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Abstract. A statistical model called the sea level simulator v1.0 is introduced. The model integrates mean sea level change and

sea level extremes into a joint probabilistic framework that is useful for coastal spatial planning. Given a user defined planning

period, the model can estimate the flood risk as a function of height above the current mean sea level. These flood risk estimates

are derived through Monte Carlo simulations of a very large amount of planning periods. The derived flood risk is contingent

on user assigned probabilities for future greenhouse gas emission pathways, and the model is thus also useful for quantifying5

the dependence of flood risk on future emission pathways .
:::
such

::::::::
pathways

::::
and

::::
their

:::::::::::
probabilities.

::::::::
Moreover,

:::
the

::::::::
simulator

::::
can

:::::::
quantify

:::::::
whether

::::
flood

::::
risk

::
is

:::::::::
dominated

:::
by

:::
sea

::::
level

::::::::
extremes

::
or

:::::
mean

:::
sea

:::::
level

:::
rise

::::
and

::::
how

:::
this

:::::::
depends

:::
on

:::
the

:::::
length

:::
of

::
the

::::::::
planning

::::::
period.

:
The code, written in MatLab, is parallelized and lightweight enough that it can be run on an ordinary PC.

The code is easily adaptable to include new locations, new mean sea level projections and similar model developments. The

flood risk estimates derived from the simulator are well suited to tackle adaptation and decision problems. Applications for10

construction of coastal protections
::::::::
protection

:
and land development in coastal areas have been demonstrated in the past. The

paper gives an in-depth technical description of the model. Example simulations from a Swedish nuclear site are also given

and the capabilities of the simulator are discussed. The main aim of the paper is to work as a technical reference for the first

public release of the sea level simulator.

Copyright statement. TEXT15

1 Introduction

Mean sea level change alters the probability of coastal flooding in communities around the world. The globally averaged mean

sea level rose by about 20 centimetres during the period 1901-2018. However, much larger changes are projected for the cur-

rent century in all future emission scenarios investigated in the Intergovernmental Panel on Climate Change Sixth Assessment

Report (IPCC, AR6) (Fox-Kemper et al., 2021). Mean sea level change projected for the 21st century is, in fact, so sizeable20

that extreme sea levels that are expected to be reached on average only once in a century with the current mean sea level, could

in many places be reached on a yearly basis even before the end of the current century (Oppenheimer et al., 2019; Hieronymus
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and Kalén, 2020). The probability of coastal flooding is thus expected to increase dramatically in many places, unless effective

protection is put in place, as a consequence of mean sea level rise. Even though mean sea level rise is the root cause of this

problem, the time dependence of mean sea level change is rarely accurately accounted for in current coastal spatial planning25

(Hieronymus, 2021; Hieronymus and Kalén, 2022). Neither is, generally speaking, the uncertainty encompassed in proba-

bilistic mean sea level projections. In fact, in a survey of 32 European countries by McEvoy et al. (2021), it was found that

probabilistic mean sea level projections were only used in dedicated sea level planning in a single country and in non-dedicated

planning in another three. Important planning decisions, such as how far above the current mean sea level new building and

infrastructure can be erected, are instead typically based on arbitrary rules. In many places, the minimum distance above the30

current mean sea level where new buildings can be erected is determined by adding a high mean sea level projection most often

for the year 2100 to a high return level for temporary sea level extremes (Arns et al., 2017). Sometimes an additional safety

margin of arbitrary amount is also added to the two other components. The risk that buildings erected at such a distance from

the current mean sea level could become flooded during their expected lifetime is presumably small. That is, as long as the

level is derived from a sum of unlikely mean and extreme sea levels and the expected lifetime of the structure does not exceed35

the length of the mean sea level projection used. However, in real terms the risk is not quantified and therefore essentially

unknown. This is of course a great hindrance, for example, for producing realistic cost benefit analyses that could underpin

coastal spatial planning.

The sea level simulator framework introduced by Hieronymus (2021) and further developed by Hieronymus and Kalén40

(2022) rids the planner of much of the ambiguity inherent in these arbitrary levels. This is done by calculating flood risk

:::::::::
combining

::::
mean

:::
sea

:::::
level

:::::::::
projections

::::
and

:::
sea

::::
level

::::::::
extremes

:::
into

::
a
::::
joint

::::::::::
probabilistic

::::::::::
framework.

:::::
From

:::
this

::::::::::
framework,

:::::
flood

:::
risk

:::
can

::::
then

:::
be

::::::::
calculated

:
as a function of height above the current mean sea level. This information can, in turn, be used to

derive levels where new buildings can be erected that are based on the planners risk level preference. The modelled risk is con-

tingent on probabilities given to different emission scenarios and the length of the planning period. The planning period in this45

context can be, for example, the lifetime of a structure, or the period over which the structures current value can be discounted

to a suitably low level. Essentially, the sea level simulator is a tool for answering questions like: if a house is built x m above

the current mean sea level what is the risk that it will be flooded at least once during the next y years. Answering that question

requires no other data then that which is used to calculate the more arbitrary levels in use today. Essentially, what the sea level

simulator does is to utilize these data in a better way and to formalize the underlying assumptions in a more rigorous manner.50

The latter point is of great importance. The assumptions we make about, for example, the expected life time of a structure or

the probability of a given emission scenario coming to pass greatly affect the estimated risk of flooding. Another strength of

the sea level simulator is that the influence such assumptions have on flood risk can be quantified in a straightforward manner.

