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Abstract. Implicit neural representation (INR) networks are emerging as a powerful framework for learning three-10 

dimensional shape representations of complex objects. These networks can be used effectively to implicitly model three-

dimensional geological structures from scattered point data, sampling geological interfaces,  units, and structural orientations 

of structural features, provided appropriate loss functions associated with data and model constraints are employed during 

training.. The flexibility and scalability of these networks provide a potential framework for integrating newmany forms of 

related geological data and knowledge that classical implicit methods cannot easily incorporate. We present a 15 

methodologyan implicit three-dimensional geological modelling approach using an efficient INR network architecture, 

called GeoINR, consisting of multilayer perceptrons (MLP) that advance existing implicit methods for structural geological 

modelling. The developed methodologyMLPs). The approach expands on the modelling capabilities of existing methods 

using these networks by: (1) including unconformities into the modelling,; (2) introducing constraints on stratigraphic 

relations as well asand global smoothness along with their , as well as associated loss functions,; and (3) improving training 20 

dynamics through the geometrical initialization of learnable network variables. These three enhancements enable the 

modelling of more complex geology, improved data fitting characteristics, and reduction of modelling artifacts in these 

settings, as compared to an existing INR frameworks for approach to structural geological modelling. A provincial scaleTwo 

diverse case study for the Lower Paleozoic portion of the Western Canadian Sedimentary Basin (WCSB) in Saskatchewan, 

Canada isstudies also are presented to demonstrate the modelling capacity of the MLP architecture, including a sedimentary 25 

basin modelled using the developed methodology.well data, and a deformed metamorphic setting modelled using outcrop 

data. Modelling results illustratedemonstrate the method’s capacity to fit noisy datasets, use outcrop data, represent 

unconformities, and implicitlyefficiently model large regional scale three-dimensional geological structuresgeographic areas 

with relatively large datasets, confirming the benefits of the GeoINR approach. 
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1 Introduction 30 

Understanding the geometry of the subsurface is of critical importance to wide range of applications including earth resource 

estimation (e.g., mineral, hydrocarbon, geothermal, groundwater), subsurface storage (e.g., carbon sequestration, radioactive  

waste), urban planning, climate change, and education. Three-dimensional geological modelling provides a means of 

representing the geometry of the subsurface based on available geological point-data, typically from boreholes and outcrop 

observations, sampling geological units, the interfaces between them, and orientations (planar and linear) of various 35 

structural features (Wellmann and Caumon, 2018).  

The two most common types of three-dimensional geological modelling approaches are differentiated between explicit and 

implicit surface representations. Explicit approaches (Caumon et al., 2009; Sides, 1997) employ formulations to directly 

characterize three-dimensional surface meshes between geological units/faults and rely on either: (1) digitized wireframes 

interpreted by users possessing geological expertise – guided by primary geological observations - which are converted into 40 

Bézier or NURB curves and surfaces (de Kemp and Sprague, 2003; Sprague and de Kemp, 2005).); and (2) 

Minimizingminimizing the surface roughness on a carefully constructed initial surface mesh using discrete smooth 

interpolation (Mallet, 1992, 1997) and supplied geological observations. WhileAlthough these approaches can be used to 

produce excellent structural models - given sufficient modelling and geological interpretative skill - they can require 

extensive time to develop and, are difficult to update and reproduce. Implicit approaches, on the other hand, represent 45 

geological surfaces as iso-surfaces in a three-dimensional scalar field, which is interpolated usingfrom surface interface 

points, orientations, and potentially off-surface information (Lajaunie et al., 1997, Frank et al., 2007, Hillier et al., 2014). 

These approaches directly consider stratigraphic continuities and allow for a more flexible updating process, but give rise to 

new problems, as they can produce geological models with modelling artifacts in structurally complex settings.  For more 

details on the different geological modelling approaches, we refer to see Wellmann and Caumon (2018). 50 

Classical implicit interpolation, that is non-machine learning estimation, has been thoroughly studied and developed over 

the last two decades with many extensions and enhancements (Boisvert et al., 2009; Calcagno et al., 2008; Caumon et al., 

2012; Cowan et al., 2003; de la Varga et al., 2019; Grose et al., 2019; Grose et al., 2021a; Hillier et al., 2014; Irakarama et 

al., 2021; Laurent et al., 2016; Renaudeau et al., 2019; Yang et al., 2019). WhileAlthough their extensions and enhancements 

are remarkable, the underlying mathematical models by which they have been developed are simply not flexible and scalable 55 

enough to be able to incorporate the large amountsvolumes of available geological data and knowledge. Inequality 

constraints (Dubrule and Kostov, 1986; Frank et al., 2007; Hillier et al., 2014), for example, useful for incorporating above 

and below spatial relationships between geological features (e.g., rock units, geological interfaces and units) have scalability 

limitations, as the number of constraints increase, due to computationally expensive convex optimizations required. 

Furthermore, modelling in structurally complex settings using sparse, heterogeneously distributed, and noisy datasets 60 

remains challenging. In these circumstances, produced models can exhibit modelling artifacts (Hillier et al., 2016; von 
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Harten et al., 2021; Pizzella et al., 2022) that are geologically impossible given the known geological history and spatial 

relationships between geological features. A common strategy to address modellingsuch artifacts is by adding interpretative 

points for horizons and faults, curves, or localized surface patches to implicit interpolants, resulting in a hybrid implicit-

explicit approach. However, this circumvents the entire philosophycore objectives of implicit modelling, namely with 65 

respect to theirfacilitate reproducibility and fast modelling results. To constructFurthermore, a useful three-dimensional 

geological model for downstream applicationsconstructed this way requires significant time, and in the end areresult is just 

one possible realization amongst a family of possibilities. Indeed, there is an infinite set of reasonable geological models that 

fit the data (Jessell et al., 2010), each of which havehas varying degrees of uncertainty (Lindsay et al., 2012; Wellmann and 

Regenauer-Lieb, 2012);), as some models are more probable over others. With the advent of probabilistic approaches (de la 70 

Varga and Wellmann, 2016; Grose et al., 2019), these degrees of uncertainty can be somewhat quantified, but fundamentally 

rely on the space of models that can be produced from the underlying mathematical models, which do not directly 

incorporate all available geological data and knowledge. Instead, the variables of these models are varied and optimized to 

maximize likelihood functions that are chosen and designed to integrate other forms of knowledge and data.  InHowever, the 

frequency of geologically valid models from the ensemble of models generated from probabilistic approaches still may be 75 

underrepresented in some settings, it’s. It is also possible that thesethe underlying mathematical models are unable to be 

reparametrized to conform and respect structural styles and complex relationships known to exist in nature. In addition, the 

frequency of geologically valid models from the ensemble of models generated from probabilistic approaches may be 

underrepresented in some settings. 

ModelsGeological models tend to converge towards sub-surface reality as more geological data and knowledge is 80 

incorporated in the modelling process. For complex geological structures, it becomes increasingly difficult – in comparison 

to simple structures (e.g., layer cake stratigraphy) – to develop accurate representations. For these scenarios, much more 

geometric and geological feature relationship information is needed to generate realistic models., and better approaches are 

required to use this information within the modelling process. Due to the inherent flexibility, efficiency, and scalability of 

deep learning approaches (Emmert-Streib et al., 2020) to incorporate data and knowledge, they have the potential to provide 85 

an ideal framework for incorporating new geological data and knowledge constraints into the modelling process, enabling 

the modelling of complex geological structures and at scales (e.g., high resolution over mine, regional, and national scales) 

that were previously unfeasible. Beyond being able to expand on the types of geological constraints for structural modelling 

in deep learning approaches, they also have potential for direct incorporation of relevant interdisciplinary datasets (e.g., fluid 

flow, mineralization, CO2 storage) where there exist latent relationships to structural features. Collectively, we see potential 90 

for these approaches to provide a needed solution for data and knowledge integration within a single end-to-end manner, and 

thereby overcome the modelling limitations of existing methodologies, and that more accurate representations of three-

dimensional geological structures are efficiently produced.  



 

4 

 

In recent years there has been increasing interest in deep learning approaches for various geoscience applications including 

seismic data interpretation (Bi et al., 2021; Perol et al., 2018; Ross et al., 2018; Shi et al., 2019; St-Charles et al., 2021; 95 

Wang and Chen, 2021; Wang et al., 2022; Wu et al., 2018; Wu et al., 2019), spatial interpolation of geochemical and 

geotechnical data (Kirkwood et al., 2022; Shi and Wang, 2021), remote-sensing (Ma et al., 2019), and implicit three-

dimensional geological modelling (Hillier et al., 2021; Bi et al., 2022). It is also worth noting the machine learning approach 

that casts implicit modelling as a multi-class classification problem by Gonçalves et al. (2017). While this is not a deep 

learning-based approach, it supports continuous implicit modelling but not faulting or unconformities. Although deep 100 

learning approaches forto implicit three-dimensional geological modelling are promising, they are still in their infancy, and 

much more research and development is required for them to reach their full potential. WhileFor example, although the 

recently proposed deep learning approach (Bi et al., 2022) can generate faulted three-dimensional geological models 

structurally consistent with the data, there are someexist limitations: it cannot currently model unconformities, there is 

ambiguity in how to properly annotate or set scalar constraints on horizon data, and it may suffer from edge effects that can 105 

generate spurious discontinuities.  

In this paper, we advance a previous deep learning-basedan existing INR approach forto three-dimensional implicit 

geological modelling that used graph neural network (GNN) architectures (Hillier et al., 2021) using implicit neural 

representation networks.). In recent years, there has been substantial interest and advancements in using these neuralINR 

networks on a wide variety of problems including modelling of discrete signals in audio, image, and video processing, 110 

learning complex three-dimensional shapes, and solving boundary value problems (e.g., Poisson, Helmholtz) (Sitzmann et 

al., 2020). Moreover, mathematical connections to kernel methods have emerged (Jacot et al., 2020) to establish a foundation 

for numerical analysis. In the field of computer graphics, they are being effectively used to represent complex three-

dimensional shapes (Park et al., 2019; Gropp et al., 2020; Atzmon and Lipman, 2020; Davies et al., 2021; Wang et al., 2021) 

and reminiscent of surface reconstruction methods using radial basis function interpolation (Carr et al., 2001). For these 115 

applications, a key advantage for deep learning-based approaches is they can be used to learn the latent space of shapes; a 

vector space representing all possible geometrical variations of a specific class of objects (e.g., chairs, cats, folded 

stratigraphy, etc). In this space, where objects are represented as points within the space, neural networks can learn common 

properties between objects of the same class. Furthermore, points representing objects with similar geometries are closer 

than points representing objects with dissimilar geometries enabling the interpolation between objects. For structural 120 

geological modelling applications to leverage this concept, realistic three-dimensional geological simulators are required to 

generate large training sets from which implicit geological constraints can be sampled in a manner that mirrors the same 

characteristics as real-world data (strong heterogeneously distributed, noisy, with conflicting interpretations). It is important 

to note that there currently exists a large training set of idealized synthetic three-dimensional models specifically for the 

purposes of machine learning training (Jessell et al., 2022). However, research into sampling strategies for real-world data is 125 

needed. In this paper, we focus on advancing implicit neural representation (INR) network approaches for implicit three-
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dimensional geological modelling to support more complex geological structures that will also benefit other deep learning 

approaches that train on large ensembles of synthetic geological models. Our aim is toHere, our aim is to support more 

complex geological structures, in both very rich and sparse data environments. To this end, we demonstrate INR networks 

can be used efficiently to incorporate a comprehensive set of inequality constraints on stratigraphic relations (e.g., 130 

knowledge constraints) derived from a stratigraphic column, support modelling of unconformities, improve data fitting 

characteristics, and reduce modelling artifacts when modelling complex geological structures with large, dense, noisy, or 

sparse data.   

The remainder of this paper is organized as follows. Section 2 describes the proposed methodology using implicit neural 

representationINR networks for modelling complex geological structures containing unconformities. Section 3 presents 135 

modelling results using the proposed methodology. Section 4 discusses modelling characteristics of the approach, and 

comparisons with other approaches. The last section, Section 5, conclusions are given. 

