

Compared with observation operators which solve source functions in Cartesian space, SHDOMPPDA has an advantage of 

high computation efficiency. Scheck et al. (2016a) developed a method for fast satellite image synthesis (MFASIS). MFASIS 

is a look-up table (LUT)-based observation operator. A comparison study by Scheck et al. (2016b) showed that MFASIS 

generates sufficiently accurate results and is 2 ~ 4 orders of magnitude faster than other DOM-based observation operators. 

Furthermore, a correction method was implemented into MFASIS to reduce errors due to three-dimensional (3D) radiative 50 

effects (Scheck et al., 2018). MFASIS is one of the radiative solvers of the Radiative Transfer for TOVS (RTTOV), one of the 

most widely used observation operators in assimilating satellite radiance data. Other radiative transfer solvers of RTTOV 

include DOM and single-scattering methods for the SW radiative processes. These solvers could tackle cloud fraction, parallax 

correction, and many other critical aspects including molecular absorption and scattering, underlying surface reflection, etc. 

(Saunders et al., 2018). Apart from these aforementioned observation operators, some machine learning-based observation 55 
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operators and relevant methods (Scheck, 2021; Zhou et al., 2021) were developed to achieve higher computation efficiency 

and accuracy for VIS radiance DA.  

Nowadays, there are two general approaches for assimilating VIS radiance data. The first approach is the variational 

(VAR) methods. Vukicevic et al. (2004) assimilated the GOES-9 VIS radiance data to the Regional Atmospheric Modeling 

System (RAMS) with a four-dimensional VAR (4D-VAR) DA system, exhibiting positive effects on the short-term forecasting 60 

of a stratus cloud field. Similarly, Polkinghorne and Vukicevic (2011) assimilated the GOES-8 VIS and IR radiance data to 

RAMS by a 4D-VAR DA system and indicated that the assimilation can effectively reduce the normalized cost function and 

the gradient of objective functions with the increase of iteration numbers.  

The second approach is the ensemble-based methods. Schröttle et al. (2020) assimilated VIS and IR radiance data in 

idealized observing system simulation experiments (OSSEs) based on a local ensemble transform Kalman filter (LETKF) 65 

approach. Their results indicated that assimilating VIS radiance data alone could improve the forecasting skills of the regional 

model termed Consortium for Small-scale Modeling (COSMO), and that assimilating the VIS and IR radiance data 

collaboratively could further improve the forecasting skills. Their findings were validated by Scheck et al. (2020). They 

concluded that assimilating the VIS radiance data of Spinning Enhanced Visible and Infrared Imager (SEVIRI) on 

METEOSAT could improve cloud and precipitation forecasts, and, meanwhile, the temperature and water vapour forecasting 70 

errors were reduced in most conditions after the DA process.  

The VAR and ensemble-based approaches are considered complementary to each other. For example, the ensemble-based 

approaches generate the flow-dependent background error covariance matrices. On the other hand, the flow-dependence can 

be used to leverage the VAR approaches. Therefore, several “hybrid” approaches have been developed and great achievements 

have been made (Kong et al., 2018; Lei et al., 2021).  75 

The ensemble-based methods are remarkably stable for nonlinear systems and are widely used for cloud- and 

precipitation-related studies (Lei et al., 2015; Kurzrock et al, 2019). Nowadays, there are various community DA resources of 

the ensemble-based methods, such as the Data Assimilation Research Testbed (DART; Anderson et al., 2009) which supports 

many numerical models including the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008). Recently, 

WRF/DART incorporated the RTTOV observation operator, facilitating the assimilation of satellite radiance from VIS to MW 80 

wavelengths, enabling it with a great potential in assimilating satellite SW radiance data which are affected by clouds. The 

Advanced Geostationary Radiation Imager (AGRI) on FY-4 excels at high sampling frequency (5 min for intensive observation 

and 15 min for usual observation) and high spatial resolution (0.5 ~ 2 km, depending on channels). Zhang et al. (2019) pointed 

out that AGRI has great application prospects in describing rapidly evolving and small- to medium-scale atmospheric systems.  

This study explores the potential of WRF/DART-RTTOV system in assimilating the FY-4/AGRI VIS radiance, and 85 

evaluates the performance of the system with different observation settings and other model settings, and identifies the 

limitations. The paper is organized as follows. The models and experiment designs are introduced in Section 2. The results are 

presented in Sections 3. Discussions on observation rejection are elaborated in Section 4. Conclusions are summarized in 

Section 5.  
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2. Models and experiment designs 90 

The performance of the WRF/DART-RTTOV system in assimilating AGRI channel 2 (0.55 ~ 0.75 μm) radiance data were 

demonstrated with OSSEs. A nature run is performed to generate a proxy true atmosphere for the OSSEs and a control run 

without DA was performed, provided a baseline for comparison. Impacts of VIS radiance on cloud analysis and forecast were 

evaluated by designing different DA experiments with the OSSEs framework. Experiments with different observing and 

updating scenarios were conducted and verified by comparing simulation results with the nature run. The details of the model 95 

configuration of the nature run, control run, and experiment runs and the weather case description are provided below.   

2.1 Configurations of the WRF Model 

The WRF model domain for this study covers parts of the East Asia and Western Pacific (Figure 1). The domain contains 

151×177 horizontal grids with a grid spacing of 15 km in the horizontal directions and 40 vertical levels. The model top is set 

to 50 hPa. To avoid the disturbances over the regions close to the model domain boundaries, simulations within the inner 100 

rectangle of 131×157 horizontal grids are analysed. 