Thus, the simulator not only gives us probabilistic assessments of flood risk, it can also inform us about how these assessments

depend on our basic assumptions about, for example, probabilities given to different future emission pathways or model pro-55

jections of melt from the Antarctic ice-sheet.
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The simulator uses two separate data sources in its calculations: mean sea level projections (Fox-Kemper et al., 2021;

Hieronymus and Kalén, 2020; NASA, 2022) and time series of yearly sea level maximum relative to the mean sea level (Dan-

gendorf et al., 2016; Särkkä et al., 2017; Männikus et al., 2020). Any mean sea level projection can be used, but so far only60

those from the IPCC (Oppenheimer et al., 2019; Fox-Kemper et al., 2021) have been used in practise. Both the mean sea level

projections and the time series of annual maximum sea level are fitted to continuous probability distribution functions. Sea

levels
::::
level

:
maxima relative to the current mean sea level can then simulated

::::::::
throughout

::::::::
planning

::::::
periods

:
by drawing yearly

:::
sea

::::
level maxima and mean sea level projections randomly from their respective distributions. The basic idea behind the simu-

lator is to make vast amounts of such simulations from which frequencies of high sea levels in future periods can be determined.65

The first paper that utilized the simulator was a case study for Stockholm that showcased many of its potential applications

for example to uncertainty quantifications, adaptation- and decision problems. The second paper, focused on how the length

of the planning period affects whether flood risk is dominated by mean sea level rise or sea level extremes, and how such

knowledge could be utilized by coastal spatial planners. In the present paper, focus is put more on the technical aspects of the70

simulator. New updates to the simulator are also discussed. Such as:
::::::
parallel

::::::::::
computing, implementation of new mean sea level

scenarios, better uncertainty quantifications for sea level extremes and a more realistic time dependence in the mean sea level

projections. All of these improvements were absent in the simulator used by Hieronymus (2021) and Hieronymus and Kalén

(2022). Moreover, the current paper is also intended to be the main technical reference for the first public release of the sea

level simulator. This model has been given the version number 1.0 and is available free of charge, and warranty, to all through75

Hieronymus (2023).

2 Model description

2.1 An overview of the sea level simulator

Runtime plotted against amount of cores for the sea level simulator v1.0. In the experiment shown 105 planning periods are

simulated. The experiment is done on a laptop using a Intel Core i5-8265U CPU @ 1.60GHz x 8. The ideal runtime is computed80

as the runtime on one core divided by the number of cores used. The sea level simulator v1.0 is written in Matlab. The program

consists of one main script and some support scripts used to set-up the model. It uses the statistics and parallel computing tool-

box from MathWorks, as well as some routines from the free MatLab toolbox Cupid (https://github.com/milleratotago/Cupid).

The Cupid routines needed by the simulator are distributed together with the simulator code. The parallel computing toolbox

is only needed to speed up the computation, and running without it is essentially a matter of switching a parfor statement in85

the programs main loop into a for statement. However, the scaling of runtime vs amount of cores, shown in Fig. 2, is very

close to the ideal. Thus, without parallel computing the program will be much slower. The close to ideal scaling holds only

for physical cores, at least on the test machine. Using hypertreading to run on up to four virtual cores together with the four

physical cores only affected the runtime in a minor way. There is, however, a good workaround for those who do not have the

parallel toolbox, but require a large amount of planning periods to be simulated. The problem of simulating planning periods90
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is, in fact, embarrassingly parallel. Therefore, the program can be run on multiple computers and the results can be averaged

afterwards.

The program simulates a large amount of planning periods
::
by

::::::::
randomly

:::::::
drawing

::::
time

:::::::::
dependent

::::
mean

:::
sea

:::::
level

::::::
changes

::::
and

:::::
yearly

:::
sea

::::
level

:::::::
maxima. The standard setting is 107 such periods that last between 2021 and 2150. The time frame is chosen95

so that it complies with the length of the mean sea level projections from (Fox-Kemper et al., 2021)
:::::::::::::::::::::
Fox-Kemper et al. (2021)

. The probability of flooding as a function of height above the current mean sea level is evaluated not just for the full period

but also for all shorter planning periods in ten year increments. That is, by modelling the planning period 2020-2150 we also

get the probabilities for the 2020-2030 planning period, 2020-2040 planning period and so on, virtually free of any additional

computational cost. Apart from information about the highest joint sea level (i.e. caused by both mean sea level rise and sea100

level extremes) experienced within the planning period, information is also stored about the heights of the mean sea level and

the sea level extreme components individually. The latter information is important to gauge potential impacts and to produce

more informed risk assessments as was discussed by Hieronymus and Kalén (2022).

2.2 Step by step simulations and treatment of uncertainty105

Figure 1. Schematic view of the sea level simulator
::::
with

::::
insets

:::::::
showing

:::::
some

::
of

:::
the

::::
data

:::
the

:::::::
simulator

:::::::
depends

:::
on. Each

::
a)

:::::
shows

::::::::::
schematically

::::
how

:
a
:
planning period is goes

:::::::
simulated

::
by

:::::
going

:
through the a

:
chain of nodes

::::::
modules from left to right. The large ar-

row below indicates that this cycle is repeated many time (i.e. that many planning periods are simulated). The one armed bandits signify

that a stochastic process is involved in going from one node
:::::
module

:
to the next.

:
b)

:::::
shows

:::
the

::::
GEV

::
fit

:::
and

:::
the

:::::::
observed

:::::
annual

:::::::
maxima,

::
c)

::::
shows

:::::
mean

::
sea

::::
level

:::::::::
projections

::
for

:::::::
different

::::
SSPs,

::
d)

:::::::
indicates

:::
that

::::
some

::::
SSPs

::::
have

:::::::
multiple

::::
mean

:::
sea

:::
level

:::::::::
projections

:::
and

::
e)

:::::
shows

::::
some

::::::
quantiles

::
of
:::
the

::::
mean

:::
sea

::::
level

::::::::
projection

::
for

::::::::
SSP1-2.6.

