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Abstract.

Land surface models are an important tool in the study of climate change and its impacts, but their use can be hampered by

uncertainties in input parameter settings and by errors in the models. We apply Uncertainty Quantification (UQ) techniques to

constrain the input parameter space and corresponding historical simulations of JULES-ES-1.0, the land surface component of

the UK Earth system model UKESM1.0. We use an ensemble of historical simulations of the land surface model to rule out5

ensemble members and corresponding input parameter settings that do not match modern observations of the land surface and

carbon cycle. As JULES-ES-1.0 is computationally expensive, we use a cheap statistical proxy termed an emulator, trained

on the ensemble of model runs, to rule out parts of parameter space where the simulator has not yet been run. We use history

matching, an iterated approach to constraining JULES-ES-1.0, running an initial ensemble and training the emulator, before

choosing a second wave of ensemble members consistent with historical land surface observations. We successfully rule out10

88% of the initial input parameter space as being statistically inconsistent with observed land surface behaviour. The result is

a set of historical simulations and a constrained input space that are statistically consistent with observations. Furthermore, we

use sensitivity analysis to identify the most (and least) important input parameters for controlling the global output of JULES-

ES-1.0, and provide information on how parameters might be varied to improve the performance of the model and eliminate

model biases.15
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1 Introduction20

Land surface models are widely used for the study and projection of climate change and its impacts, but differences between

the models and the systems they represent can limit their effectiveness (Fisher and Koven, 2020). These differences can be

caused by fundamental errors or a lack of knowledge of real world processes, or by the simplifications and compromises
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required to build and run the computationally expensive computer models that we use to simulate those processes. Uncertainty

quantification (UQ) methods have been developed in order to identify and quantify the differences between the models and the25

real world, how to minimise those differences, and how to asses their impact on the use of models in policy advice.

Complex land surface models contain a large number of tuneable input parameters - numbers which represent simplifications

of processes which are either unnecessary or too computationally expensive to include in a simulation. The value of a partic-

ular input parameter can materially affect the output of a model, but it is often unclear exactly how until the corresponding

simulations are run. Input parameters may represent some real-world quantity, and so a modeller may have a belief about the30

"correct" value of that input parameter, that they are able to represent with a probability distribution. As processes interact

within a model, input parameters can rarely be tuned in isolation to each other. For many climate applications, a goal is to

choose the ranges of input parameters so that the model behaves consistently with our understanding of the behaviour of the

true system, and that is consistent with our knowledge of the value that those input parameters have in the real world. The input

parameters of such a model are said to be "constrained", and any simulations of future behaviour will be constrained by our35

choice of input settings to be consistent with our best understanding of the system.

As we have uncertainty about the structure and the behaviour of the true system, through a lack of knowledge or through

uncertain observations, the value of the valid configurations of input parameters, or their associated probability distributions is

uncertain. In practice, modellers often use constrained ranges of input parameter to run collections of model evaluations termed

"ensembles", crudely representing uncertainty about the behaviour of the true system.40

Perturbed parameter ensembles (PPEs) are useful for the evaluation of complex and computationally expensive climate

models, including land surface models. A PPE is a collection of simulator runs where input parameters are systematically

varied in line with a set of principles consistent with our knowledge and experiment objectives. PPEs allow a quantification

of the relationship between the model input parameters and its output. They can therefore be used for the quantification and

propagation of uncertainty in parameter constraint, in sensitivity of the model outputs to perturbations, and can give hints as to45

the size and location of model structural errors.

PPEs are now standard practice in the study of climate models for uncertainty quantification, climate and impacts projection

(e.g. Sexton et al. (2021); Edwards et al. (2019)), parameterisation improvement (Couvreux et al., 2021), sensitivity analysis

(Carslaw et al., 2013), or as part of a strategy for model development and bias correction (e.g. Williamson et al. (2015); McNeall

et al. (2016, 2020); Hourdin et al. (2017).50

The size of PPEs is often limited by the computational expense of the complex models that they are used for, and so there is

a natural tension between model complexity, resolution and the length of simulations, and the number of ensemble members

available for parameter uncertainty quantification. A cheap surrogate model (sometimes termed metamodel, or emulator) is

useful to maximise the utility of an ensemble in these situations. Emulators are statistical models or machine learning algo-

rithms, usually trained on a PPE that has been carefully designed to cover input space effectively. Gaussian process emulators,55

used in this study, have an advantage in that they are naturally flexible and natively include uncertainty estimates as to their

error, but simpler linear model and more complex machine learning approaches are possible and can be effective.
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1.1 Experiment structure