 

Figure 1. The WRF model domain with 15-km horizontal grid spacing. Only observations within the inner rectangle are assimilated 

to discard regions close to the model domain boundaries. Red dots denote the points where pointwise-data assimilation experiments 

were evaluated. 105 

 

The true state is represented by the ensemble mean of 50 members of the nature run. For each ensemble member of the 

nature run, the initial conditions (ICs) and lateral boundary conditions (LBCs) were extracted from the National Centers for 
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Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis data (1°×1° resolution). Perturbations extracted 

from the WRF 3D-VAR system using a generic background error option which draws the NCEP background error covariances 110 

with proper scaling were added to the ICs. The scaling factors for the variance, horizontal length scale, and vertical length 

scale are set to 0.25, 1.0, and 1.5, respectively. Perturbations of the LBCs are generated based on random variation approach 

built in the DART pert_wrf_bc module. The WRF model configuration includes the “CONUS” physics suite and the NSSL 2-

moment microphysical scheme without hail (Mansell et al., 2010). Other model configurations are by default provided by the 

standard WRF release. The WRF ensemble members are advanced from the perturbed ICs and LBCs at 12:00 UTC 18 August 115 

2020 to 01:00 UTC 19 August 2020.  

For the control and DA experiment runs, the ensemble size is set to 50 and the ICs and LBCs were extracted from the 

ERA5 hourly data (0.25°×0.25° resolution). The WRF model physical parameterization schemes include the WDM6 

microphysics scheme (Lim & Hong, 2010), the Betts-Miller-Janjic Cumulus Parameterization option (Betts, 1986; Betts & 

Miller 1986; Janjić, 1994), the Rapid Radiative Transfer Model for Global Climate Models (RRTMG) longwave and shortwave 120 

radiation schemes (Iacono et al., 2008), the GFS planetary boundary layer scheme (Hong and Pan, 1996), the Eta similarity 

surface layer model (Janjić, 1996), and the Noah Land Surface Model (Ek et al., 2003). The perturbations were added to the 

LBCs and ICs with the same techniques as the nature run. 

2.2 Configurations of RTTOV 

Synthetic AGRI channel 2 radiance “observations” were simulated by the RTTOV radiative transfer model that was 125 

incorporated into the WRF/DART system as a forward operator. For simplicity, the solar zenith angle, solar azimuth angle, 

satellite viewing zenith angle, and satellite azimuth angle are set to 25.0°, 75.0°, 40.0°, and 210.0° during the filtering processes 

unless otherwisely noted. In addition, an observation error of 1 mW m-2 sr-1 were assigned during the filtering processes. 

RTTOV includes the pre-defined cloud optical properties. For liquid water clouds, we use the “Deff” scheme where cloud 

optical properties are parameterized in terms of Re (Mayer & Kylling, 2005). The cirrus scheme developed by Baren et al. 130 

(2014) (hereafter Baren-2014) was used to calculate ice cloud optical properties. It is noted that the Baran-2014 scheme has 

no explicit dependence on ice particle size. In this study, liquid water particles include cloud water droplets and rain drops, 

and ice particles include ice, snow, and graupel.  

The radiative transfer processes are simulated by the DOM solver in RTTOV. The general radiative transfer options 

account for atmospheric refraction and curvature. The surface is treated as a specular reflector for downwelling emitted 135 

radiance. For land surface, the surface Bidirectional Reflectance Distribution Function (BRDF) were drawn from land surface 

atlases (Vidot and Borbás, 2014; Vidot et al., 2018). For sea surface, BRDF was calculated by the JONSWAP (Hasselmann et 

al., 1973) solar sea BRDF model. The lay-to-space transmittance is computed by the v9 predictor on 54 levels (Matricardi, 

2008). The downwelling atmospheric emission is computed using the linear-in-tau approximation for the Planck source term. 

Water vapour profiles were drawn from WRF state variables. Other parameters not explicitly mentioned are by default. 140 
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Based on the above model configurations, the dependence of AGRI channel 2 radiance on the liquid water path (LWP), 

Re, and ice water path (IWP) is presented by Figure 2. The curvature properties clearly show a non-linear relationship between 

the observations (radiance) and cloud related parameters (LWP, Re, IWP). The differences between the radiance-LWP 

functions with different effective radii become smaller with as Re increases. For Re larger than 30 μm, the radiance-LWP 

functions for different effective radii are ignorable. Because raindrops are several orders larger than cloud droplets, the 145 

effective radius of cloud droplet is sufficient to describe the radiative transfer processes for the clouds where cloud droplets 

and raindrops coexist. As a result, Re in the following discussion explicitly denote the effective radius of cloud droplets, which 

corresponds to the WRF state variable “RE_CLOUD”. 

 

Figure 2. Dependence of AGRI channel 2 radiance on cloud water path and effective radius. The simulation is performed with the 150 
“Deff” scheme for liquid water cloud optical properties’ calculation and the Baren-2014 scheme for cirrus optical properties’ 

calculation. For this simulation, the solar zenith angle, viewing zenith angle, and relative azimuth angle are set to 25°, 40°, and 135°, 

respectively.  

2.3 DA experiment design and DART configurations 

2.3.1 DART filtering algorithm 155 

DART was configured to employ the ensemble adjustment Kalman filter (EAKF, Anderson, 2001) and the rank histogram 

filter (RHF, Anderson, 2009) algorithms.  