A schematic of the simulator is shown in Fig. 1
::
a). The first piece of data needed to run a simulation is a time series of annual

sea level maxima from a tide gauge. This time series could, of course, also come from a numerical ocean model, a machine
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learning model or any other model that reliably captures high frequency sea level variability.
:::::
What

::::::::
frequency

::::
and

::::::
quality

:::
that

::
is

::::::
needed

:::::::
naturally

:::::::
depends

:::
on

:::
the

:::::::
location

:::
and

:::
the

::::::::::
application,

:::
but

::::
most

:::::
often

:::::
hourly

::::
data

::::::
should

::::::
suffice.

:
This annual maximum

time series is then used to fit a Generalized Extreme Value (GEV) distribution (Coles, 2001).
:
,
:::
see

::::
Fig.

:
1
:::
b). This is done using110

the gevfit
::::
gevfit routine from Matlab’s statistics toolbox. In earlier versions of the simulator (Hieronymus, 2021; Hieronymus

and Kalén, 2022), only the maximum likelihood estimate of the GEV parameters was used to characterize the tide gauge. That

is, in earlier versions there were no uncertainty in which GEV distribution the simulator used. Extreme sea level uncertainty

was consequently only owing to the fact that each planning period had its yearly sea level maxima drawn randomly from the

GEV distribution that was thought to best characterize the tide gauge in question. In this release, we have now introduced115

uncertainty
:::::::::
uncertainty

::
is

:::::::::
introduced

:
also into the GEV parameters, which is signified by the one armed bandit connecting

the first two nodes
:::::::
modules of the schematic .

::
in

::::
Fig.

:
1
:::
a).

:
Each such one armed bandit implies that there is a random pro-

cess in operation when going from one node
::::::
module to the next. The GEV parameter uncertainty is turned on by setting the

ext_par_uncert variable equal to one.

120

The uncertainty in the GEV parameters is modelled in the same way as maximum likelihood based confidence intervals on

return levels are estimated with MatLab (Mathworks, 2020). Here we calculate the location, scale and shape parameters that

define the GEV distributions that give rise to the upper and lower bounds on 1000 year return level confidence intervals. This

calculation is done for confidence levels between 0.01 and 0.99, using a resolution in confidence of 0.01. In total we get 199 sets

of GEV parameters, which spans approximately the quantile range from 0.005 to 0.995 of plausible GEV distributions for the125

tide gauge. In each modelled planning period one of these parameter triples is chosen randomly, thus introducing stochasticity

into the choice of GEV distribution used to model the annual sea level maxima at the site. In practise, a uniformly distributed

random number from the interval [0,1] is drawn every planning period to give the quantile for the GEV parameters. The yearly

sea level maxima for the planning period are then drawn randomly from the randomly selected GEV distribution. The draw of

the yearly maxima is signified by the second one armed bandit seen from the left in Fig. 1
::
a).130

In the next node a
::::::
Certain

:::::
users

:::::
might

:::::
prefer

::
to

:::
use

::::
peak

::::
over

::::::::
threshold

:::::
rather

::::
than

:::::
block

:::::::
maxima

:::::::
statistics,

::::
and

:::::::::::
consequently

::
to

:::::
model

::::::::
extremes

::::
with

::
a
::::::::::
Generalized

::::::
Pareto

::::
(GP)

:::::::
instead

::
of

:
a
:::::

GEV
::::::::::
distribution.

:::
In

::::
v1.0

::
of

:::
the

:::
sea

:::::
level

::::::::
simulator

:::::
there

::
is

::
no

::::
such

::::::
option

::::::::
available.

::::
The

:::::
main

:::::
reason

:::
for

::::
this

::
is

:::
that

:::
the

::::
GP

::::::::
approach

:::::::
requires

::::
more

::::
user

:::::::
defined

::::::::::
parameters,

::::
such

::
as

::
a

:::::::
threshold

::::
and

:
a
:::::::::
separation

::::
time

:::::
scale

:::::::
between

::::::
events

:::
that

::::::
should

:::
be

::::
long

::::::
enough

::::
that

:::
the

:::::
events

::::
can

:::::::::
considered

:::::::::::
independent.135

::::
Good

::::::::
guidance

:::
on

::::
how

:::
to

::::::
choose

:::::
these

:::::::::
parameters

::
is
::::
hard

:::
to

::::
give.

::::
The

:::::
GEV

::::::::
approach

:::
has

::
a
::::::
similar

:::::::::
parameter

::
to

:::
the

::::
GP

::::::::
separation

::::
time

::::::
scale,

::::::
namely

:::
the

:::::
block

::::::
length.

:::::::::
However,

:::::
using

:
a
:::::
block

::::::
length

::
of

::::
one

::::
year

::
is

:::::
more

::
or

:::
less

::::::::
standard

:::::::
practise

:::::::::::::::
(Arns et al., 2013),

::::
and

:::::
using

:::::
longer

::::::
blocks

::
is
:::::
often

::::::::::::
impracticable

:::::
owing

::
to
::::::::::

insufficient
::::::
length

::
of

:::::
most

:::
sea

::::
level

:::::
time

:::::
series

::::::::::::::::::::::::::::::
(Hieronymus and Hieronymus, 2023).

