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Abstract. Food and water are essential for life. A better understanding of the food–water nexus requires the development of 

an integrated model that can simultaneously simulate food production and the requirements and availability of water resources. 

H08 is a global hydrological model that considers human water use and management (e.g., reservoir operation and crop 

irrigation). Although a crop growth sub-model has been included in H08 to estimate the global crop-specific calendar, its 

performance as a yield simulator is poor, mainly because a globally uniform parameter set was used for each crop type. Here, 5 
through country-wise parameter calibration and algorithm improvement, we enhanced H08 to simulate the yields of four major 

staple crops: maize, wheat, rice, and soybean. The simulated crop yield was compared with the Food and Agriculture 

Organization (FAO) national yield statistics and the global data set of historical yield for major crops (GDHY) gridded yield 

estimates with respect to mean bias (across nations) and time series correlation (for individual nations). The improved 

simulations showed good consistency with FAO national yield. The mean biases of the major producer countries were 10 
considerably reduced to -4%, 3%, -1%, and 1% for maize, wheat, rice, and soybean, respectively. The corresponding 

coefficients of determination (R2) of the simulated and FAO statistical yield increased from 0.01 to 0.98, 0.21 to 0.99, 0.06 to 

0.99, and 0.14 to 0.97 for maize, wheat, rice, and soybean, respectively; the corresponding root mean square error (RMSE) 

decreased from 7.1 to 1.1, 2.2 to 0.6, 2.7 to 0.5, 2.3 to 0.3 t/ha. Comparison with the reported performances of other mainstream 

global crop models revealed that our improved simulations have comparable ability to capture the temporal yield variability. 15 
The grid-level analysis showed that the improved simulations had similar capacity to GDHY yield, in terms of reproducing 

the temporal variation over a wide area, although substantial differences were observed in other places. Using the improved 

model, we confirmed that an earlier study on quantifying the contributions of irrigation on global food production can be 

reasonably reproduced. Overall, our improvements enabled H08 to estimate crop production and hydrology in a single 

framework, which will be beneficial for global food–water–land–energy nexus studies.20 
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1 Introduction 

Food security has become an important global challenge because of the growing population and increasing competition for 

crop usage (Ray et al., 2022). A key factor in food security is crop production, which is largely affected by irrigation water 

availability, particularly in regions with insufficient precipitation (Chiarelli et al., 2022). Currently, for example, approximately 

40% of global crop production relies on irrigation (Perrone et al., 2020). The use of water for this irrigation causes 25 
approximately 65% of global total water withdrawal and 90% of global water consumption (Shiklomanov, 2000; Döll and 

Siebert, 2002). These high rates of withdrawal and consumption have negative consequences for both surface water and 

groundwater systems, such as river fragmentation and groundwater table declines (McDermid et al., 2021; Perrone et al., 2020). 

To minimize such negative consequences, there is an increasing impetus toward sustainable water use (McDermid et al., 2021; 

Perrone et al., 2020; Rosa et al., 2018, 2020; Okada et al., 2018; Ai et al., 2021). To more fully address the complex interactions 30 
between crop production and sustainable water management, accurate representations of crop growth and water cycle with 

human activities should be placed within a consistent model framework during the development of an integrated model. 

 

Many models have successfully incorporated the crop growth process and can simulate the global crop yield. These include 

LPJmL (Bondeau et al., 2007; Fader et al., 2010), GEPIC (Liu et al., 2007), PEGASUS (Deryng et al., 2011), CLM-Crop 35 
(Drewniak et al., 2013), PRYSBI2 (Sakurai et al., 2014), pAPSIM (Elliott et al., 2014), pDSSAT (Elliott et al., 2014), 

CROVER (Okada et al., 2015), ORCHIDEE-crop (Wu et al., 2016), PEPIC (Liu et al., 2016), and MATCRO (Masutomi et 

al., 2016). However, only a few of these models, such as LPJmL and CROVER, have globally implemented schemes for 

irrigation constrained by spatiotemporal detailed water availability (i.e., explicit consideration of river routing and water 

withdrawal). The lack of inclusion of such schemes severely limits the ability of these models to be used in comprehensive 40 
investigations of global food–water tradeoffs, particularly in terms of specifying the sources of water withdrawal used for crop 

irrigation. 

 

In this study, we developed a new crop–water global model based on the H08 global hydrological model (Hanasaki et al. 