2 Methodology 

2.1 Definitions and Notationsnotations 

To better support the geological relations and feature representations mathematically, we have employed specific 140 

symbology. For clarifyclarity, definitions and notations used throughout this paper are provided below.  

 

First, the notations for scalar, vector, set/tuples, and matrix quantities are as follows: lowercase, bold lowercase, 

UPPERCASE, and BOLD UPPERCASE, respectively. 

 145 

Second, there arethe paper utilizes three types of geological point data considered in this paper that can sample: (1) 

sampled geological interfaces 𝐼𝑗  (e.g., either stratigraphic horizons or unconformities), (2) geological units 𝑈𝑗 , and (3) 

orientation 𝑂 (e.g., either planar or linear measurements). For interfaces 𝐼 = (𝐼0, 𝐼1, 𝐼2, … ) , subscripts indicate the 

chronological order the interface was created, with smaller integers being older interfaces. For geological units 𝑈 =

(𝑈𝐴, 𝑈𝐵, 𝑈𝐶 , … ), subscripts also indicate the chronological order of their formation, with the alphabetical order reflecting the 150 

sequence of geological units. 

 

Third, point sets in this paper are denoted by 𝑋. Subscripts on point sets indicate the specific geological feature the point 

set is sampling. For example, 𝑋𝐼0 is the point set sampling the geological interface 𝐼0. 

 155 
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Fourth, for scalar fields, the following notation is used to shorten expressions. Consider a three-dimensional point 𝒙𝑗, let 

𝜑𝑗
𝑖 = 𝜑𝑖(𝒙𝑗) denote the scalar field value associated with the 𝑖-th scalar field 𝜑𝑖 at that point. For a set of points 𝑋𝑄 sampling 

a specific geological feature 𝑄 let 𝜑𝑄
𝑖 = 𝜑𝑖(𝑋𝑄) denote the set of scalar values associated with scalar field 𝜑𝑖 at the sampled 

points. For the mean scalar field value of a set of points 𝑋𝑄 let  

�̅�𝑄
𝑖 =

1

|𝑋𝑄|
∑𝜑𝑖(𝑋𝑄) =

1

|𝑋𝑄|
∑ 𝜑𝑗

𝑖

|𝑋𝑄|

𝒙𝑗∈𝑋𝑄

, (1) 

where |𝑋𝑄| is the number of elements (e.g., points) in the set 𝑋𝑄. Finally, let the gradient of scalar field 𝜑𝑖 at point 𝒙𝑗 be 160 

denoted by ∇𝜑𝑗
𝑖 .  

2.2 Problem statementObjectives 
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Figure 1. Complex geological setting for three-dimensional implicit geological modelling. Inputs for modelling include 165 

scattered data constraints, a stratigraphic column, and set of geological rules (erodes ~, onlaps ≊) for scalar fields 𝜑𝑖(𝒙) 

representing thedistinct conformal and unconformity structures within distinct geological domains. 

 

Our objective is to use multilayer perceptron (MLP) neural networks to perform three-dimensional implicit modelling of 

complex geological settings having both conformable and unconformable structures, given a set of 𝑵𝑁 scattered data points, 170 

a stratigraphic column, and set of geological rules as illustrated in Fig. 1. Conformable structures, having undergone the 

same geological history, exhibit sub-parallel geometries in nearby associated interfaces and strata. In contrast, 

unconformities are interfaces produced from erosionalerosion or halting of sedimentation processes, thus separating strata of 

different ages -and marking a discontinuous transition in the depositional process. Distinct conformable and unconformable 

structures are modelled separately, each associated with its own implicit scalar field 𝜑𝑖(𝒙) and data constraints (Calcagno et 175 

Formatted: Font: 10 pt, Font color: Black
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al., 2008; de la Varga et al., 2019; Grose et al., 2021b). The scalar field index 𝒊𝑖 indicates its relative temporal position in the 

sequence of geological events. Data constraints associated with each scalar field  𝜑𝑖 can include points sampling specific sets 

of geological features such as interfaces 𝑰𝒌
𝒊 𝐼𝑘
𝑖 , geological units 𝑼𝒌

𝒊 𝑈𝑘
𝑖 , and orientations 𝑶𝒊𝑂𝑖 of interfaces and strata. Subscript 

𝒌𝑘 denotes the 𝒌𝑘-th interface or geological unit associated, while the superscript 𝒊𝑖 indicates those geological features are 

represented by 𝜑𝑖 . Importantly, the suite of stratigraphic relationships (e.g., above, below, on) encapsulated within the 180 

stratigraphic column and the geological rules between scalar fields (e.g., erosional, onlap) are incorporated into the 

modelling process.  

 

Let 𝓜(𝑿,𝝋, 𝝃)ℳ(𝑋, 𝜑, 𝜉)  be an implicit model in three-dimensional space where the point set 𝑿𝑋 =

{𝒙𝟎, ⋯ , 𝒙𝑵−𝟏}{𝒙0, ⋯ , 𝒙𝑁−1} ⊆ ℝ
𝟑ℝ3 are the 𝑵𝑁 scattered data points, the tuple 𝝋 = (𝝋𝟎, ⋯ ,𝝋𝑭−𝟏)𝜑 = (𝜑0, ⋯ , 𝜑𝐹−1) are 185 

the 𝑭𝐹  indexed implicit scalar fields, and 𝝃𝜉  is a global interpolationsmoothness constraint (Sect 2.4.5).  The global 

interpolationsmoothness constraint is to ensure a globally reasonable geological structural model. 

   

Let 𝝋𝒊(𝑿𝒊, 𝑰𝒌
𝒊 , 𝑼𝒌

𝒊 , 𝑶𝒊, 𝓔)𝜑𝑖(𝑋𝑖, 𝐼𝑘
𝑖 , 𝑈𝑘

𝑖 , 𝑂𝑖 , ℰ) be the 𝒊𝑖-th implicit scalar field approximated from the set of points 𝑿𝒊 =

{𝑿𝑰𝒌
𝒊 , 𝑿𝑼𝒌

𝒊 , 𝑿𝑶𝒊} ⊆ 𝑿𝑋
𝑖 = {𝑋𝐼𝑘

𝑖 , 𝑋𝑈𝑘
𝑖 , 𝑋𝑂𝑖} ⊆ 𝑋  sampling interfaces 𝑰𝒌

𝒊 𝐼𝑘
𝑖 , geological units 𝑼𝒌

𝒊 𝑈𝑘
𝑖 , and orientations 𝑶𝒊𝑂𝑖 190 

respectively.  The scalar field is approximated from the set of interpolations constraints 𝓔ℰ (Sect. 2.4) using these sampled 

data points. The set of interfaces 𝑰𝒌
𝒊 𝐼𝑘
𝑖  and units 𝑼𝒌

𝒊 𝑈𝑘
𝑖  are arranged in an order of older to younger.  
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2.3 Implicit neural representations 

 
 195 

Figure 2. Neural network architecture for three-dimensional implicit geological modelling. (a) MLP architecture that 

generates scalar field predictions from spatial coordinates. (b) Perceptron neural model and output for a neuron. (c) Multiple 

scalar field predictions for a given point from stacked MLPs in GeoINR network.  

 

Implicit neural representations, also known as coordinate-based representations (Tancik et al., 2020), are neural networks 200 

that parameterize implicitly defined functions 𝜑(𝒙) where network’s inputs 𝒙 ∈ ℝ𝑚 are 𝑚-th dimensional spatial or spatial-

temporal coordinates. These networks typically utilize multilayer perceptrons (a MLP),, as illustrated in Fig. 2, to learn how 

to map coordinates into a geometrical representation of shape/structure encoded as an implicit scalar field.  Note that other 

network architectures, such as graph neural networksGNNs (Hillier et al., 2021), that learn this mapping are also categorized 

as INR networks. MLPs are universal approximators capable of approximating any unknown function 𝑓(𝒙) provided there 205 

are enough hidden neurons (Hornik, 1989). They are composed of three types of layers - input, hidden, and output layers - 

which transform inputted data into abstract representations and model predictions in the hidden and output layers, 

respectively. There are three parameters that define MLP networks: number of hidden layers 𝑁ℎ , dimensionality of 

representations 𝑑𝑟𝑒𝑝, and chosen non-linear activation function 𝜎. At every training iteration 𝑡, errors between the network’s 
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outputted scalar fields and interpolation constraints are measured using developed loss functions presented in the proceeding  210 

section. These errors are minimized by the backpropagation process where the network’s variables (𝑾’s and 𝒃’s Fig. 2a) are 

updated by gradient descent. For complex geologically settings where there are 𝐹  distinct conformal and unconformity 

structures, each associated with a separate implicit scalar field 𝜑𝑖, 𝐹 MLPs are stacked together resulting in 𝐹 scalar values 

being outputted for every point 𝒙 (Fig. 2c). Following the training process, multiple scalar fields are combined in a manner 

respecting the geological rules for erosion and onlapping of conformal structures onto unconformities (Sect. 2.6)). 215 

2.4 Interpolation constraints and loss functions 

For structural geological modelling, interpolation constraints ℇ are split into four categories: interface, geological unit, 

orientation, and global smoothness constraints. For interface and geological unit data, a suite of knowledge constraints on 

stratigraphic relations are developed and described in the next section (Sect. 2.4.1). For each constraint type, a corresponding 

loss function is developed to accumulate all errors, (Fig. 3), at every training iteration 𝑡, measured between the predicted 220 

model and set of points for which a constraint is imposed. 

 

 

 

Figure 3. Errors associated with interface (circles), orientation (black arrows), and geological unit (triangles), and 225 

orientation (black arrows) constraints at training iteration 𝑡, modelling two conformal interfaces 𝐼1
𝑖 , 𝐼0

𝑖  and three geological 

units A, B, C, with an implicit scalar field 𝜑𝑖. Approximated signed distances 𝛿 are computed for interface and geological 

unit data, whereas angular residuals 𝜃 are computed for orientation data. Insets: (black) stratigraphic column, (gray) angle 

between scalar gradient (orange) and bedding. 
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2.4.1 Stratigraphic relations and constraints 230 

Stratigraphic relations are defined, in terms of scalar field differences, to encapsulate above, below, and on relationships 

(e.g., knowledge) between points sampling interfaces and geological units using a given stratigraphic column. From these 

relations, a suite of constraints for scattered point sets are developed so that the constrained implicit model ℳ respects the 

stratigraphic column.  