::::::::::::
Nevertheless,

:::
for

:
a
::::
user

:::::::
wanting

::
to

::::
use

:::
the

:::
GP

::::::::
approach

::::
only

:::::
minor

:::::
code

:::::::
changes

:::
are

::::::
needed,

::::
and

:::::::
Matlab’s

:::::::
statistics

:::::::
toolbox

:::::::
contains

:::
the

::::::::
necessary

::::
gpfit

:::
and

:::::
gprnd

:::::::
routines.140
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:
A
::::::
further

:::::
issue

::::::
worthy

::
of

::::
note

::::::::
regarding

:::
the

::::::
extreme

:::
sea

:::::
level

::::::::::
distributions

::::
used

::
by

:::
the

::::::::
simulator

:::
are

::::
that

::::
these

:::
are

:::::::::
unaffected

::
by

::::::
climate

::::::
change

::::
and

::::
time.

::::
That

:::
is,

:::
the

::::
GEV

:::::::::::
distributions

::::
used

:::
are

::::::::::
independent

::
of

::::
both

::::
time

:::
and

:
Shared Socioeconomic Path-

way (SSP)is
:
.
::::
This

::
is

::::::
simply

:::::::
because

::
of

::::
lack

::
of

:::::::::
knowledge

:::::
about

::::
how

:::
the

:::::
GEV

:::::::::
parameters

::::::
might

::::::
change

:::::::
through

::::
time

:::::
under

::::
given

:::::
SSPs.

:::::::::
However,

:
if
::::
such

:::::::::
knowledge

::::
was

::::::::
available

:
it
::::::
would

::
be

::::
easy

::
to

::::::
include

:::::::
climate

::::::
change

:::::::
induced

:::::
trends

::
in

::::::
annual

:::
sea145

::::
level

::::::::
maximum

::
as

::
a
::::::::::
perturbation

::
to

:::
the

:::::
mean

:::
sea

::::
level

::::::::::
projections.

::::
This

:::
can

::
be

:::::
done

::::::
without

:::
any

:::::
code

::::::
changes

::
to
:::
the

:::::::::
simulator.

::::
How

:::
the

:::::
mean

:::
sea

::::
level

:::::::::
projections

:::
are

:::::
made

::
is

::::::::
discussed

::::::
further

:::::
down

::
in

:::
this

:::::::
section.

::
In

:::
the

::::
next

::::::
module

::
a

:::
SSP

::
is
:
chosen randomly. Five different SSP-radiative forcing combos are available from Fox-Kemper

et al. (2021); NASA (2022): SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 .
:::
(Fig.

::
1
:::
c)).

:
The numbers after the dash150

indicate the radiative forcing in Wm−2 in the year 2100 compared to a preindustrial baseline. Each SSP-radiative forcing

combo is assigned a probability, (p1, ...,p5), of coming to pass, and these probabilities are chosen so that
∑5

1 p= 1. The next

step is to pick a distribution for the projected mean sea level. Here only scenarios SSP1-2.6 and SSP5-8.5 has more than one

option .
::::
(Fig.

::
1

:::
d)).

:
These two scenarios have also low confidence projections, where the contribution from the Greenland

and Antarctic ice-sheets to sea level rise is taken from some of the highest projections in the published scientific literature155

:::::::::::::::::::::::::::::::::::
(Bamber et al., 2019; DeConto et al., 2021). The uncertainty introduced by having more that one mean sea level distribution

per emission scenario is similar in nature to the uncertainty introduced to the GEV parameters. That is, in both cases there is

uncertainty both in the underlying distributions and in the random numbers drawn from the chosen distributions. The contri-

butions to sea level rise from other components such as thermosteric expansion and melting glaciers are the same in the low

confidence as in the main projections. In practise the lottery over climate scenario and sea level projection is combined into one160

joint lottery in the code. This is done because only two climate scenarios have multiple projections and such an implementation

is a little faster. That is, the lotteries in the third and forth node
::::::
module

:
from the left in Fig. 1 are implemented in the code as a

single lottery over the available distributions of projected future mean sea levels. Just as for the GEV parameters, this random

process is modelled by drawing a uniformly distributed random number from the interval [0,1].

165

This random number maps to a mean sea level projection through the user defined probability range for the projections.

::::
Note

::::
that

::::::
neither

:::
the

::::
sea

:::::
level

:::::::::
projections

::::
nor

:::
the

:::::
SSPs

:::::
have

::::
been

::::::::
ascribed

:::::::::::
probabilities

::
by

:::::
their

:::::::
makers.

:::::::::
However,

:::
for

::
the

::::::
SSPs,

::
at

:::::
least,

:::::
some

::::::::
estimates

::
of

:::::::
suitable

:::::::::::
probabilities

::::
have

:::::
been

::::::
derived

:::::
using

:::::::::
integrated

::::::::::
assessment

::::::
models

::::
(see

::::
e.g.

:::::::::::::::::::::::
Capellán-Pérez et al. (2016)

:::
and

::::::::::::::::
Huard et al. (2022)

:
). An example probability range is shown in Tab. 1. The random number

used for drawing the mean sea level projection is independent of that used to pick the GEV distribution.170
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Table 1. Probabilities given to the different mean sea level projections and the probability range in which the different projection are applied.

mean sea level distribution probability probability range

SSP1-1.9 0.05 [0, 0.05]

SSP1-2.6 0.155 (0.05, 0.2050]

SSP1-2.6 (low probability
:::::::::
confidence) 0.01 (0.2050, 0.2150]

SSP2-4.5 0.5 (0.2150, 0.7150]

SSP3-7.0 0.22 (0.7150, 0.9350]

SSP5-8.5 0.064 (0.9350, 0.999]

SSP5-8.5 (low probability
:::::::::
confidence) 0.001 (0.999, 1]

The distributions of mean sea level projections are available every ten years (Fox-Kemper et al., 2021; NASA, 2022). Thus,

for each mean sea level projection there is one distribution for 2030, one for 2040 and so on. To get consistent mean sea level

projections, a quantile is chosen randomly for each modelled planning period, and this quantile of the chosen mean sea level

projection is extracted from the mean sea level distributions from each time step. Linear interpolation is then done to get a175

mean sea level projection with yearly resolution . This decadal resolution in the
::::
(Fig.