In this paper, we develop a comprehensive PPE of JULES-ES-1.0, and compare it with observations to find a set of ensemble

members that are broadly consistent with historical behaviour of the land surface. Our focus in on global totals of carbon cycle-60

relevant quantities, which are of direct interest for carbon budget assessments such as the Global Carbon Budget (Friedlingstein

et al., 2022). The ensemble is designed to be a flexible basis for a number of initial analyses, and provide a foundation for

further exploration in uncertainty quantification of both historical and future projections of the land surface and carbon cycle.

We would like an ensemble with members that fully represent and sample the spread of uncertainty we have in historical land

surface characteristics and behaviour. We would also like an ensemble large enough to effectively train an emulator, in order65

to perform a number of the analyses.

Our approach could be regarded as a "top-down" initial exploration, in that we choose a large number (32) of parameters to

vary simultaneously, we perturb them by a large margin due to the relatively weak beliefs we have about their true values, and

a desire to explore a broad range of model sensitivities, and we focus on the model performance at global levels, averaged over

long time periods. The approach is "data-lead" in that it relies on comparison with data to winnow out poor simulations and70

their corresponding parameter settings. An equally useful complementary approach might be "bottom up" - focusing on smaller

numbers of parameters from individual processes within the land surface, perturbing those parameters by smaller amounts and

focusing on regional or local details and seasonal time periods. However, we decided on the exploratory top-down approach in

which we risked a large number of ensemble members not producing a recognisable carbon cycle but with the view we would

benefit most in our understanding of our model behaviours and sensitivities.75

We use "iterated refocussing", or "history matching" to sequentially constrain our model. We first run an exploratory ensem-

ble in sect. 1.2, and remove any members (and their corresponding input parameter configurations) which produce obviously

bad or no output in sect. 2.1. We use the remaining members to build a Gaussian process emulator, and then run a second wave

ensemble with members chosen from input parameter regions calculated to have a good chance of producing model output

consistent with observations. The formal part of this process uses a Gaussian process emulator and history matching to find80

the regions of input space that stand a good chance of producing realistic model output. Details of this process are outlined in

sect. 2.4. The intention is that any further work on building ensembles in the future could go ahead from the basis that model

variants get the global overview correct, and go on to further constrain the model by focusing on finer details. This would avoid

being over-focused on finer regional or temporal details, at the expense of large-scale behaviour. We apply our observational

constraints to the new set of simulations, leaving a set of historical model runs broadly consistent with modern observations of85

the carbon cycle.

Next, we use all valid ensemble members from both waves to build a new set of more accurate Gaussian process emulators,

and find the best estimate of the input space where the model is likely to produce output that matches reality in sect. ??.

Our next analysis uses Gaussian process emulators to produce several different types of sensitivity analysis, with the aim

of quantifying the relationship between inputs and model outputs, and robustly identifying the most (and least) important90

parameters for the outputs of interest. This analysis is found in sect. 3
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Finally, we discuss how these results help us learn about the model in sect. 4, and offer some conclusions in section 5.

1.2 Experiment setup

The aim of the experiment is to iteratively constrain the land surface model by subjecting it to increasingly demanding com-

parisons with reality. The experiment consists of two cycles of running a simulator ensemble, followed by constraint. Each of95

these cycles is termed a "wave". The first wave is exploratory, and the design of the second wave is informed by the outcome

of the first. We outline some of the technical details of setting up the experiment in this section.

We wish to isolate the effects of uncertain parameters on the land surface, rather than evaluating the effects of climate

biases, or interactions with other components of UKESM1.0. We therefore run the first ensemble of JULES-ES-1.0 with each

member driven by the same historical climate data - a reanalysis from the Global Soil Wetness project, phase 3 (Kim, 2017).100

The simulations include land-use change and rising atmospheric CO2 following the LS3MIP protocol (van den Hurk et al.,

2016) spun-up to a pre-industrial state in 1850 by cycling the 1850-1869 climate but with fixed 1850 CO2 concentrations.

