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Abstract. Hybrid ensemble-variational data assimilation (DA) methods have gained significant traction in recent years. These

methods aim to alleviate the limitations and maximise the advantages offered by ensemble or variational methods.
::::
Most

:::::::
existing

:::::
hybrid

::::::::::
applications

:::::
focus

::
on

:::
the

:::::::::::::
mid-latitudinal

::::::
context;

::::::
almost

::::
none

::::
have

::::::::
explored

::
its

:::::::
benefits

::
in

:::
the

::::::
tropical

:::::::
context. In this ar-

ticle, hybrid ensemble-variational DA is introduced to a
::::::
tropical

:::::::::::
configuration

::
of

::
a simplified non-hydrostatic convective-scale

atmospheric "toy model ", the ABC model, and its corresponding
::::
fluid

::::::::
dynamics

::::::
model

:::
and

::
its

:
existing variational framework,5

conveniently termed the ABC-DA system.

The hybrid ensemble-variational DA algorithm is developed based on the alpha control variable approach, often used in

numerical weather prediction. Aspects of the algorithm such as localisation (used to mitigate sampling error caused by fi-

nite ensemble sizes) and weighting parameters (used to weight the ensemble and climatological contributions to the back-10

ground error covariance matrix) are implemented. To produce the flow-dependent error modes (ensemble perturbations) for

the ensemble-variational DA algorithm, an ensemble system is also designed for the ABC model, which is run alongside the

hybrid DA system. A random field perturbations method is used to generate an initial ensemble, which is then propagated using

the ensemble bred vectors method. This setup allows the ensemble to be centred on the hybrid control analysis. Visualisation

software has been developed to focus on the diagnosis of the ensemble system.15

To demonstrate the hybrid ensemble-variational DA in the ABC-DA system, sensitivity tests using observing system sim-

ulation experiments are conducted within a tropical framework, which has not yet been explored in the ABC-DA system. A

30-member ensemble was used to generate the error modes for the experiments. In general, the best performing configuration

(with respect to the "truth") for the hybrid ensemble-variational DA system used an 80%/20% weighting on the ensemble-20

derived/climatological background error covariance matrix contributions. For the horizontal wind variables though, full weight

on the ensemble-derived background error covariance matrix (100%/0%) resulted in the smallest cycle-averaged analysis root-

mean-square errors, mainly due to large errors in the meridional wind field when contributions from the climatological back-

ground error covariance matrix were involved, possibly related to a sub-optimal background error covariance model.

25
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The ensemble bred vectors method propagated a healthy-looking DA-centred ensemble without bimodalities or evidence of

filter collapse. For some variables though, the
:::
The

:
ensemble was under-dispersive

::
for

:::::
some

:::::::
variables, but for other variables

:::::
others,

the ensemble spread approximately matched the corresponding root-mean-square errors. Reducing the number of ensemble

members led to slightly larger errors across all variables, due to the introduction of larger sampling errors into the system.

Copyright statement. To be filled by journal.30

1 Introduction

Data assimilation (DA) methods can traditionally be classified into three categories: variational methods, which look for a

maximum-a-posteriori (MAP) estimator, Kalman-based methods, which produce a minimum variance estimator (often in an

ensemble implementation), and methods which attempt to estimate full probability density functions (PDFs) without making

any parametric assumptions (e.g. Markov Chain Monte Carlo and particle filters). For an introductory discussion the reader is35

referred to e.g. Asch et al. (2016). Each traditional DA method is subject to its own advantages and limitations, which determine

the applicability in operational numerical weather prediction (NWP) systems. A wide spectrum of modern DA methods have

been proposed in recent years, including hybrid ensemble-variational (hybrid-EnVar) methods which have gained significant

traction. The broad aim of such methods is to alleviate the limitations and maximise the advantages offered by the traditional

methods. Within the category of hybrid-EnVar methods, there exist different flavours due to subtleties in the derivation and40

permutations arising from the usage of different variational or ensemble methods. One can modify, for instance, the elements

of the problem or the solution algorithm, yielding different varieties of hybrid variants. Bannister (2017) provides a compre-

hensive review of the latest hybrid-EnVar methods used in modern DA.

In this article, we focus on the hybrid covariance ensemble-variational approach (Hamill and Snyder, 2000). This differs45

from the hybrid gain ensemble-variational DA approach (Penny, 2014), which is also commonly used. We introduce this
::::
Most

::::::
existing

::::::
hybrid

::::::::::
applications

:::::
focus

::
on

:::
the

::::::::::::
mid-latitudinal

:::::::
context

:::
and

::::::::
highlight

::
the

:::::::::
advantage

::
of

::::::::::
introducing

::::::::::::::
flow-dependency

::
in

::
the

:::::
error

::::::::
statistics.

::::::::
However,

:::::
almost

:::::
none

::::
have

:::::::
explored

:::
the

::::::
hybrid

:::::::::
application

::
in

:::
the

:::::::
tropical

:::::::
context,

:::::
where

:::
the

::::::::::::
characteristics

::
of

:::
the

::::
error

::::::::
statistics

:::
are

:::
still

::::::
poorly

::::::::::
understood.

:::::
Here,

:::
we

::::::::
introduce

:::
the hybrid-EnVar method to an existing convective-scale

DA framework (Bannister, 2020) for a
::::::::
simplified

:
non-hydrostatic and compressible "toy model "

::::
fluid

::::::::
dynamics

:::::
model

:
(ABC50

model; Petrie et al., 2017).
:
,
::::
with

:::
the

::::
hope

::::
that

::
the

::::::::
upgraded

::::::
system

::::
can

::::::
provide

:::::::
insights

:::
on

::
the

:::::::
benefits

::::
and

:::::::
highlight

::::::::
potential

:::::
issues

:::
that

::::
may

::::
arise

:::::
using

:::::::::::
hybrid-EnVar

::::::::
methods

:
in
:::
the

:::::::
tropical

:::::::
context.

:::
We

::::
note

:::
that

:::
this

:::::
study

::
is

:::
also

:::
the

::::
first

::
to

:::
use

:
a
:::::::
tropical

:::::::::::
configuration

::
of

:::
the

::::::::
ABC-DA

::::::
system.

:

The aims of this study are as follows:55

(a) to document and test a hybrid-EnVar DA system for the ABC model, and
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(b) to test generating an ensemble suitable for hybrid-EnVar DA to function.

Section 2 contains details of the existing system used in this study. Section 3 documents the development of an ABC ensemble

system, necessary to generate a meaningful ensemble of ABC states, which feed into the hybrid-EnVar DA system along with

the implementation of hybrid-EnVar DA system itself. Section 4 demonstrates the use of the hybrid-EnVar DA system within60

a tropical framework. Three appendices provide details that may be of interest to readers familiar with ensemble initialisation,

and inter-variable localisation in ensemble DA.

2 The ABC-DA system

2.1 Model equations

The ABC model used in this study was originally developed by Petrie et al. (2017) and was designed as a
::::::::
simplified

:
non-65

hydrostatic "toy"
::::
fluid

::::::::
dynamics

:
model for use in convective-scale DA experiments. It comprises solving a set of simplified

partial differential equations derived from the Euler equations. A vertical slice formulation containing only dry dynamics is

used (two-dimensional x-z spatial grid). This section summarises the model equations and their properties. These are:

∂u

∂t
+Bu · ∇u+C

∂ρ̃′

∂x
− fv = 0, (1a)

∂v

∂t
+Bu · ∇v+ fu= 0, (1b)70

∂w

∂t
+Bu · ∇w+C

∂ρ̃′

∂z
− b′ = 0, (1c)

∂ρ̃′

∂t
+B∇ · (ρ̃u) = 0, (1d)

∂b′

∂t
+Bu · ∇b′ +A2w = 0 (1e)

where u= (u,v,w) is the three-dimensional wind vector of zonal, meridional and vertical wind; ρ̃′ and b′ are perturbation

quantities from a reference state of scaled density (ρ̃) and buoyancy respectively (see Petrie et al., 2017). The coefficients A,75

B and C are tunable parameters which control the pure gravity wave frequency, the modulation of the advective and divergent

terms, and the relationship between the pressure and density perturbations in the equation of state, respectively. The small-

scale acoustic wave speed is given by
√
BC. Additionally, the Coriolis parameter f can be chosen depending on the desired

latitudinal position of the vertical slice. Collectively the variables u, v, w, ρ̃′ and b′ at every grid position in the domain are

referred to as the state vector x.80

2.2 Variational data assimilation

Variational DA was subsequently implemented in the ABC model by Bannister (2020), conveniently termed as the ABC-

DA system. As of version 1.4 (https://doi.org/10.5281/zenodo.3531926), 3DVar and 3DVar-FGAT (First Guess at Appropriate

Time) are available in the ABC-DA system. The reader is directed to Bannister (2020) for the full details of this implementation,
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but here we summarise the key equations in the context of 3DVar-FGAT. The 3DVar-FGAT scheme is later in this article adapted85

into a hybrid scheme.

2.2.1 Incremental formulation

The objective of variational DA is to find an optimal state xa which minimises a cost function J(x) (e.g. Kalnay, 2003). This

cost function usually comprises two terms: one for the departure of the state with respect to the background state xb, and one for

the departure of the state (transformed to observation space) with respect to observations y. A third term related to any model90

errors can be added in the so-called weak-constraint formulation, which is not needed in this work as we do not consider model

errors in our set-up. Even though the terms in J are based on Mahalanobis distances, J can be non-quadratic (with respect to

the state variable) due to the non-linearities of the (often) non-linear forecast model (Mt−1→t, used in the case of 4DVar) and

observation operator (Ht). Most variational systems implement an incremental formulation of the cost function (Courtier et al.,

1994) which involves iteratively linearising Mt−1→t and Ht around a reference state (xr) and framing the problem in terms95

of increments to xr in a series of outer loops. This allows one to find an approximate solution of a complicated non-quadratic

optimisation problem by tackling a series of easier quadratic ones. To illustrate, for a DA cycle with a window from t= 0 to

T , the incremental form of the 3DVar-FGAT cost function is:

J(δx) =
1

2
(δx− δxb)⊤B−1

c (δx− δxb)+
1

2

T∑
t=0

(Htδx−d[t])⊤R−1
t (Htδx−d[t]) (2)

where x= xr+δx, xr is a reference state, δx is the state increment, and δxb is the difference between the background and the100

reference. Bc is the background error covariance matrix, Rt is the observation error covariance matrix at time t, and Ht is the

linearised observation operator at time t. We define the innovation:

d[t] = y[t]−Ht[M0→t[x
r]]. (3)

Note that Eq. (2) is the same as Eq. (7) of Bannister (2020), except that the linearised forecast model Mt−1→t has been replaced

here by the identity I (this replacement is what distinguishes 3DVar-FGAT from 4DVar). For the first outer loop, xr is set as105

xb (i.e. δxb = 0).

2.2.2 Estimation and modelling of Bc

A vital component in variational DA is Bc. It is the averaged (climatological) second moment of the PDF of forecast errors of

the system (Bannister, 2008a). It determines the weighting between the use of observational and background information, and

it allows for the spreading of observational information spatially and between variables. We can disentangle the construction110

of Bc by considering how the background errors are first estimated, and then used in the modelling of Bc.