EAKF is a serial ensemble DA algorithm and the observations are assimilated as scalars. The model state variable 𝒙𝒎 is 

updated by Equation (1) (Anderson, 2001), 

𝒙𝒎
′ = 𝒙𝒎 + Δ𝐱𝑚,𝑛,         𝑚 = 1, … , 𝑀, 𝑛 = 1, … , 𝑁                                                                                                     (1) 160 
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where 𝒙𝒎 denotes the mth state variable, 𝒙𝒎
′  the updated value of 𝒙𝒎, and Δ𝐱𝑚,𝑛 the state variable increment for the mth state 

variable due to the nth observation. Δ𝐱𝑚,𝑛 is calculated by Equation (2), 

Δ𝐱𝑚,𝑛 = (𝜎𝑝,𝑚/𝜎𝑝
2)Δ𝑦𝑛 ,        𝑚 = 1, … , 𝑀, 𝑛 = 1, … , 𝑁                                                 ( 2 ) 

where the subscript “𝑝” is the abbreviation of “prior”, 𝜎𝑝,𝑚 is the prior sample covariance between the observation and the mth 

state variable 𝒙𝒎 , and 𝜎𝑝
2 the prior sample variance of the observed variable. Δ𝑦𝑛  is the observation increment for the nth 165 

observation, which is calculated by the following equation, 

Δ𝑦𝑛 = (𝑦𝑛
𝑝

− �̅�𝑝)(𝜎𝑢/𝜎𝑝) + �̅�𝑢 − 𝑦𝑛
𝑝

,         𝑛 = 1, … , 𝑁                                                 ( 3 ) 

where 𝑦𝑛
𝑝

 denotes the nth prior observation, �̅�𝑝  the prior ensemble mean observation, �̅�𝑢  the posterior ensemble mean 

observation, 𝜎𝑢 the updated standard deviation of 𝜎𝑝. �̅�𝑢 and 𝜎𝑢 are calculated by Equations (4) ~ (5). 

𝑦𝑢̅̅ ̅ =
𝜎𝑜

2

𝜎𝑜
2+𝜎𝑝

2 �̅�𝑝 +
𝜎𝑝

2

𝜎𝑜
2+𝜎𝑝

2 𝑦𝑜                                                                       ( 4 ) 170 

𝜎𝑢 =
𝜎𝑜𝜎𝑝

√𝜎𝑜
2+𝜎𝑝

2
                                                                                  ( 5 ) 

where 𝑦𝑜 and 𝜎𝑜 denote the observation and its corresponding observational error standard deviation. 

Anderson (2007; 2009) promoted a spatially varying state-space adaptive covariance inflation to the prior state to increase 

prior ensemble spread. The same option is adopted in this study and other papers (Lei et al., 2015; Kurzrock et al., 2019). The 

adaptive inflation uses 1.0, 0.6, and 0.9 as the initial value, fixed standard deviation, and damping settings, respectively. The 175 

ensemble size is set to 50. The sampling error due to use of the limited ensemble size was corrected by the method developed 

by Anderson (2012). The Gaspari-Cohn localization function (Gaspari and Cohn, 1999) with a cutoff of 0.02 radian was used 

to limit the spread distance of an observation’s horizontal influences. Since bulk-layer observations like satellite VIS radiance 

data do not have a specific single vertical location, no vertical localization was used in this study. 

RHF algorithm produces a posterior ensemble based on a continuous approximation of the prior probability density 180 

function (PDF) and a piecewise linear representation of the likelihood. The prior PDF is approximated by a rank histogram 

which has piecewise constant between two ensemble members and follows Gaussian distributions beyond the lower and upper 

bounds of the ensemble members. Details on how the ensemble members are updated were elaborated in Anderson (2009). 

The algorithm is declared to be more suitable for non-Gaussian problems. 

2.3.2 Pointwise observation DA experiments 185 

To demonstrate the basic ability of the DA scheme, the impact of observations on the WRF model state variables is studied by 

performing DA experiments with pointwise observations at the four points shown by Figure 1. The analysis time is at 12:40 

UTC 18 August 2020, corresponding to the developing stage of the cyclone system. The four points were chosen to represent 
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different layered cloud structures and cloud phases. The radiance observations for the four points were generated by RTTOV 

from the nature run at the analysis time. 190 

2.3.3 Cycled DA experiments 

Six cycled DA experiments (Exp-1 ~ Exp-6 hereafter) were performed to evaluate the influences of assimilating satellite VIS 

radiance observations on cloud simulations. The experiment designs were summarized in table 1. The outlier threshold in table 

1 is a pre-defined threshold value for rejecting an observation depending on its distance from the prior ensemble mean. If the 

distance is more than N (the predefined outlier threshold value) standard deviations from the square root of the sum of the 195 

prior ensemble and observation error variance, the observation is rejected. The DA experiments were designed to explore the 

influences of different data properties, filtering algorithms, and cycling variables. Exp-1 and Exp-2 are carried out to reveal 

the influences of observation spatial density and updating frequency (small thinning length scale factor and high cycling 

interval means more observations are assimilated, and vice versa). Exp-2 and Exp-4 (Exp-3 and Exp-5) are to assess the 

influences of cycling variables for dense and frequent (sparse and infrequent) observations, Exp-1 and Exp-3 to study the 200 

influences of filtering algorithms, and Exp-2 and Exp-6 to investigate the influences of the outlier threshold values.  

Table 1. Parameter settings for six cycled dada assimilation experiments. 𝒙𝒄𝒍𝒐𝒖𝒅  denotes the WRF cloud variables including 

CLDFRA, QCLOUD, QRAIN, QICE, QSNOW, QGRAUP, QNRAIN, RE_CLOUD, and RE_ICE. 𝒙𝒂𝒕𝒎𝒐𝒔  includes atmosphere 

thermodynamic variables including U, V, W, PH, T, MU, U10, V10, T2, Q2, PSFC, TH2.  