A total of 1000 years spin up is performed then each member is run transiently through to 2014. Each ensemble member

has a different configuration of 32 input parameters, identified as potentially important in influencing land surface dynamics

(see appendix table A1 for a full list of perturbed parameters). The parameters were perturbed randomly, in a maximin Latin105

hypercube configuration (McKay et al., 1979), shown to be an effective space-filling design for building accurate emulators

(Urban and Fricker, 2010). Parameter ranges were defined by the model developers as being likely to at least produce output

from the model. We identify model variants, and their associated input configurations, where the model produces output that is

consistent - within uncertain limits - with modern observations of the carbon cycle. We use Gaussian process emulators trained

individually on each type of model output of interest to allow us to visualise and explore these relationships as if we had a110

much larger ensemble.

1.3 Land surface model

We use JULES-ES-1.0, the current Earth system configuration of the Joint UK Land Environment Simulator (JULES). JULES-

ES forms the terrestrial land surface component of the UK Earth System model, UKESM (Sellar et al., 2019). JULES simulates

the exchange of heat, water and momentum between the land surface and the atmosphere as well as biogeochemical feedbacks115

through carbon, methane and biogenic volatile organic compounds (BVOCS). This JULES-ES configuration is based on JULES

GL7 (Wiltshire et al., 2020), with interactive vegetation via the TRIFFID dynamic vegetation model (Cox, 2001), nutrient lim-

itation via the Nitrogen scheme (Wiltshire et al., 2021) and updated plant physiology (Harper et al., 2018). JULES-ES includes

4 land classes, natural, non-vegetated, pasture and cropland to represent land use change. It has 13 Plant functional types

(PFTs): 9 natural PFTs compete for space in the natural fraction, and 2 in each of the cropland and pasture land respectively120

also compete for space. Non-vegetated surfaces are represented as Urban, Lake, Ice and Bare Soil surface tiles. Urban, Lake

and Ice fractions remain constant whilst bare soil is a function of vegetation dynamics. Vegetation coverage is a function of

productivity, disturbance and intra-PFT competition for space. The bare soil fraction being the remainder of the gridbox af-

ter competition. Land-use change is implemented via ancillary files of crop and pasture coverage and TRIFFID dynamically
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removes PFT coverage to assign space to a new land-cover class. During land abandonment the space is allocated to bare125

soil and TRIFFID colonising the available land. This configuration includes the nitrogen cycle (see (Wiltshire et al., 2021)),

and availability of nitrogen limits the assimilation of carbon and the turnover of soil carbon. In the crop land classes, perfect

fertilizer application is assumed, such that crop PFTs are assummed not to be nitrogen limited.

1.4 First wave design

We set the budget for the initial exploratory ensemble (designated wave 0) to 499 members (plus standard member), a little over130

10 members per input parameter recommended as a rule of thumb by Loeppky et al. (2009), even allowing for a proportion of

the ensemble to be held out for emulator validation purposes.

The initial ensemble must explore the limits of parameter space, and ensure that any future constrained ensemble would be

interpolating and not extrapolating from the initial design. We therefore asked model developers to set ranges on the parameter

perturbations to be as wide as possible, while still having a good chance of running and at least providing output. We elicited135

reasonable multiplication factors from the modeller based on the uncertainty of each parameter, and an estimate of the limits

of the parameters at which the model would even run (see fig. 1). The multiplication factors were perturbed in a space filling

design, in order to best cover input space and help build Gaussian process emulators, which can have problems if design points

are spaced too closely. We chose a maximin Latin Hypercube design using the R package LHS (Carnell, 2021). The design

chosen was the Latin hypercube with the largest minimum distance, from a set of 10,000 generated candidates.140

Many of the input parameters have different values for the 13 different PFTs in JULES. If each of these were perturbed

independently, there would potentially be an intolerably large input space. Even accounting for the fact that many of the input

settings would not be available (for example, perturbing some input values too far would effectively turn one PFT into another),

input space would still be of very high dimension. In addition, each input setting would need careful thought from the modeller,

and the resulting input space would be highly non-cuboid and complex. This would require a very large input of time and effort145

from both modellers and statisticians.