In the original implementation by Bannister (2020), the estimation of the background error statistics was performed by the ex-

traction of multiple longitude-height slices from one or more Met Office Unified Model outputs (since these were conveneiently
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available), which were processed to create an "ensemble" of ABC states (and subsequently ABC forecasts). This set of forecast115

perturbations serve as proxies for the background errors used as training data for Bc. The validity of this prescribed source of

background error statistics has not been investigated, but the approach is convenient and practical. Another way to estimate

the training data is to compute forecast differences (with different lead times and valid at the same time) over a climatological

period (the National Meteorological Center method; Parrish and Derber, 1992), but as of version 1.4, this is not coded in the

ABC-DA system. Instead, we introduce a different method to compute the ensemble forecasts for the training data (Section120

3.1.1).

In many systems, Bc is too large to explicitly be computed using the training data. For instance, in operational models the size

of the state variable can be O
(
109

)
. Instead, Bc is often modelled through the use of a so-called control variable transform U.

Even though the ABC model is small enough for the explicit computation of B to be feasible, it is still far more practical to125

use a control variable. We introduce a control vector δχ which is related to a state vector δx by:

δx=Uδχ. (4)

The choice of the control vector, δχ, and control variable transform U is flexible, but they dictate the eventual cross-covariances

between model variables of δx. In order to improve the conditioning of the incremental cost function (for more efficient

minimisation), the control variables are chosen to be uncorrelated and have unit variance. Substituting Eq. (4) into Eq. (2)130

yields a new pre-conditioned incremental cost function:

J(δχ) =
1

2
(δχ− δχb)⊤(δχ− δχb)+

1

2

T∑
t=0

(HtUδχ−d[t])⊤R−1
t (HtUδχ−d[t]) (5)

where δxb =Uδχb. Since Bc is a symmetric and positive matrix, U may be chosen to be a lower triangular matrix (using a

Cholesky decomposition). The implied Bc is given by minimising Eq. (5) with the transform in Eq. (4); Bc =UU⊤ (Bannis-

ter, 2008b). It is evident that the use of a carefully designed U removes the need to compute B−1
c in order to minimise the cost135

function. By contrast, since observation errors are assumed to be uncorrelated in the ABC-DA system, Rt is diagonal. Hence,

there is no requirement for a separate transform since R−1
t can be easily computed.

The calibration of U (and thus the implied Bc) is usually only performed once at the start of any cycling experiment using

"climatological" background error statistics, and then used for every DA cycle. To emphasize the climatological nature of this140

element, we label it Bc.

2.2.3 ABC-DA system minimisation algorithm

In the ABC-DA system, a conjugate gradient algorithm is used to find the minimiser of the cost function. Differentiating Eq.

(5) with respect to δχ yields the gradient ∇δχJ , given by:

∇δχJ = δχ− δχb +U⊤
T∑

t=0

H⊤
t R

−1
t (HtUδχ−d[t]) (6)145
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where U⊤ and H⊤
t are the adjoints of U and Ht respectively. The reader is directed to Bannister (2020) for more details. The

modifications required for specific steps in order to enable hybrid-EnVar DA are highlighted later in Section 3.2.1
:
.2.

3 Technical implementation of the data assimilation and forecast framework

Hybrid-EnVar schemes stem from a combination of two approaches: ensemble methods and variational methods. For the for-

mer, the archetypical example is the Kalman filter (EnKF) in its different formulations. The reader is referred to e.g. Evensen150

(2006) for an introduction. The variational approach has been discussed in Section 2.2. Instead of a one-off retrieval of the

background error statistics from a climatological source (Section 2.2.2), the purpose of having an ensemble is to estimate time-

dependent background error statistics from the ensemble forecasts valid at each cycle. As such, the background error statistics

vary as the system evolves.

155

Accordingly, a parallel ensemble system that runs alongside the hybrid (single-trajectory) analysis is required in order to

provide the background error statistics at each cycle. In this study, we explore the ensemble bred vectors (a variant of the

bred vector method; EBV) method to evolve the ensemble system, which will be described in Section 3.3.1. The following

sections cover the step-by-step implementation of a cycling hybrid-EnVar DA system in the ABC model, in accordance with

the schematic diagram (Fig. 1) which shows the coupling between the deterministic components and the parallel-run ensemble160

system using the two different ensemble propagation methods. Figure 1 is explained in the remainder of Section 3.

3.1 Generation of initial ensemble of states for ABC ensemble system

This section discusses the generation of an initial ensemble, which is the first step in Fig. 1 (red segments), which is needed in

the case of a cold start. Subsequent propagation of the ensemble can then proceed after this problem is addressed.

165

In the ABC model, an initial two-dimensional state can be computed from a longitude-height slice of a Unified Model output,

which is a convenient approach adopted by Petrie et al. (2017). In this light, the simplest method to generate an initial ensemble

is to extract different longitude-height slices from the same Unified Model output, similar to how a population of training data

is generated in Bannister (2020) for the calibration of the static background error covariances as mentioned in Section 2.2.2.

Another method is to simply add statistical noise to the initial ABC model state, although it is not straightforward to determine170

the distributions for the noise sampling (which could vary for different variables and include multi-variate correlations), so that

the solutions are consistent with the underlying dynamics. The model evolution in the first few cycles may spuriously dampen

or amplify the added statistical noise if it is drawn from an incorrectly-chosen distribution.

For this study, we adopt the random field perturbation method proposed by Magnusson et al. (2009) to generate the initial175

ensemble. The main idea relies on choosing two (assumed independent) ABC states and calculating their differences. The dif-

ferences are treated as perturbations and can then be scaled to maintain a fixed amplitude between ensemble members and/or
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cycles, and are subsequently added to the initial ABC state computed above to generate an initial (arbitrary-sized) ensemble of

states. Linear balances are approximately preserved in the resulting ensemble as only linear operations are performed on the

fields (Magnusson et al., 2009).180

Unlike in an operational NWP system where archived past analyses are available, here a long "truth" simulation needs to be

performed using the ABC model starting from a chosen initial state (the "truth run" in Fig. 1). To generate each ensemble

member, two states from the same "truth" simulation are chosen at random. These need to be sufficiently separated in time for

the assumption of independence to be valid. Following the above steps, the initial ensemble of states is given by:185

xk
cs = xc

cs +
1√
2
rk(xtr

kt1 −xtr
kt2), (7a)

rk =
ϵrf

|xtr
kt1 −xtr

kt2|2Etot

, ϵrf = |xtr
kt1 −xtr

kt2|2Etot
(7b)

where xk
cs represents the kth initial state of N ensemble members, xc

cs is the initial unperturbed (hereafter referred to as

control) state; the superscript "cs" refers to cold start, xtr
kt1 and xtr

kt2 are the two random states drawn from the same "truth"

simulation at different times (kt1 and kt2), and rk depends on the scaling factor ϵrf defined according to the total energy190

norm (|•|2Etot
= Etot; see Eq. (A1)) of the perturbations, to maintain a fixed amplitude (the ensemble mean |•|2Etot

) between

ensemble members. The reason for the 1√
2

factor is included because we are considering differences between two states so

the variance of the difference is a reflection of the sum of their error variances, rather than considering differences between

a state and a mean (see Appendix of Berre et al., 2006). More details and justification of the method are covered in Appendix A.

195

After generating the initial ensemble, the cold start members are propagated to the analysis time of the first cycle at T +0

(from xk
cs to xfk

0 and from xc
cs to xfc

0 by Mcs→0; Fig. 1, lower brown segments). Note that for subsequent cycles, the analysis

ensemble (produced from Section 3.2.3
:::
3.3) and control analysis are propagated instead of cold start members (i.e. from xak

t to

xfk
t+1 and from xac

t to xfc
t+1 by Mt→t+1; Fig. 1, upper right brown segments). These ensemble forecasts are then used in the

DA step(Section 3.2.1)
:
,
::::::::
described

::
in

:::
the

::::
next

::::::
section.200

3.2 Hybrid ensemble-variational data assimilation

The hybrid-EnVar approach seeks to implement a hybrid background error covariance Bh which is a linear combination of a

climatological and an ensemble-derived background error covariance matrix (Bc and Be, described in Section 2.2 and Section

3.2.1 respectively), in the form following Hamill and Snyder (2000):

Bh = β2
cBc +β2

eBe (8)205

where β2
c and β2

e are (positive) scalar weights often determined empirically for the algorithm. These weights are often chosen

to add to unity, but this need not be the case. This approach computes Bh explicitly, but this is not practical in an NWP system.

For the ABC-DA system, the alpha control variable approach of Lorenc (2003) is instead implemented, which constructs an
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implied version of Eq. (8) using an alteration of the standard variational cost function and control variables (see Section 3.2.2).

Wang et al. (2007) demonstrates the mathematical equivalence of both approaches.210

Given the control background, which is a short-range forecast from the previous cycle (xb = xfc
t ), the hybrid-EnVar DA yields

the hybrid control analysis xac
t (Fig. 1, blue segments), which needs the ensemble members to implicitly construct the Be part

(recall that Bc in Eq. (8) is derived from the U transform, and Be is derived from the ensemble). The steps to retrieve the

hybrid control analysis are described in Section 3.2.2, but we first explain how Be can be computed from the ensemble.215

3.2.1 Computation of the ensemble-derived background error covariance matrix for the control analysis

At each cycle, one may compute a rectangular matrix Xf
t whose columns contain the scaled differences between the ensemble

forecasts (i.e. xfk
t for the kth member forecast valid at time t) and the ensemble mean (x̄f

t ):

Xf
t =

1√
N − 1

(xf1
t − x̄f

t ,x
f2
t − x̄f

t , . . . ,x
fN
t − x̄f

t ) = (x′1
t ,x

′2
t , . . . ,x

′N
t ) (9)

where x′k
t are the scaled error modes valid at time t. The ensemble-derived background error covariance matrix (at time t)220

Pf
e [t] is explicitly given by the outer product:

Pf
e [t] =Xf

t X
f⊤
t . (10)

As we shall see in Section 3.2.2, this matrix is not computed explicitly, although parts of it are computed explicitly for visuali-

sation purposes later in this article.

225

In the limit where N tends to infinity, or where N is far greater than the degrees of freedom of the state n (N ≫ n), Pf
e [t] may

be full rank. In practice, however, a small number of ensemble members (N ≪ n) will inevitably lead to sampling error and

a rank-deficient matrix. Houtekamer and Mitchell (2001) proposed mitigating this problem by performing a Schur product of

Pf
e with a correlation matrix (or localisation matrix) L:

Be = L ◦Pf
e [t]. (11)230

This seeks to address the sampling error by damping the long-range background error covariances, as well as effectively

increasing the rank of Pf
e [t]. The spatial and multi-variate aspects of the localisation matrix are further discussed in Section

3.2.3, including how this can be performed without constructing explicit matrices.