2008a; 2018). Although H08 has detailed functions for specifying water sources and estimating crop specific yield based on 45 
the formulations of the SWAT model (Neitsch et al., 2002), its performance as a crop yield simulator has been poor in 

comparison with the FAO yield statistics and other gridded yield data sets. This poor performance is mainly because of the 

adoption of the global uniform parameters related to crop growth. These default parameters are acquired from the SWIM 

model, a variant of the SWAT model (Arnold et al., 1994), which is mainly for use in Europe and temperate climate zones 

(Krysanova et al., 2000). This leads to overestimation or underestimation when it is used in other regions with different crop 50 
management practices and climatic conditions. Additionally, the effects of CO2 fertilization (Stockle et al., 1992) and changes 

in vapor pressure deficit (Stockle and Kiniry, 1990) on crop yield have not yet been considered. These two factors are 

particularly important in analyses the impacts of climate change on crop yield (Jägermeyr et al., 2021; Yuan et al., 2019). 

 

Despite multiple attempts to optimize the parameters involved, global crop yield simulation remains challenging. For example, 55 
Fader et al. (2010) proposed the concept of management intensity, which represents the degree and frequency of field 

agronomy management (e.g., fertilizer, technology, and weed control). They adopted this concept in a global vegetation model, 

LPJml, by adjusting a key parameter of maximum leaf area index at the country level, which exhibited good agreement between 

the calibrated yield and FAO yield statistics. This adjustment enabled LPJml to be used in investigations of the crop–water 

relations by estimating crop water productivity and virtual water content (Fader et al., 2010). Deryng et al. (2011) calibrated 60 
the light use efficiency coefficient based on spatially explicit crop yield data reported by Monfreda et al. (2008). Iizumi et al. 

(2009) developed a large-scale crop model for paddy rice in Japan, known as the PRYSBI model, whereby multiple parameters 

were calibrated via the Markov Chain Monte Carlo technique at subnational level. The results showed that the Markov Chain 
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Monte Carlo method is a powerful approach for optimizing multiple parameters in a nonlinear and complex model. Sakurai et 

al. (2014) used a similar method globally and estimated eight parameters based on Free-Air Carbon Dioxide Enrichment 65 
(FACE) data with hundreds of thousands of calculation steps in the Markov Chain Monte Carlo process. Each of the above 

methods has its own advantages and disadvantages. For example, the method of Fader et al. (2010) was based on FAO national 

yield statistics, whereas the methods in the other three studies require spatial explicit yield data. Additionally, Fader et al. 

(2010) and Deryng et al. (2011) mainly focused on a single parameter, whereas Iizumi et al. (2009) and Sakurai et al. (2014) 

addressed with multiple parameters. 70 
 

To enhance the capacity of H08 to simulate the yields of four major staple crops (i.e., maize, wheat, rice, and soybean), we 

first added two new functions to the H08 crop sub-model by considering the effects of CO2 fertilization and vapor pressure 

deficit change on crop yield. Then, we adopted the method of Fader et al. (2010) for parameter calibration because of its robust 

performance, minimal computation cost, simplicity of implementation, and easily accessible and generally reliable input yield 75 
data when implemented in a global scale process-based crop growth model. Next, we evaluated model performance with 

respect to mean bias, time series variation, and time series correlation in accordance with the general framework proposed by 

Muller et al. (2017), using FAO statistical national data and recently published gird-level data. We sought to determine whether 

the improved H08 model could reproduce the mean historical yield at national scale; to determine whether the model could 

also capture interannual variation in historical yield times series; and to compare spatial time series correlations with other 80 
spatial explicit data. Finally, we investigated the contributions of irrigation to the global production of maize, wheat, rice, and 

soybean using the improved model as a case study for its application. 

 

2 Materials and methods 

2.1 H08 overview 85 
H08 is a global hydrological model that includes natural and anthropogenic hydrological processes at a spatial resolution of 

0.5° and a temporal resolution of 1 day. It was developed with six sub-models: land surface hydrology, river routing, crop 

growth, reservoir operation, environmental flow requirements, and anthropogenic water withdrawal (Hanasaki et al., 2008a). 

It has been updated with several new schemes including groundwater recharge and abstraction, aqueduct water transfer, local 

reservoirs, seawater desalination, and return flow and delivery loss (Hanasaki et al., 2018). With these newly added functions, 90 
H08 is one of the most detailed global hydrological models available for the estimation of sector-wise and water source-wise 

water withdrawal and availability. In the agriculture sector, H08 can estimate irrigation water demand and supply on a daily 

and grid-cell basis with several unique features. First, it can estimate the irrigation water withdrawal from both renewable and 

non-renewable groundwater sources. Second, it considers the effects of irrigation water withdrawal in the upper stream. Third, 

it includes the influence of reservoir operation on irrigation water availability. H08 was fully described in multiple previous 95 
studies (Hanasaki et al., 2008a, 2008b, 2018). 