 235 

Given a point 𝒙𝑙 ∈ 𝑋Υ𝑗 belonging to a point set 𝑋Υ𝑗  sampling either a specific interface (Υ𝑗 = 𝐼𝑗) or geological unit (Υ𝑗 =

𝑈𝑗), a stratigraphic relation is defined as follows: 

 

𝑅
𝒙𝑙,𝐼𝑘

𝑖 = 𝜑𝑙
𝑖 − �̅�

𝐼𝑘
𝑖
𝑖 , (2) 

  

where �̅�
𝐼𝑘
𝑖
𝑖  (Eq. 1) is the iso-value, at training iteration 𝑡, associated with interface 𝐼𝑘 and represented by scalar field 𝜑𝑖. The 

relations indicates whether point 𝒙𝑙 is above, below, or on a reference interface 𝐼𝑘, modelled with scalar field 𝜑𝑖, when the 240 

relation value is  

 

𝑅
𝒙𝑙,𝐼𝑘

𝑖 > 0 𝑎𝑏𝑜𝑣𝑒

𝑅
𝒙𝑙,𝐼𝑘

𝑖 < 0 𝑏𝑒𝑙𝑜𝑤

𝑅
𝒙𝑙,𝐼𝑘

𝑖 = 0        𝑜𝑛

,

𝑅
𝒙𝑙,𝐼𝑘

𝑖 > 0 𝑎𝑏𝑜𝑣𝑒

𝑅
𝒙𝑙,𝐼𝑘

𝑖 < 0 𝑏𝑒𝑙𝑜𝑤

𝑅
𝒙𝑙,𝐼𝑘

𝑖 = 0        𝑜𝑛,

 (3) 

 

respectively. Point sets 𝑋Υ𝑗  encoded as stratigraphically above or below an interface 𝐼𝑘 are given the following inequality 

constraints: 245 

 

𝑅
Υ𝑗,𝐼𝑘

𝑖 = 𝜑Υ𝑗
𝑖 − �̅�

𝐼𝑘
𝑖
𝑖 > 0 

𝑅
Υ𝑗,𝐼𝑘

𝑖 = 𝜑Υ𝑗
𝑖 − �̅�

𝐼𝑘
𝑖
𝑖 < 0, 

(4) 

   

respectively. For a point set sampling the reference interface 𝐼𝑘 , the constraint 

 

𝑅
𝐼𝑘,𝐼𝑘

𝑖 = 𝜑𝐼𝑘
𝑖 − �̅�

𝐼𝑘
𝑖
𝑖 = 0 (5) 

 250 

is used. The complete set of stratigraphic constraints on relations for both interface and geological unit point data illustr ated 

in Fig. 1 are shown in Fig. 4. The set of relations considers interface-interface and unit-interface pairs and are expressed in 
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matrix form with above relations (yellow) in the upper right and below relations (light purple) in the lower left. For the 

matrix of interface-interface relations, on relations (green) are along the diagonal. For the above relations and associated 

constraints, only the ones within distinct geological domains – created by the series of unconformity interfaces – are 255 

considered, while the remaining ones (red) are discarded. These are discarded because points sampling younger geological 

features can be measured as being below older modelled interfaces from other geological domains using their associated 

scalar fields and corresponding iso-value, depending on their geometries. For example, consider the unconformity interface 

𝐼2 (Fig. 4), it erodes portions of 𝐼1 and therefore the presence of the unconformity can be measured below 𝐼1 using 𝜑0 (e.g., 

the scalar field that models 𝐼1) in those portions. This characteristic doesn’t apply to any below relations and constraints, 260 

since points sampling an interface or unit must always be below all younger interfaces. In our available source code, we also 

provide a more efficient alternative option for below relations: excluding below relations of conformal interfaces and 

associated units with younger conformal interfaces from younger geological domains. Only below relations of conformal 

interfaces and associated units to the next youngest unconformity, are required to constrain their geometries.  

 265 
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Figure 4. Stratigraphic relations between specific interface-interface and geological unit-interface pairs and associated 

constraints. Constraints are colored according to their above (yellow), below (light purple), or on (green) spatial relation. For 

above relations (upper right matrix block), only the constraints on relations within distinct geological domains are considered 

while the remaining constraints are not used (red). 

 270 

To measure errors at some training iteration 𝑡 between the implicit model ℳ at sampled interfaces and geological unit 

points 𝒙𝑙 and their associated constraints, an approximate signed distancedistances 𝛿
𝒙𝑙,𝐼𝑘

𝑖  (Caumon, 2010; Taubin, 1994) (Fig. 

3) from a reference interface 𝐼𝑘, modelled by 𝜑𝑖, are used and defined as follows: 

 

𝛿
𝒙𝑙,𝐼𝑘

𝑖 =
𝜑𝑙
𝑖 − �̅�

𝐼𝑘
𝑖
𝑖

‖∇𝜑𝑙
𝑖‖
. (6) 
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is used. The magnitude of the scalar gradient ‖∇𝜑𝑙
𝑖‖ in the denominator is an important term to account for changes in unit 

thickness between interfaces represented inby the scalar field. Smaller magnitudes correspond to thickening of units, while 

larger ones are indicative of unit thinning. Consequently, the approximate signed distances are a much more accurate 

measure of how far above or below a point is above some reference interface than the scalar differences  themselves. This is 

because scalar values for various geological features are not meaningful in real-world distances and are not normalized 280 

between features. 

 

The three loss functions for the above, below, and on stratigraphic constraints integrating all errors from sets of point sets 

𝑋Υ are given by 

ℒΥ
𝐴𝑏𝑜𝑣𝑒 = ∑

1

|𝑋Υ𝑗|
∑ ∑ �̂�

𝒙𝑙,𝐼𝑘
𝑖

|𝐵Υ𝑗|

𝐼𝑘
𝑖∈𝐵Υ𝑗

|𝑋Υ𝑗|

𝒙𝑙∈𝑋Υ𝑗

,

|Υ|

Υ𝑗∈Υ

    �̂�
𝒙𝑙,𝐼𝑘

𝑖 =

{
 
 

 
 |𝜑𝑙

𝑖 − �̅�
𝐼𝑘
𝑖
𝑖
|

‖∇𝜑𝑙
𝑖‖

𝜑𝑙
𝑖 − �̅�

𝐼𝑘
𝑖
𝑖 < 0

0                𝜑𝑙
𝑖 − �̅�

𝐼𝑘
𝑖
𝑖
≥ 0

 (7) 

ℒΥ
𝐵𝑒𝑙𝑜𝑤 = ∑

1

|𝑋Υ𝑗|
∑ ∑ �̌�

𝒙𝑙,𝐼𝑘
𝑖

|𝐴Υ𝑗|

𝐼𝑘
𝑖∈𝐴Υ𝑗

|𝑋Υ𝑗|

𝒙𝑙∈𝑋Υ𝑗

,

|Υ|

Υ𝑗∈Υ

    �̌�
𝒙𝑙,𝐼𝑘

𝑖 =

{
 
 

 
 𝜑𝑙

𝑖 − �̅�
𝐼𝑘
𝑖
𝑖

‖∇𝜑𝑙
𝑖‖

𝜑𝑙
𝑖 − �̅�

𝐼𝑘
𝑖
𝑖 > 0

0                𝜑𝑙
𝑖 − �̅�

𝐼𝑘
𝑖
𝑖
≤ 0

 (8) 

ℒ𝐼
𝑂𝑛 =∑

1

|𝑋𝐼𝑘|
∑ |𝛿𝒙𝑙,𝐼𝑘

𝑖 |

|𝑋𝐼𝑘|

𝒙𝑙∈𝑋𝐼𝑘

|𝐼|

𝑘

, (9) 
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respectively. Note that 𝐴Υ𝑗  and 𝐵Υ𝑗  are a set of interfaces 𝐼𝑘
𝑖  that are above or below, respectively, a specific geological 

feature Υ𝑗  (either an interface or unit). For example, consider the loss function for the below constraints (Eq. 8) associated 

with the geological unit 𝑈𝐷 from Fig. 4. In this case, Υ𝑗 = 𝑈𝐷 and 𝐴Υ𝑗 = 𝐴𝑈𝐷 = {𝐼5
3, 𝐼4

2, 𝐼3
2} are the set of interfaces above 

that geological unit. The below constraints for this geological unit require that the points within the set 𝑋𝑈𝐷 must be below 290 

the interfaces above 𝐴𝑈𝐷 . If points 𝒙𝑙 ∈ 𝑋𝑈𝐷 are above, or 𝜑𝑙
𝑖 − �̅�

𝐼𝑘
𝑖
𝑖 > 0, those points will have non-zero errors, otherwise 

the error will be zero (e.g., respect constraint respected). 

 

Loss functions associated with above or below stratigraphic constraints are effective in constraining resultant implicit 

models to respect the sequence provided by a given stratigraphic column. Not only do these loss functions ensure modelled 295 

interfaces and strata respect the stratigraphic sequence for each scalar field 𝜑𝑖 but also importantly, that they respect the 

presence of sampled interfaces and strata associated with other scalar fields. To clearly illustrate the latter, consider Fig . 5 

where two unconformities are modelled separately with two scalar fields. Without these constraints, unconformities are 

modelled independently, a portion of the older unconformity is eroded incorrectly despite the presence of a valid 

unconformity observation point (e.g., point 1 Fig.5a). With these constraints, all scalar fields are coupled so that the entire 300 

geological sequence of all sample interfaces and strata are honored/considered. This resolves an issue in other implicit 

approaches (Calcagno et al., 2008, de la Varga et al., 2019, Grose et al., 2021b) that treat each scalar field independently. 

And finally, these constraints help impose the correct scalar field polarity – e.g., the alignment of the gradient of the scalar 

field ∇𝜑 with younging direction (direction of younger stratigraphy) - even in circumstances where there are no bedding 

observations available. Having the correct scalar field polarity is critical in assigning geological domains so that multiple 305 

scalar fields can be combined into a resultant scalar field respecting geological rules (erosional and onlap), as well as 

assigning geological units to modelled volumes (Sect. 2.6). 
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Figure 5. The effect of above and below stratigraphic constraints in coupling two scalar fields 𝜑0 and 𝜑1  modelling two 310 

unconformities. (a) Without using the constraints and (b) with using the constraints. 

2.4.2 Interface constraints 

For interface data, there are four interpolation constraints. Firstly, the variance of all scalar field values 𝜑
𝐼𝑘
𝑖
𝑖  on a sampled 

interface 𝐼𝑘
𝑖  are roughly zero as follows: 

 315 

𝑉𝑎𝑟 (𝜑
𝐼𝑘
𝑖
𝑖
) = 0. (10) 

 

This iso-value constraint ensures that the scalar field at the sampled locations for 𝑘-th interface 𝑋𝐼𝑘 are the same and has the 

following associated loss function: 

 

ℒ𝐼
𝑣𝑎𝑟 = ∑𝑉𝑎𝑟 (𝜑

𝐼𝑘
𝑖
𝑖
)

|𝐼|

𝐼𝑘∈𝐼

. (11) 

 320 

The other three constraints utilize the stratigraphic relations to enforce the above, below, and on constraints. Combined, 

the resulting loss function for interface data is as follows: 
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ℒ𝐼 = ℒ𝐼
𝑣𝑎𝑟 + ℒ𝐼

𝑂𝑛 + ℒ𝐼
𝐴𝑏𝑜𝑣𝑒 + ℒ𝐼

𝐵𝑒𝑙𝑜𝑤. (12) 

 

The first two loss functions both constrain the implicit model to respect the locations of sampled interfaces, while the last 325 

two ensure that the sequence of sampled interfaces respects the given stratigraphic column. 

2.4.3 Geological unit constraints 

To constrain the implicit model with geological unit data 𝑈, the above and below stratigraphic constraints are applied to this 

dataset.. Consequently, the resulting loss function for geological unit data is as follows: 

 330 

ℒ𝑈 = ℒ𝑈
𝐴𝑏𝑜𝑣𝑒 + ℒ𝑈

𝐵𝑒𝑙𝑜𝑤.  (13) 

2.4.4 Orientation constraints 

For an orientation data point 𝒙𝑗 ∈ 𝑋𝑂𝑖  associated with a scalar field  𝜑𝑖 , an angular constraint 𝜃𝑗
𝐶  characterizes the angle 

between the orientation vector 𝒗𝑗 and the scalar gradient ∇𝜑𝑗
𝑖  at 𝒙𝑗. For normal data (e.g., bedding orientation with younging 

direction), the interpolation constraint is as follows: 

 335 

𝜃𝐶 = 0°,, (14) 

 

while for tangent data (e.g., lineations, fold axis) it is as follows: 

 

𝜃𝐶 = 90°.. (15) 

 

 340 

The loss function associated with orientation data 𝜃𝑖  measures angular errors (Fig. 3) between the given angular 

constraints 𝜃𝑗
𝐶 and angles 𝜃𝑗

𝑖 computed from the implicit model ℳ at some training iteration, and is given by 

 

ℒ𝑂 =∑
1

|𝑂𝑖|
∑|𝑐𝑜𝑠𝜃𝑗

𝐶 − 𝑐𝑜𝑠𝜃𝑗
𝑖|

|𝑂𝑖|

𝑗∈𝑂𝑖

𝐹

𝑖=1

, (16) 

 

where  𝑐𝑜𝑠𝜃𝑗
𝑖 is computed from  345 
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𝑐𝑜𝑠𝜃𝑗
𝑖 =

𝒗𝑗∙∇𝜑𝑗
𝑖

‖𝒗𝑗‖‖∇𝜑𝑗
𝑖
‖
. (17) 

 

2.4.5 Global smoothness constraint 

It is well established, as previously mentioned in the introduction, that a disadvantage of implicit approaches for structural 

geological modelling is that they can produce modelling artifacts, commonly referred to as ‘bubbly’ artifacts, yielding 350 

geologically unreasonable models (de Kemp et al., 2017) particularly in complex structural settings. (de Kemp et al., 

2017).  One way to address this problem is to impose a global smoothness constraint over the modelling domain using 

energy minimization principles. Here, we use the following Eikonal constraint (Gropp et al., 2020),e.g., a unit-norm 

constraint, for this purpose) (Gropp et al., 2020): 

 355 

‖∇𝜑𝑖(𝒙)‖ = 1 (18) 

 

which has the followingfor this purpose. The associated loss function for the implicit model is as follows:  

 

ℒ 𝜉 =∑
1

|Ω𝑠|

𝐹

𝑖

∑ (|‖∇𝜑𝑗
𝑖‖ − 1|)

|Ω𝑠|

𝒙𝑗∈Ω𝑠

, (19) 

 

where Ω𝑠 are a set of points sampling the modelling domain Ω. Due to the efficiency and computational scalability of MLP 360 

neural networks, sufficiently sampling the domain, even densely, is feasible. The effect of the global smoothness constraint 

on the scalar field is that it promotes sub-parallel geometries in nearby strata throughout a modelling domain.  The effect is 

illustrated in the first case study (Sect. 3.1). 

