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Abstract. Satellite visible radiance data contain rich cloud and precipitation information that are increasingly assimilated for 

improving the forecasting skills of numerical weather prediction models. This study evaluates the Data Assimilation 

Research Testbed (DART, Manhattan release v9.8.0), coupled with the Weather Research and Forecasting (WRF) model 10 

(ARW v4.1.1) and facilitated with an interface for the Radiative Transfer for TOVS (RTTOV, v12.3), for assimilating the 

simulated visible imagery of the FY-4A geostationary satellite located over Asia in a framework of Observing System 

Simulation Experiment (OSSE). The OSSE was performed for a tropical storm named Higos, which contains multi-layer and 

mixed-phase cloud structures and precipitation processes, to evaluate the advantages and limitations of the assimilation. 

Single observation experiments and cycled DA experiments were performed to explore the pros and cons and sensitivities of 15 

the assimilation to different filter algorithms, cycling variables, outlier threshold values, and observation errors. 

The assimilation significantly improved the first-guess forecast and analysis of cloud water path (CWP) and cloud 

coverage (CFC). After assimilating the visible radiances, WRF could capture better CWP and CFC properties for the Rank 

Histogram Filter (RHF) than the Ensemble adjustment Kalman Filter (EAKF) but with a sacrifice of more elapsed CPU time 

(≈ 7 min for EAKF and 13 min for RHF in one cycle), for the cycling variables including both cloud and non-cloud variables, 20 

for the larger outlier threshold values, and for the smaller observation errors without thinning of observations. The 

assimilation also generated slightly positive impacts on non-cloud variables due to feedback to the adjustments to cloud 

variables. In addition, the assimilation improved the representation of precipitation and rain rate. However, the 

improvements on rain rate are complicated by the inabilities of the assimilation to improve cloud vertical structures and 

cloud phases. Sometimes, negative impacts could be introduced to cloud variables due to non-linear forward operator and 25 

non-Gaussian prior distribution. Future works should include the evaluation and development of faster and more accurate 

forward operators suitable for the assimilation of FY-4A visible imagery, techniques to reduce the non-linear and non-

Gaussian errors, methods to correct the location errors, etc. 
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1. Introduction 30 

All-sky satellite data assimilation (DA) has shown great potential to improve weather forecasts (Bauer et al., 2011). Most 

satellite DA-related studies deal with microwave (MW) and infrared (IR) data. DA of MW radiance data reveals positive 

effects on cloud and precipitation forecasting by adjusting the atmospheric state variables such as humidity and temperature 

(Geer et al., 2019; Migliorini and Candy, 2019) as well as cloud-related parameters such as cloud water/ice content and 

cloud coverage (Zhang et al., 2013; Yang et al., 2016). All-sky MW data has been operationally assimilated at some 35 

Numerical Weather Prediction (NWP) centres (Bauer et al., 2010; Zhu et al., 2016). However, operational DA of all-sky 

MW data is limited to humidity- and temperature-sounding channels (Carminati and Migliorini, 2021) because MW radiance 

at these channels is insensitive to surface emissivity and skin temperature, whose accurate estimates are challenging under 

cloudy skies (Hu et al., 2021). DA of MW data is also challenging to separate the radiance contribution from cloud and non-

cloud variables (especially temperature and humidity) (Geer et al., 2017). The assimilation of all-sky IR radiance data also 40 

shows beneficial aspects. Existing studies suggest positive effects on water vapour and temperature by assimilating the IR 

data in clear sky (McCarty et al., 2009; Ma et al., 2017). In addition, DA of IR radiance data in cloudy regions shows 

improved analysis of column integrated water and improved forecasting skills in the mid- and upper-troposphere (Stengel et 

al., 2013; Geer et al., 2019). However, the assimilation of IR radiance data in cloudy regions is still complicated by the non-

linear relationship between the observation and state variables and the related non-Gaussian problems (Li et al., 2022), the 45 

difficulty to separate cloud signals and non-cloud signals (Geer et al., 2017), and the difficulty to constrain the layered 

structures in multi-layer clouds (Prates et al., 2014). 

To further improve cloud forecasts, there is great potential related to assimilating the visible (VIS) and shortwave 

infrared (collectively referred to as shortwave, SW) data (Vukicevic et al., 2004; Polkinghorne and Vukicevic, 2011; Scheck 

et al., 2020; Schröttle et al., 2020) because these measurements contain unique cloud information complementing the one 50 

contained in IR and MW data (Kostka et al., 2014; Schröttle et al., 2020). For example, SW radiation can penetrate a certain 

depth of cloud fields, and connotate cloud microphysical properties such as effective particle radius (Nakajima and King, 

1990). In comparison, satellite IR data only provide information on cloud top microphysics (Xue, 2009). As a complement to 

precipitation radar that is much more sensitive to large hydrometeors or precipitation particles (Keat et al., 2019), which 

usually occurrs at the mature and developing stages of convective systems (Zhang and Fu, 2018), satellite SW radiance data 55 

are closely related to small cloud droplets. SW data usually have higher spatial resolution than MW data (Yang et al., 2017; 

Coste et al., 2017; Schimit et al., 2018). Therefore, high-resolution satellite SW radiance data provide information on cloud 

properties with great significance for cloud-resolving model simulation. Compared with the MW and IR data, the radiance 

contribution from cloud could be easily extracted from the VIS observations because the VIS radiance data is much more 

sensitive to cloud variables than non-cloud variables.  In addition, VIS radiance is not sensitive to cloud layout in the vertical 60 

directions, but to the accumulated cloud properties. This makes the assimilation much easier for heterogeneous cloud 

scenarios. Therefore, assimilating the VIS radiance data has the potential to further improve the forecast quality of cloud and 

precipitation. 
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Many studies have attempted to assimilate the SW radiance data (direct assimilation) rather than the retrieved cloud 

parameters (indirect assimilation). Direct data assimilation critically depends on observation operators. Several observation 65 

operators and relevant algorithms have been developed for the assimilation of satellite VIS radiance data. For example, in the 

study of Vukicevic et al. (2004), model state variables were mapped to the equivalent radiance by an observation operator 

for the VIS and IR radiance measurements (VISIROO). Polkinghorne and Vukicevic (2011) used the Spherical Harmonic 

Discrete Ordinate Method Plane Parallel for Data Assimilation (SHDOMPPDA) for radiance conversion. SHDOMPPDA 

solves radiative transfer processes by Discrete Ordinate Method (DOM) in Cartesian space while computing source 70 

functions using spherical harmonic series in spherical space. Compared with observation operators which solve source 

functions in Cartesian space, SHDOMPPDA has the advantage of high computation efficiency. Scheck et al. (2016a) 

developed a Method for Fast Satellite Image Synthesis (MFASIS), which is 2 ~ 4 orders of magnitude faster than other 

observation operators based on DOM (Scheck et al., 2016b). Furthermore, a correction method was implemented in MFASIS 

to reduce errors due to three-dimensional (3D) radiative effects (Scheck et al., 2018). MFASIS is one of the observation 75 

operators of the Radiative Transfer for TOVS (RTTOV), which is a collection of observation operators widely used in 

satellite radiance DA (Saunders et al., 2018). Other radiative transfer solvers of the observation operators incorporated in the 

RTTOV package include DOM and the single-scattering method for SW radiative processes. These solvers could tackle 

cloud fraction, parallax correction, and many other critical aspects including molecular absorption and scattering, underlying 

surface reflection, etc. (Saunders et al., 2018). Apart from these aforementioned observation operators, some machine 80 

learning-based observation operators and relevant methods (Scheck, 2021; Zhou et al., 2021) were developed to achieve 

higher computation efficiency and accuracy for VIS radiance DA.  

Another critical aspect of assimilating satellite VIS radiance data is the assimilation approach. There are two most 

commonly used approaches. The first is variational (VAR) methods. Vukicevic et al. (2004) assimilated GOES-9 VIS 

radiance data to the Regional Atmospheric Modeling System (RAMS) with a four-dimensional VAR (4DVAR) DA system, 85 

exhibiting positive effects on the short-term forecasting of a stratus cloud field. Similarly, Polkinghorne and Vukicevic (2011) 

assimilated the GOES-8 VIS and IR radiance data to RAMS by a 4DVAR system and indicated that the assimilation can 

effectively reduce the normalized cost function and the gradient of objective functions with the increase of iteration numbers. 