 

2.2 Crop sub-model 

The crop growth sub-model accumulates plant biomass at a daily interval until physiological maturity; it also simulates 

phenological development. The daily increase in potential biomass (∆𝐵) (kg ha−1) is estimated based on radiation use efficiency 100 
and photosynthetic active radiation, using the method of Monteith et al. (1977) (see Eq. 1). Crop phenological development is 

based on daily heat unit accumulation theory, whereby physiological maturity is reached when the accumulated daily heat unit 

value is equal to the potential heat unit value. The harvest index is used to partition the total aboveground biomass with respect 

to grain yield. Regulating factors, including water and air temperature, are used to adjust the yield variation. Although the 

algorithm is based on SWAT and SWIM, and a detailed description was previously provided (Hanasaki et al., 2008a; Ai et al., 105 
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2020), the main formulation is briefly described here because it is an important foundation for the forthcoming discussion on 

parameter optimization. In specific, 

∆𝐵 = 𝑏𝑒 ∗ 𝑃𝐴𝑅 ∗ 𝑅𝐸𝐺𝐹                                                                                                                                                          (1) 

where 𝑏𝑒 is a crop-specific parameter of radiation use efficiency, 𝑃𝐴𝑅 is photosynthetically active radiation, and 𝑅𝐸𝐺𝐹 is the 

crop regulating factor. 𝑃𝐴𝑅 is calculated using shortwave radiation (𝑅𝑠) (W m−2) and leaf area index (𝐿𝐴𝐼), as follows: 110 
𝑃𝐴𝑅 = 0.02092 ∗ 𝑅𝑠 ∗ [1 − exp(−0.65 ∗ 𝐿𝐴𝐼)]                                                                                                                   (2) 

LAI is calculated according to the growth stage indicated by 𝐼ℎ𝑢𝑛, if 𝐼ℎ𝑢𝑛 < ëdpl1û ∗ 0.01, 

𝐿𝐴𝐼 = !"#$%&ë'()%û*∗,-./
ë'()%û∗0.0%

∗ 𝑏𝑙𝑎𝑖		                                                                                                                                               (3) 

if ë𝑑𝑝𝑙1û ∗ 0.01 ≤ 𝐼ℎ𝑢𝑛 < ë𝑑𝑝𝑙2û ∗ 0.01, 

𝐿𝐴𝐼 = LM𝑑𝑝𝑙1 − ë𝑑𝑝𝑙1ûN + 2!"#$3&ë"#$3û*&!"#$%&ë"#$%û*4∗!,-./&ë'()%û∗0.0%*
ë"#$3û∗0.0%&ë"#$%û∗0.0%

P ∗ 𝑏𝑙𝑎𝑖                                                                   (4) 115 

if ë𝑑𝑝𝑙2û ∗ 0.01 ≤ 𝐼ℎ𝑢𝑛 < 𝑑𝑙𝑎𝑖, 

𝐿𝐴𝐼 = LM𝑑𝑝𝑙2 − ë𝑑𝑝𝑙2ûN + 2%&!"#$3&ë"#$3û*4∗!,-./&ë"#$3û∗0.0%*
"$56&ë"#$3û∗0.0%

P ∗ 𝑏𝑙𝑎𝑖                                                                                     (5) 

if 𝑑𝑙𝑎𝑖 < 𝐼ℎ𝑢𝑛, 

𝐿𝐴𝐼 = 16 ∗ 𝑏𝑙𝑎𝑖	(1 − 𝐼ℎ𝑢𝑛)3                                                                                                                                                   (6) 

where 𝑑𝑙𝑎𝑖 is the fraction of growing season when growth declines, dpl1 and dpl2 are shape parameters of the LAI growth 120 
curve (see the definition in Table 1 in Ai et al., 2020), and blai is the maximum leaf area index. 

𝑅𝐸𝐺𝐹 is calculated as: 

𝑅𝐸𝐺𝐹 = min(𝑇𝑠,𝑊𝑠,𝑁𝑠, 𝑃𝑠)                                                                                                                                                 (7) 

where 𝑇𝑠,𝑊𝑠,𝑁𝑠, and	𝑃𝑠 are the stress factors for temperature, water, nitrogen, and phosphorous, respectively. The details of 

water and temperature stress are provided in the work of Ai et al. (2020). Nitrogen and phosphorous stress were not considered 125 
because of the lack of available information regarding fertilizer application (Hanasaki et al., 2008a). 