 

2.4.6 Resultant loss function 365 

The resultant loss function, or total loss function ℒ, for all geological constraints is simply the sum of the individual loss 

functions and is given by 

 

ℒ = ℒ𝐼 + ℒ𝑈 + ℒ𝑂 + 𝜆ℒ 𝜉 , (20) 

 

where the loss function ℒ 𝜉 for the global smoothness constraint is weighted by the lambda term, 𝜆 >≥ 0. The larger its value 370 

the more scalar fields are smoothed. This function represents the loss landscape (Li et al., 2018), or objective function, given 
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a set of constraints and in which the learning algorithm attempts to find its minimum. The location in which the loss 

landscape is a minimum corresponds to the set of neural networks variables that yield minimal error between the network’s 

predictions and geological constraints. 

2.5 Training 375 

An important training aspect to our proposed implicit neural representationINR networks is athe geometrical initialization of 

network variables. The variables are initialized such that the resulting outputted scalar field represents a shape with 

reasonable starting geometry for a specific geological application, which will be evolved through training by fitting given 

data constraints. Using standard variable random initialization schemes (Glorot and Bengio, 2010; He et al., 2015), resulting  

output scalar fields can be far from an optimal starting point for training, especially as the network’s complexity increases 380 

(Fig. 6a). Consequently, if the training algorithm is rerun many times using the same conditions (Fig. 6b), resulting structu ral 

models can exhibit large variance in modelled structures. To solve these issues, training starts with a geometrically 

reasonable scalar field by geometrical initialization of network variables. For stratigraphicintrusive-like modelling, network 

variables are initialized to produce a planar geometry (Fig. 6d), whereas for intrusive-like modelling, they are initialized to 

produce a spherical geometry (Fig. 6c) (Atzmon and Lipman, 2020). ), whereas for stratigraphic modelling, they are 385 

initialized to produce a planar geometry (Fig. 6d). Formatted: Font color: Text 1
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Figure 6. Scalar fields generated from initialization of network variables. (a) Effect of increasing network complexity on 

generated scalar field by increasing number of hidden layers 𝑁ℎ and dimension of hidden representations 𝑑𝑟𝑒𝑝. (b) Scalar 

fields generated from three random initializations of network variables. (c) Spherical initialization. (d) Planar initialization 390 

using pre-trained network applied to points sampling layer-cake volume. 

 

To initialize our networks to produce a scalar field with a planar geometry we first pretrain a MLP network for 1000 

epochs with the same parameterization (𝑁ℎ, 𝑑𝑟𝑒𝑝, 𝜎) on a synthetic dataset densely sampling four layer-cake interfaces (Fig.  

6d). The pre-trained network’s parameters are saved and loaded into each of the 𝐹 stacked MLP networks which are updated 395 

by training on an unseen stratigraphic dataset. This can be viewed as transfer learning (Zhuang et al., 2021); applying what is 

learned for one problem onto a similar problem. An added benefit to using pretrained networks is reproducibility in 

modelling results since the network is initialized with the same parameters. Furthermore, the number of training epochs to 

converge (e.g., minimal losses) is reduced. 
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 400 

Another training aspect utilized in the proposed methodology is applying learning rate schedules in the Adam optimizer 

(Loshchilov and Hutter, 2017). Learning rate schedules adjust the learning rate during training by decreasing the rate 

according to a prescribed schedule. While the Adam optimizer does adapt the initialized learning rate on a per-parameter 

biases, there is a benefit to decreasing the adaptable learning rate with increasing training epochs. Empirically, we have 

found that applying either step decay or cosine annealing learning rate schedules yields much lower losses and consequently 405 

better data fitting characteristics. 

2.6 Geological domains and combining scalar field series 

After implicit scalar functions are constrained by training, gridded points sampling a geological volume are inputted to the 

trained MLP network to generate 𝐹  separate continuous scalar fields, each representing a distinct geological feature, 

throughout the volume of interest (Fig. 7a). Since unconformity interfaces can erode (e.g., cut) older geological features, 410 

there are regions of space where those features are no longer present. To cut portions of a geological feature removed by an 

unconformity, its associated continuous scalar field is cut by the modelled unconformity interface. As a result, geological 

features are partitioned into geological domains (Fig. 7b) where those features are present, and their associated scalar fields 

and geological units are defined (Fig. 7c). Since a point in the modelled volume can only be associated with a single scalar 

field, the scalar field series and their associated geological units is combined such that only the domain in which each scalar 415 

field and set of units is defined is merged into a resultant scalar field and geological unit model (Fig. 7d).  
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Figure 7. Constructing geological domains and combining scalar fields. (a) (top) Scalar field series and modelled interfaces 

with their regions (bottom) defined from associated inequalities. Scalar fields associated with unconformities have Boolean 
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masks 𝑀𝑖 defining above and below regions.  (b) Geological domains constructed from Boolean masks. (c) Scalar fields and 420 

geological units assigned to geological domains. (d) Combined scalar fields and geological units. 

 

Geological domains are spatial partitions created by boundaries defining discontinuous features (e.g., unconformities  and 

faults) within which continuous geological features (e.g., conformable stratigraphy) exist. In this paper, only unconformity 

boundaries are used to create geological domains, although the same ideaapproach can be used for faulting. See discussion 425 

(Sect. 4) for future work with incorporation of faulting. To construct geological domains, first mask arrays defining above 

and below (Fig. 7b) regions for each unconformity interface within the modelling volume are computed using the associated 

scalar field and inequalities. As mentioned previously, the notion of above/below a reference interface defined by an iso-

value, also known as polarity, is provided by the scalar gradient (Fig. 7a) that points in the direction of younger stratigraphy 

(e.g., Younging direction). For example, volumes above and below an interface 𝐼5  modelled with 𝜑3  are defined, 430 

respectively, by 

 

𝜑3 ≥ 𝜑
𝐼5
3
3

 

𝜑3 < 𝜑
𝐼5
3
3

 
(21) 

 

where 𝜑
𝐼5
3
3

 is the iso-value associated with 𝐼5. The mask array 𝑀𝑖 associated with the unconformity is set to True wherever 

above the interface, and False below it. Secondly, from the geological rules associated with the unconformity scalar fields, 435 

an appropriate set of Boolean logic is applied to the mask array(s) to define the geological domain. For example, consider 

domain 𝐷1 in Fig. 7b, it is defined wherever it is below 𝐼5 (where 𝑀3 is false; ! 𝑀3) and above 𝐼2 (where 𝑀1 is true; 𝑀1). 

Domains for older geological features have a biggerlarger set of Boolean logic applied to mask arrays since there are more 

younger unconformities that can erode those volumes as compared to younger geological features. With the geological 

domains defined, scalar fields and geological units are both assigned to their associated geological domains thereby 440 

combining all the scalar fields and geological units into a resultant three-dimensional geological volumetric model. 

2.7 Iso-surface Extraction 

Iso-surface extraction methods can be applied to specific regions of implicit scalar field volumes provided appropriate 

Boolean masks are given and can be useful for obtaining the geological horizons of conformal domains. However, obtaining 

unconformity interfaces using this approach will lead the production of anti-aliasing artifacts in triangulated surfaces. To 445 

resolve this issue, we develop an algorithm (see Algorithm 1 in Appendix A) using the open-source library PyVista (Sullivan 

and Kaszynski, 2019) to generate all iso-surfaces that can be cut by unconformities. The algorithm first extracts the set of 

continuous iso-surfaces for each of the 𝐹 scalar fields computed within a gridded volume. Next, the set of iso-surfaces are 
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iterated on, going from oldest to youngest and processed. For a given surface being processed, that surface is progressively 

cut by younger unconformities above it in the stratigraphic column, again going from older to younger. 450 

3. Case StudyStudies 

Modelling results produced by the proposed methodology for a real-world case study of a sedimentary basin are presented 

here to demonstrate proof of concept. The dataset used for this purpose is a compilation of formation tops and unconformity 

picks, extracted from March and Love (2014), from the Lower Paleozoic portion of the Western Canadian Sedimentary 

Basin (WCSB) in Saskatchewan, Canada. The interface constraint data consisted of 4708Modelling results are presented for 455 

two real-world case studies to demonstrate proof of concept: (1) a sedimentary basin with large, dense, and noisy well data, 

and (2) a deformed metamorphic setting with sparse outcrop data. For both case studies, the learnable variables of our 

network, called GeoINR, are initialized with pre-trained models with planar geometry (described in Sect. 2.5) using the 

model parameters summarized in Table 1. tops and unconformity picks sampling 4 unconformities and 3 conformable 

horizons. The depths of the picks were interpreted from geophysical well logs and correlated to core samples when available. 460 

Due to the interpretative nature of the constraint data – an attribute for all real-world geological datasets - the data can be 

characterized as noisy as their exact positions are uncertain (Fig. 8a (right)). Moreover, this presents an opportunity to test 

whether the proposed methodology can be useful for generating three-dimensional geological models from regional 

compilation datasets commonly found in Geological Survey Organizations (GSO). In addition to interface constraint data, 

augmented data consisting of intraformational units were generated by sampling along well intervals to demonstrate their 465 

modelling impact as compared to using only interface data. This augmented data is not required to produce a geologically 

representative model (Fig. 8b) but serves to demonstrate that the methodology successfully handles this type of data. 

Intraformational units are sampled along a well interval between two interfaces only if the interfaces are stratigraphically 

adjacent. Interpreted depths of successive formation tops (e.g., interfaces) along the well path may not always be 

stratigraphically adjacent, either because the top could not be identified or that a portion of stratigraphy was eroded. In these 470 

cases, intraformational units are not sampled along a well interval (Fig. 9). For the case study, sequenced well intervals were 

sampled at every 20 meters (vertical resolution of our voxel grid; 5 km was the horizontal resolution) and generated 11270 

sampled intraformational units.  
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 475 

Figure 8. Modelling results for the Lower Paleozoic portion of the WCSB in Saskatchewan generated using the proposed 

GeoINR methodology. Data and modelled results use 100x vertical exaggeration to visualize provincial scale model. (a) 

Model’s geographical coverage, stratigraphic column, formation tops and sampled intraformational data constraints (smaller 
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spheres). (b) Modelled horizons, resultant scalar field and formation units. (c) Section view highlighting data fitting 

characteristics and the effect of removing intraformational units from computation. (d) Side view highlighting geometry of 480 

unconformities in modelled interfaces and associated resultant scalar field. (e) Effect of using global smoothness constraint 

on a scalar field. 