3.2.2 Alpha control variable transform

Following the approach of Lorenc (2003), we introduce an ensemble-related penalty in the variational cost function. This235

requires constructing so-called alpha fields αk (part of a new set of mutually uncorrelated control variables) associated with

each ensemble member k, and constrained to have covariance L (the localisation matrix, as used in Eq. (11)). The number of
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elements in αk must be the same as the state vector of x′k
t (number of model gridpoints Ng × number of model variables

Nvar). The modified cost function is:

J(δχ,α1,α2, . . . ,αN ) =

Jb︷ ︸︸ ︷
1

2
(δχ− δχb)⊤(δχ− δχb)+

Jo︷ ︸︸ ︷
1

2

T∑
t=0

(Htδx−d[t])⊤R−1
t (Htδx−d[t])+

Je︷ ︸︸ ︷
1

2

N∑
k=1

αk⊤L−1αk (12a)240

with δx= βcUδχ+βe

N∑
k=1

x′k
t ◦αk, (12b)

where Jb, Jo and Je are the background, observation and ensemble penalties respectively. Equation (12a) is an extension of

Eq. (5), and Eq. (12b) is an extension of Eq. (4), the hybrid control variable transform. Together these equations make up the

hybrid scheme.

245

Similar to the way that Bc can be decomposed as Bc =UU⊤, L can be decomposed in terms of the alpha control variable

transform, Uα, i.e. L=UαUα⊤. Consider an alpha control vector χαk (again associated with ensemble member k) which is

related to the alpha field αk via:

αk =Uαχαk. (13)

Substituting Eq. (13) into Eq. (12a) yields:250

J(δχ,χα1,χα2, . . . ,χαN ) = Jb + Jo +
1

2

N∑
k=1

χαk⊤χαk (14a)

with δx= βcUδχ+βe

N∑
k=1

x′k
t ◦ (Uαχαk), (14b)

xac
t = xr + δxa. (14c)

The variational problem (Eq. (14a)) is minimised with respect to the collective set of control vectors, comprising a part that is

associated with Bc (δχ), and parts that are associated with Be (χα1,χα2, . . . ,χαN ). Together, these are combined using the255

hybrid transform (Eq. (14b)) to give the particular δx that minimises Eq. (14a), namely δxa. This gives the analysis xac
t in Eq.

(14c).

The total implied covariance matrix (that is effectively seen by the DA) is formally given by:

Bh = β2
cUU⊤ +β2

e (U
αUα⊤) ◦ (Xf

t X
f⊤
t ), (15)260

which is a linear combination of the implied Bc and Be (without explicitly constructing either), and is element-wise equivalent

to the explicit hybrid covariance in Eq. (8).
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Next, we reproduce the minimisation algorithm steps Section 3.5 of Bannister (2020), and highlight (in blue) the modifications

required when the hybrid-EnVar scheme is enabled:265

1. Set the reference state at t= 0 to the background state xr = xb. Decide values for N , βc, and βe.

2. Do the outer loop.

(a) For the first outer loop, δχb = 0; otherwise, compute δχb =U−1(xb −xr).

(b) Compute xr[t] over the time window, 1≤ t≤ T , with the non-linear model xr[t] =Mt−1→t(x
r[t− 1]).

(c) Compute the reference state’s observations: ymr[t] =Ht(x
r[t]).270

(d) Compute the differences: d[t] = y[t]−ymr[t].

(e) Set δχ= 0, δx= 0, and χαk = 0, 1≤ k ≤N .

(f) Do the inner loop.

i. Integrate the perturbation trajectory over the time window, 1≤ t≤ T , with the linear forecast model: δx[t] =

Mt−1→tδx[t− 1].275

ii. Compute the perturbations to the model observations: δym[t] =Htδx[t].

iii. Compute ∆[t] vectors as defined as ∆[t] =H⊤
t R

−1
t (δym[t]−d[t]).

iv. Set the adjoint state λ[T +1] = 0.

v. Integrate the following adjoint equation backwards in time, T ≥ t≥ 0: λ[t] =∆[t] +M⊤
t→t+1λ[t+1].

vi. Compute the gradient as follows: ∇δχJ = δχ− δχb +βcU
⊤λ[0], and ∇χαkJ = χαk +βeU

α⊤(x′k
t ◦λ[0]).280

These are the gradients with respect to each control vector segment, 1≤ k ≤N .

vii. Use the conjugate gradient algorithm to adjust δχ and χαk to reduce the value of J . Note that the cost function

is J = Jb + Jo + Je (Eq. (14a)).

viii. Compute the new increment in model space using the control variable transform and alpha control variable

transform: δx= βcUδχ+βe

∑N
k=1x

′k
t ◦ (Uαχαk) (Eq. (14b)).285

ix. Go to step 2fi until the inner-loop convergence criterion is satisfied.

(g) Update the reference state: xr → xr + δx.

(h) Go to step 2a until the outer-loop convergence criterion is satisfied. At convergence, set the hybrid control analysis

xac
t = xr.

3. Run a non-linear forecast from xac
t for the background of the next cycle and longer forecasts if required.290

3.2.3 Inter-variable and spatial localisation

Localisation of the ensemble-derived background error covariance matrix, as in Eq. (11), is required to mitigate sampling error,

which can dominate the computed covariance between distant points (Hamill et al., 2001). Localisation opens up a range of
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options and raises some pertinent questions: Should we localise only in space (and should these spatial localisation matrices

depend on the variable), or should we additionally include localisation between different model variables? This depends on the295

design of χαk and Uα in Eq. (13), and the implied L. If χαk only depends on gridpoint location (i.e. it need only be of length

Ng), then Uα must be rectangular (NgNvar ×Ng) so that αk has length NgNvar required for the Schur product in Eq. (12b).

This approach was adopted by Wang et al. (2008a), except that χαk was only dependent on horizontal gridpoint locations.

By design, Uα functions to "use the same χαk for each model variable and model level" (i.e. repeated rows in Uα) so the

Schur product in Eq. (14b) can be computed. This point was not highlighted in the description of Eq. (1) of Wang et al. (2008a).300

If χαk only has Ng elements, the implied L=UαUα⊤ can only involve spatial localisation, so full inter-variable covariances

(as found from the raw ensemble) are retained (see Appendix B). Alternatively, if χαk is full length (i.e. of length NgNvar)

with independent fields for each model variable, Uα is square (NgNvar ×NgNvar) so it is possible to use this transform to

damp the ensemble-derived covariances between different variables and spatial locations. Nonetheless, there is flexibility to305

still retain the full inter-variable covariances in L depending on the design of Uα. For the record, a proof of the equivalence be-

tween this approach (χαk with length NgNvar) with full inter-variable covariances retained, and the approach where χαk is of

length Ng is included in Appendix B. More complex designs of Uα which allow the retention of raw inter-variable covariances

only between certain model variables, or using different spatial localisation length-scales for different model variables are

also possible. Given the greater flexibility, this approach (χαk with length NgNvar)was coded in the ABC-DA system.Further310

development of the ABC-DA system may include introducing balance-preserving localisation (Clayton et al., 2013), which

involves transforming x′k
t to and performing localisation in δχ space.

:
In

::::::::
practice,

::::
these

::::
may

:::
be

:::::
useful

::
in

::::::::::::::
convective-scale

::::
data

::::::::::
assimilation,

::::::::::
particularly

:::::
when

::::::::::
hydrometeor

::::::::
variables

:::
are

:::::::
involved

:::::::::
(Xuguang

::::::
Wang,

:::::::
personal

::::::::::::::
communication).

In the ABC-DA system, Uα is further decomposed into the horizontal Uα
horiz and vertical Uα

vert localisation transforms,315

similar to the decomposition of U in Bannister (2020). The series of transforms is given by:

Uα =Uα
vertU

α
horiz (16)

thus treating the vertical and horizontal localisation separately.

Initial tests constructed Uα
horiz using a Fourier decomposition (as is done in the standard horizontal transform of U – see320

Bannister (2020), but this yielded undesirable small negative correlations at longer localisation distances (presumably related

to the Gibbs phenomenon, not shown). Thus a different approach was adopted as the basis for populating Uα
horiz , using the

eigen-decomposition of a target horizontal localisation matrix Lhoriz =Uα
horizU

α⊤
horiz (where Uα

horiz = Fα
horiz(Λ

α
horiz)

1/2,

and Fα
horiz and Λα

horiz are the eigenvectors and eigenvalues respectively of the imposed horizontal localisation matrix). We

start by constructing Lhoriz using the fifth-order piecewise Gaspari-Cohn function (
::::
with

:
a
:::::::::
horizontal

::::::::::
localisation

::::::::::
length-scale325

::
hα

::::::::::
(equivalent

::
to

::
c,

::::
with

:::::::
a= 1/2,

::
in Eq. (4.10) of Gaspari and Cohn, 1999)with a horizontal localisation length-scale hα. This

function is approximately Gaussian over a compact support. As the ABC model uses periodic boundary conditions, Lhoriz must
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be designed to be circulant and account for "overlapping tails" of the Gaspari-Cohn function when hα is larger than half the

domain size. Additionally, the
:
In

:::
the

:::::::::::
"overlapping

:::::
tails"

::::::
regime,

:::
the

:::::::::
correlation

::::::::
function

::::
does

:::
not

:::::::
satisfies

:::
the

:::::::::::::
"space-limited"

::::::::::
requirement

::::::::
described

::
in

::::::::::::::::::::::
(Gaspari and Cohn, 1999).

::::::
Thus,

:::
the resulting Lhoriz is found to not be positive semi-definite as330

::::
when

:
hα

:
is

:::::
large

:::
and

:
tends to infinity, and so the horizontal eigenvectors associated with the negative eigenvalues need to be

truncated. Offline testing in idealised setups and within the ABC-DA system showed that with the remaining eigenvectors,

Uα
horizU

α⊤
horiz is a good approximation for Lhoriz . It is also possible to scale the remaining eigenvalues to restore the initial

total variances for a better approximation. Figure 2 illustrates the implied correlation function (hα = 250 km) with respect

to longitudinal gridpoint 50, for an ABC-DA system with 364 longitudinal gridpoints and a 1.5 km horizontal grid, retrieved335

using the above steps. The original Gaspari-Cohn function with "overlapping tails" is compared with the implied correlation

function reconstructed from the eigenvectors and eigenvalues of the eigen-decomposition of Lhoriz (Fig. 2a), the resulting im-

plied correlation function when negative eigenvectors/eigenvalues are truncated (Fig. 2b), and the resulting implied correlation

function after further restoration of the initial total variances by scaling (Fig. 2c). Note that in this example, the threshold for

which negative eigenvalues appear is hα ≈ 138.33 km, found empirically. In the current version of the ABC-DA system, the340

scaling to restore initial total variances is not implemented yet.