The second is ensemble-based methods. The ensemble-based methods are remarkably stable for nonlinear systems and are 

widely used for cloud- and precipitation-related studies (Lei et al., 2015; Kurzrock et al, 2019). Schröttle et al. (2020) 90 

assimilated VIS and IR radiance data in an idealized Observing System Simulation Experiment (OSSE) framework based on 

a Local Ensemble Transform Kalman Filter (LETKF). Their results indicated that assimilating VIS radiance data alone could 

improve the forecasting skills of the regional model termed Consortium for Small-scale Modeling (COSMO), and that 

assimilating the VIS and IR radiance data collaboratively could further improve the forecasting skills. Their findings were 

validated by Scheck et al. (2020). They concluded that assimilating the VIS radiance data of Spinning Enhanced Visible and 95 

Infrared Imager (SEVIRI) on METEOSAT could improve cloud and precipitation forecasts, and, meanwhile, the 

temperature and relative humidity forecasting errors were reduced in most conditions.  
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The VAR and ensemble-based approaches are considered complementary to each other. For example, the ensemble-

based approaches generate the flow-dependent background error covariance matrices. On the other hand, the flow-

dependence can be used to leverage the VAR approaches. Therefore, several hybrid approaches have been developed and 100 

great achievements have been made. Bauhner et al. (2013) evaluated an ensemble-variational DA approach in assimilating 

the observations which are operationally assimilated in Environment Canada, and concluded that the hybrid method is more 

skillful than variational methods to improve the short- and middle-range forecasting over tropical and extra-tropical regions. 

Gao et al. (2013) developed a hybrid Ensemble Kalman Filter (EnKF)-3DVAR method to effectively assimilate radar data. 

The hybrid EnKF-3DVAR method outperforms 3DVAR or EnKF in shortening the spin-up time of a supercell storm. In 105 

addition, the hybrid method is increasingly applied in satellite radiance DA. Xu et al. (2016) assimilated the FY-3B satellite 

MV radiance data by the WRF hybrid ensemble/3DVAR method, better forecasts of typhoons’ track, intensities, and 

precipitation were reported compared with 3DVAR. Similar results were also reported by Shen et al. (2020). 

Nowadays, there are various community DA resources of the ensemble-based methods, such as the Data Assimilation 

Research Testbed (DART, Anderson et al., 2009) which supports many numerical weather prediction models including the 110 

Weather Research and Forecasting (WRF) model (Skamarock et al., 2008). WRF/DART incorporated the RTTOV radiative 

transfer package, facilitating the assimilation of satellite radiance from VIS to MW wavelengths, enabling it with a great 

potential to assimilate all-sky satellite SW radiance data. The Advanced Geostationary Radiation Imager (AGRI) on the 

geostationary FY-4A satellite located over Asia excels at high sampling frequency (5 min for intensive observation and 15 

min for usual observation) and high spatial resolution (0.5 ~ 2 km, depending on channels). Zhang et al. (2019) pointed out 115 

that AGRI has great application prospects in describing rapidly evolving and small- to medium-scale atmospheric systems. 

Since its launch in 2016, the FY-4A satellite provides abundant visible radiance data. However, these data are not currently 

assimilated in any of the operational numerical weather prediction centres. 

Based on the analyses above, the simulated FY-4A/AGRI VIS radiance data were assimilated by the WRF/DART-

RTTOV system in an OSSE framework to answer the following three questions. 1) What are the advantages and limitations 120 

of assimilating the FY-4A VIS radiance data to the forecast of a tropical storm case? 2) What are the better choices for the 

WRF-DART/RTTOV model settings and observation preparations? 3) What is the future work for the real DA applications 

of FY-4A VIS radiance data? The study is a preliminary evaluation of the WRF/DART-RTTOV system in assimilating all-

sky FY-4A/AGRI VIS radiance data. The results should be representative of the upcoming FY-4B VIS radiance data because 

the designs of the AGRI payload for the two satellites are similar. The remaining manuscript is organized as follows. Models 125 

and experiment designs are introduced in Section 2. Impacts on the analysis and first-guess forecasts are discussed in Section 

3. The conclusion of the study and related discussions are summarized in Section 4.  

2. Models and experiment designs 

The OSSE framework consists of a nature run, a control run, and several cycled DA experiments. A nature run was 

performed to generate a proxy true atmosphere. Several DA experiments by assimilating only the simulated VIS radiance 130 
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data were carried out to explore the impacts of the assimilation.  A control run without DA was performed for comparison. 

The OSSE was performed based on a tropical storm case. On August 16, 2020, a tropical disturbance occurred over the north 

of Luzon, the Philippines. The system tracked northwest toward the South China Sea, and intensified into a tropical storm on 

19:00 August 17. The tropical storm was further developed into a typhoon system named Higos on 12:00 UTC, August 18. 

The Higos landed on Zhuhai, Guangdong province on 22:00 UTC, August 18, and degenerated into a tropical depression on 135 

12:00 UTC, August 19. This study focuses on the pre-landfall stage of the tropical storm (00:00 UTC ~ 12:00 UTC, August 

18) under the consideration that FY-4A visible imagery is only available at daytime. The tropical storm has multi-layer and 

mixed-phase cloud structures, which facilitates the evaluation of the inabilities and ambiguities of assimilating visible 

radiance data for these cloud structures. 

2.1 Configurations of the WRF Model 140 

WRF model domain settings are the same for the nature run, the control run, and the cycled DA experiments to avoid errors 

due to displacement of grids between the observation and simulations. The WRF model domain for this study covers parts of 

the East Asia and Western Pacific (Figure 1). The domain contains 151×177 horizontal grid boxes with a grid spacing of 15 

km in the horizontal directions and 40 vertical levels, with the model top set to 50 hPa. To avoid the disturbances over the 

regions close to the model domain boundaries, simulations within the inner rectangle of 131×157 horizontal grids are 145 

analysed. 

 

Figure 1. The WRF model domain with 15-km horizontal grid spacing. Only observations within the inner rectangle are 

assimilated to discard regions close to the model domain boundaries. The white dots denote the location where single observation 

experiments were discussed. Detailed discussions are given for points 1 (green), 2 (blue), and 3 (red).  The two white lines including 150 
AB and CD are for cross-section analyses. 



6 

 

For the nature run, the initial conditions (ICs) and lateral boundary conditions (LBCs) were extracted from the National 

Centers for Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis data (1°×1° resolution, available at 

https://rda.ucar.edu/datasets/ds083.2/). The WRF model configurations include the Thompson microphysical scheme 

(Thompson et al., 2008), the Tiedtke Cumulus Parameterization option (Tiedtke, 1989; Zhang et al., 2011), and the UV 155 

planetary boundary layer scheme (Bretherton and Park, 2009), which are the optimal schemes for typhoon simulations over 

the Northwest Pacific Ocean as suggested by Di et al (2019). Other model configurations include the revised MM5 Monin-

Obukhov surface layer scheme (Jiménez et al., 2012), the five layer thermal diffusion land surface scheme (Dudhia, 1996), 

and the Rapid Radiative Transfer Model for Global Climate Models (RRTMG) longwave and shortwave radiation schemes 

(Iacono et al., 2008). With these model configurations, liquid water particles include cloud water droplets and rain drops, and 160 

ice particles include ice, snow, and graupel. The nature run was initialized by a cold start at 12:00 UTC 17 August, 2020. 

After a spin-up time of 14 hr, WRF model simulations between 02:00 ~ 12:00 UTC, 18 August, 2020 provided a proxy true 

atmosphere. The nature run could capture the bulk track properties which agree well with the observations. Synthetic 

observations were simulated by the RTTOV radiative transfer package detailed in Section 2.2. The simulated VIS imagery 

(15 km × 15 km resolution) was approximately equivalent to the superobbing of the 2km-resolution imagery, as provided by 165 

FY-4A real observations, by averaging the 2 km × 2 km imagery for every block of about 7×7 pixels. Because the 

observation locations and model grid points are overlapped, the locations of the synthetic observations are directly assigned 

to the model grid points without interpolation during the assimilation processes. 

For the cycled DA experiment, the ensemble size is set to 40 and the ICs and LBCs were extracted from the ERA5 

hourly data (0.25°×0.25° resolution, available at https://cds.climate.copernicus.eu/api/v2). Perturbations extracted from the 170 

WRF 3DVAR system using a generic background error option which draws the NCEP background error covariances with 

proper scaling were added to the ICs. The scaling factors for the variance, horizontal length scale, and vertical length scale 

are set to 0.25, 1.0, and 1.5, respectively. To avoid discontinuities and poor results at the boundary, LBCs at each analysis 

time were updated based on the analysis and WRF lateral boundary conditions by an approach built in the DART 

pert_wrf_bc module. This is the reason why we choose the higher resolved LBCs, as we will do in real DA applications, for 175 

the DA experiments than for the nature run. The WRF model microphysics configurations are the same as the nature run. 