 

 

 485 

Figure 9. Sampling intraformational units (triangles) along well path. 

 

Organizing the geological point dataset first requires all necessary knowledge to be extracted from the stratigraphic 

column. Stratigraphic knowledge including the geological rule of the interface (e.g., erosional, or onlap (conformable)) and 

the set of interfaces above and below each interface and geological unit are tabulated (Table 1 and 2). Corresponding tables 490 

describe the set of stratigraphic relations (Fig. 4), and which scalar field series is associated to a particular interface or unit. 

This information is used for implementation purposes so that associated loss functions can be computed measuring errors 

between the stratigraphic constraints and the current version of the model at some training iteration 𝑡. 

 

As with any machine learning algorithm, neural network inputs require normalization for the network to learn useful latent 495 

representations and yield accurate predictions. Inputs for implicit neural representation networks, which are spatial 

coordinates in this case, are normalized to some range for each coordinate dimension. For the proposed network architecture, 

we normalize each coordinate dimension to range from [-1, 1]. It is worth noting that if the coordinate ranges (∆𝑥, ∆𝑦, ∆𝑧) for 

a given dataset are not equal than each coordinate dimension will have a different scaling term. As a result, scalar gradients 

will be transformed in this new space. If orientation data is available, then the scalar gradients computed from the network 500 

are straightforwardly transformed back into the original space. This is required to accurately measure the angular residuals to 

constrain that type of data. Since in the present case study orientation data is not used, this aspect was not required. Note that 

for datasets covering a large geographical area, such as the dataset in this case study, having a constant scaling term for e ach 

coordinate is not possible. This is because the ∆𝑥, ∆𝑦 are multiple orders of magnitude larger than ∆𝑧. Scaling all coordinate 
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dimensions by a single scaling term for these types of datasets result in negligible variation in 𝑧 coordinates that are not 505 

useful for the network; network’s training losses do not decrease with training. 

 

For this case study, the learnable variables of our network, called GeoINR, with model parameters summarized in Table 3 

are initialized using the pre-trained model with planar geometry described in Sect. 2.5. These variables are updated using the 

Adam optimizer within the Pytorch framework so that modelling errors are minimized during training through the 510 

backpropagation process. Moreover, the cosine annealing learning rate scheduler was used with this optimizer. The networks 

modelarchitecture parameters (Table 3)𝑁ℎ , 𝑑𝑟𝑒𝑝, 𝜎) and learning rate were established from INR literature (Atzmon and 

Lipman, 2020; Gropp et al., 2020; Park et al., 2019; Sitzmann et al., 2020; Tancik et al., 2020) and refined through trial and 

error using various combinations of parameter values. For this case study and other synthetic structural geological models, 

these parameters produce structurally consistent models with respect to the sampled point constraints.  The non-linear 515 

activation function used for our networknetworks was the parameterized Softplus function 

 

𝜎(𝑥) =
1

𝛽
𝑙𝑜𝑔(1 + 𝑒𝛽𝑥) (22) 

 

where the parameter 𝛽  controls the variability of modelled interfaces. Smaller values of 𝛽  produce flatter modelled 

interfaces, whereas higher values produce more locally variant modelled interfaces. Two three-dimensional implicit 520 

geological models are produced using these neural network parameters, one using both interface and intraformational points 

while the other having just interface points. After training, inference is performed on 4,204,592 points from a voxel grid 

having 5 km horizontal resolution, and For these case studies and other synthetic structural geological models, these 

parameters produce structurally consistent models with respect to the sampled point constraints.   

Table 1. GeoINR model parameters values for case studies. 525 

20 m vertical resolution. 

Formatted: Indent: First line:  0 cm

Formatted: Font: Times New Roman, Font color: Auto

Formatted: Font: Times New Roman, Font color: Auto



 

27 

 

Parameters Table 1. Interface 

information. Case 

Study 1 

(well dataset) 

Case Study 2 

(outcrop dataset) 

Number of hidden layers 𝑁ℎ 3 3 

Dimension of representations 𝑑𝑟𝑒𝑝 256 256 

Learning rate 0.0001 0.0001 

Non-linear activation function 𝜎 Softplus (𝛽 = 100) Softplus (𝛽 = 20) 

Number of training epochs 5000 2000 

Global constraint weight 𝜆 0.1 0.0 

Grid horizontal (xy) resolution 5000 m 100 m 

Grid vertical (z) resolution 20 m 10 m 

 

Organizing geological point datasets first requires all necessary knowledge to be extracted from a stratigraphic column. 

Stratigraphic knowledge including the geological rule of the interface (e.g., erosional, or onlap (conformable)) and the set of 

interfaces above and below each interface and geological unit are tabulated (see Appendix B for tables associated with both 530 

case studies). Corresponding tables describe the set of stratigraphic relations (Sect. 2.4.1) and associate interfaces and units 

to a particular scalar field among the series. This information is used for implementation purposes so that associated loss 

functions can compute measuring errors between the stratigraphic constraints and the version of the model at some training 

iteration 𝑡. 

 535 

As with any machine learning algorithm, neural network inputs require normalization for the network to learn useful latent 

representations and yield accurate predictions. Inputs for INR networks, which are spatial coordinates in this case, are 

normalized to some range for each coordinate dimension. For the first case study, each coordinate dimension is normalized 

to the [-1, 1] range. This is particularly important for the first case study where the dataset is covering a large geographical 

area. Having a constant scaling term for each coordinate dimension for this case study is not possible because there would be 540 

negligible variation in 𝑧 coordinates; network’s losses do not decrease with training. In addition, it is worth noting that if 

orientation data are available for datasets covering large geographical areas (>1000 km), scalar field gradients computed 

from the network are required to be transformed back into the original space – using the associated scaling term for each 

coordinate dimension. This is required to accurately measure the angular residuals to constrain orientational data. For the 

second case study, each coordinate dimension has the dataset’s center subtracted then scaled by the maximum range of  545 

∆𝑥, ∆𝑦, ∆𝑧 (Hillier et al., 2021) since there is sufficient variation in normalized z-coordinates due to the much smaller 

geographical extents. 
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After the networks are trained using the supplied data and knowledge constraints, inference is performed on all the points 

within a voxel grid (e.g., grid corners) covering the volume of interest. At these points, predicted scalar field values and 550 

geological units are computed. Once computed, scalar fields and geological units are assigned to geological domains, 

followed by iso-surface extraction of modelled interfaces.  

 

Results for both case studies were obtained using a high-end desktop PC with an Intel Core i9-9980XE CPU and a single 

NVIDIA RTX 2080 Ti GPU. 555 

 

3.1 Provincial-scale Sedimentary Basin Case Study 

The first case study is of a provincial-scale sedimentary basin covering an area approximately 451,000 km2 using a well 

dataset of formation tops and unconformity picks from the Lower Paleozoic portion of the Western Canadian Sedimentary 

Basin (WCSB) in Saskatchewan, Canada (extracted from March and Love (2014)). The interface constraint data consists of 560 

4708 formation tops and unconformity picks sampling 4 unconformities and 3 conformable horizons. The depths of the picks 

were interpreted from geophysical well logs and correlated to core samples when available. Due to the interpretative nature 

of the constraint data, it can be characterized as noisy as their exact positions are uncertain (Fig. 8a (right)). But this presents 

an opportunity to test whether the proposed methodology is useful for modelling data commonly obtained by Geological 

Survey Organizations (GSO). In addition to interface constraint data, augmented data consisting of intraformational units 565 

were generated by sampling along well intervals to demonstrate their modelling impact. This augmented data is not required 

to produce a geologically representative model (Fig. 8b), but serves to demonstrate that the methodology successfully 

handles this type of data. Intraformational units are sampled along a well interval between two interfaces only if the 

interfaces are stratigraphically adjacent. Interpreted depths of successive formation tops (e.g., interfaces) along the well path 

may not always be stratigraphically adjacent, either because the top could not be identified or that a portion of stratigraphy 570 

was eroded. In these cases, intraformational units are not sampled along a well interval (Fig. 9). For this case study, 

sequenced well intervals were sampled at every 20 meters (vertical resolution of our voxel grid; 5 km was the horizontal 

resolution) and generated 11270 sampled intraformational units. Two three-dimensional implicit geological models are 

produced, one using both interface and intraformational points while the other having just interface points.   

 575 
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Figure 8. Modelling results for the Lower Paleozoic portion of the WCSB in Saskatchewan generated using the proposed 

GeoINR methodology. Data and modelled results use 100x vertical exaggeration to visualize provincial scale model. (a) 

Model’s geographical coverage, stratigraphic column, formation tops (larger spheres) and sampled intraformational data 



 

30 

 

constraints (smaller spheres). (b) Modelled horizons, resultant scalar field and formation units. (c) Section view highlighting 580 

data fitting characteristics and the effect of removing intraformational units from computation. (d) Side view highlighting 

geometry of unconformities in modelled interfaces and associated resultant scalar field. (e) Effect of using global 

smoothness constraint on a scalar field. 

 

 585 

Interface Name 
Geological 

Rule 
Series 

Unit 
Above 

Unit 
Below 

Above Interfaces Above Series 
Below 

Interfaces 
Below 
Series 

𝐼6 
Lower Paleo 

Unc 
Erosional 𝜑4 7 6 n/a n/a n/a n/a 

𝐼5 Stonewall Onlap 𝜑3 6 5 𝐼6 𝜑4 𝐼4, 𝐼3, 𝐼2 𝜑3, 𝜑3, 𝜑2 

𝐼4 
Stony 

Mountain 
Onlap 𝜑3 5 4 𝐼6, 𝐼5 𝜑4, 𝜑3 𝐼3, 𝐼2 𝜑3, 𝜑2 

𝐼3 Red River Onlap 𝜑3 4 3 𝐼6, 𝐼5, 𝐼4 𝜑4, 𝜑3, 𝜑3 𝐼2 𝜑2 

𝐼2 Sub RR Unc Erosional 𝜑2 3 2 𝐼6, 𝐼5, 𝐼4, 𝐼3 𝜑4, 𝜑3, 𝜑3, 𝜑3 n/a n/a 

𝐼1 Sub Wpg Unc Erosional 𝜑1 2 1 𝐼6, 𝐼5, 𝐼4, 𝐼3, 𝐼2 𝜑4, 𝜑3, 𝜑3, 𝜑3, 𝜑2 n/a n/a 

𝐼0 Precambrian Erosional 𝜑0 1 0 𝐼6, 𝐼5, 𝐼4, 𝐼3, 𝐼2, 𝐼1 𝜑4, 𝜑3, 𝜑3, 𝜑3, 𝜑2, 𝜑1 n/a n/a 

The sequence of above/below interface and series are associated. For example, consider the below interfaces and series for 𝐼5. The interface 𝐼4 is associated 

with series 𝜑3. Similarly, interface 𝐼3 is associated with series 𝜑3 and interface 𝐼2 is associated with series 𝜑2. 