To combat this explosion of dimensions and effort, we chose the pragmatic option to perturb each of the PFTs together,

by a multiplication factor for each parameter. This choice was computationally convenient for a top-down, globally averaged

experiment, but we see great potential for optimising the values of these parameters for individual PFTs in further work (a

good example is Baker et al. (2022)). Many of the "multiplication factors" varied the parameter range between a half (0.5) and150

double (2) the parameter standard value. Some parameters were a switch, and so were set at zero or one. When the design was

generated on a 0-1 axis, the design points were simply rounded to zero or one in this parameter.

2 Sequential constraint

Our "iterated refocussing" experiment uses a combination of formal and informal methods to sequentially constrain input

parameter space and model behaviour, dependent on both expertise and expectation of the modellers, and on more formal155

comparison with observational data. An important aim for the initial ensemble is primarily to train a good surrogate model,
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Figure 1. Parameter multiplication factor ranges the initial ensemble (wave 0) design.

and therefore we require relatively smooth output across the inputs space, without discontinuities or highly nonlinear behaviour

that might bias an emulator. Our initial constraint procedures set out to achieve this.

Our initial (wave 0) ensemble of 499 members is sequentially constrained; to "Level 0" by removing 24 ensemble members

which do not run (see sect. 2.1), to "Level 1" by removing the 50 remaining ensemble member outside of the threshold in F0160

(parameter 8) identified in sect. 2.1, and "Level 1a" by removing the 64 remaining members outside the threshold in b_wl_io
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(parameter 4). This leaves us with a wave00 "level 1a" ensemble of 361 members that at least run and have a minimally

functioning carbon cycle.

2.1 Failure analysis

We analyse the ensemble to remove ensemble members and corresponding parts of parameter space that very obviously cannot165

hope to produce a useful simulation of the carbon cycle. First, we map ensemble members where the simulator failed to

complete a simulation, perhaps due to numerical error (termed "failed"). Second, we identify parts of parameter space where

important parts of the carbon cycle are completely missing - that is, basic carbon cycle quantities are at or close to zero at the

end of the run (termed "zero carbon cycle"). For this second class, we choose a threshold of mean modern global NPP close to

zero (< 10−5). The nature of perturbed parameter ensembles is that there is often a setting of some parameters that makes up170

for a poor choice of a particular parameter, and so outright and easily identifiable thresholds for failure in the marginal range

of a particular parameter are rare. However, careful visualisation and analysis can give the modeller a good idea of regions of

parameter space that can be removed, or parameters that the model is particularly sensitive to.

In fig. 2, we see a pairs plot of "failed" runs (upper right panels) and, "zero carbon cycle" panels (lower left panels). The plot

shows the two-dimensional projections of run failures against each pair of inputs, allowing visual identification of inputs that175

control failures, and any potential two-way interactions.

For example, we can see that both f0_io and b_wl_io have important thresholds, beyond which there appears almost no

chance of a functioning carbon cycle (this interpretation is confirmed by inspection of marginal projection plots, see figure ??).

Inside these thresholds, if a run does not fail, it appears to always have a functioning carbon cycle of some sort. An interaction

between the two presents as a nearly-blank plot at the intersection of the parameters on the plot (row 8, column 4), with inputs180

identifying zero-carbon runs around the edges of the sub plot. This indicates a region where nearly all non-failing ensemble

members have a functioning carbon cycle. High values of b_wl_io results in unphysical allometric scaling of vegetation height

to biomass (e.g. 250m tall trees!).

2.2 First wave results (level1a constraint)

The globally averaged carbon cycle and land surface behaviour of the level1a - constrained ensemble can be seen in fig. 3, and185

anomalies compared to the average of the first 20 years of the runs can be seen in fig. 4, in the blue lines.