The first-guess forecasts of the ensemble members were initialized by a cold start at 00:00 UTC 18 August, 2020. After a 

spin-up time of 2 hr, synthetic visible radiance observations were assimilated to the ensemble members from 02:00 to 09:00 

UTC 18 August, 2020. The time span corresponds to the daytime when VIS imagery is available. After 09:00 UTC, the 

ensemble members were advanced until 12:00 UTC. The updating frequency of the first-guess state variables was set 180 

according to different experiment designs summarized in Table 1. By these set ups, the effects of assimilating VIS imagery 

on shortening the spin-up time of WRF model, and on the analysis and the first-guess forecast of state variables, cloud and 

precipitation were explored. The model settings for the control run are the same as the cycled DA experiments, except that 

no observations were assimilated.  

https://journals.ametsoc.org/search?f_0=author&q_0=Pedro+A.+Jim%C3%A9nez
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2.2 Configurations of RTTOV 185 

Synthetic AGRI channel 2 radiance was simulated by the RTTOV radiative transfer package based on WRF state variables. 

The input parameters of RTTOV include cloud-related parameters (the vertical structures of the mixing ratio of liquid water 

mixing ratio, ice water mixing ratio, cloud water effective radius, cloud fraction, etc.), atmosphere profiles (the water vapour 

mixing ratio profile, temperature profile, etc.), surface properties (elevation, surface type, etc.), sun-satellite viewing 

geometries, etc. In partly cloudy regions, the TOA radiance is a weighted average of the radiance for a clear sky and a cloudy 190 

sky. For an independent column, the weight (effective cloud fraction) was calculated by a hydrometeor weighted average 

across the vertical profile of input cloud fraction (Geer et al., 2009). It is noted that cloud fraction (CFC) parameterization in 

WRF model depends on relative humidity (RH), the saturation water vapour mixing ratio (𝑞∗), and cloud water + ice mixing 

ratios (𝑞𝑙+𝑖) (Xu and Randall, 1996), 

CFC = {
𝑅𝐻𝑝 [1 − exp (

−𝛼𝑞𝑙+𝑖

[(1−𝑅𝐻)𝑞∗]𝛾)] , 𝑖𝑓 𝑅𝐻 < 1

1, 𝑖𝑓 𝑅𝐻 ≥ 1 
                                                                                          (1) 195 

where 𝑝, 𝛼, and 𝛾 are suggested to be 0.25, 100, and 0.49 separately.  

The solar zenith angle, solar azimuth angle, satellite viewing zenith angle, and satellite azimuth angle were calculated 

by the Python astropy library based on the UTC time and the FY-4A satellite position (104.7°E at the geostationary satellite 

orbit). In addition, observation errors ranging from 1 ~ 4 mW m
-2

 sr
-1

 were assigned to the observations (Table 1). RTTOV 

includes the pre-defined cloud optical properties. For liquid water clouds, we use the “Deff” scheme where cloud optical 200 

properties are parameterized in terms of Re (Mayer and Kylling, 2005). The cirrus scheme developed by Baren et al. (2014) 

was used to calculate ice cloud optical properties, which has no explicit dependence on ice particle size. Therefore, analyses 

of the results were simplified given that cloud variables were adjusted collectively but we do not have to analyse the 

effective radius of ice particles. 

The radiative transfer processes are simulated by the DOM solver in RTTOV. The surface was treated as a specular 205 

reflector for downwelling emitted radiance. For land surface, the surface Bidirectional Reflectance Distribution Function 

(BRDF) was drawn from land surface atlases (Vidot and Borbás, 2014; Vidot et al., 2018). For sea surface, BRDF was 

calculated by the JONSWAP (Hasselmann et al., 1973) solar sea BRDF model. The lay-to-space transmittance was 

computed by the v9 predictor on 54 levels (Matricardi, 2008). The downwelling atmospheric emission was computed using 

the linear-in-tau approximation for the Planck source term. Water vapour profiles were drawn from WRF state variables. 210 

Other parameters not explicitly mentioned are set to default values. 

Based on the above model configurations, the dependence of AGRI channel 2 radiance on the Cloud Water Path (CWP) 

and effective radius of cloud water droplet (Re) is presented in Figure 2, where CWP denotes the vertically integrated cloud 

liquid and ice water mixing ratio in an atmospheric column, which is calculated by the formula, 

CWP = ∫
1

𝑔
(𝑄𝑐 + 𝑄𝑖)𝑑𝑃

𝑃𝑡

𝑃𝑠
                                                                                                      (2) 215 
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where 𝑃𝑠 and 𝑃𝑡 denote surface and at the model top pressure. Qc and Qi are the liquid water mixing ratio (the sum of the 

mixing ratio of cloud droplet and rain) and ice water mixing ratio (the sum of the mixing ratio of ice, snow, and graupel), and 

g the gravitational acceleration (9.8 ms
-2

). 

 

Figure 2. (a) Dependence of AGRI channel 2 radiance on cloud water path (CWP) and effective radius (Re). (b) Dependence of 220 
AGRI channel 2 radiance on cloud fraction (CFC) for CWP of 10 kg m-2 and Re of 15 μm. The simulation is performed with the 

“Deff” scheme for liquid water cloud optical properties and the Baren et al. (2014) scheme for cirrus optical properties. The solar 

zenith angle, viewing zenith angle, and relative azimuth angle are 25°, 40°, and 135°, respectively.  

The curvature properties clearly show a non-linear relationship between the observations (radiance) and cloud related 

parameters (CWP and Re). The differences between the radiance-CWP functions with different effective radii become 225 

smaller as Re increases. For Re larger than 30 μm, the radiance-CWP functions for different effective radii are ignorable. 

Because raindrops are several orders larger than cloud droplets, the effective radius of cloud droplets is sufficient to describe 

the radiative transfer processes for the clouds where cloud droplets and raindrops coexist. As a result, Re in the following 

discussion explicitly denotes the effective radius of cloud droplets, which corresponds to the WRF state variable 

“RE_CLOUD”. 230 

2.3 DA experiment design and DART configurations 

2.3.1 DART filters  

DART was configured to employ the Ensemble Adjustment Kalman Filter (EAKF, Anderson, 2001) and the Rank 

Histogram Filter (RHF, Anderson, 2010). EAKF and RHF are two variants of the deterministic filters. Therefore, no 

perturbations were added to the observations. EAKF is a serial ensemble DA algorithm and the observations are assimilated 235 

as scalars. The model state variable 𝒙𝒎 is updated by Equation (3) (Anderson, 2001), 

𝒙𝒎
′ = 𝒙𝒎 + Δ𝐱𝑚,𝑛,         𝑚 = 1, … , 𝑀, 𝑛 = 1, … , 𝑁                                                                                                     (3) 
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where 𝒙𝒎 denotes the m
th

 state variable, 𝒙𝒎
′  the updated value of 𝒙𝒎, and Δ𝐱𝑚,𝑛 the state variable increment for the m

th
 state 

variable due to the n
th

 observation. Δ𝐱𝑚,𝑛 is calculated by Equation (4), 

Δ𝐱𝑚,𝑛 = (𝜎𝑝,𝑚/𝜎𝑝
2)Δ𝑦𝑛 ,        𝑚 = 1, … , 𝑀, 𝑛 = 1, … , 𝑁                                                                                 (4) 240 

where the subscript “𝑝” is the abbreviation of “prior”, 𝜎𝑝,𝑚 is the prior sample covariance between the observation and the 

m
th

 state variable 𝒙𝒎, and 𝜎𝑝
2 the prior sample variance of the observed variable. Δ𝑦𝑛 is the observation increment for the n

th
 

observation, which is calculated by the following equation, 

Δ𝑦𝑛 = (𝑦𝑛
𝑝

− �̅�𝑝)(𝜎𝑢/𝜎𝑝) + �̅�𝑢 − 𝑦𝑛
𝑝

,         𝑛 = 1, … , 𝑁                                                                                       (5) 

where 𝑦𝑛
𝑝

 denotes the n
th

 prior observation, �̅�𝑝  the prior ensemble mean observation, �̅�𝑢  the posterior ensemble mean 245 

observation, 𝜎𝑢 the updated standard deviation of 𝜎𝑝. �̅�𝑢 and 𝜎𝑢 are calculated by Equations (6) ~ (7). 

𝑦𝑢̅̅ ̅ =
𝜎𝑜

2

𝜎𝑜
2+𝜎𝑝

2 �̅�𝑝 +
𝜎𝑝

2

𝜎𝑜
2+𝜎𝑝

2 𝑦𝑜                                                                                                                     (6) 

𝜎𝑢 =
𝜎𝑜𝜎𝑝

√𝜎𝑜
2+𝜎𝑝

2
                                                                                                                                (7) 

where 𝑦𝑜 and 𝜎𝑜 denote the observation and its corresponding observational error standard deviation. 