::
1

:::
e)).

::::::
Having

:
mean sea level projections

contrasts with
::
for

:::::
every

:::
ten

:::::
years

::
is
:::::::
another

:::::::::::
improvement

::::
over

:::
the

:
earlier versions of the simulator, where

:
.
:::::
Those

::::::::
versions

::::
used only one distribution for

::
the

::::
year

:
2100 per emission scenario was used

:::
and

:::::::::
uncertainty

::::
was

::
set

:::
to

::::
grow

:::::::
linearly

::::
with

::::
time

::::
from

::::
zero

::
at

:::
the

::::
start

::
of

:::
the

:::::::
planning

::::::
period

::
to

:::
its

:::
end

:::::
value

::
in

::::
2100

:
(Hieronymus, 2021; Hieronymus and Kalén, 2022). Sim-

ilarly to the earlier stochastic processes the mean sea level quantile is also chosen by drawing a uniformly distributed random180

number from the interval [0,1]. This random number is independent from those determining the GEV quantile and mean sea

level projection used.

The IPCC mean sea level distributions are discreet. For use with the simulator they are therefore approximated by contin-

uous skewnormal distributions. The three parameters defining the skewnormal distributions are chosen so that the sum of the185

squared differences between the continuous skewnormal distribution and the discreet IPCC distribution is minimized at the 5th,

17th, 50th, 83rd and 95th percentiles. These difference are very small, typically within a cm, for all mean sea level distributions

except those for SSP5-8.5 low confidence for years 2100-2150, where we cannot get a good approximation for both the 83rd

and 95th percentiles at the same time with the skewnormal distribution. In fact, many different continuous distributions
::::
(e.g.

::::::::
Gaussian,

::::::::::
exponential,

:::::::
Weibull

::::
and

:::::::::::
exponentially

::::::::
modified

:::::::::
Gaussian) have been tested without finding a good fit. For these190

distributions the difference between 50th percentile and the 83rd percentile is very much larger than that between the 83rd

and the 95th percentile, suggesting that SSP5-8.5 low confidence for these years is likely bimodal. In these cases, we have

opted to minimize the sum squared difference at only the 5th, 50th and 95th percentiles to have a good accuracy at the highest

percentiles. The fitting of the skewnormal distribution parameters is done using the included script meanseadists.m. This script
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is easily
:::
can

:::::
easily

::
be

:
edited for use with different mean sea level projections. It is also worth mentioning that mean sea level195

projections are site specific and the projections used as an example here are for the area on the Swedish west coast where the

nuclear power plant Ringhals is situated. When setting up the simulator for a new location it is thus important to check how

well ones continuous distributions
::
the

::::::::::
continuous

:::::::::::
distributions,

:::::
whose

::::::::::
parameters

:::
are

::::::::
estimated

:::::
using

:::::::::::::
meanseadists.m

:
, agree

with the discreet originals. This is also diagnosed in the meanseadists.m routine. Moreover, the Cupid toolbox offers many

alternatives to the skewnormal distribution that one can easily adapt the code to use. For Swedish conditions the skewnormal200

distribution has proven to give good fits, but this could conceivably be location dependent.

The last node
::::::
module

:
in the diagram adds the mean sea level projection for the planning period to the annual sea level

maxima modelled for the period. The resulting time series contains the planning periods annual maxima referenced to the

current mean sea level. It is from this time series that the planning period maximum sea level
::
sea

:::::
level

::::::::
maximum

:
and its mean205

sea level and extreme sea level components are extracted. These variables are saved in form of discreet probability density

functions (PDFs). The grid resolution of these PDFs is set by the parameter nr_res, which has a standard value of 500. This

means, that 500 equidistant grid points are used to resolve the planning periods sea level maximum. For each planning period,

one is added to the grid point whose value is closest to the simulated sea level maximum. When all iterations are done, the

result is normalized by the amount of planning periods modelled to get PDFs from the derived histograms. The loop between210

the different nodes
:::::::
modules in Fig. 1

:
a)

:
is repeated for the desired amount of planning periods. In the examples that follow,

107 planning periods are modelled in each experiment. The statistics produced by the simulator are thus planning period prob-

abilities rather than the commonly used yearly probabilities. For example, a
::::::
relative frequency of 10−4 mean

:::::
means that one

in ten thousand planning periods contain a sea level of this height.
:::
The

:::::
term

:::::::
planning

::::::
period

:::::::::
probability

::
is

::::::::
therefore

::::
used

::::
here

::::::
instead

::
of

:::
the

::::
more

:::::::::
commonly

::::
used

:::::
terms

::::::
yearly

:::::::::
probability

:::
and

:::::
return

:::::::
period.

:::
The

::::::
reason

:::
for

:::
this

::
is

:::
that

:::
the

:::::
yearly

::::::::::
probability215

::
or

:::::
return

:::::
period

:::
of

:
a
:::::
given

:::
sea

::::
level

:::::::
changes

:::::::::
throughout

:::
the

:::::::
planning

::::::
period,

:::::
while

:::
the

::::::::
planning

:::::
period

:::::::::
probability

::
is

:::::::::
stationary.