The ensemble displays a very wide range of both absolute levels and changes in a selection of carbon cycle and land surface

properties, compared to the model run at standard settings (black). For example, global total NPP runs from approximately

zero to over 150 GtC/year. Soil carbon stocks are between zero and more than 4000 GtC, and Vegetation stocks range from 0

to over 2000 GtC.190

A large number of first wave (wave 0) ensemble members have a hugely diminished carbon cycle and carbon cycle stocks

compared to the standard member. This can be seen from examining fig. 3 compared to the values of the standard member

(black lines). In particular, most ensemble members have a very low tree fraction, and a higher bare soil fraction than the
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Figure 2. Two-dimensional projections of the input parameter values in normalised input space of the ensemble members that failed or had

zero carbon cycle.

standard member - It seems particularly easy to kill global forests when perturbing parameters. Vegetation and soil carbon

levels are also very low in many members.195

Often, perturbing parameters affects the overall level of the carbon cycle property, with its behaviour through time being

only a secondary source of variance at the end of the model run. That is, the carbon cycle level at the end of the run is more

closely related to its level at the beginning of the run than it is to its change over time. However, there is variability in the

behaviour of the carbon cycle over time, as can be seen in fig. 4. Here, we examine a selection of the most important carbon

cycle properties, and examine their change in behaviour over time, or anomaly from the starting value. We see for example,200

that changing the parameters can make soil and vegetation carbon increase or decrease over the simulated century and a half

of the model run.

2.3 Level 2 constraints

We can constrain both the historical behaviour of the model and the model parameter input space by comparison of the model

behaviour with the expectations of the model developers; with those expectations set by knowledge of observations and, when205

those are uncertain or unavailable, by first principles and model simulations from independent groups.
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Figure 3. Timeseries of absolute carbon cycle quantities in the JULES ensemble at increasingly strict levels of constraint. The initial ensemble

(wave 0) is shown in blue, and the second ensemble (wave 1) is shown in red. Ensemble members complying with the "level 2" constraints

are shown in yellow, and the ensemble member with "standard" parameter settings is shown in black.

A simple way to constrain the historical behaviour of the carbon cycle is by removing from the ensemble those model runs

(and their corresponding input parameter settings) that lead to seemingly implausible values of basic carbon cycle quantities

in the modern era. In this way, we are left with a subset of simulations and their corresponding input parameter sets that are

consistent with our understanding of the true carbon cycle.210

We choose a small number of broad constraints that the model must adhere to in order to be considered a valid and useful

simulation. The constraints are four basic carbon cycle properties, globally averaged over the final 20 years of the simulations,
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Figure 4. Timeseries of carbon cycle anomaly quantities in the JULES ensemble at increasingly strict levels of constraint. The initial

ensemble (wave 0) is shown in blue, and the second ensemble (wave 1) is shown in red. Ensemble members complying with the "level 2"

constraints are shown in yellow, and the ensemble member with "standard" parameter settings is shown in black.

near the beginning of the 21st century (1995 - 2014). They are net biome production (NBP, nbp_nlim_lnd_sum), net primary

production (NPP, npp_nlim_lnd_sum), and the land surface stocks of soil and vegetation carbon (cSoil or cSoil_lnd_sum and

cVeg or cVeg_lnd_sum respectively). We choose generous limits on what might be called valid, roughly in line with the range215

of the CMIP5 Earth system model multi-model ensemble of opportunity. These constraints are outlined in table 2. We designate

these limits the "level 2" constraints.
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Table 1. Increasing levels of constraint applied to simulator output during the experiment.

Level Constraint

Level 0 simulation completes

Level 1 F0< 0.9

Level 1a B_WL_IO > 0.15

Level 2 NPP, NBP, cVeg and cSoil

Table 2. Output limits to be met over the last two decades of simulation to match "Level 2" constraints.

Constraint Minimum Maximum

NBP 0 GtC/yr 10 GtC/yr

NPP 35 GtC/yr 80 GtC/yr

Soil Carbon stock 750 GtC 3000 GtC

Vegetation Carbon stock 300 GtC 800 GtC

Only a very small proportion of ensemble members (38 out of 499) conform to the basic "level 2" constraints expected of a

useful model by our modeller. We would like to have a larger number of ensemble members in this range, so that any emulator

we build has enough detail to be useful, and we can accurately map out viable input space. We wish to run more ensemble220

members within a valid input space, and so we formally history match to the level 2 space, in order to generate an input design

for a second wave of ensemble members. We describe this process in sect. 2.4.