Anderson (2007; 2009) promoted a spatially varying state-space adaptive covariance inflation to the prior state to 250 

increase prior ensemble spread. The same option is adopted in this study and other papers (Lei et al., 2015; Kurzrock et al., 

2019). The adaptive inflation uses 1.0, 0.6, and 0.9 as the initial value, fixed standard deviation, and damping settings, 

respectively. The sampling error due to the use of the limited ensemble size was corrected by the method developed by 

Anderson (2012). Since bulk-layer observations like satellite VIS radiance data do not have a specific single vertical location, 

no vertical localization was used in this study. 255 

The RHF produces a posterior ensemble based on a continuous approximation of the prior Probability Density Function 

(PDF) and a piecewise linear representation of the likelihood. The prior PDF is approximated by a rank histogram which has 

a piecewise constant between two ensemble members and follows Gaussian distributions beyond the lower and upper bounds 

of the ensemble members. The posterior distribution is calculated by the Bayes Theorem, and the state variable is updated by 

searching the appropriate position in the state variable space which partitions the posterior distribution to unity probability 260 

for each ensemble member. The prior PDF does not have to respect the Gaussian form for RHF. Therefore, the method is 

declared to be more suitable for non-Gaussian problems. Details on this algorithm are elaborated in Anderson (2010). 

2.3.2 Single observation experiments 

With the OSSE set ups configured with EAKF, a set of single observation experiments were performed. The single 

observation experiments assimilate an observation at a targeting pixel, and the adjustment of state variables at the targeting 265 
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pixel is only caused by the assimilation of one observation. Therefore, it is convenient to demonstrate the basic technical 

functionality of assimilating visible radiance data by employing EAKF by single observation experiments. The potentials, 

inabilities and ambiguities of assimilating VIS radiance data were discussed in this section. The single observation 

experiments were performed at 02:00 UTC 18 August, 2020, and forecasts were not carried out. The focusing cloud 

variables include Qc, Qi, Re, and CFC. The focusing non-cloud variables include water vapour mixing ratio (QVAPOR), 270 

perturbation potential temperature (T), and the x- and y-wind components (U and V).  

The single observation experiments were performed for the most inner parts of the satellite imagery to avoid 

disturbances near boundaries. The observations at 02:00 UTC were thinned by selecting every six pixels to make sure that 

the selected observations are far from each other. This will generate 176 points shown in Figure 1. By setting a localization 

distance of 15 km, assimilating the visible radiance at a pixel would not influence the state variables at surrounding pixels. 275 

Therefore, we performed the 176 single observation experiments in one DA cycle to save computational cost as performed 

by Scheck et al. (2020). Amongst the 176 selected pixels, special focuses were given to the three coloured points, which 

were designed to illustrate the ambiguities related to cloud layered structures and cloud phases and to illustrate the inabilities 

related to the non-Gaussian and non-linear problems. 

2.3.3 Cycled DA experiments 280 

In an OSSE framework, fourteen cycled DA experiments were performed to evaluate the influences of different model 

settings and observation preparations on the analysis and the first-guess forecast when VIS radiance data was assimilated. 

The purpose of the cycled DA experiments is to reveal the forecast quality and growth of the forecasting errors by 

assimilating satellite VIS radiance data, and to provide some guidance on the settings of WRF/DART-RTTOV and an 

outlook to the future works. The experiment set ups cover different filter algorithms, cycling intervals, cycling variables, 285 

outlier threshold values, observation errors, and observations with or without thinning. The outlier threshold value is a pre-

defined threshold value for rejecting an observation depending on its distance from the prior ensemble mean. If the distance 

is more than N (the predefined outlier threshold value) standard deviations from the square root of the sum of the prior 

ensemble and observation error variance, the observation is rejected. The experiment designs are summarized in table 1.  

Comparison between Exp-01 ~ Exp-03 and Exp-4~Exp-06 experiment group was designed to reveal the pros and cons 290 

of EAKF and RHF for the analysis and first-guess forecast. Comparison between Exp-01 ~ Exp-02 and Exp-07 ~ Exp-08 

experiment group was designed to reveal the influences of updating the thermal and dynamic variables on the analysis and 

first-guess forecast.  Comparison between Exp-03, Exp-09, and Exp-10 was designed to reveal the influences of observation 

error on the analysis and first-guess forecast. Comparison between Exp-01 ~ Exp-03 and Exp-11~ Exp-13 experiment group 

was designed to reveal the influences of the outlier threshold value on the analysis and first-guess forecast. Comparison 295 

between Exp-10 and Exp-14 was designed to reveal the influences of observation thinning on the analysis and first-guess 

forecast.
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Table 1. Parameter settings for the cycled data assimilation experiments. 𝐱𝐜𝐥𝐨𝐮𝐝 denotes the WRF cloud variables including cloud 

fraction (CLDFRA), the mixing ratio of cloud droplet (QCLOUD), rain (QRAIN), ice (QICE), snow (QSNOW), graupel 

(QGRAUP), the effective radius of cloud water droplet (RE_CLOUD), and the effective radius of cloud ice droplet (RE_ICE).  300 

𝐱𝐚𝐭𝐦𝐨𝐬 denotes the WRF non-cloud variables including water vapour mixing ratio (QVAPOR), water vapour mixing ratio at 2m 

height (Q2), the x-, y-, and z-wind components (U, V, W), the x- and y-wind components at 10 m height (U10 and V10), 

temperature at 2 m height (T2), the perturbation geopotential (PH), the perturbation potential temperature (T), the perturbation 

dry air mass in column (MU), and the surface pressure (PSFC). 

DA 

experiments 

Thinning 

length  

Localization 

distance 

Filter 

algorithm 

Cycling 

interval 

Cycling 

variables 

Outlier 

threshold 

Observation 

error  

Exp-01 —— 15 km EAKF 10 min 𝑥𝑐𝑙𝑜𝑢𝑑+𝑥𝑎𝑡𝑚𝑜𝑠 3 1 mW m
-2

 Sr
-1

 

Exp-02 —— 15 km EAKF 1 hr 𝑥𝑐𝑙𝑜𝑢𝑑+𝑥𝑎𝑡𝑚𝑜𝑠 3 1 mW m
-2

 Sr
-1

 

Exp-03 —— 15 km EAKF 3 hr 𝑥𝑐𝑙𝑜𝑢𝑑+𝑥𝑎𝑡𝑚𝑜𝑠 3 1 mW m
-2

 Sr
-1

 

Exp-04 —— 15 km RHF 10 min 𝑥𝑐𝑙𝑜𝑢𝑑+𝑥𝑎𝑡𝑚𝑜𝑠 3 1 mW m
-2

 Sr
-1

 

Exp-05 —— 15 km RHF 1 hr 𝑥𝑐𝑙𝑜𝑢𝑑+𝑥𝑎𝑡𝑚𝑜𝑠 3 1 mW m
-2

 Sr
-1

 

Exp-06 —— 15 km RHF 3 hr 𝑥𝑐𝑙𝑜𝑢𝑑+𝑥𝑎𝑡𝑚𝑜𝑠 3 1 mW m
-2

 Sr
-1

 

Exp-07 —— 15 km EAKF 10 min 𝑥𝑐𝑙𝑜𝑢𝑑 3 1 mW m
-2

 Sr
-1

 

Exp-08 —— 15 km EAKF 1 hr 𝑥𝑐𝑙𝑜𝑢𝑑 3 1 mW m
-2

 Sr
-1

 

Exp-09 —— 15 km EAKF 3 hr 𝑥𝑐𝑙𝑜𝑢𝑑+𝑥𝑎𝑡𝑚𝑜𝑠 3 2 mW m
-2

 Sr
-1

 

Exp-10 —— 15 km EAKF 3 hr 𝑥𝑐𝑙𝑜𝑢𝑑+𝑥𝑎𝑡𝑚𝑜𝑠 3 4 mW m
-2

 Sr
-1

 

Exp-11 —— 15 km EAKF 10 min 𝑥𝑐𝑙𝑜𝑢𝑑+𝑥𝑎𝑡𝑚𝑜𝑠 6 1 mW m
-2

 Sr
-1

 

Exp-12 —— 15 km EAKF 1 hr 𝑥𝑐𝑙𝑜𝑢𝑑+𝑥𝑎𝑡𝑚𝑜𝑠 6 1 mW m
-2

 Sr
-1

 

Exp-13 —— 15 km EAKF 3 hr 𝑥𝑐𝑙𝑜𝑢𝑑+𝑥𝑎𝑡𝑚𝑜𝑠 6 1 mW m
-2

 Sr
-1

 

Exp-14 60 km 60 km EAKF 3 hr 𝑥𝑐𝑙𝑜𝑢𝑑+𝑥𝑎𝑡𝑚𝑜𝑠 3 1 mW m
-2

 Sr
-1

 