The aboveground biomass (𝐵𝑎𝑔) (kg ha−1) is estimated with the accumulated biomass (∑∆𝐵) as: 

𝐵𝑎𝑔 = [1 − (0.4 − 0.2 ∗ 𝐼ℎ𝑢𝑛)] ∑∆𝐵                                                                                                                                    (8) 

where 𝐼ℎ𝑢𝑛 is the heat unit index, which is calculated as the ratio of accumulated daily heat units ∑𝐻𝑢𝑛𝑎(𝑡) and the potential 

heat unit (𝐻𝑢𝑛): 130 

𝐼ℎ𝑢𝑛 = ∑8./5(:)
8./

                                                                                                                                                                        (9) 
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The daily heat units Huna(t) is expressed as the difference between the daily mean air temperature (𝑇5) and the the crop’s 

specific base temperature (Tb; provided as a crop-specific parameter): 

𝐻𝑢𝑛𝑎(𝑡) = 𝑇5 − 𝑇𝑏                                                                                                                                                                   (10) 

The crop yield (𝑌𝑙𝑑) (kg ha−1) is finally estimated from the aboveground biomass (𝐵𝑎𝑔) using the crop-specific harvest index 135 
(𝐻𝑎𝑟𝑣𝑒𝑠𝑡) on the date of the harvest as: 

𝑌𝑙𝑑 = 𝐻𝑎𝑟𝑣𝑒𝑠𝑡 ∗ <=>
<=>?@A((B.%%C&0.0DB∗<=>)

∗ 𝐵𝑎𝑔                                                                                                                                                       (11) 

where 𝑊𝑆𝐹 is the ratio of 𝑆𝑊𝑈 (accumulated actual plant evapotranspiration in the second half of the growing season) to 

SWP (accumulated potential evapotranspiration in the second half of the growing season): 

𝑊𝑆𝐹 = =<E
=<F

*100                                                                                                                                                                         (12) 140 

Differences in crop type are expressed by the differences in crop parameters (e.g., be, blai, and Tb). Currently, the crop sub-

model can simulate the yield for 18 food crops. The globally uniform default parameters for the food crops were collected 

from the default parameters of the SWIM model (Krysanova et al., 2000). 

2.3 Algorithm improvement 

Here, the crop sub-model was improved as follows. First, the effects of CO2 fertilization and vapor pressure deficit change on 145 
radiation use efficiency were added to the H08 crop sub-model, using the equations and parameters adopted in SWAT (Neitsch 

et al., 2011; Arnold et al., 2013). In general, elevated CO2 has a positive impact on crop yield, whereas increased vapor pressure 

deficit has a negative impact. The CO2 fertilization effect is larger for C3 crops (e.g., wheat, rice, and soybean) than for C4 

crops (e.g., maize). Specifically, the radiation use efficiency (be) is adjusted according to the concentration of CO2 as: 

𝑏𝑒 = %00∗GH!
GH!?@A((I"&I!∗GH!)

                                                                                                                                                              (13) 150 

where be is the radiation use efficiency, 𝐶𝑂3  is the CO2 concentration in the atmosphere (ppmv), 𝑟%  and 𝑟3  are shape 

coefficients.  

𝑟% = 𝑙𝑛 e GH!#$%
0.0%∗JK#$%

− 𝐶𝑂35LJf + 𝑟3 ∗ 𝐶𝑂35LJ                                                                                                                           (14) 

𝑟3 =
$/M

&'!#$%
(.("∗%+#$%

&GH!#$%N&$/M
&'!,-

(.("∗%+,-
&GH!,-N

GH!,-&GH!#$%
                                                                                                                              (15) 

where 𝐶𝑂35LJ is the ambient atmospheric CO2 concentration (ppmv), 𝐶𝑂3-6 is an elevated atmospheric CO2 concentration 155 
(ppmv), 𝑏𝑒5LJ is the be of the crop at 𝐶𝑂35LJ, and 𝑏𝑒-6 is the be of the crop at 𝐶𝑂3-6. 

 

Additionally, the be is adjusted with the vapor pressure deficit (vpd) (kPa) as: 

𝑏𝑒 = 𝑏𝑒O#"P% − Δ𝑏𝑒"Q$ ∗ (𝑣𝑝𝑑 − 𝑣𝑝𝑑:-I)                             if  vpd > 𝑣𝑝𝑑:-I                                                                                (16) 

𝑏𝑒 = 𝑏𝑒O#"P%                                                                                if  vpd ≤ 𝑣𝑝𝑑:-I                                                                                 (17) 160 
where 𝑏𝑒O#"P% is the be for the plant at a vpd of 1 Kpa, Δ𝑏𝑒"Q$ is the rate of be decline per unit increase in vpd, 𝑣𝑝𝑑:-I is the 

threshold vpd above which a plant will exhibit reduced radiation use efficiency. 𝑣𝑝𝑑:-I is assumed to be 1 Kpa. 