2.4 History matching

History matching is a process whereby we formally compare the output of the model to observations of the real system, and

reject parts of input parameter space where the model is not expected to plausibly simulate reality. Crucially, history matching225

recognises uncertainty both in the observations of the system, and the model being used to simulate it. We use history matching

to constrain the input space of the model, in order to both learn about inputs, and to find an input space which could credibly

be used for future projections.

History matching has been used to great effect for constraining complex and computationally expensive simulators in a

number of fields, including oil reservoir modelling (Craig et al., 1996, 1997), galaxy formation (Vernon et al., 2010, 2014),230

infectious diseases (Andrianakis et al., 2015), and climate modelling (Williamson et al., 2013, 2015; McNeall et al., 2020).

History matching measures the statistical distance between an observation of a real-world process, and the predicted output

of the climate model at an input parameter setting. An input where the model output is deemed too far from the corresponding
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observation is considered “implausible”, and is ruled out. Remaining inputs are conditionally accepted as “Not Ruled Out Yet”

(NROY), recognising that further information about the model or observations might yet rule them as implausible.235

A vector representing the outputs of interest of the true land surface properties is denoted y. Observations of the system are

denoted z, and we assume that they are made with uncorrelated and independent errors ε such that

z = y+ ε (1)

The climate simulator is represented as an unknown deterministic function g(.) that runs at a vector of inputs x. As a

statistical convenience, we imagine a “best” set of inputs x∗ which minimises the model discrepancy, δ, which represents the240

structural difference between the model and reality. In practice this minimises the difference between climate model output

g(x) and available observations z. We can therefore relate observations to inputs with

z = g(x∗)+ δ+ ε. (2)

The statistical distance between the simulator, run at a particular set of inputs x, and reality is measured using implausibility

I:245

I2 = |z−E[g(x)]|2/(V ar[g(x)] +V ar[δ] +V ar[ε]). (3)

This equation recognises that there is uncertainty in the output of the simulator, and that this is estimated by an emulator. In

this study, we use a Gaussian process emulator, described in appendix C. Distance between the best estimate of the emulator

and the observations must be normalised by uncertainty in the emulator V ar[g(x)], in the observational error V ar[ε], and in

the estimate of model discrepancy V ar[δ].250

We reject any input as implausible where I > 3 after Pukelsheim’s three-sigma rule; that is, for any unimodal distribution,

95 % of the probability mass will be contained within 3 standard deviations of the mean (Pukelsheim, 1994).

2.5 Second wave (wave 1) design

We wish to generate design points for the second wave (wave 1) which we believe will generate output that is not implausible:

that is where I < 3 according to equation 3. As seen in the first wave (wave 0), randomly sampling from across a priori255

plausible input space generates a large number of ensemble members which do not look like reality. Our strategy to increase

the proportion which generate realistic output is to use the Gaussian process emulator to predict model output, generate a large

number of potential candidates for new design points, and history match to reject candidates we believe will lead to implausible

output.

After building a Gaussian process emulator for each of the four "modern value constraint outputs" (NBP, NPP, cSoil and260

cVeg), we generate a large number (50,000) samples uniformly from the a priori not implausible input space. We calculate I

for each of these samples, for each of the 4 outputs.
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To calculate I , we set our "observation" as the mid point of the tolerated range set by the modeller (see table 2), and assume

that the limits correspond to the 95% range of an implied distribution (i.e. the range of the limits is assumed to cover 4 standard

deviations of uncertainty in the assumed distribution). We assume that the expected model discrepancy is zero, and that the265

uncertainty on model discrepancy is also vanishingly small. In effect, this means that most of the uncertainty budget comes

from the emulator and the observations.

From the subset of samples where I < 3 (i.e. NROY) for all four outputs, we sample 500 potential design candidates and

calculate the minimum distance between them in input space. We do this 500 times, and choose the set with the largest minimum

distance. This is to ensure that no two points are too close together, which can cause numerical errors when re-building the270

Gaussian process emulators. This set is then used to run the second wave ensemble (wave 1).