2.4 Metrics of simulation errors 305 

The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are two of the most commonly used metrics to 

assess the simulation errors (Kurzrock et al., 2019). Compared with MAE, RMSE is much more sensitive to extremely large 

errors. For satellite VIS radiance assimilation, extremely large analysis increments of CWP were rarely expected (details 

provided in Section 3), implying that the difference of RMSE between the first-guess and the analysis was not as distinct as 

MAE. In order to demonstrate the influences of assimilating the VIS radiance data more clearly, MAE is used to measure the 310 

difference between the simulated CWP and the theoretical true CWP (derived from the nature run). MAE is calculated by the 

following formula, 

MAE =
1

𝑛𝑥𝑛𝑦
∑ 𝑎𝑏𝑠(𝑥𝑖,𝑗

sim − 𝑥𝑖,𝑗
𝑜𝑏𝑠

𝑖,𝑗 )                                                                                                    (8) 

where 𝑥𝑖,𝑗
sim (𝑥𝑖,𝑗

𝑜𝑏𝑠) denotes the simulated (true) CWP at the i
th

 (in the zonal direction) and j
th
  (in the meridional direction) 

model grid. nx and ny denote the number of pixels in zonal and meridional directions of the relevant model domains. 315 
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The fraction skill score (FSS) is used to measure cloud location errors in the horizontal directions for the cycled DA 

experiments, which is defined as, 

FSS = 1 −

1

𝑚𝑥𝑚𝑦
∑ (𝑝𝑖,𝑗

𝑜𝑏𝑠−𝑝𝑖,𝑗
𝑠𝑖𝑚)

2

𝑖,𝑗

1

𝑚𝑥𝑚𝑦
[∑ 𝑝𝑖,𝑗

𝑜𝑏𝑠
𝑖,𝑗 +∑ 𝑝𝑖,𝑗

𝑠𝑖𝑚
𝑖,𝑗 ]

                                                                                             (9) 

where 𝑝𝑖,𝑗
𝑜𝑏𝑠  denotes the cloud fraction within a subdomain covering 3×3 model grids. 𝑚𝑥  and 𝑚𝑦  denote the number of 

subdomains in the zonal and meridional directions. 320 

For the evaluation of precipitation simulations, the Threat Score (TS) is used to assess the representation of 

precipitation,  

TS =
𝐻

𝐹+𝑀+𝐻
                                                                                                                                   (10) 

where H denotes the number of pixels with the correct representation of precipitation (hits), F denotes the number of pixels 

where simulation indicates precipitation while the true state indicates non-precipitation (false alarms), and M denotes the 325 

number of pixels where simulation indicates non-precipitation while the true state indicates precipitation (under 

predictions).  

Following Scheck et al. (2020), we use the Mean Profile Error (MPE, denoted as 𝜀) to assess the error of model state 

with respect to the nature run. If the difference of MPE between the posterior and the prior estimates (𝛿𝜀 = 𝜀𝑝𝑜𝑠 − 𝜀𝑝𝑟𝑖) is 

negative, a positive impact was generated by the assimilation procedure, and vice versa. 330 

3. Results 

3.1 Single observation experiments 

The results in this section correspond to the OSSE set ups elaborated in Section 2.3.2. Only the first guess and the analysis 

state variables were analysed here, including three cases. 1) The posterior is within the range bounded by the prior estimate 

and the truth both in the state variable and observation spaces. 2) The posterior is within the prior estimate and the truth in 335 

observation space but not in state variable space, which is closely related to the spurious covariance and the non-linear 

properties of the forward operator. 3) The posterior is beyond the prior estimate and the truth both in observation space and 

in state variable space, which is closely related to the non-Gaussian properties of the prior PDF. The results including the 

three cases are shown in Figure 3. 

Assimilating VIS radiance data generated neutral impacts on the non-cloud variables including x- and y-wind 340 

components (U and V in Figure 3(a)), temperature and water vapour mixing ratio (T and Q in Figure 3(b)). From the 

perspective of radiative transfer processes, the VIS radiance is insensitive to U and V at the analysis time. Therefore, the 

adjustment in observation space should not generate beneficial impacts on U and V. In addition, VIS radiance is closely 

related to CFC (Figure 2(b)), an implicit relationship between VIS radiance and RH should be expected due to the 

parameterization of CFC due to Equation (1).  In addition, VIS radiance data are positively related to CFC. Given that RH 345 
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not only depends on Q, but also on T and pressure, spurious covariance between VIS radiance and Q/T was generated due to 

the ensemble spread of Q/T (different Q/T for the ensemble members would blur the relationship between VIS radiance and 

Q/T). Therefore, neutral impacts on Q and T were revealed for the single observation experiments. Because RH is not a state 

variable for WRF model, the results on RH were not presented explicitly. 

 350 

Figure 3. Differences of the mean profile errors between the prior and posterior estimates, denoted as 𝛅𝜺𝑿 = 𝑿𝑴𝑷𝑬,𝒑𝒐𝒔 − 𝑿𝑴𝑷𝑬,𝒑𝒓𝒊, 

where X denotes a state variable or a diagnosed parameter, and pos and pri the posterior and prior estimates. The variables 

include the x- and y-wind components (U and V), perturbation potential temperature (T), water vapour mixing ratio (Q), cloud 

fraction (CFC), cloud water path (CWP), and radiance. The plus signs in green, blue, and red colours correspond to points 1, 2, 

and 3 in Figure 1.  355 

Assimilating VIS radiance data generated positive impacts on Re, CFC, CWP, and in the observation space for most of 

the points (Figure 3(c) and 3(d)). Take the point 1 in Figure 1 as an example of case 1, the profiles of cloud and non-cloud 

variables for the first guess and analysis are shown in Figure 4. Point 1 corresponds to a one-layer ice cloud between 400 ~ 

200 hPa with a CWP of 0.01 kg m
-2

 and a top-of-atmosphere (TOA) radiance of 3.63 mW m
-2

 Sr
-1

 for the nature run. The 

first-guess forecast simulated a two-layer mixed-phase cloud with a false alarm liquid water cloud simulated below 500 hPa. 360 

The first-guess ensemble mean CWP and the equivalent VIS radiance are 1.33 kg m
-2

 and 7.29 mW m
-2

 Sr
-1

, respectively. 

After assimilating the satellite VIS radiance data, the first guess was drawn toward the nature run both in the observation 

space, with a decreased ensemble mean radiance of 6.40 mW m
-2

 Sr
-1

, and in the CWP space, with a decreased ensemble 



14 

 

mean CWP of 0.85 kg m
-2

. As a result, Qc, Qi, CFC, and Re were adjusted collaboratively toward the nature run. Since 

model settings of RTTOV have no explicit dependence on the effective radius of ice particles, the adjustment of this variable 365 

is not discussed explicitly.  

 

Figure 4. The vertical profiles of state variables for the nature run (theoretical truth), the prior and posterior estimates of sate 

variables.  Qc denotes the liquid water mixing ratio, Qi the ice water mixing ratio, CFC the cloud fraction, Re the effective radius 

of liquid water droplets, QVAPOR the water vapour mixing ratio, 𝛅T the perturbation potential temperature, U and V the x- and 370 
y-wind components. 

The synthetic VIS radiance observation is not sensitive to cloud vertical structures but to the accumulated cloud 

water/ice mass. As a result, it is difficult to correct cloud vertical location errors due to a lack of information on cloud top 

height and vertical cloud extent. In addition, the assimilation cannot remove the false alarm liquid clouds due to the spurious 

covariance between the VIS radiances and liquid water clouds in the background. According to formula (4), the analysis 375 

increment of each state variable is linearly related to its covariance with observation. Therefore, the vertical structures and 

phases of the posterior estimate are mainly determined by those of the prior estimate. A larger first-guess estimate of the 

state variable would generate larger covariance, and a larger adjustment of the first guess should be expected. Because the 

first-guess Qc and Qi were larger in the lower layer (≥ 400 hPa), the adjustment of Qc/Qi were much more distinct for the 

lower layer than the upper layer (≤ 300 hPa). Similar results were also found for Re except that larger liquid water particles 380 

occurred in the middle layer (~ 600 hPa) and smaller liquid water particles occurred in the lower layer (~ 800 hPa). The 

covariance between CFC and synthetic observation is zero in the upper layer (≤ 200 hPa) because CFC is almost a constant 

of 1 for all ensemble members (the ensemble spread of CFC is zero). Compared with the cloud variables, the non-cloud 

variables remain almost unchanged after assimilating the synthetic VIS radiance data.  
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For case 2, a positive impact in observation space does not ensure a positive impact in CWP space. Take the point 2 in 385 