 

 

Figure 9. Sampling intraformational units ( 590 

Table 2. Formation unit information. 

smaller circles) along well path. 
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Name Series 
Unit 

Above 
Unit 

Below 
Above Interfaces Above Series 

Below 
Interfaces 

Below Series 

𝑈7 
Above 

Youngest (7) 
𝜑4 n/a 6 n/a n/a 𝐼6 𝜑4 

𝑈6 Interlake (6) 𝜑3 7 5 𝐼6 𝜑4 𝐼5, 𝐼4, 𝐼3, 𝐼2 𝜑3, 𝜑3, 𝜑3, 𝜑2 

𝑈5 Stonewall (5) 𝜑3 6 4 𝐼6, 𝐼5 𝜑4, 𝜑3 𝐼4, 𝐼3, 𝐼2 𝜑3, 𝜑3, 𝜑2 

𝑈4 
Stony 

Mountain (4) 
𝜑3 5 3 𝐼6, 𝐼5, 𝐼4 𝜑4, 𝜑3, 𝜑3 𝐼3, 𝐼2 𝜑3, 𝜑2 

𝑈3 
Red River 

(3) 
𝜑3 4 2 𝐼6, 𝐼5, 𝐼4, 𝐼3 𝜑4, 𝜑3, 𝜑3, 𝜑3 𝐼2 𝜑2 

𝑈2 Winnipeg (2) 𝜑1 3 1 𝐼6, 𝐼5, 𝐼4, 𝐼3, 𝐼2 𝜑4, 𝜑3, 𝜑3, 𝜑3, 𝜑2 𝐼1 𝜑1 

𝑈1 
Deadwood 

(1) 
𝜑0 2 0 𝐼6, 𝐼5, 𝐼4, 𝐼3, 𝐼2, 𝐼1 𝜑4, 𝜑3, 𝜑3, 𝜑3, 𝜑2, 𝜑1 𝐼0 𝜑0 

𝑈0 
Precambrian 

(0) 
𝜑0 1 n/a 𝐼6, 𝐼5, 𝐼4, 𝐼3, 𝐼2, 𝐼1, 𝐼0 𝜑4, 𝜑3, 𝜑3, 𝜑3, 𝜑2, 𝜑1, 𝜑0 n/a n/a 
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Table 3. GeoINR model parameters values. 595 

Parameters Value 

Number of hidden layers 𝑁ℎ 3 

Dimension of representations 

𝑑𝑟𝑒𝑝 

256 

Learning rate 0.0001 

Non-linear activation function Softplus (𝛽 = 100) 

Number of training epochs 5000 

Global constraint weight 𝜆 0.1 

 

Table 4. GeoINR model performance metrics for case study 1. 

Model Metric Value 

With intraformational 

constraints 
- 4708 interface pts 

- 11270 intraformational pts 

- 5000 pts for global constraint 

Interface loss ℒ𝐼 0.0119 

Unit loss ℒ𝑈 0.0010 

Global Smoothness loss ℒ 𝜉  0.0059 

Per epoch training time 0.4 s 

Inference time for voxel grid 1.4 s 

 ∆𝑑̅̅̅̅ 𝑇𝑟𝑎𝑖𝑛 6.4 m 

 k-fold (20)  ∆𝑑̅̅̅̅ 𝑇𝑒𝑠𝑡 31.0 m [7.8, 412.1] 

 k-fold (10)  ∆𝑑̅̅̅̅ 𝑇𝑒𝑠𝑡 27.0 m [10.0, 170.2] 

 k-fold (5)  ∆𝑑̅̅̅̅ 𝑇𝑒𝑠𝑡  18.5 m [10.4, 47.8] 

 k-fold (2)  ∆𝑑̅̅̅̅ 𝑇𝑒𝑠𝑡  13.0 m [12.8, 13.1] 

Without intraformational 

constraints 
- 4708 interface pts 

- 5000 pts for global constraint 

Interface loss ℒ𝐼 0.0122 

Global Smoothness loss ℒ 𝜉  0.0046 

Per epoch training time 0.2 s 

Inference time for voxel grid 1.4 s1.4 s                                                                                                                          

 ∆𝑑̅̅̅̅ 𝑇𝑟𝑎𝑖𝑛 6.7 m 

 k-fold (20)  ∆𝑑̅̅̅̅ 𝑇𝑒𝑠𝑡 21.7 m [10.1, 191.4] 

 k-fold (10)  ∆𝑑̅̅̅̅ 𝑇𝑒𝑠𝑡 17.5 m [10.8, 58.1] 

 k-fold (5)  ∆𝑑̅̅̅̅ 𝑇𝑒𝑠𝑡  16.2 m [12.1, 27.7] 

 k-fold (2) ∆𝑑̅̅̅̅ 𝑇𝑒𝑠𝑡  15.6 m [15.5, 15.7] 

∆𝑑̅̅̅̅ 𝑋 is the mean distance residual between modelled interfaces and pointset 𝑋, either a training set or a test set. Brackets [] indicate the range of ∆𝑑̅̅̅̅ 𝑇𝑒𝑠𝑡 
values from a set generated by each k-fold cross-validation procedure. 

 600 

Results were obtained using a high-end desktop PC with an Intel Core i9-9980XE CPU and a single NVIDIA RTX 2080 

Ti GPU. 

 

The presented data and resulting models in Fig. 8 all have a vertical exaggeration of 100x so that the data and variation of 

geological structures can be visualized. For this dataset, the augmented intraformational points provided incremental 605 

refinements to modelled structures. An example of structural refinements is shown on a cross section taken from the middle 
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portion of the model (Fig. 8c). The model generatedmade without the intraformational units (transparent curves) has the sub-

Winnipeg unconformity (orange) positioned lower than it should since in that location there are no interface points sampling 

that unconformity. In addition, there are slight geometry changes for other interfaces with the model using intraformational 

units (solid curves) that are attributed to the presence of different units located off section. How the unconformities cut older 610 

stratigraphy and other unconformities can be clearly seen in modelled interfaces and resultant scalar fields in Fig. 8d, along 

with the visually impressive data fitting characteristics (also seen in Fig. 8b (left), 8c). The effect of adding the global 

smoothness constraint, or Eikonal constraint (Eq. 18), can be seen in a scalar field associated with the youngest 

unconformity (𝜑4) shown in Fig. 8e (top). Without a global smoothness constraint, production of implicit modelling artifacts 

(e.g., isolated bubbles Fig. 8e (bottom)) can occur when paired with large training epochs and noisy datasets.  615 

 

 

Figure 10. Loss function plots of constraints used for network training for the two sedimentary basin models produced using 

interface data only (left) and using both interface and intraformational data (right). Insets show loss function plots in the first 

30 training epochs. 620 

 

Resulting model performance metrics on both datasets used in thethis case study are summarized in Table 42. These 

metrics include loss function values at the last training iteration, computing times, mean distance residuals between modelled 

interfaces and associated pointsets, and k-fold cross validation results. Loss function plots for constraints used in the case 

study are provided in Figure 10 to show how well they fit and their relative impact during network training. For the datasets 625 

used, the above/below stratigraphic relationship constraints significantly impact early (< 30 epochs) training dynamics so 

that modelled geological structures rapidly satisfy supplied knowledge constraints. In training epochs greater than 30, the 

total loss is more impacted by on stratigraphic and global smoothing (Eikonal) constraints to locally refine and better fit 

modelled structures to individual observations. For computing times, per epoch training times on one GPU led to a total of 
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~35 minutes for the model with intraformational constraints and a total of ~20 minutes without when using 5000 training 630 

epochs. A larger number of training epochs was chosen to achieve the smallest total error possible. However, even models 

generated with 1000 epochs were geologically representative of the basin, but had larger fitting residuals. Note these 

computing times can be reduced by simply adding more GPUs and performing distributed training. The tabulated mean 

distance residuals, a real-world distance, were computed for the generated models using PyVista (Sullivan and Kaszynski, 

2019) to give an intuitive notion of how well the GeoINR network fits the provincial scale dataset. The mean distance 635 

residuals using the whole dataset, ∆𝑑̅̅̅̅ 𝑇𝑟𝑎𝑖𝑛 , was 6.4 meters and 6.7 meters for the model including intraformational 

constraints and without, respectively. Most constraints had distance residuals near 0 meters, however some constraints had 

larger residuals; some data constraints exhibit a vertical shift upward in comparison to the other wells in the immediate 

vicinity surrounding the well. This could be due to faulting, highly variable localized structures, or miss-interpretation. 

Finally, a systematic k-fold cross validation (Rodríguez et al., 2009) analysis was completed to estimate the prediction error 640 

of the GeoINR network where there is no data available in the modelling domain and assess if the network suffers from 

overfitting. This analysis involved splitting the dataset into k partitions or ‘folds’ and configuring them into k splits. For each 

split, the GeoINR network is trained using 𝑘  −  1 of the folds as training data using the same parameters in Table 31. Once 

the split is trained, the resulting model is validated on the remaining part of the data, called test data, where the mean 

distance residuals are computed. The mean distance residuals on the test data ∆𝑑̅̅̅̅ 𝑇𝑒𝑠𝑡  are averaged over all splits and 645 

tabulated in Table 42. This procedure was performed for 𝑘 = 20, 10, 5, 2 and for both with and without intraformational 

constraints. From these results, it is evident that the GeoINR network has a reasonably low prediction error, especially given 

the provincial scale of the geological model and the network does not suffer from overfitting. See Appendix BC for a more 

detailed summary of the k-fold cross validation results. 
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4. Discussion 

Our  

Figure 11. Similarity between GeoINR model (left) for Lower Paleozoic portion of WCSB and Gocad model (right) for the 

same region. (a) Modelled interface surfaces from two perspectives for both models. (b) Geological volume similarity 

between models.  655 

 

In addition to the model performance metrics provided, we also present qualitative and quantitative comparisons of our 

three-dimensional geological model – constructed using interface and intraformational data – to a recent version of the 

model for the same region constructed using a hybrid implicit-explicit approach with Gocad/SKUATM (geomodelling 

software) (Bédard et al., 2023). As shown in Figure 11, it is clearly demonstrated that the developed methodology can 660 

produce geologically consistent modelling results since both models are so similar (96%). The small differences (4%) 

between them are attributed to the Gocad model using: 1) updated top formation markers, 2) different interface relationships 

(e.g., erosional, onlap) for interfaces 𝐼0, 𝐼1, 𝐼2, and 3) extensive manual editing (e.g., explicit modelling) to refine implicitly 

modelled geometries to be conform to depositional outlines available for each of the formations. Furthermore, it must be 

recognized the similarity not only signals an excellent correspondence between models, but supports the validity of both 665 

models through their cross-correlations; and the 4% difference does not necessarily represent an error on either side, given 

the overall uncertainties of modelling over such a large area. 
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3.2 Regional Outcrop Case Study 

The second case study utilizes a regional-scale outcrop dataset from Central Baffin Island, Canada (de Kemp et al., 2001; 670 

Scott et al., 2002; St-Onge et al., 2002). It consists of data from a deformed metamorphic setting having Archean-aged 

structural domes, composed of primarily felsic gneisses and plutonic rocks, that are basement to Paleoproterozoic rocks (Fig. 

12a). The region is associated with a Himalayan-scale collisional mountain belt – the Trans Hudson Orogen – and 

consequently geologically complex. The dataset consists of 23 planar orientations (e.g., normals) sampled from the structural 

map (Fig. 12b), 352 geological unit (e.g., intraformational) observations (Fig. 12c), and 6 interface observations (Fig. 12d). 675 

While the geological unit and orientation observations were taken in the field, the limited number of interface observations 

were randomly sampled from the geological map. For this case study, the objective is to demonstrate that the developed 

methodology can generate representative three-dimensional geological models from typical outcrop datasets: i.e. with 

limited interface data, moderate geological unit information, and orientation observations. The resulting three-dimensional 

geological models are validated by visually comparing the modelled objects with the generalized geological source map 680 

(Fig. 12c) of the structural domes (red – Na-g), the onlapping quartzite (yellow – Pp-PD), and the overlying units (blue – Pp-

PL). To facilitate comparison, the three-dimensional modelling results (Fig. 12e,f (right)) are clipped at the topographic 

surface (Fig. 12e,f (left), g). 
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Figure 12. Modelled geological map patterns using outcrop dataset in deformed metamorphic setting containing structural 685 

domes (red) and onlapping quartzite (yellow). (a) Geology source map for region of interest. (b) Structural map of available 

orientation observations. (c) 3-class generalized source map. (d) Three-dimensional data constraints. (e) Results using only 

limited interface and moderate intraformational data. (f) Results adding orientation data. Insets are extracted modelled 

interface surfaces. (g) Results from increasing number of interface points.  
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 690 

Three sets of modelling results are presented. First, only the limited interface and moderate intraformational data are used 

(Fig 12e). The resulting modelled map pattern with this data closely matches the expected pattern on the generalized map 

(Fig. 12c). Second, in Fig. 12f, the sampled orientation observations were added, resulting in an even better match: the 

quartzite (yellow) between the two domes (red) is no longer connected. Note that the addition of orientation data strongly 

influenced modelled geometries, which then better conforms to the observed orientational data. Third, in Figure 12g), the 695 

addition of more interface points (sampled from map contacts) results in only minor model refinement. This case study, 

therefore demonstrates the ability to successfully model a complex geological scenario with limited interface data, which is 

typical of outcrop datasets. 

