
Authors Response to Refereed Comments for gmd-2022-290 

Dear GMD Referees, 

Thank you both for taking the time to thoroughly review our paper entitled “GeoINR 1.0: an implicit neural 

representation network for three-dimensional geological modelling”. We very much appreciate your 

comments and suggestions for improving the manuscript. We have carefully considered these comments 

and suggestions and implemented changes according to all the suggestions and submitted my revision of 

the manuscript. 

With kind regards, 

Michael Hillier 

Note the reviewer’s comments (Calibri font) and my comments and argumentation (red Calibri font) how 

we addressed the issues raised by the reviewers. Italicized red Calibri font in quotations is text from the 

revised manuscript. Referenced page numbers and lines are also from the revised manuscript. 

Reviewer # 1 

“This is a good work, here are some suggestions to the authors.”  

Thank you very much for appreciating our research. You will find in our revision how we implemented and 

addressed your suggestions. 

Comment #1 

“In this paper, stacked MLPs are used to build GeoINR. MLPs contain many model parameters. Are the 

Hidden layer parameters (Nh, activation function, etc.) the same among these stacked MLPs, and how 

does the initialization of these parameters relate to the complexity of the actual study area?” 

Yes, the hidden layer parameters (𝑁ℎ , 𝑑𝑟𝑒𝑝, 𝜎) where number of hidden layers 𝑁ℎ, dimensionality of the 

hidden representations 𝑑𝑟𝑒𝑝, and activation function 𝜎 are all the same among the stacked MLPs (P18 

361-364). These parameters were first initialized using existing INR research and then refined through trial 

and error using various combinations of parameter values (P21 L425-433).  

We expanded the discussion (P33 L649-662) to provide more detail involving the used architecture 

including how their parameterization is related to geological complexity: 

“Although the MLP network architecture parameters (𝑁ℎ , 𝑑𝑟𝑒𝑝, 𝜎) used in this contribution (Table 1) 

generated reliable and accurate three-dimensional modelling results, the architecture may not be optimal 

for all geological scenarios. As a general principle, increasing the number of hidden layers 𝑁ℎ tend to 

improve the capacity of the network to model more complex structures, whereas increasing the 

dimensionality of representations 𝑑𝑟𝑒𝑝 (number of the neurons in a layer) tend to improve the smoothness 

of modelled geometries (Hillier et al., 2021). But these effects have diminishing returns as these parameters 

are further increased. It is important to note that the use of different non-linear activation function σ can 

dramatically affect modelled geometries. Empirically, we tested all currently available activation functions 

within the Pytorch framework, and found the two most reliable activation functions were ReLU and 

Softplus. In this paper, we used a parameterized Softplus activation function that generated far smoother 



geometries and improved data fitting compared to the commonly used ReLU. ReLU activation functions 

typically result in modelled geometries with sharp creases, which could be more useful in brittle geological 

settings. In scenarios where these architectural parameters are not ideal, automated tools are available 

for optimizing them (Liaw et al., 2018). In general, the best architecture to use for a particular geological 

scenario is an open research question. This motivates the development of standardized three-dimensional 

geological models to be used for benchmarking different methods and their parameterizations.” 

Comment #2 

“Can the change curve of the loss function in the training process of the model be given to reflect the 

training process and effect of the model?” 

A similar request was made by reviewer #2. Loss function curves for every model generated in the 

manuscript are added to show training dynamics and the relative impacts of individual loss functions and 

associated constraints. For case study 1, this is presented in Figure 10. Furthermore, observations on these 

plots are provided in the text (P27 L525-530). For case study 2, this is presented in Figure D1 (Appendix D 

since there were many plots for 5 different models) and plot observations are given in the text (P40 L773-

776). 

Comment #3 

“Line 98. The format of the paragraph is not consistent with other paragraphs.” 

Fixed – indented this paragraph as required. 

Comment #4 

“The resolution of some pictures in the paper is low, resulting in unclear details in the pictures (Figure 1 

and Figure 8).” 

Higher resolution pictures are provided with the revised manuscript. Although the pdf version of the 

manuscript may reduce to resolution of pictures in our Microsoft Word document, GMD has the high-

resolution pictures that will be used for publication. 

Comment #5 

“Punctuation marks after formulas are not in uniform format.” 

Fixed – added punctuation were needed throughout Section 2 where there are formulas. 

Comment #6 

“The layout of Figure 9 is not consistent with other figures.” 