Figure 1 as an example, the first-guess ensemble mean, posterior ensemble mean, and the observation of VIS radiance (CWP) 

are 7.94 mW m
-2

 Sr
-1 

(2.50 kg m
-2

), 8.00 mW m
-2

 Sr
-1 

(2.65 kg m
-2

), and 8.59 mW m
-2

 Sr
-1

 (0.17 kg m
-2

), respectively. This is 

partly caused by the non-linear relationship between model state variables and visible radiance. To illustrate this problem 

specifically, calculating the ensemble mean of formula (4) and substituting 𝑦𝑢̅̅ ̅ with formula (6) would get the following 

formula, 390 

Δ𝑥𝑚
̅̅ ̅̅ ̅̅ =

𝜎𝑝,𝑚

𝜎𝑜
2+𝜎𝑝

2 𝑅𝑖𝑛𝑐                                                                                                                               (11) 

where Δ𝑥𝑚 denotes the ensemble mean of the m
th

 state variable increment, 𝑅𝑖𝑛𝑐  the ensemble mean radiance increment, 

which is calculated by the following formula, 

𝑅𝑖𝑛𝑐 = 𝑦𝑜 − �̅�𝑝                                                                                                                                    (12) 

Considering a simplified case with 2 ensemble members, the ensemble mean observation increment is calculated by the 395 

following formula, 

 𝑅𝑖𝑛𝑐 = 𝐹(𝑊𝑜) −
𝐹(𝑊1)+𝐹(𝑊2)

2
                                                                                                    (13) 

where 𝐹 denotes the forward operator. 𝑊1 and 𝑊2 represent CWP of the two ensemble members. However, considering the 

relationship between CWP and the VIS radiance, the theoretical true observation increment should be, 

𝑅𝑖𝑛𝑐
𝑡 = 𝐹(𝑊𝑜) − 𝐹(�̅̅̅�), �̅̅̅� =

𝑊1+𝑊2

2
                                                                                                  (14) 400 

As indicated by Figure 4, 𝑅𝑖𝑛𝑐  is larger than 𝑅𝑖𝑛𝑐
𝑡 . Namely, the ensemble mean observation increment was 

overestimated by Equation (14), leading to an over-estimated posterior ensemble mean CWP. 

For case 3, negative impacts could be even generated in the observation space. Take the point 3 in Figure 1 as an 

example, the posterior ensemble mean observation (2.51 mW m
-2

 Sr
-1

) is beyond the range bounded by the first-guess 

ensemble mean (2.56 mW m
-2

 Sr
-1

) and the theoretical true observation (3.41 mW m
-2

 Sr
-1

). The EAKF algorithm assumes 405 

that the prior PDF, denoted as 𝑝(𝒙), of model state variables (or the diagnosed variable such as CWP in this study) confirms 

to a Gaussian function. To see how well the assumption was respected, 𝑝(𝒙) in the CWP space is presented in Figure 6, 

which indicates a non-Gaussian prior PDF in CWP space. Several studies concluded that the non-Gaussian properties affect 

the performance of ensemble methods negatively (Lawson & Hansen, 2004; Lei et al., 2010). Therefore, we ascribe the 

negative impacts in the observation space partly to the non-Gaussian properties of  𝑝(𝒙). Accordingly, a DA experiment 410 

using the RHF was added in comparison with EAKF. 
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Figure 5. Illustration of the effects of nonlinearity of the observation operator on the calculation of radiance increments with 2 

ensemble members. F denotes the observation operator, 𝑾𝟏 and 𝑾𝟐 denote cloud water path (CWP) for the 1st and 2nd ensemble 

member, 𝑾𝑶 denotes the observed CWP. 𝑹𝒊𝒏𝒄 denotes the calculated ensemble mean radiance increment, and 𝑹𝒊𝒏𝒄
𝒕  denotes the 415 

true radiance increment which respects the laws between the CWP and the radiance.  

 

Figure 6. The first-guess probability density function in cloud water path (CWP) space, which is estimated from the 40 prior 

ensembles, for the point 3 (red dot) in Figure 1. 

3.2 Cycled DA experiments  420 

The results in this section correspond to the OSSE set ups elaborated in Section 2.3.3. The main focuses are the impacts of 

assimilation on the analysis and first-guess forecast of CWP, cloud coverage, non-cloud state variables, and precipitation. 

3.2.1 Impacts on CWP and cloud coverage 

The time evolution of CWP for the nature run, control run, and the first-guess forecast and the analysis of CWP for 

Exp-01 are presented in Figure 7.  425 
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Figure 7. The time evolution of cloud water path (CWP) for the nature run (column 1), the control run (column 2), the first-guess 

forecast (column 3) and analysis (column 4) of Exp-01. From top to bottom, the row panels correspond to 02:00, 04:00, 06:00, 

08:00, and 10:00 UTC on 18 August 2020.  
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The results indicate distinct differences between the first guess and the analysis of CWP at the first analysis time (02:00 430 

UTC, 18 August, 2020). After the first analysis time, the horizontal distribution of CWP of the first guess is quite similar to 

the analysis. Namely, an extremely large analysis increment of CWP was rarely expected as indicated by 2.4. This validates 

the reason why we chose MAE rather than RMSE to verify the prior and posterior estimates. The resemblance between the 

cycled DA experiments and the nature run also indicates the improvements on the analysis and the first-guess forecast of 

CWP and cloud coverage. Compared with the control run, assimilating VIS radiance data could clearly suppress the false 435 

alarm clouds. However, the assimilation could not generate clouds which are under-predicted. The inability to correct the 

underprediction was illustrated by a cross-section analysis shown in Figure 8. 

 

Figure 8. The x-press cross section of cloud water and ice mixing ratio for Exp-01 at 02:00 UTC, 18 August, 2020 for the AB (the 

upper panel) and CD (the lower panel) lines shown by Figure 1. From left to right, the column panels correspond to the nature run, 440 
the first guess and the analysis estimates.  

Assimilating VIS radiance data does not improve the underprediction in vertical and horizontal firections. In the vertical 

direction, a one-layer cloud was reported between 4 ~ 12 km height for the nature run (Figure 8(a1) and 8(b1)). However, 

clouds were presented between 0 ~ 12 km height for the prior estimate (Figure 8(a2) and 8(b2)). After the assimilation, the 

updated atmosphere state suggested decreased Qc/Qi, but clouds below 4 km height were not removed (Figure 8(a3) ~ 8(b3)).  445 

In the horizontal direction, a one-layer thin cloud was presented between 14°N ~ 16°N for the nature run (Figure 8 (b1)). 

Such cloud fragment was not simulated for the prior estimate of atmosphere state (Figure 8 (b2)), nor was it regenerated after 

assimilating the VIS radiance data (Figure 8(b3)). Namely, assimilating the VIS radiance data could not generate cloud 

hydrometers from clear sky as indicated by the prior estimate due to the zero spread of cloud variables. 
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Quantitative analyses of CWP and CFC indicated improved analysis and first-guess forecasts for the cycled DA 450 

experiments, with the influences varying with different parameters and model settings which will be discussed in the 

following sections.   

a. Influences of filter algorithms 

To see how different filters influence the analysis and first-guess forecast of cloud variables, quantitative analyses of 

FSS and MAE of the ensemble mean CWP for Exp-01 ~ Exp-03 (EAKF) and Exp-04 ~ Exp-06 (RHF) are presented in 455 

Figure 9. In general, the performance of RHF is comparable to or slightly better than EAKF. At some analysis times before 

03:00 UTC, the posterior estimate of FSS is larger for Exp-01 than for Exp-04, but the first-guess FSS at the next analysis 

time is larger for Exp-04 than Exp-01. Similar results were found for the 1 hr and 3 hr first-guess forecasts. The results imply 

that better analyses do not always ensure better forecasts. The differences in the analysis and forecast between EAKF and 

RHF are closely related to the posterior estimate of the cloud and non-cloud variables.  460 

 

Figure 9. The time evolution of FSS and MAE for the ensemble mean first-guess forecast and analysis for the cycled DA 

experiments which are designed to illustrate the sensitivity to filter algorithms. 

EAKF assumes a Gaussian prior PDF. In comparison, RHF does not need Gaussian assumption. However, the 

performance of RHF is subject to the sampling errors due to limited ensemble members and other factors as indicated by 465 

Anderson (2010). Therefore, only comparable or slightly better analysis and first-guess estimates were revealed for RHF 

than EAKF. In addition, updating the state variables by RHF is at a sacrifice of expensive computational cost. For the 

assimilation of 20567 observations in one assimilation cycle at a Linux cluster equipped with a 2.20 GHz Xeon Silver 4214 

CPU with 12 cores, the elapsed CPU time is 775 s and 440 s for the RHF and EAKF methods, respectively.  
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b. Influences of cycling variables  470 

The single observation experiments indicate that assimilating VIS radiance data generated neutral impacts on non-cloud 

variables at the first analysis time. However, it is not practical to exclude the non-cloud variables from the cycling variables 

in operational DA systems. To explore the impacts of including or excluding the updated non-cloud parameters to the next 

ensemble cycling, the 10 min and 1 hr first-guess forecast and analysis of FSS and MAE of the ensemble mean CWP for 

Exp-01 ~ Exp-02 and Exp-07 ~ Exp-08 group are analysed. Figure 10 indicates that Exp-01 (Exp-02) outperforms Exp-07 475 

(Exp-08). Namely, including the cloud and non-cloud variables in the ensemble cycling makes the forecasting more skillful 

than including the cloud variables alone. The results imply that beneficial impacts were introduced to the non-cloud variables, 

or at least part of the non-cloud variables, with model integration.  