To populate Uα
vert, a similar approach is adopted; a Gaspari-Cohn function is used with vertical localisation length-scale

vα. Note that the target vertical localisation matrix Lvert is a correlation matrix and so must be positive semi-definite, so

truncation of eigenvectors is not required. Since Uα
horiz and Uα

vert are separate, it is possible to have a different Lvert for345

each horizontal eigenvector. However, for simplicity, the default setup in the ABC-DA system uses the same Lvert for each

horizontal eigenvector. As for Lhoriz the vertical eigenvectors are retrieved through the eigen-decomposition of Lvert and used

to populate Uα
vert such that Lvert =Uα

vertU
α⊤
vert (where Uα

vert = Fα
vert(Λ

α
vert)

1/2, and Fα
vert and Λα

vert are the eigenvectors

and eigenvalues respectively of the imposed vertical localisation matrix).

3.3 Generation of ABC analysis ensemble350

After the initial ensemble has been generated (Section 3.1) using the method of Magnusson et al. (2009), and the initial hybrid

control analysis has been retrieved (Section 3.2), the next step is to generate analysis ensembles (Fig. 1, green segments). The

ensemble then proceed, via the forecast model (Fig. 1, upper right brown segments), as a forecast ensemble which is used in

the next hybrid DA step. Various methods have been used in previous studies, such as singular vectors (Buizza et al., 1993),

bred vectors (Toth and Kalnay, 1993; 1997), perturbed observations (Houtekamer and Derome, 1995), Ensemble Kalman filter355

(EnKF; Evensen, 1994), Ensemble Transform Kalman Filter (ETKF; Bishop et al., 2001), and other square-root filters. Here,

we focus mainly on the EBV method. This method has useful information about the nature of dynamical error growth about

the analysis state at each cycle, but is uninformed about the observation network.

The ensemble, which is run in parallel to the hybrid DA are important components in hybrid-EnVar since they provide the360

means to compute Xf
t in Eq. (9). The success of the scheme depends on the extent to which the ensemble forecasts can
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appropriately represent the background error statistics for the ABC-DA system, so proper design of the ensemble system is

critical. We construct the analysis ensemble around the hybrid control analysis (i.e. adding ensemble perturbations to the hybrid

control analysis; see below), so the ensemble is "DA-centred".

3.3.1 Ensemble bred vectors365

In this approach, we consider a variant of the bred vectors method – the EBV method (Balci et al., 2012). The basic bred

vectors method (Toth and Kalnay, 1993) is generally simple to implement and has a cheap computational cost. The idea relies

on breeding perturbations by running the non-linear forecast model for a fixed period for pairs of forecast ensemble members,

taking the difference between the two forecasts, and then scaling the difference to have a specified and fixed amplitude. This

process "breeds" the fastest growing error modes. This is repeated to retrieve the required number of error modes, and the370

resulting perturbations are respectively added to the hybrid control analysis to generate an analysis ensemble. The intention is

that these perturbations should adequately sample the space of possible analysis errors.

The main difference between the bred vectors and EBV methods lies in the scaling of the perturbations at each cycle. In the

bred vectors method, the perturbations are scaled to maintain a fixed amplitude across cycles for each ensemble member. The375

scaling is independent for each ensemble member and there is therefore no mechanism to compare the dynamics with pertur-

bations of the other members. The EBV method (Balci et al., 2012) on the other hand involves a global scaling factor, which

depends on the amplitude of the largest perturbation, and offers better insights into the relative behaviour of nearby ensemble

trajectories. Perturbations that have an amplitude smaller than the largest perturbation of the ensemble then play a smaller role

after scaling; in other words, ensemble trajectories that are clustered around the control member trajectory are less important380

for identifying dominant directions of error growth. An in-depth comparison of the bred vectors and EBV methods is provided

in Balci et al. (2012).

To generate the analysis ensemble, a target maximum amplitude ϵ0 is required, but this opens the question on what to choose

for ϵ0. Here, we use ϵ0 = ϵrf (the mean total energy norm of the initial ensemble of states), although other choices are possible
:
,385

::::
such

::
as

:::::::
running

:
a
:::::
series

::
of

::::::::::
experiments

::::
and

::::::
finding

:::
the

::::::
average

:::::::
analysis

:::::
error

::
to

:::::::
estimate

:::
the

:::::::
analysis

:::::::::
uncertainty. This scaling

factor is fixed across perturbations, so at each cycle the perturbations are scaled by the same ratio rebvt , which is used and

defined as follows:

δxfk
t =

1√
2
rebvt (xfk

t −xfc
t ), rebvt =

ϵ0

max[|xfk
t −xfc

t |2Etot
]
, (17a)

xak
t = xac

t + δxfk
t (17b)390

where xfk
t and xfc

t are the kth ensemble and control forecast from the previous cycle respectively, δxfk
t is the kth scaled

ensemble perturbation at time t. The kth member of the analysis ensemble xak
t is centred on the hybrid control analysis xac

t

produced by the DA step (Section 3.2). The 1√
2

factor is not necessarily required because we are computing differences be-
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tween individual ensemble member forecasts and the same control member forecast, but we have included it as a deflation

factor with our choice of ϵ0. It is worth noting that the EBV method is not formally consistent with Kalman filter theory, but395

will not suffer from filter collapse as long as the ϵ0 chosen is well-tuned.

It is not uncommon to use such a set-up (i.e. separate hybrid deterministic and ensemble systems for, respectively, the first and

second moments of the posterior). While the hybrid control analysis involves both the ensemble and climatological contribu-

tions to the background error covariance matrix Eq. (15), the computation of analysis perturbations involves only the forecast400

ensemble and neglects the climatological contributions. While this is a formal discrepancy, we assume that this setup is an

adequate from a practical perspective.

4 Data assimilation experiments using the hybrid-EnVar scheme in a tropical setting

For this study, the Unified Model output is retrieved from a tropical convective-scale NWP system over the Maritime Continent

(SINGV-DA; Heng et al., 2020). SINGV-DA operates on a 1.5 km core horizontal grid, with a model top height of 38.5 km.405

Longitude-height slices of fields u and v around 2◦N are extracted from the SINGV-DA output by placing these fields onto

the 1.5 km ABC model grid for the lowest 60 levels (up to around 18 km height), resulting in a 364 × 60 ABC model grid.

These initial u and v fields are then modified to make them compatible with the ABC model’s periodic boundary conditions,

and the remaining fields, w, ρ̃′, and b′ are derived following the procedure in Section 4.1 of Bannister (2020). For the ensemble

system, 30 initial ensemble members are generated following Section 3.1, excluding the control state reconfigured from the410

longitude-height slice. This is a typical ensemble size used in operational NWP systems.

Thus far, a tropical setting has not yet been explored in the ABC-DA system using traditional variational methods, let alone

hybrid-EnVar methods. To represent a tropical setting of the ABC model, a value of f = 10−5 s−1 is used. This corresponds

approximately to a value of f at a latitude of 4◦N in an NWP system. The other model parameters are set as follows: A= 0.02415

s−1, B = 0.01, C = 104 m2s−2. A series of hourly-cycling multi-cycle DA observation system simulation experiments are

conducted to demonstrate the incorporation of ensemble-derived background error covariances in hybrid-EnVar DA. The hy-

brid extension of 3DVar-FGAT may be termed hybrid-En3DVar-FGAT.

We run four experiments with the following configurations:420

(a) 100% Bc (i.e. no flow-dependency, equivalent to 3DVar-FGAT),

(b) 50% Bc, 50% Be; hybrid-En3DVar-FGAT (i.e. flow-dependency with an equal contribution from Bc and Be),

(c) 20% Bc, 80% Be; hybrid-En3DVar-FGAT (i.e. flow-dependency with most contribution from Be),

(d) 100% Be; pure En3DVar-FGAT (i.e. no contribution from Bc).

14



These experiments are referred to as EBV(a) to EBV(d) accordingly. Note that configuration (a) does not use ensemble infor-425

mation, but the experiment is named as EBV(a) for ease of reference.

4.1 Implied background error covariances

To first illustrate
::
To

:::::
show the workings of Eq. (8) (or equivalently Eq. (15)) and the localisation, we compute the

:
a
::::::::
selection

::
of implied background error covariances, with various weights (following the list of experiments)

::
the

:::::::
various

::::::
weights

:
assigned

to Bc and Be , correspondingly referred to as configuration
::
(as

:::
the

::::::
above

::::::::::::
configurations

:
(a) to (d)

:
). This is similar to per-430

forming pseudo-single
::::
single

:
observation experiments and retrieving the analysis increments. For this illustration,

:::
Be,

::::::
spatial

:::::::::
localisation

:::::::::::
lengthscales

::
of hα = 100 km and vα = 5 km are setfor the spatial localisation, and with no inter-variable locali-

sationfor Be. The 1-hour forecast ensemble perturbations initialised from the initial ensemble .
::::
The

::::::
implied

::::::::::
background

:::::
error

:::::::::
covariances

:::
are

:::::
valid

::
for

:::
the

::::
time

::
of

:::
the

::::
first

::::
cycle

::::
after

::
a
::::
cold

:::
start

:
(i.e. valid at T+0in Fig. 1; first cycle after cold start) are used

to calibrate U. For comparison
:
)
:::
and

:::
use

::::::::
one-hour

:::::::
forecast

::::::::
ensemble

::::::::::::
perturbations.

:::
For

:::
Bc, the same ensemble perturbations435

are also used in the construct Xf
t . Thus, configuration

:
is

::::
used

::
as

:::::::
training

::::
data

::
to

:::::::
calibrate

:::
U.

:::::
Figure

::
3
:::::
shows

:::
the

:::::::
implied

::::::::::
background

:::::
error

::::::::::
covariances

::
of

::̃
ρ′,

::
v
::::
and

::
b′

::::
with

::::::
respect

::
to

::
a

::::
fixed

::̃
ρ′
:::::
point

::
in

:::
the

::::::
middle

:::
of

:::
the

::::::
domain

:::
for

:::
the

::::
four

::::::::::::
configurations

:::::
(four

:::::
rows).

::::::::::::
Configuration

:
(a) (top row) is showing

:::::
shows

:
the implied background error

covariances that are modelled
:::::
purely

:
by U, and configuration (d) (bottom row) is essentially showing the background error440

:::::
shows

:::
the

::::::
purely

::::::::::::::
ensemble-derived

:
covariances with spatial localisation (implied by Uα).

In all cases, the implied background error covariances for the first cycle after a cold start are computed with respect to a ρ̃′

point near the centre of the domain. Figure 3 shows the resulting implied background error covariances of ρ̃′, v and b′ with

respect to this ρ̃′ point for the four configurations
:::::::::::
Configurations

:::
(b)

::::
and

::
(c)

:::
are

::::::
linear

:::::::::::
combinations

::::
with

:::::::
different

::::::::
weights,

::
as

:::::::::::
demonstrated

::
by

:::
Eq.

:
(8).445

In
:::
For

:::::
ρ̃′-ρ̃′

:::::::::
covariances

:::
in

:::::::::::
configuration

:::
(a)

:::
for

::::
pure

::::::::::::
3DVar-FGAT,

:::
the

::::::
central

::::::
region

::
of

:::::::::::::
auto-correlation

:::
has

:::::::::
horizontal

::::
and

::::::
vertical

::::::::::
lengthscales

::
of

::::
100

::::
and

::
2 km

::::::::::
respectively,

::::
and

:
is
::::::::::
surrounded

::
by

:::::::::::
oscillations,

:::::::
possibly

::::::::
reflecting

:::
the

::::::::
dominant

::::::
gravity

::::
wave

:::::::::::
propagation.