 

Table 3. GeoINR model performance metrics for case study 2. 700 

Model Metric Value 

Limited interface and 

intraformational constraints 
- 6 interface pts 

- 352 intraformational pts 

 

Interface loss ℒ𝐼 2.0e-7 

Unit loss ℒ𝑈 3.4e-5 

Per epoch training time 0.028 s 

Limited interface, intraformational, 

orientation constraints 
- 6 interface pts 

- 352 intraformational pts 

- 23 orientation pts 

 

Interface loss ℒ𝐼 4.8e-7 

Unit loss ℒ𝑈 7.1e-5 

Orientation loss ℒ𝑂 4.2e-4 

Per epoch training time 0.061 s 

 

 

Quantitatively, model performance metrics for this case study are summarized in Table 3. Note that the global smoothness 

constraint ℒ 𝜉  was not used during training. This was because the dataset did not require smoothing since there was minimal 

data noise (e.g., nearby observations are geologically consistent). In addition, note from the summarized metrics it is possible 705 

to achieve near exact fitting (e.g., total loss < 0.0001 after 2000 training epochs) while maintaining geologically reliable 

models. Finally, detailed loss plots (Fig. D1) are provided in Appendix D for those interested in a deeper understanding of 

the impact of individual loss functions for all geological models generated. 

 

4 Discussion 710 

Our results show that INR networks can be successfully applied to generate a diverse range of geological settings, using well 

and outcrop datasets. In the first case study (Sect. 3.1), these networks were shown to be capable of generating large-area 

basin-scale three-dimensional geological models containing numerous unconformities and conformable stratigraphic 

interfaces from large and noisy regional compilationwell datasets. While the intraformational constraints only provided 
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incremental improvements to the implicitbasin model for the presented case study, they did serve a purpose in demonstrating 715 

they workhelp demonstrate their compatibility with the methodology. FurthermoreHowever, these types of constraints could 

provide larger improvements to modelled structures in datasets with proved to have much more impact on modelling with 

outcrop datasets, which have significantly fewer interface constraints, as is commonly found in outcrop datasets where 

interface observations are rare. In addition, they couldpoints (Sect. 3.2). They could also provide a mechanism for 

integratingbetter leveraging geological maps in the modelling process, by samplingincorporating points sampled within unit 720 

polygons and feeding those point constraints in the modelling and adding a appropriately weighting term to those loss 

functions so that the algorithm does not exactly fit those points but use them as a guide to constrain the model.them in loss 

functions. Finally, it is clear, though unsurprising, that orientation constraints can strongly influence and improve modelled 

geometries of geological structures, especially in highly deformed geological settings and sparse data scenarios.   

 725 

The ability of INR networks to process above and below inequality constraints on stratigraphic relations (Eqns. 4, 7, 8), 

and demonstrated in the case study, show thatshows these networks can be used efficiently to incorporate newatypical 

knowledge constraints derived from stratigraphic columns and geological rules (e.g., erosion, onlapping) between various 

structures.). In comparison, classical implicit interpolation methods require solvingmust solve computationally expensive 

convex optimizations in order to incorporate inequalitysuch constraints with, resulting in poor scaling as the number of 730 

constraints increase. Moreover, these classical methods only apply inequality constraints to a single scalar field, to the best 

of the authors’ knowledge, and not across a series of scalar fields to couple them.  Since.  In contrast, neural networks do not 

require solvingneed to solve such expensive optimizations, and that they can efficiently couple a series of scalar fields, they 

are effective in incorporating the comprehensive suite to apply constraints across them, thus enabling improved integration 

of knowledge constraints on stratigraphic relations. 735 

 

Iso-values associated with modelled interfaces in the proposed methodology vary in every training iteration of the learning 

algorithm, so that modelling results are independent of user-defined iso-values. While defining specific interface iso-values 

is a straightforward way to encode the stratigraphic sequence (e.g., larger values are younger than smaller values), it is not 

optimal. Assigning specific iso-values for interfaces heuristically (e.g., uniformly distributed between some numerical range) 740 

can negatively impact resulting modelled geometries. This is particularly evident when dealing with different unit 

thicknesses, varying unit thicknessthicknesses across the modelling domain, and as the number ofmany interfaces increases. 

With the proposed methodology, the. However, the GeoINR algorithm learnsavoids these issues by learning the optimal set 

of interface iso-values for the interfacesduring training, thus permitting more complex geological structures to be modelled. 

It is important to note that the stratigraphic constraints (Sect. 2.34.1) embed the knowledge of the stratigraphic sequence so 745 

that the, with resulting interface iso-values respectrespecting that sequence. 
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Loss functions used to constrain resulting implicit scalar functions make frequent use of scalar field gradients ∇𝜑𝑖 

computed on pointsetspoint sets. To compute the gradient of a scalar field generated by an implicit function parameterized 

by a neural network for an inputtedinput point, the chain rule is applied to the networks output, 𝜑𝑖(𝒙), with respect to the 750 

coordinates of the point 𝒙 = (𝑥, 𝑦, 𝑧) . ForAn advantage of machine learning programming frameworks (Pytorch, 

Tensorflow) this is straightforwardlythe straightforward and efficiently computed inefficient method of gradient 

computation, which requires only one line of code. Note that higher-order 𝑛-th derivatives may also be similarly computed 

(e.g., useful for Laplacian or curvature computations) provided that the non-linear activation function 𝜎 areis at least 𝑛 times 

differentiable. 755 

 

Comparisons of Although the proposed methodologyMLP network architecture parameters (𝑁ℎ , 𝑑𝑟𝑒𝑝, 𝜎 ) used in this 

contribution (Table 1) generated reliable and accurate three-dimensional modelling results, the architecture may not be 

optimal for all geological scenarios. As a general principle, increasing the number of hidden layers 𝑁ℎ tend to the recent 

GNN deep learning approachimprove the capacity of the network to model more complex structures, whereas increasing the 760 

dimensionality of representations 𝑑𝑟𝑒𝑝  (number of the neurons in a layer) tend to improve the smoothness of modelled 

geometries (Hillier et al., 2021) for three-dimensional structural geologic modelling will be described.). But these effects 

have diminishing returns as these parameters are further increased. It is important to note that the use of different non-linear 

activation function 𝜎 can dramatically affect modelled geometries. Empirically, we tested all currently available activation 

functions within the Pytorch framework, and found the two most reliable activation functions were ReLU and Softplus. In 765 

this paper, we used a parameterized Softplus activation function that generated far smoother geometries and improved data 

fitting compared to the commonly used ReLU. ReLU activation functions typically result in modelled geometries with sharp 

creases, which could be more useful in brittle geological settings. In scenarios where these architectural parameters are not 

ideal, automated tools are available for optimizing them (Liaw et al., 2018). In general, the best architecture to use for a 

particular geological scenario is an open research question. This motivates the development of standardized three-770 

dimensional geological models to be used for benchmarking different methods and their parameterizations. 

 

Several interesting points arise from comparing the GeoINR and GNN deep learning approaches (Hillier et al., 2021) for 

three-dimensional geological modelling. First, the generation of latent representations (e.g., embeddings, features) for MLP 

networksin GeoINR are at a minimum two orders of magnitudes faster than Hillier et al. (2021).in GNN. Second, the 775 

proposed approachGeoINR does not require the generation of an unstructured volumetric grid. This requirement prohibits 

(e.g., tetrahedral mesh), enabling the development of high-higher resolution models covering large geographicalover larger 

areas. For example, for the modelling domain in the providedprovincial case study, athe GNN tetrahedral mesh with varying 

resolution yielded a tetrahedral mesh requiring required ~10 GB of storage, whereas for athe GeoINR voxel grid with a high-

resolution in the vertical dimension, required only ~150 MB of storage for the points., resulting in significant computational 780 
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efficiencies. Lastly, we determined the GeoINR models seemed superior as the scalar fields generated by GNNs were much 

noisier, as the graph structure, an unstructured mesh, and the associated graph-based convolution operations used in the 

GNN approach yielded worse modelled geological structures as compared with ones generated using MLP networks; the 

scalar fields generated by GNN’s were much noisier. The reason for this is that the graph edges, edges belonging to faces of 

tetrahedrons, did not provide any intrinsic value for improving the networks predictions.seem to adjust as effectively during 785 

network training. For GNN’sGNNs to provide meaningful improvements to structural modelling, the graph structure must 

represent meaningful geological concepts, not simply something on which a scalar value is predicted. For example, a graph 

representing how geological unit volumes are connected to  (e.g., tetrahedral mesh).  

 

In other unit volumes. To do so, graph nodes need to represent regions of the same geological unit or interface, and the 790 

edges represent how they are connected to each other as in Thiele et al. (2016). In future research, we would like to derive 

these types of graphs on the resulting volumetric geologic unit model produced from the proposed methodology. 

 

In this contributionwork, we do notaim to tackle important geological various discontinuous features such as faults and 

shear zones commonly found in more complex orogenic and shield terrains. However, since, such as faults and shear zones. 795 

Because neural networks with similar neural architectures have shown the capacity to approximate discontinuous functions 

(Lianas et al., 2008, Santa and Pieraccini, 2023), we believe INR network architectures canGeoINR should support the 

modelling of these complex features with appropriate enhancements and modifications (e.g., discontinuous activation 

functions). This is a potential direction for more versatile INR frameworks expanding applications to a wider range of 

complex geological settings. 800 

 

Using different activation functions can dramatically affect modelled geometries of geological structures. In this paper, we 

used a parameterized Softplus activation function that generated far smoother geometries and improved data fitting as 

compared to the commonly used ReLU for these networks. ReLU activation functions typically result in modelled 

geometries with sharp creases in them, which could be potentially more useful in brittle structural settings. Empirically, we 805 

tested all currently available activation functions within the Pytorch framework. The two most reliable activation f 

unctions tested experimentally were ReLU and Softplus. 

 

Recent literature on implicit neural representation networks demonstrates that an additional network layer for positional 

encodings (Tancik et al., 2020) can characterize high frequency components more accurately in modelled outputs. INR 810 

networks have been reported as underrepresenting high frequency components of signals and shapes by underfitting these 

components (Mildenhall et al., 2021). Positional encodings are a common strategy for addressing this issue by transforming 

the coordinates of a point into a set of Fourier features, which are then feedfed into the hidden layers of the network. We 

tested this strategy, and (Tancik et al., 2020). Our preliminary resultstests indicate that while this technique improved local 
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fitting of high frequency detail when using theeither ReLU or Softplus activation function, globallyfunctions, it can generate 815 

unsupported large wavelengths of folded features. However, when using the parameterized Softplus function, modelled 

structures were able to fit the high frequency details sampled by the data constraints while also able to produce robust and 

geologically representative structures globally without artifacts. 

5. Conclusion 

A methodology is presented that is founded on implicit neural representation networks composed of MLPs for the purposes 820 

of three-dimensional implicit We have introduced GeoINR, a geological modelling. The methodology approach founded on 

INR networks composed of MLPs. GeoINR advances an existing INR networks used for this purposeapproach by 

incorporating unconformities into the modelling process, efficient incorporation of new knowledge, constraints onfor 

stratigraphic relations as well as aand global smoothness constraint, and , as well as improved training dynamics from the 

geometrical initialization of network variables. Combined, theseThese advances permit the enable efficient modelling of 825 

more complex geology and, improved data fitting characteristics. In addition, the global smoothness constraint – an Eikonal 

constraint – provides a mechanism to reduce typical implicit , and reductions in the generation of modelling artifacts so that 

geologically representative models are generated. The presented case study demonstrates that the proposed methodology can 

generate large regional scale three-dimensional geological models that effectively represent sedimentary basins with 

unconformities, with notably low fitting residuals.  Case studies demonstrate the effectiveness and prediction error given 830 

noisy compilation datasets. The possibility to leverage INR networks to support larger-scale implicit geological modelling 

with big data and validity of the approach in diverse geological settings with faults, different-sized areas, and various data 

regimes. Future work will be studied in future research. extend GeoINR to support modelling of even larger datasets in more 

complex geological settings involving faulting and intrusions.  
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Appendix A: Iso-surface extraction algorithm 

Algorithm 1: Cutting iso-surfaces by unconformities 

Input:  

Scalar field series 𝝋: [𝑁𝑔, 𝐹] computed on volumetric grid where 𝐹 is the number of scalar fields in the series. 𝑁𝑔 

is the number of grid cell points. 