 

Figure 10. The time evolution of FSS and MAE for the ensemble mean first-guess forecast and analysis for the cycled DA 480 
experiments which are designed to illustrate the sensitivity to cycling variables. 

To demonstrate the error growth for the non-cloud variables, the temporal evolution of the ratio of benefits ℶ, calculated 

by formula (15), is presented by Figure 11.  

ℶ = 𝑁𝑏𝑒𝑡/𝑁𝑒𝑓𝑓                                                                                                                         (15) 

where 𝑁𝑏𝑒𝑡 denotes the number of horizontal grid boxes with negative differences of MPE between the posterior and the 485 

prior estimates (refer to section 2.4 and Scheck et al., 2020), 𝑁𝑒𝑓𝑓  denotes the number of observations effectively assimilated 

by the DA system (see the next section). 
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Figure 11. The time evolution of the ratio of beneficial impacts ℶ, calculated by formula (XXX) for (a), for first-guess forecast and 

analysis. The potential temperature (T); (b). Water vapour mixing ratio; (c). The x-wind component; (d). The y-wind component. 490 

Figure 11 indicates positive impacts on the main non-cloud variables, especially at the later cycling steps. We think that 

a main reason is the positive feedback to the non-cloud variables due to the adjustment to cloud variables.  
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For the water vapour mixing ratio, if the prior ensemble mean equivalent radiance is overestimated compared with the 

observation, Qi/Qc tends to be decreased for the posterior estimate in order to generate a negative analysis increment in the 

observation space. In the next ensemble forecast cycle, the grid boxes with decreased Qi/Qc tend to generate hydrometeors 495 

due to condensation and freezing. This is because the surrounding atmosphere, which is supportive of more cloud 

hydrometeors, becomes over-saturated due to the loss of some cloud hydrometeors. The condensation and freezing are at a 

sacrifice of water vapour mixing ratio. As a result, the deceased Qi/Qc corresponds to the decreased water vapour mixing 

ratio. Accordingly, the VIS radiance could be positively related to the water vapour mixing ratio, and vice versa. According 

to formula (4), the covariance in observation space and state variable space will adjust the water vapour mixing ratio 500 

correctly. 

The adjustment of temperature is more likely related to the interactions between clouds and radiation. For example, 

decreased CWP or CFC tends to enhance the direct radiation flux on the surface layer, increasing the low-level temperature 

toward the truth as indicated by Scheck et al. (2020), and vice versa. In addition, the interactions between clouds and 

longwave radiation tend to generate cooling effects at cloud top and heating effects at cloud bottom (Zhang et al., 2020). 505 

Therefore, a relationship between radiance (cloud) and temperature is expected, and the covariance in observation space and 

state variable space could adjust temperature correctly. 

The impacts on the x- and y-wind components are slightly negative before 04:00 UTC, and become positive after that 

time. We think that the positive impacts are mainly caused by the convergence and divergence related to the thermal 

instability, which is closely related to cloud formation (increased radiance) and dissipation (decreased radiance) for 510 

convective weather systems. As indicated above, the cloud-radiation interactions tend to modify the temperature profile, 

which could strengthen or weaken the thermal instability and impact the z-wind component. The z-wind component is 

closely related to horizontal x- and y-wind components by adjusting the convergence and divergence (White et al., 2018). 

Therefore, an indirect “radiance——cloud——vertical velocity——convergence and divergence——horizontal wind” 

relationship could map the observation increment to the U and V increments correctly. 515 

c. Influences of outlier threshold values 

Not all observations were effectively assimilated by the WRF/DART-RTTOV system. Some of the observations were 

rejected by the DA system due to two reasons. 1) Non-monotonic pressure, i.e., pressure increases with altitude, was 

generated at some points during the interpolation of the perturbed first-guess model state to the RTTOV pre-defined layers. 

For the case study, non-monotonic pressure was mainly located in the Qinghai-Tibet Plateau, Tianshan Mountain, and 520 

Central Taiwan ranges (not shown for simplicity), where complex terrain exists. The results indicate that the performance of 

the WRF/DART-RTTOV system is slightly prohibited over complex terrain regions. 2) The differences between the 

observations and the prior ensemble mean equivalent observations are so large that these observations were rejected by the 

DA system because assimilating these data may cause the collapse of WRF model. For the observations rejected due to the 

second reason, the ratio of observations which could be effectively assimilated is dominated by the outlier threshold value. 525 

Increasing the outlier threshold value could increase the observation utilization (Figure 12), but it may introduce unstable 
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adjustments to state variables and may destroy the forecast. Therefore, a balance should be maintained between large outlier 

threshold value and the potentially detrimental effects on forecasts. The analysis and 10 min, 1 hr, and 3 hr first-guess 

forecasts indicate improved results for larger outlier threshold value (Figure 13).  The case study indicates that setting the 

outlier threshold value to 6 does not cause the collapse of WRF, but generates improvements to the analysis and first-guess 530 

forecasts of CWP and cloud coverage. 

 

Figure 12. The ratio of observations assimilated or rejected by the WRF/DART system for different experiment designs. 

 

Figure 13. The time evolution of FSS and MAE for the ensemble mean first-guess forecast and analysis for the cycled DA 535 
experiments which are designed to illustrate the sensitivity to the outlier threshold values. 
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d. Influences of observation errors and thinning 

The observation utilization is also influenced by the observation errors. Large observation errors correspond to large 

observation utilization (Figure 12). However, increasing observation errors implies less weight attached to the observations 

during the assimilation. Therefore, the analysis and first-guess forecast should be also influenced by the observation errors. 540 

To see how exactly the influences on the analysis and the first-guess forecasts, FSS and MAE of the ensemble mean CWP 

for the cycled DA experiments are presented in Figure 14. The analysis and first-guess forecasts of CWP and cloud coverage 

are negatively related to the observation errors. As complementary to the parameters controlling the number of observations, 

the influences of Exp-14 with thinned observations assimilated were presented. The results indicate only slight 

improvements to the first-guess forecast and analysis.  545 

 

Figure 14. The time evolution of FSS and MAE for the ensemble mean first-guess forecast and analysis for the cycled DA 

experiments which are designed to illustrate the sensitivity to the observation errors. 

3.2.2 Impacts on precipitation 

The first-guess forecasts of rain rate for the nature run, control run, Exp-01, and Exp-11 are shown in Figure 15. On the 550 

domain average, rain rate was overestimated for the control and cycled DA experiments. Compared with the control run, 

precipitation was decreased in most cases for the cycled DA experiments, and the areas with or without precipitation are in 

better agreement with the nature run (Figure 16(a)).  



25 

 

 

Figure 15. The time evolution of rain rate for the nature run (column 1), the control run (column 2), the first-guess forecast of 555 
Exp-01 (column 3) and Exp-11(column 4). From top to bottom, the row panels correspond to the results for 02:00~02:10, 

04:00~04:10, 06:00~06:10, 08:00~08:10, and 10:00~10:10 UTC 18 August, 2020. 
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Quantitative metrics of rain rate forecast indicate that the forecasting skills were improved at most of the analysis times 

(Figure 16(b)). However, the improvements on rain rate were not expected at any time. For example, at the initial cycling 

step (before 04:00 UTC, August 18, 2020), the control run seems to outperform other cycled DA experiments. With model 560 

integration, the advantages of assimilating VIS radiance data became apparent. The improved TS score was closely related to 

the improved CWP and cloud coverage simulations. In contrast, the improvements on rain rate were not as apparent as CWP. 

Existing studies indicate that precipitation was closely related to cloud vertical structure (Kubar and Hartmann, 2008; Yan et 

al., 2019), the presence and distribution of liquid and ice hydrometeors (Field and Heymsfield, 2015; Mülmenstädt et al., 

2015; Korolev et al., 2017), surrounding atmosphere and dynamic state variables (Kanji et al., 2017), etc. Therefore, the 565 

limited effects on rain rate are subject to the inability of assimilating visible radiance data to constrain cloud vertical 

structures, to improve cloud phase simulations, and to correct cloud location errors with underprediction due to zero-spread 

problem, etc.  