:::
The

:::::::
vertical

::::::::::
lengthscale

::::
here

::
is

::::::
smaller

::::
than

::::
that

:::::
found

::
in

:::
the

::::::::::
mid-latitude

:::::
study

:::
of

::::::::::::::
Bannister (2020),

::::
and

::::
such

:
a
:::::::

contrast
::::::::

between
:::
low

::::
and

::::::
higher

:::::::
latitudes

::
is
:::::

seen
::
in

:::::
other

:::::::
studies,

:::
e.g.

:::::::::::::
Ingleby (2001).

:::::
This

:::
can

:::
be

::::::::
compared

:::::
with450

:::::::::::
configuration

:::
(d)

::
for

::::
pure

:::::
(and

::::::::
localised)

::::::::::::::
En3DVar-FGAT,

:::::
which

::::::
shows

:
a
::::::::
narrower

:::
but

::::
taller

::::::
region

::
of

::::::::::::::
auto-correlation.

:::::
Most

::
of

:::
the

::::::::::
oscillations

:::
are

::::::
beyond

:::
the

::::::::::
localisation

::::::
region

:::
so

:::
are

:::
not

::::::
visible

:::::
apart

::::
from

:::::
small

::::::::
negative

:::::
values

:::
to

:::
the

::::
west

:::
of

:::
the

:::::::::::::
auto-correlation.

:::
The

::::
ρ̃′-v

::::::::::
covariances

::
in configuration (a) ,

:::::
follow

::::
from

:
the use of the geostrophic balanceequation when calibrating

::::::::::
geostrophic455

:::::::
balance,

:::::
which

::
is

:::::::::
manifested

:::
in U manifests itself in the implied covariances between ρ̃′ and v

::::
(Eq.

:::
(2a)

:::
in

::::::::::::::
Bannister (2020)

:
). The v pattern is consistent with an anti-cyclonic field around the source point (i.e. positive and negative v covariances west

and east of the positive ρ̃′ source point respectively). Since f is smallin the tropical setting, these implied geostrophic v ,
:::::
these
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covariances are also small. Contrasting this with configuration (d), it appears that the ensemble-derived v covariances are more

substantialwith respect to the source point (
:
, and are of opposite sign), suggesting that there exists some (other) mass-wind rela-460

tionship
:::::::::
manifested in Be (e.g. related to

::::::::
equatorial

:
gravity wave processes ). The other implied covariances in configurations

(b) (second row) and (c) (third row) are simply linear combinations of configurations (a) and (d) , as demonstrated by Eq. .

Further discussion on the appropriate balances and multi-variate relationships in the background error covariances in a tropical

setting will be explored in a separate study.
:::
not

:::::::::
represented

::
in

::::
U).

465

The implied

:::
The

:::::
ρ̃′-b′

::::::::::
covariances

::
in

::::::::::::
configuration

:::
(a)

::::::
follow

::::
from

:::
the

::::
use

::
of

::::::::::
hydrostatic

:::::::
balance,

::::::
again

:::::::::
manifested

::
in
:::
U

::::
(Eq.

:::
(3)

:::
in

:::::::::::::
Bannister (2020)

::
).

::::::::::
Hydrostatic

::::::
balance

::::::
relates b′ covariances in configurations (a) and (d)are spatially similar in terms of sign

(positive and negative right below and above yellow cross, respectively), but the magnitudes are smaller with Be:::::::::
increments

::::
with

:::
the

::::::
vertical

::::::::
gradient

::
of

::̃
ρ′

::::::::::
increments,

::::
and

:::
the

::::::
top-left

::::
and

:::::::
top-right

::::::
panels

:::
are

:::::::::
confirmed

::
to
:::

be
:::::::::
consistent

::
in

:::
this

:::::
way.470

::
In

:::::::::::
configuration

:::
(d),

::::
the

::::
ρ̃′-b′

::::::::::
covariances

::::
have

::::::
similar

:::::::
vertical

:::::::
patterns

::::::
within

:::
the

::::::::::
localisation

::::::
region,

::::::::
although

:::
are

::::::
weaker.

As noted in Bannister (2020), the Bc covariances tend to be larger than their Be counterparts
::::
even

::::::
though

::::
both

:::
use

:::
the

:::::
same

::::::
training

::::
data

:::
for

:::::::::
calibrating

:::
the

:::::::::
transforms, but the broad structures are similar.

Note that the implied background error covariances between ρ̃′ and u and w are each zero in configuration (a) by definition of475

U (Bannister, 2020). By contrast, in configurations (b), (c) and (d), the implied background error covariances are prescribed

directly between the associated model variables, following the use of
::::::
implied

::
by

:
Uα (not shown).

::::
Even

::::::
though

:::
the

:::::::::::
multi-variate

:::::::::::
background

::::
error

:::::::::::
relationships

:::::::
relevant

::
to

:::
the

::::::
tropics

::::
are

:::::
likely

::
to

:::
be

:::::::
different

:::::
from

:::::
those

::
at

:::::::::::
mid-latitudes,

:::
the

:::::
same

:::::::
balance

:::::::::
conditions

::::::::
designed

:::
for

:::::::::::
mid-latitudes

:::
are

:::::
often

::::
used

::
in
:::
U

:::
for

:::::::
tropical

::::::
settings

:::
(as

:::::
they

:::
are480

:::::
here).

:::
By

::::::::
exploring

:::::::::::::::
ensemble-derived

:::::::::::
multi-variate

::::::::::
background

:::::
error

:::::::::::
relationships,

:::
we

:::::
may

::
be

::::
able

:::
to

:::::::
identify

:::::::::
alternative

:::::::
balances

:::::::
inherent

::
in

:::
the

:::::::::
dynamical

:::::
fields.

::::
This

::::
will

::
be

::::::::
explored

::
in

:
a
:::::::
separate

:::::
study.

:

4.2 Details of observation system simulation experiments

In all experiments, 200 observations of each variable (u, v, w, ρ̃′ and b′), which are equally spaced throughout the domain, are

assimilated at every hourly cycle. The observations are sampled from a "truth" run, with added observation noise following a485

Gaussian distribution. The observation error standard deviations are chosen to be approximately 10% of the variable’s root-

mean-square value as seen in the "truth" run. These are 0.2 ms−1, 0.2 ms−1, 0.01 ms−1, 1.5× 10−4 and 1.5× 10−3 ms−2

for u, v, w, ρ̃′ and b′ respectively. All generated observations are valid at the background/analysis time of each cycle, so there

is no difference in the analysis between 3DVar and 3DVar-FGAT (and indeed 4DVar if it were implemented).
:::
The

::::::
number

:::
of

::::::::::
observations

:::
are

:::::
≈ 1%

:::
of

:::
the

::::::
degrees

::
of
::::::::

freedom
::
of

:::
the

::::
state

:::::
(both

::::::
spatial

:::
and

::::::::::::
multi-variate),

::
to
::::::
mimic

::::
how

:::::::::::
observations

:::
are490

:::::
sparse

::
in

:::
the

:::::::
tropical

::::::
setting.
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The initial background of the deterministic system is determined from the initial "truth" plus a small background noise pertur-

bation δx=Uδχ, where δχ is drawn randomly from N (0,I). As a reminder, the initial ensemble perturbations are generated

using the random field perturbation method described in Section 3.1. In order to reduce the effect of random noise on the495

experiments, the ABC-DA system is first spun-up for 50 one-hour cycles, with the expectation that the DA-centred ensemble

system and deterministic system will have lost memory of the particular way that the system was initialised from a cold start.

The information from the 50th cycle of spin-up is then used in the first cycle of all the actual experiments.

During the spin-up configuration testing, we noticed that the inclusion of vertical localisation in Be was particularly detri-500

mental to the evolution of the w field. Investigation revealed that this was due to the introduction of hydrostatic imbalance in

the analysis increments (not shown). A similar well-known issue to do with horizontal localisation introducing geostrophic

imbalance was discussed in Section 3c of Lorenc (2003). We include more comments on the hydrostatic imbalance issue in

Appendix C. For this reason, vertical localisation was excluded in Be in the spin-up process and in all experiments. After in-

specting the other fields during spin-up configuration testing, we found that in most configurations, the hybrid control analysis505

gradually converged around the "truth" run as the observations were assimilated over the 50 spin-up cycles, which is logically

expected. Particularly using the EBV(d) configuration, the evolution of the fields were reasonably in line with the "truth" run,

so this was the chosen configuration which was run for 50 spin-up cycles, referred to as the spin-up run.

To ensure a fair comparison in the results, the spin-up run provides the same starting background (50th cycle forecast),510

:::::::::
empirically

:::::
tuned

:::::
EBV

:
ensemble and ensemble-derived error modes (if required) for the first cycle of all the actual exper-

iments. Each experiment is run for 50 cycles and only differ in the DA algorithm configurations after spin-up. Where Be

is required, we use hα = 20 km for the horizontal localisation, while not performing any inter-variable localisation (see Ap-

pendix B).
:::
The

::::::::
horizontal

::::::::::
localisation

::::::::::
length-scale

::::
was

:::::::::
determined

::
by

:::::::::
comparing

::::
with

:::
the

:::::::::
horizontal

:::::::
distance

:::::::
between

:::::::
adjacent

::::::::::
observations

:::::
(≈23 km

:
).
:
For the minimisation, a total of 75 inner loops within a single outer loop is used. This was determined515

after testing to ensure that sufficient convergence was attained for all cycles in the experiments. This is demonstrated in Fig. 4,

which shows the minimisation of the cost function for the first cycle of the EBV experiments. For this cycle, the cost function

was minimised the fastest and slowest in EBV(d) and (a) respectively. The analysis misfit to assimilated observations was also

the largest in EBV(d) with Jo ≈ 1000
::::::::
Jo ≈ 1500

:
after minimisation. However, it is important to note that this metric is not a

particularly useful indicator of analysis quality, but rather how each scheme draws the analysis towards the observations (Wang520

et al., 2008b). We would expect that the minimum of the cost function would approximate half the number of observations (i.e.

Jmin ≈ Nobs

2 ::::::::::::::::
Jmin ≈ Nobs

2 = 500, the expected value of a chi-squared PDF), so EBV(c) neatly matches our expectations.

In addition to the experiments, a free background run, hereafter referred to as FreeBG, is performed starting from the same

50th cycle forecast of the spin-up run. This is used as the control run to assess if the DA in the experiments is adding value by525

bringing the deterministic run trajectories closer to the "truth" or if the trajectories are simply following the natural evolution

of the system and neglecting the observational information.
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4.3 Sensitivity to weighting of Bc and Be

Typically for the hybrid-EnVar scheme, tuning of the weights (β2
c and β2

e ) for Bc and Be is performed empirically to to as-

sess the best configuration which combines the benefits from both sources of background error statistics. Figure 5 shows the530

comparison of domain-averaged analysis errors (root-mean-square errors; RMSE) with respect to the "truth" for the EBV and

FreeBG experiments.