Fixed – changed sampled intraformational points represented by triangles with smaller circles (e.g., 

smaller than the circles representing interface points). It is now consistent with other figures. 

 

 



Reviewer # 2 

“I am delighted to have the chance to review this manuscript. I would like to offer a concise overview of 

the paper, emphasizing its significant contributions, and also pose a few relevant questions for further 

consideration.” 

Thank you very much for taking the time to provide a thorough review of our manuscript. We appreciate 

this detail greatly as it did indeed provide valuable insight that allowed us to improve the manuscript. 

Comment #1 (Modeling Complex Faults) 

“The paper introduces an implicit modeling approach that can handle multiple complex faults in a 

geological model. However, it's essential to understand how the method constructs geological models 

containing numerous complex faults. How does the methodology define geological domains when faults 

do not extend throughout the entire model space? Could the authors provide a synthetic or field example 

to demonstrate this?” 

As indicated in the manuscript (P20 L392-L394, P33 L675-679, P34 L692-693) the handling of faults is not 

considered in this work, but to be incorporated in future research. The handling of faults would be itself a 

separate paper dedicated to this topic. Please note for the sedimentary basin case study, faults are not 

significant for the provincial scale of the geological model produced. In future research, our aim is not to 

use the idea of geological domains for the hanging/foot wall but instead learn discontinuous functions 

modelling the implicit scalar field. This way, the method could support dying/terminating faults and 

structures sampled on one side of the fault that could influence/constrain the geometry on the other side 

of the fault. In addition, this strategy would be more computationally efficient - reduction in the number 

of scalar fields required to be modelled/learned by the network. 

Comment #2 (Modeling Unconformities) 

“The methodology also addresses modeling unconformities, a critical aspect of geology. It's commonly 

challenging to obtain complete geometric information about subsurface unconformities in practice. How 

does the proposed method handle scenarios where only sparse and unevenly distributed information 

about unconformities is available? How are multiple geological domains defined in these cases, and how 

reliable are the resulting models near unconformity interfaces?” 

The proposed method can well handle sparse and unevenly distributed data in geological settings 

containing unconformities. This has been demonstrated for both case studies (included additional case 

study in revised manuscript) that have sparse and scattered points sampling unconformities. For the basin 

dataset (case study 1), the unevenly distributed, and sparse unconformity observations in some localized 

areas are shown on the left-hand side of Fig. 8a in the north and northeastern parts of the model.  For the 

outcrop dataset (case study 2), Figure 12 illustrates the data’s degree of sparsity and uneven spatial 

distribution. There are only 3 points sampling the unconformity at the topographic surface in this case 

study.  

In the manuscript, how geological domains are defined is the same for any type of data configuration (e.g., 

dense, sparse, regular, irregular). This is described in detail in Section 2.6 and illustrated in Figure 7. To 

quickly summarize the process: 



They are defined by applying Boolean masks associated with unconformity interfaces that are sampled. 

Each geological domain has a unique set of operations using these Boolean masks defined from the 

geological history/stratigraphic column. For example, the youngest geological domain is above the 

youngest unconformity interface (mask is True wherever in the model space that the scalar field is >= the 

iso-value associated with the youngest unconformity), whereas the oldest geological domain is defined by 

a set of operations using all the boolean masks - each boolean mask can potentially remove (erode) 

volumes of the model space if a younger unconformities surface intersects the geometry of older modeled 

interfaces. Please note that unconformities can erode anything that is older and importantly, the geometry 

of all the modelled interfaces including unconformities (and associated geological domains) is 

updated/changes every iteration of the learning algorithm until training stops/convergence is achieved. 

“How reliable (e.g., uncertainty) are the results near unconformities?”  

If this question is regarding the how predictive the generated implicit model is: 

The reliability of the results depends on multiple factors: 1) the presence of nearby data constraints (unit, 

interface, and unconformity markers), 2) geometric variability of subsurface structures (complexity), 3) 

thickness of units above/below near unconformity, and 4) supplied knowledge constraints (stratigraphic 

column). 

If the question is regarding the jagged (e.g., saw tooth) behaviour of modelled unconformities surfaces in 

many other implicit modelling codes our modelled interface surfaces do not suffer from this (see Sect. 

2.7). This is because we perform the iso-surface extraction on the continuous scalar fields, then cut these 

continuous surfaces using the appropriate geological rules according to the stratigraphic column to 

generate discontinuous surfaces without these jagged features. 