DA 

experiments 

thinning 

length scale 

cycling 

interval 

filtering 

algorithm 

outlier 

threshold 
Cycling variables 

Exp-1 60 km 1 hour EAKF 3 𝒙𝒄𝒍𝒐𝒖𝒅+𝒙𝒂𝒕𝒎𝒐𝒔 

Exp-2 15 km 10 minutes EAKF 3 𝒙𝒄𝒍𝒐𝒖𝒅+𝒙𝒂𝒕𝒎𝒐𝒔 

Exp-3 60 km 1 hour RHF 3 𝒙𝒄𝒍𝒐𝒖𝒅+𝒙𝒂𝒕𝒎𝒐𝒔 

Exp-4 15 km 10 minutes EAKF 3 𝒙𝒄𝒍𝒐𝒖𝒅 

Exp-5 60 km 1 hour EAKF 3 𝒙𝒄𝒍𝒐𝒖𝒅 

Exp-6 15 km 10 minutes EAKF 4 𝒙𝒄𝒍𝒐𝒖𝒅+𝒙𝒂𝒕𝒎𝒐𝒔 

2.4 Metrics of simulation errors 205 

In this study, WRF state variables simulated by the nature run are deemed theoretical true value. Therefore, the Root Mean 

Square Error (RMSE) of a state variable (x) is calculated by the following formula, 

RMSE = √
1

𝑛𝑥𝑛𝑦
∑ (𝑥𝑖,𝑗

sim − 𝑥𝑖,𝑗
𝑡𝑟𝑢𝑒)𝑖,𝑗

2
                                                  ( 6 ) 
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where 𝑥𝑖,𝑗
sim (𝑥𝑖,𝑗

𝑡𝑟𝑢𝑒) denotes the simulated (true) state variable at the ith (in the zonal direction) and jth  (in the meridional 

direction) model grid. nx and ny denote the number of pixels in zonal and meridional directions of the relevant model domains. 210 

Mean absolute error (MAE) is also used to measure the mean distance of the true and the simulated state variables, 

MAE =
1

𝑛𝑥𝑛𝑦
∑ 𝑎𝑏𝑠(𝑥𝑖,𝑗

sim − 𝑥𝑖,𝑗
𝑜𝑏𝑠

𝑖,𝑗 )                                                  ( 7 ) 

The Pearson correlation coefficient is defined as, 

𝑟 =
𝑐𝑜𝑣(𝑥𝑜𝑏𝑠,𝑥𝑠𝑖𝑚)

𝜎𝑥
𝑜𝑏𝑠𝜎𝑥

𝑠𝑖𝑚                                                                ( 8 ) 

where “𝑐𝑜𝑣” denotes the covariance and 𝜎 denotes the standard deviation. 215 

The fraction skill score (FSS) is used to assess how well the cloudy or clear areas are represented in simulated fields, 

which is defined as, 

FSS = 1 −

1

𝑚𝑥𝑚𝑦
∑ (𝑝𝑖,𝑗

𝑜𝑏𝑠−𝑝𝑖,𝑗
𝑠𝑖𝑚)

2

𝑖,𝑗

1

𝑚𝑥𝑚𝑦
[∑ 𝑝𝑖,𝑗

𝑜𝑏𝑠
𝑖,𝑗 +∑ 𝑝𝑖,𝑗

𝑠𝑖𝑚
𝑖,𝑗 ]

                                                            ( 9 ) 

where 𝑝𝑖,𝑗
𝑜𝑏𝑠  denotes the cloud fraction within a subdomain covering 4×4 model grids. 𝑚𝑥  and 𝑚𝑦  denote the number of 

subdomains in the zonal and meridional directions. 220 

Referring to Scheck et al. (2020), the mean profile error (MPE) was calculated by the following formula,  

MPE =
1

𝑝sfc−𝑝𝑡𝑜𝑝
∫  

𝑝sfc 

𝑝top
abs[𝑥𝑜𝑏𝑠(𝑝) − 𝑥𝑠𝑖𝑚(𝑝)]d𝑝                                                                               (10) 

where 𝑝sfc and 𝑝𝑡𝑜𝑝 represent pressure at model surface and top, and 𝑥 denotes an arbitrary model state variable. 

Similarly, the mean profile increment (MPI) was used here to evaluate the analysis increment of a vertically distributed 

state variable. 225 

MPI =
1

𝑝sfc−𝑝𝑡𝑜𝑝
∫  

𝑝sfc 

𝑝top
abs[𝑥𝑝𝑜𝑠(p) − 𝑥𝑝𝑟𝑖(p)]d𝑝                                                                                 (11) 

where the subscript “pos” and “pri” denote the posterior and prior mean of a certain state variable. 

3. Results 

3.1 Pointwise data assimilation experiment 

In principle, DA procedure adjust the prior ensemble mean radiance (𝑅𝑝𝑟𝑖) toward the observed radiance (𝑅𝑜𝑏𝑠). However, 230 

adjustment of indirect prior ensemble mean model variables, or diagnosed variables such as cloud water path (CWP), according 

the satellite radiance was rather complicated. The results in Figure 3 show how the state variables were adjusted during a 

filtering process.  
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 235 

Figure 3. Results for the point data assimilation experiments. Column 1: the adjustments of radiance (rad) and cloud water path 

(cwp). Column 2: the adjustments of liquid water cloud mixing ratio (lwc) and ice cloud mixing ratio content (iwc). From top to 

bottom, panels 1 ~ 4 denote the results for points 1 ~ 4 shown by Figure 1.  
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Figure 3(a1,a2) shows the case with 𝑅𝑝𝑟𝑖 < 𝑅𝑜𝑏𝑠. The filtering process updates the prior ensemble mean CWP so that the 

equivalent prior ensemble mean radiance would be increased. As indicated by Figure 2, radiance at VIS bands is much more 240 

sensitive to CWP than Re. As a result, the prior ensemble mean Re remains unchanged during the filtering procedure (not 

shown for simplicity). However, the posterior ensemble mean CWP (𝑤𝑝𝑜𝑠) is increased, leading to 𝑤𝑝𝑜𝑠 > 𝑤𝑜𝑏𝑠 > 𝑤𝑝𝑟𝑖, where 