The cycle-averaged analysis errors (Fig. 5, bottom right panel) for all prognostic variables except v are generally smaller for

the EBV experiments compared to FreeBG, with an RMSE ratio less than 1. During the simulation, the w, ρ̃′ and b′ errors were535

decreasing, suggesting that the deterministic run trajectories of the EBV experiments were converging around the "truth" be-

cause of the availability of observational information. The u analysis errors were decreasing in EBV(c) and EBV(d), but were

increasing in EBV(a) and EBV(b). Throughout the 50 cycles, the v analysis errors were generally increasing in the EBV exper-

iments. This peculiar issue was exacerbated when the weighting towards Bc was increased, suggesting that the issue originates

from Bc.
:
A
::::::
feature

:::
of

:::
the

::
u,

::̃
ρ′,

::::
and

::
b′

::::::
RMSE

::::
time

::::::::
sequences

::
is
:::
the

:::::::::
eight-hour

::::::::::
periodicity,

:::::
which

::
is

::::
also

:::::::
apparent

::
in

:::
the

:::::
basic540

::::::::
dynamical

:::::::::::::::
root-mean-square

:::::
fields.

::
A
:::::::
normal

:::::
mode

:::::::
analysis

:::
(not

:::::::
shown)

:::
and

:::::::::
inspection

::
of

:::
the

:::::
basic

:::::::::
dynamical

:::::
fields

::::::
reveals

:::
that

:::::
there

::
is

:
a
:::::::
16-hour

::::::
period

:::::
(local

:::::::
maxima

:::
to

::::
local

::::::::
maxima),

::::::
which

::
is

::::::
within

:::
the

::::::
period

:::::
range

::
of

::::::::::::::::::::
low-zonal-wavenumber

::::::
gravity

::::::
waves,

:::::::::
suggesting

:::
that

:::
this

:::::::
feature

:
is
::::
due

::
to

:::
the

::::::::
dominant

::::::
gravity

:::::
waves

::
in
::::
this

::::::
system.

After repeating
::
To

:::
test

::
if
:::
the

:::::
issue

::::
with

:::
the

::
v

:::::::
analysis

:::::
errors

::::
was

:::
due

::
to

:::
the

::::::
choice

::
of

:::::::
training

:::::
data,

::
we

::::::::
repeated EBV(a) but545

with Bc calibrated using other training data (e.g. the ensemble perturbations from the 50th cycle of the spin-up run instead of

those from the initial forecast ensemble), it was found that the u analysis errors decreased during the simulation instead and

were smaller compared to FreeBG (not shown). This suggests that the issue with the u analysis errors can be resolved by better

selection of the training data source used to calibrate Bc. However.
:::::
Even

::::
with

:::::
more

::::::::::::::
time-appropriate

::::::
training

::::
data

::::
(but

:::::
same

::::::::
variances), the issue with the v analysis errors remained (

:::
was

::::
only

::::::::
partially

:::::::
resolved

:::::::
(smaller

:::::::
increase

::
in

:::::::
RMSE; not shown).550

We note that the issue with the v analysis errors
::::
Also,

::::
this

:::::
issue does not appear to occur in mid-latitudinal experimental

setups in Bannister (2021). From the implied background error covariances in Section 4.1, there exists some mass-wind rela-

tionship in Be that is not well-represented in Bc through the geostrophic balance relationship since f is small in the tropical

setting. Repeating EBV(a), but omitting the geostrophic balance constraint entirely in the calibration of Bc (i.e. treating ρ̃′

and v background errors univariately) also did not resolve the issue (not shown). We speculate that the issue could be due to555

the absence of a suitable balance constraint for prescribing the mass-wind relationship for Bc. The direct prescription of the

(non-negligible) ρ̃′-v background error covariances from the ensemble in EBV(d) did reduce the analysis errors in v, but were

still larger (although marginally) than those of the FreeBG. The above discussion ,
::
or

::
a

:::::
likely

:::
lack

::
of

::::::
tuning

::
of

:::
the

::::::::
variances

:::
for

:::
Bc.

:::::
Early

::::::
results

::::
with

:
a
:::::
tuned

:::
Bc::::::

showed
::::
that

:::
the

::::
issue

:::::
with

::
the

::
v
:::::::
analysis

:::::
errors

:::::
could

::
be

::::::::
resolved

::
by

::::::::
reducing

:::
the

::::::::
variances

::
of

::
all

::::::::
variables

:::::::::::
substantially.

::::
The

:
warrants further investigation in a separate study, to

::::
tune

:::
the

::::::::
variances

:::
for

:::
the

::::::
system

:::
or560
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assess the possibility of deriving a balance relationship between v and ρ̃′ for the tropical setting.

Comparing between the EBV experiments, the u analysis errors and v analysis errors are generally the smallest in EBV(d),

indicating that allocating full weight to Be in this setup is ideal for minimising the horizontal wind-related analysis errors.

The w, ρ̃′ and b′ analysis errors are arguably the smallest in EBV(c), with the smallest cycle-averaged RMSE. The results565

presented here are not unsurprising given that previous studies evaluating hybrid-EnVar DA in simplified models (e.g. Hamill

and Snyder, 2000) and NWP systems (e.g. Montmerle et al., 2018; Bédard et al., 2020) also show that the best configuration

appears to rely on a combination of both Be and Bc, and not solely one or the other.

4.4 Ensemble trajectories and spread-error relationship570

We can better appreciate the robustness of the ensemble by plotting the trajectories of the ensemble, its mean, the FreeBG, and

the "truth" (Fig. 6). To avoid over-smoothing the local spatial variations in the fields, the trajectories are computed by taking a

gridpoint-averaged value of the fields for a subset of the full domain; a box located at the centre of the domain (model levels

25 to 35, longitudinal gridpoints 177 to 187
:::
127

::
to

::::
237). We have also investigated the trajectories using other subsets (boxes)

distributed around the domain, but the main ideas are the same so we have excluded discussion on them.575

In Fig. 6, the spread of the EBV(d) ensemble is centred around the ensemble mean throughout the 50 cycles. The "truth" tra-

jectory is also generally contained within the spread of the ensemble, particularly for u, ρ̃′ and b′. There were no hints
:::::::
evidence

of filter collapse, nor bimodalities, which indicate that the DA-centred ensemble generated using the EBV method is healthy.

580

It is common practice to also compare the ensemble spread with the RMSE, which for a perfectly reliable large ensemble

:::::
where

::::::::::
observation

::::::
density

::::
and

:::::
errors

:::
are

:::::::::
accounted

:::
for, the two quantities should be approximately the same (Leutbecher,

2009). Fortin et al. (2014) provides additional justification and
:
In

:::
the

:::::
EBV

:::::::
method,

:::
the

::::::::
ensemble

::::::
spread

::
is

::::::
largely

:::::::::
dependent

::
on

:::
the

::::::
choice

::
of

::
ϵ0::::

since
::
it
::::
does

:::
not

:::::::
account

::
for

:::
the

::::::::::
observation

::::::::
network,

:::
but

:::
this

::::::
method

::
is

:::
still

::::::
worth

:::::::::
considering

::
as
::
a
:::::::
"control

:::::::
method"

:::
and

:::::::::
comparing

::::
with

::::::
future

:::::::
methods

::::::::
consistent

:::::
with

::::::
Kalman

:::::
filter

::::::
theory.

::
In

:::
the

::::::::::
computation

::
of
:::
the

::::::::
ensemble

:::::::
spread,585

::::::::::::::::
Fortin et al. (2014) also cautions against using the wrong metricto compute the ensemble spread. Following their recommended

approach, we define the gridpoint-averaged ensemble spread S̄t using the square-root gridpoint-averaged ensemble variance:

S̄t =

√√√√ 1

Ng

Ng∑
i=1

S2[i, t] (18)

where the ensemble spread S is computed using Eq. (4) of Whitaker and Loughe (1998). Ng in this case refers to the number

of gridpoints over which the average is taken (i.e. the points within the same box used for Fig. 6), and i is the gridpoint index590

which represents points in the box. The RMSE is computed as before, except now over points within this box.
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Figure 7 shows S̄t for each model quantity in the EBV(d) ensemble. These are benchmarked against the RMSE and the (time-

stationary) implied background error standard deviations at model level 30 of Bc, which are also plotted. For u
:::
and

::̃
ρ′, ρ̃′ and

b′, the ensemble spread approximately matches the RMSEin both EBV(d), but for ,
::::::::::
particularly

:::
for

::::
later

::::::
cycles

::
as

:::
the

::::::
hybrid595

::::::
control

:::::::
analysis

::::::::
converges

::::::
around

:::
the

:::::::
"truth".

:::
For

:
vand

:
, w

:::
and

::
b′, the ensemble is clearly under-dispersive. For all variables,

the ensemble spread is also much smaller than the corresponding implied background error standard deviation at model level

30 of Bc.

::::
This

:::::::
strongly

:::::::
suggests

::::
that

:::
the

:::::
issue

::::
with

::
v
:::::::
analysis

::::::
errors

::::::::::
highlighted

::
in

:::
the

::::::::
previous

::::::
section

::
is

::::
due

::
to

::::
lack

::
of
::::::

tuning
:::

of

::
the

:::::::::
variances

::
of

:::
Bc,

::::::
which

:::::::
depends

:::
on

:::
the

::::::
specific

::::
data

:::::::::::
assimilation

:::::
setup.

:
Note that the ensemble spread is computed with600

respect to the ensemble mean (Whitaker and Loughe, 1998), but the RMSE is computed between the hybrid control analysis (a

surrogate to the ensemble mean) and the "truth". The spread-error relationship from this setup suggests that the DA-centering

did not result in major statistical inconsistencies with the EBV ensemble. While the spread-error relationship is a useful

diagnostic, it is not so straightforward to directly relate the ensemble spread to the eventual skill of the hybrid-EnVar DA

system. Hence, it is not easy to determine whether to further inflate or deflate the EBV analysis perturbations by considering605

other choices of ϵ0.

4.5 Sensitivity to number of ensemble members

As mentioned in Section 3.2.1, having a finite number of ensemble members will lead to sampling error in Pf
e [t]. Logically,

decreasing the number of ensemble members N used to compute Pf
e [t] should result in larger sampling errors. For a fixed L

(as in Section 4.2), we demonstrate the sensitivity of the the skill of the hybrid-EnVar DA system to N in the ABC-DA system.610

We perform two additional experiments as variants of EBV(d) to maximise the impact of the ensemble size changes. The

experiments follow the same configuration as EBV(d), but with only 20 and 10 ensemble members in the ensemble instead,

referred to as EBV(d20) and EBV(d10) respectively, instead of the 30 members used until now.

Figure 8 shows the comparison of cycle-averaged analysis errors as N is varied. The RMSE is smallest in EBV(d) for almost615

all prognostic variables. Reducing the ensemble size from 30 to 20 in EBV(d20) leads to an increase in the RMSE, indicating

poorer performance of the ABC-DA system. A further reduction of the ensemble size to 10 in EBV(d10) leads to the poorest

performance overall. In this simple setup, these results are expected following the above argument that larger sampling errors

are introduced into the system when N is smaller. For ρ̃′ and b′, the RMSE ratio in EBV(d10) is even larger than in EBV(a),

indicating that the pure EnVar setup may perform poorer than its 3DVar-FGAT counterpart when the ensemble size is too small620

(Fig. 8; bottom right panel).