Finally, three-dimensional geological models generated by the proposed method for both case studies 

containing unconformities (sparsely and unevenly sampled) were compared to other models (hydrid 

implicit/explicit approach, and geological map) to clearly demonstrate the reliability of the GeoINR 

produced models – illustrated in new figures (Fig. 11, 12). 

Comment #3 (Effect of Loss Functions) 

“The paper employs various loss functions to incorporate stratigraphic and structural information during 

the training of the INR network. Could the authors present a clear example using one of their test datasets 

to demonstrate how well the trained network fits each individual constraint in the loss functions? Which 

constraint or loss function has a significant impact on the quality of the modeling results? How are the 

weights of these multiple loss functions determined, and do they need adjustment for different modeling 

tasks?” 

A similar comment was asked by reviewer #1. Loss function curves for every model generated in the 

manuscript were added to show training dynamics and the relative impacts of individual loss functions. 

For case study 1, this is presented in Figure 10. Furthermore, observations on these plots are provided in 

the text (P27 L525-530). For case study 2, this is presented in Figure D1 (Appendix D) and plot observations 

are given in the text (P40 L773-776). To quickly summarize: Early training epochs are significantly impacted 

by the stratigraphic relation constraints if no orientation data is used, otherwise the orientation constraint 

is by far the driving factor in training dynamics.  In later training epochs, the on stratigraphic relation 



constraint and to a lesser extent the global smoothness constraint (if used) are the primary sources of 

modelling errors (network losses). 

The only loss function that is weighted is the global smoothness term. Empirically on all the datasets used, 

the other loss functions do not need to be weighted differently to get reasonable results. However, this 

isn't to say there may be some scenarios where it may be warranted. If this was the case, then an MTL 

(Multi-Task-Learning) strategy could be employed. Here, the network would dynamically determine what 

the weights would be (note: the weights would be variables that change every training iteration).  

Comment #4 (Consistency and Validity of Modeling Results) 

“The approach trains a neural network using defined loss functions and then employs the trained network 

for structural modeling. Can this method guarantee that the modeling results align with known structural 

features or achieve an exact fit? Additionally, since the loss functions are defined only on scattered points, 

can the effectiveness of the modeling results be ensured in other regions of the model?” 

Alignment to structural features 

The method would guarantee that the modelling results align with known structural features sampled by 

data constraints. Furthermore, in our revision we have validated modelling results with other models of 

the same structural features produced by a hydrid implicit-explicit approach in Gocad and a recent 

geological map for case studies 1 (Fig. 11) and 2 (Fig. 12), respectively. In both case studies, models 

generated with the proposed method well align with the known structural features.  

Exact fitting 

In theory (Hornik et al 1989), MLPs can be universal approximators for any function if there are enough 

hidden neurons (P8 L176-178). For synthetic examples it was possible to obtain an exact fit. However, 

when using real world data (noisy, imprecise interpretative data) and using multiple loss functions, exact 

fit (total loss = 0) is improbable. I will emphasize that exacting fitting means the model fits the data within 

machine precision (~1E-7 floating point).  It is possible for models to look as an exact fit but isn't 

numerically. From case study 2, it is certainly possible to get ‘close’ (total loss after training < 1E-4) to exact 

fitting when used data points are geologically consistent with nearby data points (P31 L605-607). However, 

the more noisy or conflicting data that exists, and to some degree geological complexity, the larger the 

errors/residuals will be.  

Effectiveness of results in other regions with no data. 

The effectiveness of the modelling results can be ensured in other regions of the model away from data 

through the global smoothness term. This was thoroughly tested in case study 1 using the k fold cross 

validation technique (P27 L541-550) where you randomly remove data from training and evaluate the 

GeoINR model there and compare to the full dataset. It consistently made excellent predictions (low 

prediction error) in these regions of the model. 

Comment #5 (Handling Limited Structural Information) 

“A notable strength of the approach is its ability to handle scenarios with limited structural information, 

often encountered in datasets with rare interface observations, such as outcrop datasets. Can the method 



still produce reliable and accurate structural modeling results in such cases? Could the authors provide 

one or two test examples to illustrate this?” 