𝑤𝑜𝑏𝑠 and 𝑤𝑝𝑟𝑖 denote the ensemble mean CWP of the true and prior model variables. The results indicate that the CWP is 

over-adjusted. This occurred partly due to the nonlinear relationship between CWP and radiance. To be specific, calculating 

the ensemble mean of Equation (2) and substituting 𝑦𝑢̅̅ ̅ with Equation (4) would get the following formula, 245 

Δ𝑥𝑚
̅̅ ̅̅ ̅̅ =

𝜎𝑝,𝑚

𝜎𝑜
2+𝜎𝑝

2 𝑅𝑖𝑛𝑐                                                                                                                    (12) 

where Δ𝑥𝑚 denotes the ensemble mean of the mth state variable increment, 𝑅𝑖𝑛𝑐 the ensemble mean radiance increment, which 

is calculated by Equation (13). 

𝑅𝑖𝑛𝑐 =
𝜎𝑝,𝑚

𝜎𝑜
2+𝜎𝑝

2 (𝑦𝑜 − �̅�𝑝)                                                                                                  (13) 

Considering a simplified case with 2 ensemble members, the ensemble mean observation increment is calculated as the 250 

following formula, 

 𝑅𝑖𝑛𝑐 =
𝜎𝑝

2

𝜎𝑜
2+𝜎𝑝

2 [𝐹(𝑤𝑜𝑏𝑠) −
𝐹(𝑤1)+𝐹(𝑤2)

2
]                                                                                                    (14) 

where 𝐹 denotes the forward observation operator. 𝑤1 and 𝑤2 represent CWP of the two ensemble members. 

However, considering the relationship between CWP and the VIS radiance, the theoretical true observation increment 

should be, 255 

𝑅𝑖𝑛𝑐
𝑡 =

𝜎𝑝
2

𝜎𝑜
2+𝜎𝑝

2 [𝐹(𝑤𝑜) − 𝐹(𝒙)], 𝒙 =
𝑤1+𝑤2

2
                                                                                                  (15) 

As indicated by Figure 4, 𝑅𝑖𝑛𝑐  is larger than 𝑅𝑖𝑛𝑐
𝑡 . Namely, the ensemble mean observation increment was overestimated 

by Equation (14), leading to an over-estimated posterior ensemble mean CWP as depicted by Figure 3(a). 

For 𝑅𝑜𝑏𝑠 < 𝑅𝑝𝑟𝑖, the prior ensemble mean Re was almost unchanged and CWP was decreased (Figure 3(d1,d2)), which 

is in favor of a negative ensemble mean of the observation increment. The result 𝑤𝑝𝑜𝑠 < 𝑤𝑝𝑟𝑖 < 𝑤𝑜𝑏𝑠 could be also partly 260 

explained by the nonlinearity of the observation operators.  

Figure 3(b1,b2) and 3(c1,c2) represent two “idealized” adjustments. Namely, 𝑤𝑝𝑜𝑠 is within the range bounded by 𝑤𝑝𝑟𝑖 

and 𝑤𝑜𝑏𝑠  given that Re is almost unchanged during the filtering process. In these two cases, assimilating radiance data 

improves the vertically accumulated cloud water/ice mixing ratio (equivalent to CWP), but it could not adjust the vertical 

positions of the clouds. In addition, the direct assimilation could not improve cloud phase simulations. For point 2, the truth 265 

state shows a thin liquid water cloud spanning from 500 ~ 450 hPa but both the prior and posterior show a two-layered structure, 
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including an upper ice cloud layer spanning from 500 ~ 200 hPa and a lower liquid water cloud layer spanning from 700 ~ 500 

hPa. In other words, there is a one-layered liquid water cloud in the true state but a two-layered cloud structure in the prior and 

posterior fields. Such phenomena were also reported by previous studies where they ascribe the failure to the fact that satellite 

VIS radiance is insensitive to the particular cloud vertical structure (Scheck et al., 2020). 270 

 

 

Figure 4. Illustration of the effects of nonlinearity of the observation operator on calculation of radiance increments with 2 ensemble 

members. F denotes the observation operator, 𝑾𝟏 and 𝑾𝟐 denote cloud water path (CWP) for the 1st and 2nd ensemble member, 

𝑾𝑶 denotes the observed CWP. 𝑹𝒊𝒏𝒄 denotes the calculated ensemble mean radiance increment, and 𝑹𝒊𝒏𝒄
𝒕  denotes the true radiance 275 

increment which respect the laws between the CWP and the radiance.  

 

The EAKF algorithm assumes that the prior ensemble estimates of a scalar observation 𝑦𝑝  (radiance in this study) 

confirms to a Gaussian distribution N(𝑦𝑝̅̅ ̅, 𝜎𝑝
2). To see how well the approximation was respected, the Probability Density 

Functions (PDFs) of 𝒚𝒑  for the four points are presented in Figure 5. As indicated, the non-Gaussian characteristics are 280 

apparent, especially for the Point 4. Therefore, a DA experiment using the the RHF filtering algorithm was added in comparison 

with EAKF. 
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Figure 5. The probability density functions of the radiance for the prior ensemble members for the four points shown by Figure 1. 