Table 𝑇 storing associated information for each modelled interface including interface index, scalar field index, 

iso-value, if is unconformity. Following table constructed using example in Figure 1. 

 𝐼𝑘 

interface 

index 𝑘 

𝜑𝑖  scalar 

field index 

𝜑
𝐼𝑘
𝑖
𝑖

 

iso-

value  

is 

unconformity 

 𝑘 𝜑_𝑖𝑛𝑑𝑒𝑥[𝑘] 𝐼𝑠𝑜[𝑘] 𝑈𝑛𝑐[𝑘] 

Interface 

𝐼𝑘 

5 3 𝜑
𝐼5
3
3

 True 

4 2 𝜑
𝐼4
2
2

 False 

3 2 𝜑
𝐼3
2
2

 False 

2 1 𝜑
𝐼2
1
1

 True 

1 0 𝜑
𝐼1
0
0

 False 

0 0 𝜑
𝐼0
0
0

 False 
 

Output: Set of iso-surfaces 𝑆 cut by unconformities 

𝑁𝐼 = |𝐼| (Number of interfaces) 

𝑆 = [] # empty list 

𝑓𝑜𝑟 𝑘 = 0,⋯ ,𝑁𝐼 − 1: 

Deleted Cells
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        # Organize associate scalar field array 𝝋[: , 𝜑_𝑖𝑛𝑑𝑒𝑥[𝑘]]  into 3D grid array 𝑉: [𝑛𝑥 , 𝑛𝑦, 𝑛𝑧]  , 𝑁𝑔 =

𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 

        𝑖𝑠𝑜𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑘 =  𝑚𝑎𝑟𝑐ℎ𝑖𝑛𝑔_𝑐𝑢𝑏𝑒𝑠(𝑉, 𝐼𝑠𝑜[𝑘])  

        𝑆. 𝑎𝑝𝑝𝑒𝑛𝑑( 𝑖𝑠𝑜𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑘 ) 

𝑓𝑜𝑟 𝑘 = 0,⋯ ,𝑁𝐼 − 1: 

        # Iterate over list of above (younger) unconformity iso-surfaces  𝑦_𝑢𝑛𝑐_𝑘  than current iso-surface 𝑆𝑘 , 

arranged older to younger 

        𝑓𝑜𝑟 𝑦_𝑢𝑛𝑐 𝑖𝑛 𝑦_𝑢𝑛𝑐_𝑘: 

               𝑆𝑘 = 𝑐𝑢𝑡(𝑆𝑘 , 𝑦_𝑢𝑛𝑐) # cut 𝑆𝑘 surface by 𝑦_𝑢𝑛𝑐 iso-surface  

 

 

Appendix B: Interface and formation unit information for case studies 

Table B1. Interface information for case study 1.  

Interface Name 
Geological 

Rule 
Series 

Unit 
Above 

Unit 
Below 

Above Interfaces Above Series 
Below 

Interfaces 
Below 
Series 

𝐼6 
Lower Paleo 

Unc 
Erosional 𝜑4 7 6 n/a n/a n/a n/a 

𝐼5 Stonewall Onlap 𝜑3 6 5 𝐼6 𝜑4 𝐼4, 𝐼3, 𝐼2 𝜑3, 𝜑3, 𝜑2 

𝐼4 
Stony 

Mountain 
Onlap 𝜑3 5 4 𝐼6, 𝐼5 𝜑4, 𝜑3 𝐼3, 𝐼2 𝜑3, 𝜑2 

𝐼3 Red River Onlap 𝜑3 4 3 𝐼6, 𝐼5, 𝐼4 𝜑4, 𝜑3, 𝜑3 𝐼2 𝜑2 

𝐼2 Sub RR Unc Erosional 𝜑2 3 2 𝐼6, 𝐼5, 𝐼4, 𝐼3 𝜑4, 𝜑3, 𝜑3, 𝜑3 n/a n/a 

𝐼1 Sub Wpg Unc Erosional 𝜑1 2 1 𝐼6, 𝐼5, 𝐼4, 𝐼3, 𝐼2 𝜑4, 𝜑3, 𝜑3, 𝜑3, 𝜑2 n/a n/a 

𝐼0 Precambrian Erosional 𝜑0 1 0 𝐼6, 𝐼5, 𝐼4, 𝐼3, 𝐼2, 𝐼1 𝜑4, 𝜑3, 𝜑3, 𝜑3, 𝜑2, 𝜑1 n/a n/a 

The sequence of above/below interface and series are associated. For example, consider the below interfaces and series for 𝐼5. The interface 𝐼4 is associated 860 
with series 𝜑3. Similarly, interface 𝐼3 is associated with series 𝜑3 and interface 𝐼2 is associated with series 𝜑2. 

 

Table B2. Formation unit information for case study 1. 

Unit Name Series 
Unit 

Above 
Unit 

Below 
Above Interfaces Above Series 

Below 
Interfaces 

Below Series 

𝑈7 
Above 

Youngest (7) 
𝜑4 n/a 6 n/a n/a 𝐼6 𝜑4 

𝑈6 Interlake (6) 𝜑3 7 5 𝐼6 𝜑4 𝐼5, 𝐼4, 𝐼3, 𝐼2 𝜑3, 𝜑3, 𝜑3, 𝜑2 

𝑈5 Stonewall (5) 𝜑3 6 4 𝐼6, 𝐼5 𝜑4, 𝜑3 𝐼4, 𝐼3, 𝐼2 𝜑3, 𝜑3, 𝜑2 
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𝑈4 
Stony 

Mountain (4) 
𝜑3 5 3 𝐼6, 𝐼5, 𝐼4 𝜑4, 𝜑3, 𝜑3 𝐼3, 𝐼2 𝜑3, 𝜑2 

𝑈3 
Red River 

(3) 
𝜑3 4 2 𝐼6, 𝐼5, 𝐼4, 𝐼3 𝜑4, 𝜑3, 𝜑3, 𝜑3 𝐼2 𝜑2 

𝑈2 Winnipeg (2) 𝜑1 3 1 𝐼6, 𝐼5, 𝐼4, 𝐼3, 𝐼2 𝜑4, 𝜑3, 𝜑3, 𝜑3, 𝜑2 𝐼1 𝜑1 

𝑈1 
Deadwood 

(1) 
𝜑0 2 0 𝐼6, 𝐼5, 𝐼4, 𝐼3, 𝐼2, 𝐼1 𝜑4, 𝜑3, 𝜑3, 𝜑3, 𝜑2, 𝜑1 𝐼0 𝜑0 

𝑈0 
Precambrian 

(0) 
𝜑0 1 n/a 𝐼6, 𝐼5, 𝐼4, 𝐼3, 𝐼2, 𝐼1, 𝐼0 𝜑4, 𝜑3, 𝜑3, 𝜑3, 𝜑2, 𝜑1, 𝜑0 n/a n/a 
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Table B3. Interface information for case study 2.  

Interface Name 
Geological 

Rule 
Series 

Unit 
Above 

Unit 
Below 

Above 
Interfaces 

Above 
Series 

Below 
Interfaces 

Below 
Series 

𝐼1 Quartzite top Onlap 𝜑1 2 1 n/a n/a 𝐼0 𝜑0 

𝐼0 
Structural 
dome top 

Erosional 𝜑0 1 0 n/a n/a n/a n/a 

Above/below interfaces and series indicated here use the efficient option for stratigraphic relations mentioned in Sect. 2.4.1.  

 
 

Table B4. Formation unit information for case study 2. 

Unit Name Series 
Unit 

Above 
Unit 

Below 
Above 

Interfaces 
Above 
Series 

Below 
Interfaces 

Below 
Series 

𝑈2 
Pp-
PL 

𝜑1 n/a 1 n/a n/a 𝐼1, 𝐼0 𝜑1, 𝜑0 

𝑈1 
Pp-
PD 

𝜑0 2 0 𝐼1 𝜑1 𝐼0 𝜑0 

𝑈0 Na-g 𝜑0 1 n/a 𝐼0 𝜑0 n/a n/a 

Above/below interfaces and series indicated here use the efficient option for stratigraphic relations  870 
mentioned in Sect. 2.4.1.  

 

 

Appendix C: k-fold cross validation results for case study 1 

Table B1C1. k-fold metrics for structural model generated from interface and intraformational constraints. 875 

k data removed 

from training 

(%) 

∆𝑑̅̅̅̅ 𝑇𝑒𝑠𝑡 

(meters) 

Range 

(meters) 
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20 5 31.0 [7.8, 412.1] 

10 10 27.0 [10.0, 170.2] 

5 20 18.5 [10.4, 47.8] 

2 50 13.0 [12.8, 13.1] 

 

 

 

 

 880 

 

 

Table B2C2. k-fold metrics for structural model generated from interface constraints only. 

k data removed 

from training 

(%) 

∆𝑑̅̅̅̅ 𝑇𝑒𝑠𝑡 

(meters) 

Range 

(meters) 

20 5 21.7 [10.1, 191.4] 

10 10 17.5 [10.8, 58.1] 

5 20 16.2 [12.1, 27.7] 

2 50 15.7 [15.5, 15.7] 

 

∆𝑑̅̅ ̅𝑇𝑒𝑠𝑡: mean distance residual computed on the testing set (not used to train/fit the model) 885 

 

See https://scikit-learn.org/stable/modules/cross_validation.html for implementation details and illustration regarding the k-

fold cross validation procedure. The range of mean distance residuals on test points, ∆𝑑̅̅̅̅ 𝑇𝑒𝑠𝑡, from all k splits indicate the 

lower and upper bound of these residuals across all splits for a given k. The large mean residual for upper bounds (e.g., 191.4 

m for 𝑘 = 20 in Table 6C2) is the result of a single point constraint associated with the sub-Winnipeg unconformity in the 890 

far North-West corner of the modelling domain. For every k-fold procedure carried out, there is always one split this point is 

excluded from training and results in a larger mean distance residual, and increases with larger k, on the corresponding test 

set. It is important to note that the next nearest constraint to this point associated with this interface (sub-Winnipeg 

unconformity) is 150 km away. The upper bound on mean distance residuals decreases with smaller k. This is because with 

smaller k a higher percentage of constraint points are removed from training and generated models become more 895 

generalized. The lower bound of mean distance residuals decreases with larger k, since more points are used to constrain 

generated models. 

https://scikit-learn.org/stable/modules/cross_validation.html
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Appendix D: Loss function plots for case study 2. 
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Figure D1. Loss function plots as function of training epoch for individual constraints used in case study 2. (a, b, c, d, e) 

Plots corresponding generated geological models shown in Figure 12 (e, f, g (left), g (middle), g (right)), respectively.  
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Note the following from loss plots shown in Figure D1: 1) when no orientation data is used in training (Fig. D1a), early 915 

training is strongly influenced by the stratigraphic constraints (on, above, below) imposed on interface data, whereas for all 

other models (Fig. D1b, c, d, e) are strongly influenced by the orientation data. 2) Beyond 50 epochs, training is influenced 

by on stratigraphic constraints, followed by orientation constraints then above/below constraints on intraformational data.  

 

Code and data availability. The source code for the GeoINR neural network developed in Pytorch and data can be freely 920 

downloaded from https://github.com/MichaelHillier/GeoINR.git (last access: 28 November 202217 September 2023) or 

https://doi.org/10.5281/zenodo.73779778352541 (Hillier et al., 20222023). 
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