 

2.4 Parameter calibration 

Next, we calibrated the key parameter of maximum leaf area index (𝑏𝑙𝑎𝑖) and adjusted harvest index (𝐻𝑎𝑟𝑣𝑒𝑠𝑡) accordingly 165 
by adopting the concept of management intensity in accordance with the method of Fader et al. (2010). Note that, for many 
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countries in the world, the historical annual crop yield from FAO shows an apparent increasing trend. Hence, the usual way of 

splitting data into two periods (i.e., former for calibration, the latter for validation) didn’t work. Therefore, we used the mean 

of even years for calibration and the mean of odd years for confirmation. Specifically, we calibrated the maximum leaf area 

index by iterating the values from 0.5 to 7.1, with an interval of 0.3, under both rainfed and irrigation conditions in the even 170 
years from 1986 to 2015. The crop-specific best maximum leaf area index in each country was then determined as the value 

that can minimize the bias between the mean simulated yield and mean FAO statistical yield. When FAO statistical yield or 

simulated yield data are missing for a country, we took the original crop-specific default values. The calibration and 

confirmation results showed good agreement with the FAO statistics (Fig. S1).  

 175 
2.5 Meteorological data 

The ISIMIP3a GSWP3-W5E5 global meteorological data (available at 

https://data.isimip.org/search/tree/ISIMIP3a/InputData/climate/atmosphere/gswp3-w5e5/) from 1980 to 2015 were used in all 

simulations in this study. The spatial resolution of GSWP3-W5E5 data is 0.5°. Eight daily meteorological variables (downward 

shortwave radiation, downward longwave radiation, specific humidity, rainfall, snowfall, air pressure, wind speed, and air 180 
temperature) were used to run H08. 

 

2.6 Reference yield data 

To calibrate and validate the simulated crop yield, several yield data sets with different spatial resolutions were collected. The 

country-level yield data from FAO (available at https://www.fao.org/faostat/en/#data, final accessing date is May 9, 2022) and 185 
grid-level (0.5°) yield data from the Global Dataset of Historical Yield (GDHYv1.2+v1.3) (Iizumi et al., 2020) (available at 

https://doi.pangaea.de/10.1594/PANGAEA.909132) for the period of 1986 to 2015 were used to evaluate model performance. 

FAO statistical yield was reported as fresh matter, whereas the model simulated yield denotes the dry matter. For consistency 

in the comparisons, as reported by Farder et al. (2010) and Müller et al. (2017), the FAO statistical yield was converted to dry 

mater with a crop-specific factor (e.g., 0.88, 0.88, 0.87, and 0.91 for maize, wheat, rice, and soybean) in accordance with 190 
Wirsenius (2000). The global data set of historical yield for major crops (GDHY) yield data is a spatially explicit data set that 

converts the FAO annual national statistical yield to grid-level yield based on gridded net primary production estimated from 

several satellite products (Iizumi et al., 2020). The FAO statistical yield and GDHY yield provide valuable information for 

evaluation of crop model performances at country and grid levels, respectively (Müller et al., 2017; Iizumi et al., 2020).  

 195 
2.7 Simulation setting and yield processing 

After algorithm improvement and parameter optimization, two different simulations for maize, wheat, rice, and soybean were 

run under both rainfed and irrigation conditions from 1986 to 2015 on a daily scale. The simulation was performed with the 

default model and the improved model under the assumption that the four crops were planted and harvested in a hypothetical 

cropland of each grid cell. Under rainfed condition, the crop growth was subject to water stress; under irrigation condition, 200 
there was no effect of water stress on crop growth. The yield processing is as follows: 

 

First, the gridded yield (Yld) was aggregated from simulated yield as follows: 

𝑌𝑙𝑑 =
𝑌𝑙𝑑I56/ × 𝐴𝑟𝑒𝑎I56/ + 𝑌𝑙𝑑6II6 × 𝐴𝑟𝑒𝑎6II6

𝐴𝑟𝑒𝑎I56/ + 𝐴𝑟𝑒𝑎6II6
 

where 𝑌𝑙𝑑I56/ and 𝑌𝑙𝑑6II6 are the simulated yield under rainfed and irrigation conditions, respectively. 𝐴𝑟𝑒𝑎I56/ and 𝐴𝑟𝑒𝑎6II6 205 
are the rainfed and irrigated harvest area per crop in a grid cell, respectively. The rainfed and irrigated harvest areas per crop 

were obtained from MIRCA2000 data set (Portmann et al., 2010) (available at https://www.uni-

frankfurt.de/45218031/Data_download_center_for_MIRCA2000).  
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Then, the national yield was aggregated from the gridded yield and weighted according to the crop-specific total harvest area. 210 
Because reference yield data have limited quality for marginal and small areas (Müller et al., 2017), we considered grid cells 

with harvest area > 10 ha (Jägermeyr et al., 2021). 

 

Finally, to ensure that the simulated data and reference data received similar treatment, we used the detrended yield when 

comparing time series variations of simulated yield and reference yields (Müller et al., 2017). In accordance with the methods 215 
of previous studies (Müller et al., 2017; Iizumi et al., 2013; 2014a), the moving average method was used to remove the trends. 

Specifically, same as Müller et al. (2017), the anomaly yield was calculated by subtracting the moving average of a 5-year 

window. 