(a) ~ (d) correspond to Points 1 ~ 4. 285 

 

3.2 Cycled DA experiments 

3.2.1 Influences on CWP 

The time evolution of CWP for the nature run, control run, Exp-2, and Exp-4 are presented by Figure 6. Quantitative 

comparison results for Exp-1 ~ Exp-5 are summarized in Figure 7. 290 
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Figure 6. Time evolution of cloud water path (CWP) for the nature run (column 1), the control run (column 2), Exp-2 (column 3), 

and Exp-4 (column 4). From top to bottom, the row panels correspond to 12:40 UTC 18 August 2020, 15:40 UTC 18 August 2020, 

18:40 UTC 18 August 2020, 21:40 UTC 18 August 2020, and 00:40 UTC 19 August 2020, respectively. The red lines in the first 295 
column are for cross-section analyses. 
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Figure 7. Quantitative metrics for the control run and Exp-1 ~ Exp-5. (a) ~ (d) denote the fraction skill score (FSS), the root mean 

square error (RMSE), and the mean absolute error (MAE) of the posterior ensemble mean cloud water path (CWP), and the Pearson 

correlation coefficient (r) between the posterior ensemble mean cloud water path (CWP) and the true CWP. 300 
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The FSS results indicate that assimilating VIS radiance improves cloud coverage simulations in most cases. In comparison 

with the control run, assimilating VIS radiance data could clearly suppress the wrong clouds in the regions where it is cloudy 

for the control run but are clear for the nature run. However, for regions which are clear for the prior ensemble mean but cloudy 

for the nature run, assimilating the VIS radiance data could not generate cloud hydrometers (Figure 6). This is because the 

increments for each state variable are calculated by regressing the observation increments on the state variables through the 305 

covariance between the observations and the state variable. The covariance between the observations and the state variable is 

zero in cloudless regions of the prior and thus, the observation increments cannot be mapped to the state variables.   

In terms of the whole cyling period, Exp-1 and Exp-3 almost coincide and achieved consistently positive results. Exp-1 

and Exp-3 differ in filtering algorithms. Therefore, it seems that RHF does not outperform EAKF in cloud coverage simulations. 

A potential explanation is that despite RHF deals with non-Gaussian problems better than EAKF, its advantages may be subject 310 

to the limited number of ensemble members (50 in this study). In addition, Exp-1 achieved better results than Exp-5. The 

differences of the two experiments lie in the cycling variables. Given the fact that using the multi-variable atmosphere state 

analysis increments into the ensemble forward integration cycles degrades cloud simulations, DA of VIS radiance data may 

cause negative influences on some atmosphere thermodynamic state variables. The negative impacts on atmosphere 

thermodynamic state variables were also revealed by comparing Exp-2 and Exp-4, where exp-4 corresponds to the best results 315 

in general. 

The RMSEs, MAEs, and Pearson correlation coefficients (r) of the experiments present some different characteristics to 

FSSs. It is apparent that best results were achieved for Exp-4, which assimilates VIS radiance with high-frequency (10 minute) 

update cycles. Exp-2 differs from Exp-4 in that Exp-2 includes both cloud and atmosphere thermodynamic variable analysis 

increments in ensemble forward integration, but Exp-4 only includes the cloud analysis increments. CWP simulations for Exp-320 

4 is evidently better than Exp-2, indicating that assimilating VIS radiance data has negative influences on some atmosphere 

thermodynamic state variables for dense observations with high updating frequency. Because satellite VIS radiance data have 

no apparent dependence on atmosphere thermodynamic state variables, errors could be induced to atmosphere thermodynamic 

state variables during the filtering processes through fake correlation between VIS radiance and these variables. On the other 

hand, Exp-5 and Exp-1 are similar to the Exp-4 vs Exp-2 pair but with lower update frequency (60 minutes) and thinner 325 

observations. The forecasting skill of CWP is slightly better for Exp-1 than Exp-5, indicating slightly positive influences on 

some atmosphere state variables in this case, which agrees with Scheck et al. (2020). The overall results for FSS, RMSE, MAE, 

and r show that assimilating VIS radiance data generally cause negative influences on atmosphere thermodynamic state 

variables for dense observations with high updating frequency, but for sparse observations with low updating frequency, such 

impact is insignificant. The RMSE, MAE, and r results for Exp-1 and Exp-3 are close, which is similar to the results for FSS. 330 

Therefore,  RHF algorithm is comparable to EAKF algorithm for assimilating the VIS radiance data in cloudy regions. 

To compare the model clouds in the horizontal and vertical directions, we analyze Figure 8, which gives the x-pressure 

cross sections of mixing ratio of the total liquid/ice hydrometers along the red lines in Figure 6.  
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Figure 8. The x-press cross section of cloud water/ice mixing ratio for the red line shown by Figure 6 (c1). From left to right, the 335 
column panels correspond to the nature run, control run, Exp-2, and Exp-4. From top to bottom, the row panels correspond to 12:40 

UTC 18 August 2020, 15:40 UTC 18 August 2020, 18:40 UTC 18 August 2020, 21:40 UTC 18 August 2020, and 00:40 UTC 19 August 

2020, respectively. These times corresponds to those in Figure 6.    

At the initial cycling step, a convective initiation was generated by the nature run. At this stage, no precipitation was 

found at the sea surface (Figure 8(a1)). However, precipitation was found in the control run (Figure 8(a2)). After the EAKF 340 

https://doi.org/10.5194/gmd-2022-30
Preprint. Discussion started: 14 April 2022
c© Author(s) 2022. CC BY 4.0 License.