It is important to highlight that the results are specific to this ABC-DA setup where the localisation length-scales are kept fixed

(and are arguably quite tight) across the experiments. For other setups where the localisation length-scales are broader, the

optimal ensemble size would be expected to be larger. It would also be worth exploring if a further increase in the ensemble625

size by orders of magnitude would yield a "saturation point" where there is little additional benefit to the system. However,
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one should also be aware of ensemble clustering (Amezcua et al., 2012) in very large ensembles. This issue has been shown to

negatively impact hybrid-EnVar DA in simpler models such as the three variable Lorenz-63 model (Goodliff et al., 2015). In

the case of the much larger ABC-DA system though, it is unlikely that N could practically be made large enough relative to n

to be exposed to this handicap.630

5 Summary

In this article, we document the development of the hybrid ensemble-variational data assimilation system for the ABC model

(Petrie et al., 2017), built on the existing variational ABC-DA system (Bannister, 2020). The hybrid ensemble-variational algo-

rithm that is introduced is based on the alpha control variable approach of Lorenc (2003). Key details related to the spatial and

inter-variable localisation are discussed; the approach coded in the ABC-DA system allows flexibility in the localisation, for635

use in future exploratory studies. The hybrid ensemble-variational algorithm requires an ensemble system that is run parallel

to the deterministic components to provide the flow-dependent error modes. To achieve this, the random field perturbations

method is introduced in the ABC model for generating an initial ensemble. The ensemble bred vectors (EBV) method is also

introduced in the ABC-DA system to propagate the ensemble, which is centred on the hybrid control analysis at each cycle.

640

Using a tropical setting of the ABC model, we test both ensemble propagation methods (30-member ensemble) in a series

of hourly-cycling multi-cycle data assimilation observation system simulation experiments with hybrid ensemble-variational

data assimilation. In the experiments, 3DVar-FGAT (First Guess at Appropriate Time) is employed together with EBV us-

ing different weightings assigned to the implied climatological (or static) background error covariance matrix (Bc) and the

implied ensemble-derived background error covariance matrix (Be); (a) 100% Bc (i.e. no flow-dependency, equivalent to645

3DVar-FGAT), (b) 50% Bc, 50% Be; hybrid-En3DVar-FGAT (i.e. flow-dependency with an equal contribution from Bc and

Be), (c) 20% Bc, 80% Be; hybrid-En3DVar-FGAT (i.e. flow-dependency with most contribution from Be), and (d) 100% Be;

pure En3DVar-FGAT (i.e. no contribution from Bc).

The cycle-averaged analysis root-mean-square errors with respect to the "truth" for all prognostic variables except v were650

generally smaller for the EBV experiments compared to the free background. All experiments that involved the ensemble out-

performed pure Bc for all variables. EBV(c) was the best performing configuration for w, ρ̃′ and b′, while EBV(d) was the best

performing configuration for u and v. We also noted that the v field gradually diverged from the "truth" during the simulations

for experiments involving Bc, even though fields of other variables were converging around the "truth" as logically expected.

Through further assessment of the implied background error covariances and sensitivity tests, it was found that for the tropical655

setting of the ABC model, there exists some mass-wind relationship that is captured in Be which is not well-represented by

the (weak) geostrophic balance constraint in Bc. We speculate that the issue with v for configurations that involve Bc could be

due to the absence of a suitable balance constraint for prescribing the mass-wind relationship which may exist in the tropical

setting of the ABC model, warranting further investigation in a separate study since it is not trivial to derive one. The results
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demonstrate the advantages of employing hybrid ensemble-variational data assimilation in the ABC-DA system over traditional660

variational data assimilation.

An inspection of the EBV(d) ensemble trajectories showed that the ensemble was centred around the ensemble mean through-

out the experiment, with the "truth" trajectory generally contained within the spread of the ensemble. For vand
:
, w

:::
and

::
b′, the

EBV ensemble was under-dispersive, but for other variables
:
u

:::
and

::̃
ρ′, the ensemble spread approximately matched the corre-665

sponding RMSE. The EBV ensemble did not exhibit bimodalities or evidence of filter collapse, indicating that the DA-centred

ensemble generated was healthy.

To illustrate the sensitivity to ensemble members, we performed two additional experiments as variants of EBV(d); EBV(d20)

with 20 ensemble members and EBV(d10) with 10 ensemble members. The cycle-averaged analysis errors for almost all prog-670

nostic variables were smallest in EBV(d). Reducing the ensemble size from 30 to 20, and subsequently to 10 led to an increase

in the RMSE, indicating poorer performance of the ABC-DA system. The results in this simple setup are consistent with the

expectation that larger sampling errors are introduced into the system with a smaller ensemble, thus resulting in larger RMSE.

During the testing and development of the hybrid ensemble-variational method, localisation-related issues like hydrostatic675

imbalance in the analysis increments also became apparent. Similar issues have been documented in previous studies, but we

have included additional comments in this article. Given the rapid adoption and broad shift towards hybrid ensemble-variational

methods in convective-scale numerical weather prediction, we hope that the ABC-DA system can prove useful in providing

further insights and highlight other potential issues that may arise in such methods. Particularly for the tropics, further work

is required to better understand the characteristics of the ensemble-derived background errors, such as disentangling its flow-680

dependency or designing the localisation to isolate or identify important multi-variate relationships.

Code availability. The model and data assimilation system are written in Fortran 90/95, and the plotting code is written in Python. The

upgraded system branches from ABC-DA v1.5. The source code, experiment and plotting scripts are open source and freely available on a

Github repository at https://doi.org/10.5281/zenodo.6646951.

Appendix A: Details on the random field perturbations method685

From Section 3.1, the random field perturbations method is used to generate the initial ensemble states for the ABC ensemble

system. Equation (7a) describes the implementation where pairs of states are randomly chosen from a long "truth" run.

In Magnusson et al. (2009), there are additional constraints placed on the choice of random fields. The dates must be from dif-

ferent years and must be from the same season in order to eliminate inter-annual correlations in the perturbations yet preserve690
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the seasonal characteristics of the variability. In the ABC model, we have attempted to capture the essence of these constraints

even though there are no seasons in the ABC model.

For the experiments, the long "truth" run is generated with the initial control state xc
cs as the initial condition, and is run for 50

days. ABC model dumps are produced every hour, resulting in a total of 1200 state dumps. A minimum threshold of 100 hours695

is set between the validity time of each random pair of states, for which they are assumed to be uncorrelated. In other words,

pairs of states are selected randomly and are retained only if they are valid at least 100 hours apart. Additionally, Magnusson

et al. (2009) did not indicate if the dates can be repeatedly selected (i.e. selection from a pool with replacement), so we have

not imposed the additional constraint of selection from a pool without replacement. For the experiments, a total of 1200 state

dumps is sufficiently large compared to the number of pairs required (number of ensemble members, 30 in most of this work).700

One aspect that was highlighted in the implementation was the choice of fixed perturbation amplitude to scale the random

field perturbations. It is not possible to follow the exact approach of Magnusson et al. (2009), using the average analysis error

statistics, in the ABC model. However, we use the same metric (total energy norm) to gauge the initial fixed perturbation

amplitude. As described in Section 3.1, the random field perturbations are scaled towards their mean total energy norm. This705

approach ensures that the random fields perturbations have the same fixed perturbation amplitude, but differ in directions of

error growth.
::::::
Further

::::::
testing

::::
with

::
the

:::::
ABC

::::::
model

::::::
showed

:::
that

::::::::
reducing

:::
the

::::
fixed

::::::::::
perturbation

:::::::::
amplitude

::::::
yielded

:::::::
smaller

:::::
errors

::
in

:::
the

:::::::::::
experiments,

:::
so

:
a
:::::::
deflation

::::::
factor

::
of

:
5
::::
was

:::::::::
eventually

:::::::
adopted.

The total energy norm (Etot) for the random field perturbations are computed using:710

Etot = Ek +Eb +Ee (A1a)

Ek =

∫
ρ̃(u2 + v2 +w2)

2
ρ0 dV (A1b)

Eb =

∫
ρ̃b′2

2A2
ρ0 dV (A1c)

Ee =

∫
Cρ̃′2

2B
ρ0 dV (A1d)

where Ek, Eb, Ee are the kinetic, buoyant and elastic energy respectively, ρ0 = 1.225 kg m−3 is a reference air density, and715

dV is the volume of a gridbox in the ABC model.

Note that as mentioned in Section 3.3.1, we also use Etot in the ensemble bred vectors method to scale the ensemble perturba-

tions for subsequent cycles. Prior to the experiments, we performed some initial testing using the inner product norm instead of

Etot, which yielded similar results between the two norm choices. Since Etot is a metric that is physically meaningful, it was

eventually used for the scaling of the random field perturbations and ensemble perturbations from the ensemble bred vectors720

method for the experiments.
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Appendix B: Accounting for inter-variable covariances – proof of equivalence of two approaches

As highlighted in Section 3.2.2, L (the localisation matrix) can be partitioned into a matrix Uα:

L=UαUα⊤ (B1)

We seek to prove that two approaches used to code χαk and Uα (described below) give the same result when L is applied725

on the same model space vector v (of length NgNvar). Note that L is NgNvar ×NgNvar, which in principle means that the

inter-variable localisation matrix can be set to have any correlation structure, including the limiting cases of full localisation

between different variables (where the corresponding matrix elements are 0), and no localisation (matrix elements are 1). Re-

call that L is used in the DA via a Schur product with Pf
e [t] (Eq. (11)). While the number of rows in Uα is constrained to be

NgNvar, the number of columns can be chosen. The fewer the columns, the smaller the corresponding size of the χαk vectors730

(Eq. (14b)), but the less flexible the implied localisation matrix. The first approach considered is based on Wang et al. (2008a)

(Ng columns) and the second approach is coded in the ABC-DA system (NgNvar columns), inspired by Bannister (2017). The

first approach requires less memory and computation, but has less flexibility than the second approach in terms of multi-variate

localisation choices.