 

3 Results and discussion 220 
3.1 Comparison with FAO statistical national yield  

Compared with the yield simulated by the default model, as shown in Fig. 1, the improved model  showed better agreement 

with the FAO statistics of the mean national yield for the top 20 largest producer countries per crop (explaining approximately 

88%, 86%, 93%, and 99% of global maize, wheat, rice, and soybean production, respectively).. First, the mean bias (difference 

between mean national yield of simulation and mean national yield of FAO) of the 20 largest producer countries was 225 
considerably reduced to −4%, 3%, −1%, and 1% for maize, wheat, rice, and soybean, respectively. Second, the corresponding 

coefficients of determination (R2) values of the mean national yield of simulation and the mean national yield of FAO increased 

from 0.01 to 0.98, 0.21 to 0.99, 0.06 to 0.99, and 0.14 to 0.97 for maize, wheat, rice, and soybean, respectively. Third, the 

corresponding root mean square error (RMSE) decreased from 7.1 to 1.1, 2.2 to 0.6, 2.7 to 0.5, 2.3 to 0.3 t/ha for maize, wheat, 

rice, and soybean, respectively. These results suggested that the improved simulation could reliably reproduce the long-term 230 
averaged historical yield for the four major crops at the national level. 

 

To investigate the capacity to reproduce the temporal variability of crop yield, a time series of detrended yield anomalies in 

simulation data and FAO data for the top 20 largest producer countries per crop are presented in Fig. 2 for maize and Figs. 

S2–S4 for wheat, rice, and soybean, respectively. With regard to the ability to capture interannual variation in FAO yield, the 235 
model showed better performances for maize, wheat, and soybean than for rice. For example, positive correlations were found 

in 18, 16, 11, and 16 of the top 20 largest producer countries with the mean correlation coefficient (R) values of 0.48, 0.51, 

0.31, and 0.36 for maize, wheat, rice, and soybean, respectively. The improved model showed better performance (increased 

R and decreased RMSE) than the default model particularly for maize and wheat. 

 240 
The R and RMSE of time series detrended yield anomalies between simulated yield and FAO yield for the top five largest 

producer countries per crop are summarized in Fig. 3. These countries were selected to make the data comparable with the 

latest global crop model intercomparison study by Jägermeyr et al. (2021). Overall, the R and RMSE values of our simulations 

were within the range of current mainstream crop models reported by Jägermeyr et al. (2021). For maize, wheat, and soybean, 

the R and RMSE values of our simulation were comparable with the ensemble means of different crop models reported by 245 
Jägermeyr et al. (2021); for rice, our simulation showed higher R values (except in Bangladesh and China) and lower RMSE 

values. However, the metric scores of our improved model and the other crop models in the work of Jägermeyr et al. (2021) 

remained low (e.g., few countries had R values > 0.5). This finding suggested that current crop models continue to experience 

difficulty in fully capturing the interannual variation of the historical yield because crop models only reflect the interannual 

climate signals in the simulated yields (Jägermeyr et al., 2021). This also indirectly implied that the climate variation might 250 
not be the main driver of the interannual yield variation for the major producer countries.  
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To further validate the above conjecture, we investigated the impacts of climate variables (i.e., precipitation and air temperature) 

on interannual yield variation by analyzing the correlations of total precipitation/mean air temperature in the growing season 

with the annual yield per crop. Using maize as an example (Fig. 4), there were no statistically significant relationships (p > 255 
0.05) between precipitation and FAO statistical yield for most of the top 20 largest producer countries (17/20). Significant 

positive correlations between precipitation and the FAO statistical yield (p < 0.05) were found in only three countries: Romania, 

Hungary, and Serbia. The crop yield estimation relies on water availability; therefore, the variation in yield simulation largely 

reflects variation in precipitation. Accordingly, we observed good simulation performance in those three countries (Fig. 2) 

with a clear correlation between FAO yield and precipitation (Fig. 4). Also, there were no statistically significant relationships 260 
between air temperature and FAO statistical yield for most of the top 20 largest producer countries (12/20) (Fig. 5). Similarly, 

there were no statistically significant correlations between precipitation/air temperature and FAO statistical yield in most 

countries for wheat, rice, and soybean (see Supplementary Figs. S5–10). 

 

3.2 Comparison with GDHY gridded yield 265 
Spatially explicit yield data enabled us to more fully evaluate the spatial distribution of model simulations. We compared the 

spatial distribution between simulated crop yield (before and after improvement) and the GDHY yield data set. Using maize 

as an example, apparent overestimation was detected in many parts of the world (e.g., China, Argentina, Brazil, India, 

Indonesia, Thailand, Mexico, and most countries in Africa) in the default simulation (Fig. 6a). In contrast, the improved 

simulation (Fig. 6b) showed a spatial pattern similar to the GDHY yield data (Fig. 6c). For the yields of wheat, rice, and 270 
soybean, the spatial distribution after improvement also showed a pattern similar to the GDHY yield data (Supplementary Figs. 