18 

 

filtering, the updated cloud fields suggested precipitation at the sea surface (Figure 8(a3) ~ Figure 8(a4)). Nevertheless, some 

fake clouds between 100 and 400 km in the x direction (Figure 8(a2)) were eliminated in the posterior ensemble mean cloud 

fields. The results imply that although assimilating satellite VIS radiance data could not adjust cloud and precipitation in the 

vertical directions, but it helps to improve the horizontal cloud and precipitation distribution. 

At 15:40 UTC 18 August 2020, the control run is pretty close to the nature run, except that some fake clouds were 345 

generated in the location between 200 ~ 400 km (Figure 8(b2)). These clouds were clearly suppressed in Exp-2 and Exp-4 

(Figure 8(b3) and Figure 8(b4)). Comparison within Exp-2, Exp-4 and the nature run indicate that the cyclone cloud area is 

underestimated by Exp-2. This is because Exp-2’s atmosphere thermodynamic state variables are updated in negative ways as 

aforementioned, which may cause counteracting effects to cloud development. At 18:40 UTC 18 August 2020, a clear “eye 

structure” was presented at ~ 900 km in the x direction in the nature run (Figure 8(c1)). This structure was not simulated by 350 

the control run (Figure 8(c2), Figure 6(c2)) and Exp-2 (Figure 8(c3), Figure 6(c3)) and the other DA experiments except for 

Exp-4. At this stage, the cyclone cloud system was further shrunk in Exp-2. In contrast, Exp-4 captures well the “eye” structure 

(Figure 8(c4), Figure 6 (c4)) and the cyclone cloud areas.  

At 21:40 UTC 18 August 2020, the cyclone cloud area was shrunk and entered  the dissipating stage. The “eye” structure 

is still apparent for the nature run (Figure 8(d1), Figure 6(d1)). Exp-4 continues to properly simulate the “eye structure” and 355 

cloud coverage of the cyclone (Figure 8(d4), Figure 6(d4)), although the precipitation in the left side of the “eye” was not 

generated, and the one-layered cloud and precipitation structure in the right side of the “eye” was mis-simulated as a two-

layered structure. These results further confirm that assimilating VIS radiance improves the cloud amount in the horizontal 

directions but not in the vertical. In contrast, the control run and Exp-2 only produce some weak non-precipitating cloud, 

seriously underestimating the cyclone cloud system. 360 

At 00:40 UTC 19 August 2020, the cyclone precipitation persists in the nature run (Figure 8(e1)). However, the 

precipitation was not simulated in any of the DA experiments (Figure 8(e3) and Figure 8(e4)). In comparison to the control 

run which generates some false clouds around 650 km (Figure 8(e2)), assimilating the VIS radiance data gain a cloud coverage 

much more close to the nature run (Figure 8 (e4) and Figure 6(e4)). 

3.2.2 Influences on Re 365 

The time evolution of MPIs and MPEs of Re for Exp-2 are presented by Figure 9. MPIs of Re are within 1 μm at most analysis 

times (Figure 9(a)). In addition, MPEs of Re are within 15 μm (Figure 9(b)). In fact, Re is underestimated at most of the 

analysis times. At 18:40 UTC, 18 August 2020, Re is underestimated near the cyclone’s center (Figure 10(a)). In order to 

increase the radiance comparable with the observations, either positive CWP increments or negative Re increments should be 

generated. In this case, Re is underestimated and Re increments are approximately zero (Figure 10(b)). Combing the Figure 370 

9(a) and Figure 10(b), we may draw a conclusion that DA of VIS radiance data has trivial influences on Re. Because satellite 

VIS radiance is positively (negatively) related to CWP (Re) (Figure 2), the CWP increment is not as large as that expected for 

the Re equal to the observed value. This could partly explain the phenomenon why CWP near the cyclone center is 
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underestimated (Figure 8(c3), Figure 6(c3)). Similar results were found for the other DA experiments. For brevity, they are 

not presented here. 375 

 

Figure 9. Time evolution of (a) mean profile increment (MPI), defined by Equation (11), and (b) mean profile error (MPE), defined 

by Equation (10), of Re for Exp-02. 

 

 380 

Figure 10. (a) the mean profile error (without absolute operation) and (b) the mean profile increment (without absolute operation) 

of Re for Exp-2 at the analysis time 18:00 UTC, 18 August 2020. 

4. Discussions on observation rejection 

It is noteworthy that not all observations are effectively assimilated by the WRF/DART-RTTOV system during the filtering 

process. Two types of the observations are rejected, including (1) the observations that are too far from the prior ensemble 385 
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mean (e.g., QC = 7) because assimilating these data may cause the collapse of WRF model and (2) those resulting in state 

variables that do not satisfy some basic physical laws (QC = 4), e.g., non-monotonic pressure.  

Figure 11 shows the ratios of observations that are assimilated (or rejected) for different reasons. In the present case, non-

monotonic pressure was mainly located in the Qinghai-Tibet Plateau, Tianshan Mountain, and Central Taiwan ranges (not 

shown for simplicity), where complex terrain exists. Observations corresponding to the non-monotonic pressure account for 390 

4% of all. The non-monotonic pressure was generated during interpolation of the perturbed model states. 

The number of “far observations” was increased with time evolution, implying that the differences between observation 

and the prior ensemble mean are increased over time. For DA experiments which include atmospheric thermodynamic state 

variables as cycling variables, such a phenomenon could be ascribed to the forecasting errors of atmospheric thermodynamic 

state variables due to fake correlation between VIS radiance and these variables. In general, about 80% observations were 395 

assimilated by DART system in the initial assimilation cycles for Exp-1 ~ Exp-5 (The results for Exp-1 and Exp-2 are shown 

by Figure 11(a) and 11(b), respectively). As the DA cycles move on, the percentage decreased to about 50%.   