735

For simplicity, the proof is demonstrated using pure EnVar with one non-zero element in v. This is a similar procedure to

computing a column of the implied Bc or Be, but now the implied L is being probed. It is easier to visualise the interac-

tions of the matrix elements by partitioning v into segments of size Ng × 1 based on the ABC prognostic variables, i.e. v =

(vu,vv,vw,vρ̃′ ,vb′)
⊤. Similarly, we can consider blocks, each of size Ng×Ng , used to construct Uα (i.e. Uα

u ,U
α
v ,U

α
w,U

α
ρ̃′ ,

and Uα
b′ ), which will determine the spatial localisations (horizontal and vertical) for each variable.740

The main difference between the two approaches is in the design of Uα. In the first approach, based on Wang et al. (2008a),

Uα (denoted Ũα) is rectangular (NgNvar ×Ng , and χαk has Ng elements), given by:

Ũα =



Uα
u

Uα
v

Uα
w

Uα
ρ̃′

Uα
b′


. (B2)

Applying L (denoted L̃ for first approach) to v yields:745

L̃v = ŨαŨα⊤v =



Uα
u

Uα
v

Uα
w

Uα
ρ̃′

Uα
b′


[
Uα⊤

u Uα⊤
v Uα⊤

w Uα⊤
ρ̃′ Uα⊤

b′

]
v (B3a)
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with the elements given by:

(L̃v)i =

Ng∑
j=1

(Ũα)i,j

NgNvar∑
i′=1

(Ũα⊤)j,i′vi′

 (B3b)

If there is only one non-zero element (the qth element of v), this simplifies to:

(L̃v)i =

Ng∑
j=1

(Ũα)i,j(Ũ
α⊤)j,qvq =

Ng∑
j=1

(Ũα)i,j(Ũ
α)q,jvq (B3c)750

In the second approach, Uα (denoted Ûα) is square (NgNvar ×NgNvar and χαk has NgNvar elements), given by:

Ûα =



Uα
u 0 0 0 0

0 Uα
v 0 0 0

0 0 Uα
w 0 0

0 0 0 Uα
ρ̃′ 0

0 0 0 0 Uα
b′


(B4)

where 0 is a Ng ×Ng block containing zeroes. This is the default configuration that is coded in the ABC-DA system, which

gives an implied L (denoted L̂ for the second approach):

L̂= ÛαÛα⊤ =



Uα
uU

α⊤
u 0 0 0 0

0 Uα
vU

α⊤
v 0 0 0

0 0 Uα
wU

α⊤
w 0 0

0 0 0 Uα
ρ̃′Uα⊤

ρ̃′ 0

0 0 0 0 Uα
b′U

α⊤
b′


(B5)755

Notice that here, L̂ does a full inter-variable localisation, so that the Schur product of L̂ with Pf
e [t] will not retain any inter-

variable covariances. This may be useful if N is small and sampling noise is problematic in Pf
e [t].

Next, we introduce a mapping matrix Î, which consists of Np ×Np blocks of identity matrices (INg
, each of size Ng ×Ng):

Î=
1√
Np



INg
INg

INg
INg

INg

INg
INg

INg
INg

INg

INg
INg

INg
INg

INg

INg INg INg INg INg

INg INg INg INg INg


, (B6)760

where Np is the number of model variables whose inter-variable covariances are retained by the mapping matrix (i.e. Np =

Nvar = 5 in the above). Note that other designs of Î (e.g. replacing some blocks with 0) will allow only the desired retention
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of specific covariances between certain model variables.

Using the second approach of coding Uα and χαk, it is possible to retain the full inter-variable covariances and achieve the765

exact same outcome as the first approach by defining Uα = ÛαÎ. The implied localisation matrix is thus L= 1
Np

ÛαÎÎÛα⊤.

As before, applying L to v yields:

Lv =
1

Np
ÛαÎÎÛα⊤v =

1

Np



Uα
u Uα

u Uα
u Uα

u Uα
u

Uα
v Uα

v Uα
v Uα

v Uα
v

Uα
w Uα

w Uα
w Uα

w Uα
w

Uα
ρ̃′ Uα

ρ̃′ Uα
ρ̃′ Uα

ρ̃′ Uα
ρ̃′

Uα
b′ Uα

b′ Uα
b′ Uα

b′ Uα
b′





Uα⊤
u Uα⊤

v Uα⊤
w Uα⊤

ρ̃′ Uα⊤
b′

Uα⊤
u Uα⊤

v Uα⊤
w Uα⊤

ρ̃′ Uα⊤
b′

Uα⊤
u Uα⊤

v Uα⊤
w Uα⊤

ρ̃′ Uα⊤
b′

Uα⊤
u Uα⊤

v Uα⊤
w Uα⊤

ρ̃′ Uα⊤
b′

Uα⊤
u Uα⊤

v Uα⊤
w Uα⊤

ρ̃′ Uα⊤
b′


v, (B7a)

with the elements given by:

(Lv)i =
1

Np

NgNp∑
j=1

(Uα)i,j

NgNp∑
i′=1

(Uα⊤)j,i′vi′

 . (B7b)770

Note how in this case, the rows of Uα⊤ are the same as in Ũα⊤ from the first approach (Eq. (B2)), but repeated Np times. If

there is only one non-zero element (the qth element of v), then the computation simplifies to:

(Lv)i =
1

Np

NgNp∑
j=1

(Uα)i,j(U
α⊤)j,qvq =

1

Np

Ng∑
j=1

Np(Ũ
α)i,j(Ũ

α)q,jvq =

Ng∑
j=1

(Ũα)i,j(Ũ
α)q,jvq, (B7c)

noting that when Np =Nvar, full inter-variable covariances are retained. In the computation of any inner products of χαk in the

variational algorithm, such as for the minimisation, or in the computation of Je, these also have to be scaled by 1
Np

accordingly.775

The key thing to note here is that when using both approaches with Ũα and Uα respectively, the implied localisation matrices

are the same (L̃= L), as demonstrated by Eq. (B3c) and Eq. (B7c) being the same.
::::::
Given

:::
the

::::::
greater

::::::::
flexibility,

::::
the

::::::
second

:::::::
approach

::::
was

:::::
coded

::
in

:::
the

::::::::
ABC-DA

::::::
system.

Appendix C: Hydrostatic imbalance due to vertical localisation780

According to Eq. (3) of Bannister (2020), the hydrostatic balance relation in the ABC model (also used in the control variable

transform) is given by:

C
∂ρ̃′

∂z
= b′ (C1)

From Eq. (1), the prognostic w equation indicates that the change in w following an air parcel (i.e. a Lagrangian frame of refer-

ence) is given by the source/sink terms C ∂ρ̃′

∂z and b′. This neatly corresponds to hydrostatic balance. In other words, hydrostatic785
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imbalance will lead to sources/sinks in w as the system evolves.

Applying vertical localisation directly to the ensemble-derived error modes via the Schur product results in alterations in the

vertical gradient of the ρ̃′ field, depending on the kurtosis of the correlation curve applied. We can consider the following sce-

nario: Assuming that the ensemble forecasts are hydrostatically balanced on the large scales, one could expect that assimilating790

a single ρ̃′ observation without vertical localisation would result in hydrostatically balanced ρ̃′ and b′ increments. However,

with vertical localisation, the sharpness of the correlation curve superimposes on the ρ̃′ fields in the ensemble-derived error

modes and results in increments that decrease more rapidly with distance (sharper gradient) from the point of observation.

Thus, a larger b′ increment is required in order to maintain hydrostatic balance, but the actual b′ increments are also reduced

by the Schur product. In this scenario, the resulting b′ increments would be sub-hydrostatic.795

During the spin-up configuration testing with vertical localisation applied, it was noted that the root-mean-square value of

the w field was gradually increasing throughout the earlier stages of the spin-up process. Since there exists a restoring A2w

source term in the prognostic b′ equation, the root-mean-square value of the w field does not increase indefinitely because of

corresponding induced changes in the b′ field.800
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Figure 1. Schematic diagram of the ensemble and deterministic workflow for the hybrid-EnVar scheme in the ABC-DA system, illustrated for

an hourly-cycling setup over the first cycle from a cold start. The subscripts refer to the validity time; cs refers to cold start. The superscripts

fk and fc refer to the kth member of the forecast ensemble and the control forecast respectively, ak and ac refer to the kth member of the

analysis ensemble and the hybrid control analysis respectively.
31



Figure 2. Correlation functions (hα = 250 km) with respect to longitudinal gridpoint 50, for an ABC-DA system with 364 longitudinal grid-

points and 1.5 km horizontal grid. The implied correlation functions (orange) are reconstructed from (a) all eigenvectors and eigenvalues of

the eigen-decomposition of Lhoriz , (b) only eigenvectors with non-negative eigenvalues (c) only eigenvectors with non-negative eigenvalues

that are scaled to restore initial total variance, and compared with the original Gaspari-Cohn function (blue).
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Figure 3. Implied background error covariances of ρ̃′ (leftmost column; Cov(ρ̃′, ρ̃′)), v (middle column; Cov(ρ̃′, v)) and b′ (rightmost

column; Cov(ρ̃′, b′)) with respect to a ρ̃′ point (yellow cross) near the centre of the domain for the first cycle after cold start. The rows

represent configurations (a), (b), (c), and (d) respectively (see the list near the start of Section 4). Negative values have contours that are

dashed.
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Figure 4. Total penalty (black) from the climatological background (blue), ensemble background (green) and observation (red) penalty

contributions over the 75 inner loops for the first cycle of the EBV experiments, labelled (a) to (d) accordingly.
::::
Early

::::::::
termination

::
of
:::::

inner

::::
loops

:::::
occurs

::::
when

::::::::::
convergence

:::::
criteria

::
is
:::::::
satisfied,

::
in

::
(c)

:::
and

:::
(d).

::
At

::::::::::
convergence,

::::::::
ensemble

:::::
penalty

::::::
(green)

::
in

::
(b)

:::
and

:::
(c)

::
is

:::::
around

:::
1.5

:::
and

:
7
:::::::::
respectively.
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Figure 5. All panels except bottom right: time series of root-mean-square analysis errors for the EBV experiments (100% Bc, configuration

(a); 50% Be, 50% Bc, (b); 80% Be, 20% Bc, (c); 100% Be, (d)) and the free background run (FreeBG). The vertical yellow lines are

the analysis times. Analysis errors are defined with respect to the "truth" run, computed every 10 minutes within the respective assimilation

windows for EBV experiments and every hour for FreeBG. Bottom right: the ratio of the cycle-averaged RMSE of the EBV experiments

with respect to FreeBG for the five ABC model variables.
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Figure 6. EBV(d) (100% Be) ensemble trajectories derived from gridpoint-averaged analysis fields and their forecasts over a subset of the

full domain (a box located at the centre of the domain, model levels 25 to 35, longitudinal gridpoints 177
:::
127

:
to 187

:::
237). The corresponding

ensemble mean (EnsMean; red), free background (FreeBg; blue) and "truth" (Truth; black) trajectories for the same subset domain are plotted

alongside the individual ensemble member (grey) trajectories. Values for the FreeBg
:::
free

:::::::::
background are indicated every hour, and every 10

minutes for the other trajectories.
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Figure 7. Time series of root-mean-square analysis errors (RMSE;
:::::
black) and ensemble spread (Spread

:
;
:::
red) for the EBV(d) (100% Be)

ensemble, computed over a subset of the domain (a box located at the centre of the domain, model levels 25 to 35, longitudinal gridpoints

177
:::
127 to 187

:::
237). The implied (time-stationary) background error standard deviation at model level 30 is also included (Bc S.D.

:
;
:::
blue).
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Figure 8. As in Fig. 5, but for EBV(d), EBV(d20) and EBV(d10) experiments (100% Be with 30, 20, and 10 ensemble members respectively).
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