 

 570 

Figure 16. Quantitative metrics of rain rate for the first-guess forecast. (a). The Threat Score calculated by formula (10); (b). The 

mean absolute error (MAE) calculated by formula (8). 

 

4. Discussion and Conclusions 

In this study, single observation experiments and cycled DA experiments were performed in an OSSE framework to 575 

investigate the ability of the WRF/DART-RTTOV system for assimilating the simulated FY-4A/AGRI VIS (channel 2) 
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radiance at 15 km-resolution modelling. Single observation experiments were designed to reveal the abilities and inabilities 

of assimilating satellite VIS radiance data to cloud variables (liquid/ice water mixing ratio and CWP, effective radius of 

liquid water droplets, and cloud fraction) and non-cloud variables (water vapour mixing ratio, perturbation potential 

temperature, and wind). The cycled DA experiments were designed to explore the impacts of assimilating VIS radiance data 580 

on the analysis and first-guess forecasts of a tropical storm case with different model settings and observation preparations, 

including filter algorithms, cycling variables, updating frequencies, outlier threshold values, observation errors, and 

observations with or without thinning. General findings and discussions were provided below. 

Single observation experiments in the first DA cycle indicate that assimilating the satellite VIS radiance data generated 

positive effects on cloud variables in most cases. In some rare cases, the assimilation increased the errors for the posterior 585 

estimate compared with the prior estimate both in the observation space or/and in the cloud variable (or diagnosed parameter 

CWP) space. These negative impacts were closely related to the non-linear properties of the forward operator and the non-

Gaussian properties of the prior probability distribution function estimated from the limited prior ensemble members. In 

addition, neutral impacts were revealed on non-cloud variables including water vapour mixing ratio, temperature, and 

horizontal winds. 590 

Although neutral impacts were revealed for the non-cloud parameters in the first DA cycle, including the non-cloud 

variables and cloud variables collectively in the next ensemble forecast cycle improved the first-guess forecast and analysis 

of cloud and non-cloud variables. The beneficial impacts of non-cloud variables are closely related to the feedback to the 

filtering adjustments to cloud variables by evaporation, condensation, freezing, and cloud-radiation interactions. Comparison 

between EAKF and RHF indicates slight advantages of RHF in dealing with non-Gaussian problems but at a sacrifice of 595 

around 1.8 times of more computational cost. In addition, the cycled DA experiments reveal that the first-guess and analysis 

results are positively related to the outlier threshold value and the updating frequency, and are negatively related to the 

observation errors and thinning length scale. Similar results were revealed for precipitation. The improvements were much 

more distinct for the representation of locations with or without precipitation than for the quantitative metrics of rain rate. 

The limited impacts of assimilating VIS radiance data on rain rate are subject to the inabilities to constrain cloud vertical 600 

structures, to improve cloud phase simulations, and to correct cloud location errors with underprediction due to zero-spread 

problem, etc.  

The findings will provide some guidance on WRF/DART configurations and observation preparations in real DA 

application of FY-4A and the upcoming FY-4B VIS radiance data. The study is a supplement and an extent to a previous 

study by Scheck et al. (2020), which thoroughly discussed the potentials and limitations of assimilating the Meteosat 605 

SEVERI VIS imagery by the COSMO/KENDA system based on LETKF. In general, the pros and cons of assimilating the 

VIS radiance data in this study are in good agreement with Scheck et al. (2020), except that slight positive impacts on 

horizontal wind speeds were demonstrated in this study but Scheck et al. (2020) reported neutral impacts. We ascribe the 

slightly positive impacts on horizontal winds to the feedback to the convergence or divergence related to the “radiance——

cloud——vertical velocity——convergence and divergence——horizontal winds” relationship. This relationship should 610 
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differ in weather systems. Therefore, the different impacts on horizontal wind speeds revealed by the two studies could be 

caused by differences in the weather systems. In addition, the two studies differ in the models/tools and corresponding 

configurations. This study explored some properties unique to the WRF/DART system.  Besides the EAKF method, the non-

Gaussian method RHF was also discussed in assimilating the VIS radiance data in this study. The advantages of RHF in 

dealing with non-Gaussian problems and its limitation in computation efficiency were discussed.  615 

Nevertheless, this study only discussed low-resolution model simulations (15 km × 15 km). The grid spacing of 15 km 

is large enough to avoid radiance simulation errors due to 3D radiative effects, which are apparent for high-resolution 

simulations (Várnai and Marshak, 2001). Although the 3D radiative transfer effects could be properly corrected by some of 

the forward operators incorporated into RTTOV, the related parameters and datasets specific to FY-4A/AGRI are currently 

unavailable. Further studies should be extended to cloud-resolving model simulations like Scheck et al. (2020) to fully take 620 

the advantage of high-resolution satellite VIS radiance data, but attention should be paid to the forward operator because the 

enhanced 3D radiative effects for high-resolution modelling could make the nonlinearity of forward operator more 

complicated. An outlook of future work should also include the following aspects. 

(1) Optimization of forward operators and estimation of observation errors. The findings in this study suggest that 

observation errors should be as small as possible to improve the first-guess forecast and analysis. One of the factors 625 

determining the observation error is the forward operator (Janjić et al., 2017). Therefore, it is necessary to optimize the 

RTTOV configurations in simulating synthetic FY-4A visible imagery from WRF model state variables and to give an 

estimate of observation errors under different modelling resolutions, weather conditions, sun-viewing geometries, etc. 

Scheck et al. (2018) assessed the performance of the forward operator MFASIS by comparing the synthetic visible imagery 

simulated based on the state variables from COSMO with the SEVIRI visible image. Perhaps their work could be referenced 630 

to assess the performance of WRF-RTTOV systems against FY-4A visible observations.  

(2) Improvements on computational cost and accuracy of forward operators. Assimilating the visible radiance data is 

quite time-consuming for the current WRF/DART-RTTOV system (around 7 min in an EAKF cycle and 13 min in a RHF 

cycle). Increasing the updating frequency and outlier threshold value makes the computational cost more expensive. 

Currently, an accurate and fast observation operator for assimilating the FY-4A (and the upcoming FY-4B) visible radiance 635 

data at both low- and high-resolution simulations are still in need.  Scheck et al. (2016a, 2021) developed a Look-up Table 

(LUT)- and machine learning-based forward operator, which is several orders faster than DOM-based methods. In addition, 

three-dimensional radiative effects could be corrected for high-resolution modelling without too expensive computation cost 

(Scheck et al., 2018; Albers et al., 2020; Zhou et al., 2021). These methods could benefit to improve forward operators. 

(3) Correction of errors due to non-Gaussian and non-linear problems. The performance of EAKF was limited to the 640 

non-linear and non-Gaussian problems. The Particle Filter (PF) is declared to have advantages in dealing with the non-

Gaussian and non-linear problems. With certain localized method included, PF shows great potential in application to high-

dimension numerical prediction model such as the WRF model (Shen and Tang, 2015; Poterjoy, 2016; Pinheiro et al., 2019). 
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Therefore, newly-developed PF methods could be a candidate to further improve the forecasting skills of WRF model when 

satellite visible radiance data are assimilated.  645 

(4) Techniques to reduce the cloud location errors. The performance of WRF/DART system is limited to location errors, 

especially in the case where the first guess indicates underpredicted clouds. Dowell et al. (2012) promoted a method to tackle 

the location errors in assimilating radar data by EnKF. Their basic idea was to add perturbations to the base state randomly 

and add local perturbations in and near precipitation areas regularly to produce clouds in precipitation areas. In addition, 

White et al. (2018) also promoted a method to produce clouds comparable to satellite observations, but this method needs 650 

other observations (such as brightness temperature at infrared bands). These methods are potentially useful to correct the 

location errors due to the zero spread of prior ensemble members in the satellite VIS radiance DA.  

Code and data availability 

Version 4.1.1 of WRF-ARW source code is publicly available at http://www2.mmm.ucar.edu/wrf/users/. The Manhattan release 

of DART source code (version 9.8.0), including the RTTOV observation operator (version 12.3), is publicly available at 655 

https://dart.ucar.edu/.  Version 12.3 of RTTOV source code is publicly available at https://nwp-

saf.eumetsat.int/site/software/rttov/. The NCEP FNL (Final) Operational Global Analysis data are downloaded from 

https://rda.ucar.edu/datasets/ds083.2/. The ERA5 hourly data are available at 

https://cds.climate.copernicus.eu/api/v2/resources. The source codes of WRF-ARW, WPS, RTTOV, and DART models 

(tool), as well as the input and (processed) output data, and the visualization scripts are available at 660 

https://zenodo.org/record/6898477#.YuB9c4RBzD4. 
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