 

Figure 11. The ratio of observations assimilated (QC=0) or rejected (QC=4 or QC=7) by DART for (a) Exp-1, (b) Exp-2, and (c) 

Exp-6.  400 

 

DART uses a predefined threshold value (outlier_threshold) to determine whether an observation should be rejected or 

assimilated. Larger outlier_threshold allows more observations accepted by DART. The threshold value is set to 3.0 in Exp-1 

~ Exp-5, corresponding to a usage of a small number of observations at the mid and late cycling stages. To increase the usage 

efficiency, outlier_threshold was set to 4.0 for Exp-6. As indicated by Figure 11(c), large outlier_threshold do increase the 405 

usage efficiency of observations. The corresponding influences on cloud simulations (Figure 12) indicate that assimilating 

more observations do not result in improvements to cloud simulations. A potential explanation is that the positive effects on 

cloud state variables with more observation were counteracted by the negative effects on atmosphere thermodynamic state 
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variables. After several cycling steps, errors of atmosphere thermodynamic state variables are accumulated, and the errors of 

cloud simulations are drastically enlarged. For example, the maximum RMSE of CWP could reach as large as 4.3 kgm-2.  410 

 

Figure 12. Verification metrics for Exp-2 and Exp-6 for posterior ensemble mean CWP. (a) ~ (d) denote the fraction skill score (FSS), 

the root mean square error (RMSE), the mean absolute error (MAE), and the Pearson correlation coefficient (r). 
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Therefore, outlier_threshold should be set with caution to properly trade off the benefits to cloud assimilation and its 

negative influences on the atmospheric thermodynamic states. On one hand, DART should be set to assimilate as much 415 

observations as possible to improve cloud forecasting skills. On the other hand, measures should be taken to avoid the 

detrimental effects due to forecasting errors of atmosphere state variables caused by the DA processes. There are two possible 

solutions to this problem. One method is to discard atmosphere state variables in the cycling variables for dense observations 

with high updating frequency, as is performed by Exp-4. Another method is to collaboratively assimilate other complementary 

observations, such as the atmospheric Motional Vector (AMV) derived from continuous satellite images, to suppress the 420 

negative influence of the VIS radiance DA on the atmospheric thermodynamic states. 

5. Conclusion 

In this study, OSSEs were performed to investigate the ability of the WRF/DART system along with the RTTOV observation 

operator for assimilating FY-4/AGRI VIS (channel 2) radiance data. Six DA experiments were designed to study the impacts 

of different observation densities and updating frequencies, filter algorithms, outlier_threshold values, and cycling variables. 425 

The modeling experiments cover the strengthening and weakening processes of a cyclone case. Influences of assimilating VIS 

radiance data on cloud simulations were evaluated. Main results and findings are summarized below. 

(1). The DART filtering processes mainly influence CWP, with little impact on Re. The adjustments of CWP has 

significant positive influences on cloud simulations in the horizontal directions. Because VIS radiance is insensitive to the 

cloud vertical structures, there is no direct constraint to adjust the cloud water/ice content to the proper height. In some 430 

scenarios, the filtering process may cause negative CWP adjustments, namely, the posterior ensemble mean CWP is out of the 

range bounded by the prior ensemble mean and the observations. These negative adjustments are partially caused by the 

nonlinear relationship between radiance and CWP. This problem could be potentially solved by the particle filter-based DA 

approaches (Shen and Tang, 2014; Pinheiro et al., 2019). 

(2). On the domain average, assimilating VIS radiance improves cloud simulations at most of the analysis times. The best 435 

cloud forecasting skills were found for dense observations with high updating frequency, and with cloud state variables (𝒙𝒄𝒍𝒐𝒖𝒅) 

as the cycling variables. For the data assimilation of dense and high-frequency observations, the atmosphere thermodynamic 

state variables (𝒙𝒂𝒕𝒎𝒐𝒔) should not be taken as the cycling update variables because the adjustments of 𝒙𝒂𝒕𝒎𝒐𝒔 by VIS radiance 

DA introduce negative influences on cloud simulations.  

(3). Many observations were discarded by the WRF/DART-RTTOV system, with a loss of up to 50% of available VIS 440 

radiance observations. Most of the observations rejected are too far from the prior ensemble mean (according to the predefined 

threshold value outlier_threshold). Some other observations, mainly over complex terrain regions, are rejected because non-

monotonic pressure detected. 

In addition, there are two major shortcomings with the current VIS radiance DA approach: one is its inability to improve 

cloud vertical distribution and the other is its inability to influence atmosphere thermodynamic state variables positively. In 445 
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this study, the observation operator is assumed to be quite accurate with an observation error of 1 mW m-2 sr-1. This 

assumption is proper for the coarse grid spacing (15 km in this study) as 3D radiative effects are trivial at this scale (Várnai 

and Marshak, 2001). However, most of the operational observation operators would introduce non-negligible errors for small 

grid spacing such as convective scale resolutions due to 3D radiative effects (Zhou et al., 2021). In addition, increasing model 

grid spacing would introduce other problems such as the enhanced nonlinearity effects and physical consistency between 450 

nested domains (Kurzrock et al., 2019). Extending the present research to solve these problems with WRF-DART/RTTOV 

should be taken. 
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https://dart.ucar.edu/.  Version 12.3 of RTTOV source code is publicly available at https://nwp-

saf.eumetsat.int/site/software/rttov/. The NCEP FNL (Final) Operational Global Analysis data are downloaded from 

https://rda.ucar.edu/datasets/ds083.2/. The ERA5 hourly data are available at 

https://cds.climate.copernicus.eu/api/v2/resources. The source codes of WRF-ARW, WPS, RTTOV, and DART models (tool), 
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