2.6 Second wave results

A summary of the output of the second wave in the modern constraint variables can be seen in figure 5, compared to the same

output from the first wave, constrained to level 1a. There is no simple relationship which allows us to calculate the number of

ensemble members of the second wave that we expect to fall within the constraints. As history matching proceeds, input spaces275

can become very small, complex, and even discontinuous, resulting in difficulties in using standard Monte Carlo techniques to

sample from them (Williamson and Vernon, 2013), even with guidance from the history matching process. The majority of the

second wave ensemble members fall outside of our level 2 constraints, but we see that the proportion of ensemble members

in the second wave that match the constraints is much higher than in our initial ensemble. Of the 500 new members, we keep

back 100 for validation purposes in future studies. Of the remaining 400, 128 (32%) conform to all four constraints, compared280

with 27 out of 499 (7.4%) of the initial ensemble.

We find that that the majority of ensemble members in the second wave fall within any one individual constraint. It is

only when these constraints are combined that the majority are ruled out. A possible cause of the relatively small number of

ensemble members that fall into all the level 2 constraints is one or more poor emulators. We investigate this possibility in

appendix sect. D2, and conclude that this is likely the emulator for cVeg consistently predicting slightly low, particularly for285

the higher (and more realistic) values of cVeg. The average value of NBP, NPP, cSoil and cVeg has moved up in the second

wave. There are no ensemble members that fail to run in the second wave, nor are there any that have a "zero carbon" world,

but there are 10 that have numerical problems and unusual values in their timeseries, and these are excluded from our analysis.

We don’t know if these failures are caused by numerical problems at those settings, or occur stochastically, and this has an

impact on the validity of the emulator across parameter space. An examination of the pairs plot of the input space of these290

(supplementary material) suggests that certain parameter settings may cause these failures, but a sample of 10 is too small to

make conclusive statements. A further study, with a significantly larger or differently targeted ensemble would be needed to

settle this question.
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Figure 5. Histograms of ensemble output for the "constraint outputs", global mean NBP, NPP, cVeg and cSoil, in wave00 (blue) and wave01

(red). Shaded grey region indicates the constraints. Colours are semi-transparent, so darker purple indicates where the histograms overlap.

2.7 Induced constraints

In this section, we examine how imposing the "level 2" constraints in NPP, NBP, cVeg and CSoil automatically constrains both295

the input parameter space and the range of other outputs of the ensemble.

2.7.1 Constraints in model outputs

A summary of the induced constraints can be seen in fig. 6, calculated as the proportion of the range of the initial ensemble

covered by the level- 2-constrained ensemble, in the 20 year mean at the end of the timeseries. We see considerable induced con-

straints in output, particularly in soil respiration (26%), bare soil fraction anomaly (29.9%), soil respiration anomaly (40.5%),300

and c4 plant fraction (43.9%) all reducing the ensemble range to less tham 50% of the original range.
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Figure 6. Proportion of the range of all output spanned by the level 2-constrained ensemble. The outputs are: absolute values of the global

mean values for 1995 - 2014 (left) and anomaly of those values from the 1850-1870 values (right)

While a useful measure, this is somewhat prone to outliers in the initial ensemble, and so examining the timeseries in fig. 3

and 4 is recommended to give more context.

We see time series of the second wave ensemble in fig. 3 and anomaly timeseries in fig. 4. The raw wave 1 ensemble is

coloured red, and the subset of ensemble members that conform to the level 2 constraints is coloured yellow. We can see a305

considerable constraint (as expected) in the timeseries of the constraint variables (NPP, NBP, cSoil and cVeg). However, we

also see constraints of varying magnitude across all other outputs.

Ignoring outliers, significant induced constraints are also visible in leaf area index (LAI), crop harvest carbon flux (fHarvest)

tree fraction (treefrac) and others. Our hypothesis is that our cVeg constraint enforces a minimum level of tree cover and

therefore excludes high cover of other PFTs and bare soil. Such a constraint also seems to exclude low values of LAI. Our NPP310

constraint likely excludes low harvest flux and low values of soil respiration (RH).
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Present day constraints act to constrain historical anomalies in some of the variables, suggesting that uncertainty in some

future projections might also be reduced. We see, for example that constraining present day levels of the carbon cycle variables

induces a constraint (narrows the range of anomalies) in NPP trends, soil moisture trends and carbon flux due to harvest, but

not overall NBP trends, which are made up of other elements. The anomalies in cSoil are constrained slightly and the biggest315

historical losses of vegetation carbon (and corresponding increase in bare soil fraction) are ruled out. Many (but not all) of

the ensemble members that gain shrub fraction during the run are ruled out, particularly those that gain the most. Ensemble

members with high C4 grasses loss are ruled out. However, changes in vegetation carbon, leaf area index and land use change

are constrained less.