2.3
::::::
Parallel

::::::::::
computing

:::::::::::
performance

::
As

::::
was

:::::::::
mentioned

::
in

:::
the

::::::::::
introduction,

:::::::
multiple

::::::::
planning

::::::
periods

:::
are

::::::::
simulated

::
in
:::::::
parallel.

::::
The

::::::
scaling

::
of

:::::::
runtime

::
vs

:::::::
amount

::
of

:::::
cores,

:::::
shown

::
in
::::
Fig.

::
2,

::
is

::::
very

::::
close

::
to
:::
the

:::::
ideal.

:::::
Thus,

:::::::
without

::::::
parallel

:::::::::
computing

:::
the

::::::::
program

:::
will

::
be

:::::
much

:::::::
slower.

:::
The

:::::
close220

::
to

::::
ideal

::::::
scaling

:::::
holds

:::::
only

:::
for

:::::::
physical

:::::
cores,

::
at
:::::
least

::
on

:::
the

::::
test

::::::::
machine.

:::::
Using

::::::::::::
hypertreading

::
to

:::
run

:::
on

:::
up

::
to

::::
four

::::::
virtual

::::
cores

:::::::
together

:::::
with

:::
the

::::
four

:::::::
physical

:::::
cores

::::
only

:::::::
affected

:::
the

:::::::
runtime

::
in

:
a
::::::
minor

::::
way.

:::::
There

:::
is,

:::::::
however,

::
a
::::
good

:::::::::::
workaround

::
for

:::::
those

::::
who

::
do

:::
not

:::::
have

:::
the

::::::
parallel

:::::::
toolbox,

:::
but

::::::
require

::
a
::::
large

:::::::
amount

::
of

:::::::
planning

:::::::
periods

::
to

::
be

:::::::::
simulated.

:::
The

::::::::
problem

::
of

::::::::
simulating

::::::::
planning

::::::
periods

:::
is,

::
in

::::
fact,

:::::::::::::
embarrassingly

:::::::
parallel.

:::::::::
Therefore,

:::
the

:::::::
program

:::
can

:::
be

:::
run

::
on

:::::::
multiple

:::::::::
computers

::::
and

::
the

::::::
results

:::
can

:::
be

:::::::
averaged

::::::::::
afterwards.225
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Figure 2.
::::::
Runtime

::::::
plotted

:::::
against

::::::
amount

:::
of

::::
cores

:::
for

:::
the

:::
sea

::::
level

:::::::
simulator

::::
v1.0.

:::
In

:::
the

::::::::
experiment

::::::
shown

:::
105

:::::::
planning

::::::
periods

:::
are

:::::::
simulated.

::::
The

:::::::::
experiment

:
is
::::

done
:::

on
:
a
:::::
laptop

:::::
using

:
a
::::
Intel

::::
Core

::::::::
i5-8265U

::::
CPU

::
@

:::::::
1.60GHz

::
x

::
8.

:::
The

::::
ideal

::::::
runtime

::
is
::::::::
computed

::
as

:::
the

::::::
runtime

::
on

:::
one

:::
core

::::::
divided

:::
by

::
the

::::::
number

::
of

::::
cores

::::
used.

:

3 Example simulations

In the examples that follow, the sea level simulator has been set-up to model annual maximum water levels at the Swedish

nuclear power station Ringhals. Ringhals is situated in Varberg municipality on the Swedish west coast. The ocean area
:::
sea

outside Ringhals is called Kattegat. It is a shallow sea situated between the Baltic Sea and Skagerak to the south and north,230

and Sweden and Denmark to the east and west. Kattegat has weak tides and strong stratification. The strong stratification is

a consequence of low saline Baltic Sea water meeting more saline North Sea water, yielding a hydrography well described

by a two layer system
::::::::::::::::::::::::::::::::::::::::::::
(Leppäranta and Myrberg, 2009; Lehmann et al., 2022). The main examples shown are for a model run

with scenario probabilities according to Tab. 1. One run is also done where the low probability
:::::::::
confidence projections are given

a probability of occurrence equal to zero. In this case, their former probabilities are instead added to the main SSP2-2.6 and235

SSP5-8.5 projections so that the probabilities for all projections sum to one.

9



0 2 4 6 8 10 12

p
la
n
n
in
g
p
er
io
d

p
ro
b
ab

il
it
y

10−6

10−4

10−2

100
sea level [mean+extreme]

2020-2050
2020-2100
2020-2150

0 2 4 6 8 10

p
la
n
n
in
g
p
er
io
d

p
ro
b
ab

il
it
y

10−6

10−4

10−2

sea level [mean part]

sea level maximum within planning period [m]
0.5 1 1.5 2 2.5 3

p
la
n
n
in
g
p
er
io
d

p
ro
b
ab

il
it
y

10−6

10−4

10−2

100
sea level [extreme part]

Figure 3. Frequency of planning
:::::
Planing

:
period

::::::::
probability

::
of sea level maximum for three different lengths of the planning period. The top

panel shows the joint sea level maximum, the middle the maximum mean sea level and the lower panel the maximum extreme sea level. The

figure is derived using the mean sea level projection probabilities given in Tab. 1.