S11–13). 

 

In accordance with the method of Müller et al. (2017), we conducted grid-level time series analysis of the correlations of the 

detrended yield between simulated and GDHY data (Fig. 7) to further identify the differences in the two yield data sets. Using 275 
maize as an example (Fig. 7a), statistically significant correlations (p < 0.1) were observed in a wide of range of regions (e.g., 

northeast USA, southern Europe, northeastern China, southern Brazil, eastern Argentina, southern Africa, and eastern Australia) 

(Fig. 7a). Notably, there were also substantial differences in a considerable number of locations without statistically significant 

correlations (p > 0.1) (e.g., southeastern USA, western and central Asia, Brazil, and central Africa) (Fig. 7a). Similar 

characteristics were found for wheat, rice, and soybean (Fig. 7b–d).  280 
 

Such similarities or discrepancies between two yield data sets have been observed previously (see Fig. 9 in Müller et al., 2017). 

For example, there were statistically significant correlations (p < 0.1) and no statistically significant correlations (p > 0.1) 

between two data sets developed by Iizumi et al. (2014b; an earlier version of GDHY used in this study) and Ray et al. (2012) 

in a wide of regions. Such comparisons can help to identify considerable disagreements in global estimates of the spatial 285 
distribution of crop yield (Kim et al., 2021). Because it is difficult to determine whether one of these estimates is better than 

the others, the disagreement between our simulation and the GDHY data does not necessarily indicate that our simulation 

quality is low. 

 

3.3 Limitations 290 
Although crop yield simulations were improved, there were several limitations because of the assumptions, methods, and data 

sets used in this study. First, in accordance with the methods of previous studies (Müller et al., 2017; Jägermeyr et al., 2021), 

yield calculation and aggregation were conducted with the assumption that the irrigated harvest area and total harvest area per 

crop did not change throughout the study period; this assumption was based on data availability. However, these aspects do 
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change over time. To overcome the problems associated with such an assumption, dynamic harvest area data at annul intervals 295 
should be developed in future studies. Second, our calibration was conducted at the national scale in accordance with the 

method of Fader et al. (2010), rather than using finer spatial scale (e.g., subnational or gird-level), which increased the 

uncertainty of the yield simulations within each country. As shown in Figure 6, the yield distribution is highly variable within 

a specific country. To incorporate the spatial heterogeneity in crop yield, ideally, parameter calibration should be conducted 

at grid-cell level (e.g., Iizumi et al., 2009; Sakurai et al., 2014). Although this approach has long-term promise, it is technically 300 
challenging because of uncertainty in the global gridded yield products and the potential for inflation in the parameter 

optimization calculation. In addition, the calibrated parameter reflected the mean average sate, therefore might ignore the year-

by-year variation. Third, the reference data set from GDHY does not represent purely observation-based yield, therefore, it is 

subject to errors or uncertainty resulting from its own methodology (e.g., errors in gross primary production and crop stress 

response) (Müller et al., 2017). Nonetheless, at current stage, both FAO and GDHY data sets remain good references for 305 
evaluating the performances of crop models, as suggested or widely used in previous studies (Müller et al., 2017; Iizumi et al., 

2020; Jägermeyr et al., 2021). Finally, our crop model is a simple model that does not fully represent the factors influencing 

crop growth. For example, we did not explicitly simulate N and P processes, although these effects are now reflected in the 

calibrated parameters (Fader et al., 2010). Additionally, the waterlogging effect is underrepresented in most crop models, 

including our model (Jägermeyr et al., 2021). Such physical mechanisms should be addressed in the development of future 310 
models. 

 

4 Case study to estimate the contribution of irrigation to global food production 

Finally, to demonstrate the improved model can be applied for various food-water nexus study, a well-recognized study by 

Döll and Sibert (2010) which estimated the contribution of irrigation on global food production is revisited and traced. To 315 
trace their work, a global crop yield model is needed which is capable to estimate crop yield reasonably well and deal with the 

effect of irrigation explicitly.  

 

Irrigation plays a critical role in global food production. The literature usually indicates that approximately 40% of global total 

food production is from irrigated land (Postel et al., 2001; Siebert et al., 2005; Abdullah et al., 2006; Khan et al., 2006; Wada 320 
et al., 2013; Perrone et al., 2020; Ringler et al., 2020; Borsato et al., 2020), but the rationale and country-specific variation 

have not been fully explained. To our knowledge, Postel (1992) reported one of the first estimates, whereby approximately 

36% of the global food production was from irrigated land based on statistical data. Then, Siebert and Doll (2010) reported 

that irrigation contributed to approximately 33% of the global total production. Here, we revisited the irrigation contributions 

for global production of maize, wheat, rice, and soybean using our improved model. Irrigation contribution in percentage (I) 325 

in a country (c) is defined as: I,c = R$"-..-,0∗SIK5-..-,0
R$"-..-,0∗SIK5-..-,0?R$".#-1,Q∗SIK5.#-1,0

*100%, where 𝑌𝑙𝑑6II6,Q and 𝑌𝑙𝑑I56/, 𝑐 are the irrigated 

and rainfed yields for a country, respectively;  𝐴𝑟𝑒𝑎6II6,Q and 𝐴𝑟𝑒𝑎I56/,Q are the total irrigated and rainfed harvest areas for a 

country, respectively. 