Our developed methodology can support not only basin datasets rich with interface observations, but also 

outcrop datasets where interface observations are rare and moderate geological unit observations. The 

method has a unique advantage over any other existing method for this type of dataset – it can efficiently 

process geological unit observations and rich stratigraphic relationship knowledge. Since this is the case, 

we decided to add a case study to highlight this ability in section 3.2 in the revised manuscript. Modelling 

results demonstrate that the proposed method can reliably and accurately generate 3D geological models 

in outcrop datasets. 

As mentioned before, in general, model performance (reliability and data fitting) always depends on 

multiple factors (geological complexity, data availability, and data quality (robust and consistent 

interpretations).  

Comment #6 (Efficiency and Generalization) 

“Do different geological regions require separate network training? Should each geological domain divided 

by unconformities require individual structural modeling? Could the authors compare the modeling 

efficiency and accuracy of their learning-based method to traditional implicit modeling approaches, both 

using the same set of structural data?” 

In our neural architecture, each MLP represents an implicit scalar function that models a distinct geological 

feature (conformal stratigraphic package, unconformity interface) that each requires training. It is 

important to note that the variables of one MLP can influence/constrain other MLPs (and vice versa) 

because stack MLPs are coupled through the above/below stratigraphic relation constraints. 

The proposed method can not be compared to traditional implicit modelling approaches because it is not 

computational possible. First, traditional approaches can not process the large number of inequality 

constraints (stratigraphic relationships) introduced in the manuscript. Our early work, GRBF (Hillier et al., 

2014), we introduced a mathematical framework to incorporate only above/below inequalities for a single 

continuous interface with two units. Processing more than a thousand of these constraints will take 

exceeding amounts of compute time (e.g., greater than week(s)) due to costly quadratic optimizations that 

simply do not scale well. Furthermore, there are no other methods that can incorporate the 

comprehensive suite of inequalities derived from stratigraphic columns with unconformities, as presented 

in the manuscript. In addition, the global smoothness constraint can not be incorporated into traditional 

methods, because of the norm of the gradient of the scalar field which can only be computed after you 

have a solution. In theory, one could design some sort of iterative method to deal with this complication, 

but it would require significant research to resolve. 

To address the question of the accuracy of our learning-based method, for both case studies we validated 

our generated models against other types of geological models of the same structural features – albeit not 

generated by purely traditional implicit methods using the same dataset – since no other method can 

generate models using the same input. Since this is the case, the next best solution is to compare to other 

types of geological models that have been validated by geological experts. For case study 1, a recently 

published hydrid implicit-explicit model was used, whereas for case study 2 a published geological map 



was used. In both case studies, models generated by GeoINR aligned well with known geological structures 

as shown in Figure 11 and 12. 

Comment #7 (Network Architecture) 

“It would be helpful if the authors could provide more details about the specific architecture of the neural 

network used for implicit structural modeling. How does altering the number of network parameters 

impact the modeling results? How can one select an appropriate neural network architecture for structural 

modeling tasks when dealing with varying data and complexities?” 

A similar question was also asked by reviewer #1. While these questions are partially addressed in our 

earlier GNN paper (2021) we expanded the discussion to include more of these details.  

P33 L649-662: 

“Although the MLP network architecture parameters (𝑁ℎ , 𝑑𝑟𝑒𝑝, 𝜎) used in this contribution (Table 1) 

generated reliable and accurate three-dimensional modelling results, the architecture may not be optimal 

for all geological scenarios. As a general principle, increasing the number of hidden layers 𝑁ℎ tend to 

improve the capacity of the network to model more complex structures, whereas increasing the 

dimensionality of representations 𝑑𝑟𝑒𝑝 (number of the neurons in a layer) tend to improve the smoothness 

of modelled geometries (Hillier et al., 2021). But these effects have diminishing returns as these parameters 

are further increased. It is important to note that the use of different non-linear activation function 𝜎 can 

dramatically affect modelled geometries. Empirically, we tested all currently available activation functions 

within the Pytorch framework, and found the two most reliable activation functions were ReLU and 

Softplus. In this paper, we used a parameterized Softplus activation function that generated far smoother 

geometries and improved data fitting compared to the commonly used ReLU. ReLU activation functions 

typically result in modelled geometries with sharp creases, which could be more useful in brittle geological 

settings. In scenarios where these architectural parameters are not ideal, automated tools are available 

for optimizing them (Liaw et al., 2018). In general, the best architecture to use for a particular geological 

scenario is an open research question. This motivates the development of standardized three-dimensional 

geological models to be used for benchmarking different methods and their parameterizations.” 

 

 