Figure 3 shows the cumulative distribution of the sea level maximum relative to the current mean sea level for three different

lengths of the planning period. It is readily evident from the figure, that in the two longest planning periods it is the mean sea

level change that gives rise to the highest sea levels, while temporary sea level extremes are responsible for the highest sea240

levels in the shortest planning period. This is consistent with earlier work at other Swedish locations, using an older version

of the sea level simulator (Hieronymus, 2021; Hieronymus and Kalén, 2022). The dominance of the mean sea level contribu-

tion over that from the extremes is here exacerbated compared to earlier work because of the inclusion of the SSP5-8.5 low

probability
::::::::
confidence projection. In this simulation, that scenario is given a probability of occurrence equal to 10−3, and it is

plain to see that both the mean and the mean + extreme panel of the plot are dominated by this scenario at frequencies lower245

than approximately 10−3.
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Figure 4. Same as Fig. 3, but with zero probability given to the low probability
:::
low

::::::::
confidence versions of SSP2-2.6 and SSP5-8.5.

Figure 4 shows a simulation where the probabilities given to the low probability
::::::::
confidence projections are set to zero. Here,

there is no regime shift for frequencies smaller than 10−3, and the low frequencies are more of a natural continuation of the

higher ones. For future developments, it could be useful to incorporate other high-end mean sea level projections that are not250

quite as disjoint from the main projections as SSP5-8.5 (low probability
::::::::
confidence). A notable example of such projections,

are the recently published high-end projections by van de Wal et al. (2022). These projections are designed through a com-

munity effort and aim to give physically plausible high-end projections for two different warming levels. It should be noted,

however, that the range of sea levels projected without the low probability
::::::::
confidence projections is, in fact, considerably larger

than the high-end projection for 2100 by van de Wal et al. (2022), which gives 1.6 m of globally average sea level rise for a255

global warming of five degrees. One could thus argue that the high-end, or at least the physically plausible high-end is already

included in the main SSP5-8.5 projection. That is, even without separate high-end projections.
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Figure 5. Same as Fig. 3, but with all extremes drawn from the same GEV distribution. That is, all simulated planning periods have their

extremes drawn from a GEV distribution that uses the maximum likelihood parameter estimates inferred from the tide gauge data.

The influence of the GEV parameter uncertainty on the joint sea level maximum is sizeable in short planning periods, but

relatively insignificant in long ones. Figure 5 is the same as Fig. 3, but here all extremes are drawn from the same GEV distri-260

bution. That is, the first lottery in Fig. 1 is cancelled, and we assume that the maximum likelihood GEV parameters are the true

ones. Here we find that even though there is a very significant change in the extreme sea level, the change in the joint sea level

is rather modest in the longer planning periods. The reason for this behaviour is, of course, that the range of the modelled mean

sea levels becomes much larger than the range of modelled extremes in long planning periods. However, how long a planning

period has to be for the extreme contribution to become small compared to the mean contribution is a function of the probabil-265

ities given to the emission scenarios, and the length of the time series of yearly maxima used to infer the GEV parameters. It

also seems prudent to point out that the extreme range simulated with the GEV parameter uncertainty turned on is not neces-

sarily physically plausible. This range depends on the length of tide-gauge time series, and not on understanding of the local

oceanographic conditions. For locations, where only short time series are available, it could thus be useful to use data also from

neighbouring tide gauges (Calafat and Marcos, 2020; Räty et al., 2022) or from numerical ocean models (Särkkä et al., 2017)270

::::::::::::::::::::::::::::::::::::::::::::::
(Särkkä et al., 2017; Hieronymus and Hieronymus, 2023) to better constrain a plausible range of GEV parameters.
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Figure 6. The average outcome of the stochastic processes depicted in Fig. 1 as a function of planning period sea level maximum. The three

panels show different lengths of the planning period. Mean projection indicates which projection that gave rise to the sea level maximum on

the x-axis. The mapping of average quantile to mean sea level projection uses the probability range given in Tab. 1. The mean quantile shows

the quantile of the used sea level projection and GEV quantile shows the quantile for the GEV parameters. Higher average quantiles mean

higher sea levels in all cases.

The simulator can also be used to infer how the outcome of the different stochastic processes depicted in Fig. 1 affect the

planning periods sea level maximum. This is illustrated in Fig. 6, where the average quantiles of the uniformly distributed

random numbers used to model the different uncertainties are shown as a function of planning period sea level maximum.275

The mean projection average quantile can be mapped to the specific sea level projection used through the probability range in

Tab. 1. GEV quantiles refer to the modelled uncertainty in the GEV parameters, and higher quantiles give GEV distributions

with higher extremes. The GEV quantile is thus not a direct measure of the height of the extremes, but of the propensity of

the GEV distribution to give high extremes. The figure, shows in a quantitative way what we could already deduce from Fig.

3. Namely, that in the shortest planing period the highest sea level
::::
levels

:
are almost independent of mean sea level change,280

but are strongly dependent GEV parameter uncertainty. In the two longer planning period the situation is reversed and the

highest sea levels all occur under a high quantile of the SSP5-8.5 low probability
:::::::::
confidence projection. Moreover, it is also

clear that the highest sea level in the longer periods occur independently of the GEV quantile in the two longer planning periods.
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Figure 7. Same as Fig. 6, but with zero probability given to the low probability
:::
low

::::::::
confidence versions of SSP2-2.6 and SSP5-8.5.

Figure 7 shows the same diagnostics as Fig. 6, but here we have given the low probability
:::::::::
confidence projections for SSP1-285

2.6 and SSP5-8.5 zero probability of occurrence. Qualitatively the behaviour is the same as when the very high-end mean

sea level projection are included. However, the highest sea level are of course significantly lower without the SSP5-8.5 low

probability
::::::::
confidence projection. The effect of excluding the SSP1-2.6 low probability

::::::::
confidence projection is, however, small.

Regardless of whether the high-end projections are included, it is clear that the switch from high sea levels being dependent on

high GEV quantiles to being dependent on high mean sea level projections and quantiles occurs within this century at Ringhals290

with the given set of emission scenario probabilities.