 

Our results showed that the global average production levels from irrigated cropland were approximately 27%, 30%, 61%, and 330 
16% for maize, wheat, rice, and soybean, respectively (Fig. 8). These estimates were close to the estimates of Siebert and Doll 

(2010): 26%, 37%, 77%, and 8%, respectively. The similarities between these two studies mainly arose because both studies 

used data from Portmann et al. (2010) for crop-specific harvested area, and both models were calibrated with FAO data. 

 

5 Conclusions 335 
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In this study, we improved the capacity of H08 to simulate the yields of four major staple crops: maize, wheat, rice, and 

soybean. The improved national yield estimates generally showed good consistency with FAO statistical national yields. The 

improved grid-level yield estimates showed similarities in terms of spatial patterns and the reproduction of interannual 

variation, compared with GDHY yield over a wide area, although there were substantial differences in other places. As reported 

in previous studies, the full reproduction of historical interannual yield variation remains challenging for global gridded crop 340 
modelling. Finally, we quantified the contributions of irrigation to the global production of maize, wheat, rice, and soybean; 

we explored the variations in irrigation contributions among countries. Together with the ability to simulate bioenergy crop 

yield (Ai et al., 2020; 2021), to our knowledge, our improvements provide a good tool that can simultaneously simulate 

bioenergy potential and crop production while specifying irrigation water withdrawal into the most detailed sources within a 

single framework, which will be beneficial for advancing global food–water–energy–land nexus studies in the future (e.g., 345 
planetary boundary, virtual water trade, and sustainable development goals).  

 

Code and data availability. The mode code used here is archived on Zenodo 

(https://zenodo.org/record/7344809#.Y3xnU7JBzjA). Technical information regarding H08 model is available from: 

https://h08.nies.go.jp/h08/. The links to the data sets used in this study are provided in the main text. 350 
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 505 
Fig. 1 Comparison of mean simulated yield and mean FAO yield for the top 20 largest producer countries from 1986 

to 2015. Default and improved indicates simulation using the default and improved model, respectively. Dashed green 

and yellow lines indicate ±10% and ±20% differences, respectively. SIM denotes simulated yield and FAO denotes 

reported yield from FAO. Panel (a) for maize, (b) for wheat, (c) for rice, and (d) for soybean, respectively.

https://doi.org/10.5194/gmd-2022-285
Preprint. Discussion started: 20 January 2023
c© Author(s) 2023. CC BY 4.0 License.



 16 

 510 
Fig. 2 Time series detrended maize yield anomalies from improved simulation (red), default simulation (blue), and 

FAO (green) for the top 20 largest producer countries. Y, yield; R, correlation coefficient; RMSE, root mean square 

error. 
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Fig. 3 Comparison of R and RMSE values of time series detrended yield anomalies between this study (SIM) and 515 
Jägermeyr et al. (2021) (J21). Yellow bar denotes ensemble mean of different crop models used in the work of 

Jägermeyr et al. (2021). Error bars indicate maximum and minimum values among different crop models.
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Fig. 4 Relationship between maize yield (blue: simulated; red: FAO) and total precipitation in the growing season from 

1986 to 2015 for the top 20 largest producer countries. Y, yield; P, precipitation; R, correlation coefficient.520 
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Fig. 5 Relationship between maize yield (blue: simulated; red: FAO) and mean air temperature in the growing season 

from 1986 to 2015 for the top 20 largest producer countries. Y, yield, T, air temperature; R, correlation coefficient.
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Fig. 6 Spatial distribution of the mean (1986-2015) simulated yield (a, default; b, improved) and GDHY yield (c) of 525 
maize. Units in the legend are t/ha. 
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Fig. 7 Time series correlation between simulated yield and GDHY yield after trend removal using a 5-year moving 

average. Gray areas indicate no statistically significant correlation between the two data sets (p > 0.1), and white areas 530 
indicate no yield data for that crop in at least one of the two data sets. Panel (a) shows determination coefficient for 

maize, (b) for wheat, (c) for rice, (d) for soybean, respectively. 
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Fig. 8 Percentages of irrigation contribution to the global production of maize, wheat, rice, and soybean, respectively. 
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