The sea level simulator can also output directly the respective contributions from sea level extremes and mean sea level rise

to joint sea level events. Such a diagnostic is shown in Fig. 8. The scatterplots show the
:::::
upper

:::::
panels

:::::
show

:::
the

::::::
relative

:::::::
density

::
of

:::
the mean and extreme sea level contributions to the joint sea level maxima. The lower panels show the mean of these point295

clouds
::::::::::
distributions for three different planning periods. In Fig. 9 the same diagnostics are shown for the case with no GEV

parameter uncertainty. Both figures tell the same story about how the highest joint sea levels go from being dominated by the

extreme contribution in short planning periods to being dominated by mean sea level rise in long planning periods. However,

the quantification of the respective magnitudes of the individual components does give some added value. Mean sea level rise

and sea level extremes occur on very different time scales, and it is not necessarily always their sum that is the only concern.300

Note that, extreme sea level occur under severe storms and are likely to be picked up by numerical weather forecast systems,

so that warnings can be issued a day or two in advance. In contrast, multimeter mean sea level rise would, if it were to occur,
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be apparent decades in advance. The set of actions that can be implemented to adapt to these two different treats are thus very

different. Knowledge of their respective magnitude can thus help inform decision makers on the best options available.

Figure 8. Mean sea level and extreme sea level contributions to joint sea level maximum. Upper panels show scatter plots
:::::
relative

::::::
density

[
:::::
unitless] of the extreme and mean sea level contributions to the joint sea levels. The lower panels show average extreme and mean sea level

contributions for different lengths of the planning period. Similarly, the red lines in the upper panels show the average extreme and mean sea

level contributions for the 2020-2150 planning period.
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Figure 9. Same as Fig. 8, but with all extremes drawn from the same GEV distribution. That is, all simulated planning periods have their

extremes drawn from a GEV distribution that uses the maximum likelihood parameter estimates inferred from the tide gauge data.

4 Conclusions305

The modelling framework incorporated into the sea level simulator v1.0 has been presented in detail, and example simulations

for a Swedish nuclear site have been discussed. Earlier versions of the sea level simulator have been used in scientific publica-

tions (Hieronymus, 2021; Hieronymus and Kalén, 2022). However, this publication marks the first public release of the source

code and is aimed at being a technical reference publication, while the earlier two papers had different foci. Moreover, the sea

level simulator v1.0 features several major updates that were not available in earlier code versions. Most notably, in terms of310

new scientific content we have the new mean sea level projections from (Fox-Kemper et al., 2021) and the implementation of

the GEV parameter uncertainty. In technical terms the parallelization of the code is the most notable new feature. The code

is not excessively numerically expensive to run. Most of the examples used in this presentation were run on a laptop with an

Intel Core i5-8265U CPU @ 1.60GHz x 8 processor. The framework should thus be possible to implement even for small

municipalities that don’t have time on computational clusters as an expense in their yearly budgets.315

The code is easily adaptable to new locations and uses widely available input data of the same kind that is used in more

traditional methods of sea level planning. Essentially, what is needed to run simulations are a time series of yearly sea level

maxima and at least one mean sea level projection. Apart from the obvious usage for creating decision support, the sea level

simulator is also extremely well equipped for making uncertainty quantifications. A feature that has been further illustrated320

in a number of examples by (Hieronymus, 2021; Hieronymus and Kalén, 2022). Further possible applications are to embed
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the sea level simulator into adaptation and decision problems. This was exemplified by Hieronymus (2021) who showed that

conditioning adaptation measures on mean sea level rise would be an effective strategy for Stockholm. In the same paper, it was

also illustrated how the simulator could be used to estimate whether it would be profitable or not to develop land depending on

its height above the current mean sea level.325

The list of possible new applications is very long. An obvious but yet unexplored possibility would be to use the simulator

to estimate future flood damage costs using information on the height above sea level and value of existing infrastructure.

Moreover, the statistical framework could be used to model other hazards where short weather related events are superimposed

on long term climate related trends. Heatwaves would be one such possibility.330

In the current implementation, the vast majority of the runtime is spent making the mean sea level projections for the plan-

ning period. The most time consuming part is to find the the inverse of the CDF of the mean sea level projections, which gives

the mean sea level projections for the desired quantile. If this part could be sped up it would lead to significant decreases in

the overall runtime. Nevertheless, in its current form the simulator is still fast enough that it can be run on an ordinary PC, and335

speed is thus mostly an issue for users who wishes to run very many simulations.

Lastly, it seems prudent to mention that both mean sea level projections (Jevrejeva et al., 2018; Horton et al., 2018; Le

Bars, 2018; Hieronymus, 2020) and extreme sea level estimates (Suursaar and Sooäär, 2007; Dangendorf et al., 2016; Wahl

et al., 2017) come with very large uncertainties . Moreover, especially mean sea level projections handle inherently subjective340

probabilities, can be widely diverging and change considerably from time to time. The same is also true about future emission

scenario probabilities. The simulator framework does not help constrain these uncertainties. The fidelity of the simulations is

thus a function of the fidelity of the underlying data. However, the simulator is extremely useful to pinpoint which uncertainties

that have the largest influence on flood risk. It may thus prove useful to direct research efforts into attempts at narrowing the

uncertainty ranges that are the most important for flood risk.345

Code and data availability. The current version of model is available from the project website:

https://github.com/m-hieronymus/the_sea_level_simulator under the MIT licence. The exact version of the model used to produce the results

used in this paper is archived on Zenodo (Hieronymus, 2023), as are input data and scripts to run the model and produce the plots for all the

simulations presented in this paper (Hieronymus, 2023).
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