In all cases, both for absolute values and anomaly values, the "standard member" lies well within the level-2-constrained320

ensemble, indicating that the standard member is consistent with observations. However, the standard member is often not

central in the ensemble, suggesting that there may be sets of parameters which better represent the central tendency of our

ensemble.

Further details are seen in fig. 7, which plots two-dimensional projections of each pair of "modern value" model outputs,

plotted against each other. The initial ensemble is shown in red, with the ensemble members passing the "level 2" constraints325

(NROY) shown in blue. This plot gives a valuable insight into how outputs vary together in the ensemble, and how the con-

straints rule out large portions of output space, with the initial ensemble spread over a much wider output space than the

constrained ensemble. For example, many "corners" of output space are ruled out, including for example simultaneously low

values of soil respiration (rh_lnd_sum) and land use change carbon flux (fLuc_lnd_sum), or simultaneously low values of tree

fraction (treeFrac_lnd_mean) and shrub fraction (shrubFrac_lnd_mean).330

2.7.2 Constraining input space with an emulator

Rejecting implausible ensemble members based on their outputs gives a corresponding constraint on input space, and sets

limits for the parameter space where the model can be said to be behaving consistently with observations. Using the original

ensemble members produces a useful but rough constraint outline of this valid input space. With only 38 ensemble members

in the first wave, we were able to outline the valid 32 dimensional input space only very approximately.335

Using an emulator helps us visualise and quantify the constraint of input space when we constrain output space. After

training an emulator on the relationship between model inputs and outputs, we can use that emulator in place of the full

simulator JULES-ES-1.0, examining in more detail the inputs where the emulator predicts that the simulated outputs would

match our constraints. Because the emulator is orders of magnitude cheaper to evaluate, we can take many thousands of samples

from input space and predict whether the simulator would match the constraints. This means that diagrams that summarise the340

input spaces can show densities of input points with a much higher resolution. The trade-off is that the emulator does not

perfectly predict simulator output, and so visualisations of constrained input space are approximate. However, we judge that

the emulator is accurate enough to provide useful insights, given the error and validation studies in appendix D.
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Figure 7.

We fit a Gaussian process emulator to each of the modern constraint outputs using the 751 members of both ensemble waves

that have a non-zero carbon cycle. We take 105 samples uniformly from across the original normalised input space, and reject345

all emulated members where the corresponding mean predicted output does not conform to the level 2 constraints.

We calculate the proportion of space that conforms to the level 2 constraints as approximately the proportion of samples that

conform. A large number of samples assures that the sampling uncertainty is small. Approximately 12% of the initial input

space conforms to all four level 2 constraints, meaning that our constraints have rejected approximately 88% of initial input

space as being incompatible with modern carbon cycle observations.350

We plot two dimensional projections of the the density of accepted points in figure 8, colour coded by relative density. Blue

areas show regions where there is a high concentration of accepted points, and we would expect a high probability of a model

run in at this input location producing a valid carbon cycle. Red areas in the diagram show regions of input space where very

few ensemble members are accepted as being consistent with observations. A red point marks the position of the "standard"

set of parameters.355

17



0.0 0.8

0.
0

0.
8 1

0.0 0.8

●

2

0.0 0.8

●

●

3

0.0 0.8

●

●

●

4

0.0 0.8

●

●

●

●

5

0.0 0.8

●

●

●

●

●

6

0.0 0.8

●

●

●

●

●

●

7

0.0 0.8

●

●

●

●

●

●

●

8

0.0 0.8

●

●

●

●

●

●

●

●

9

0.0 0.8

●

●

●

●

●

●

●

●

●

10

0.0 0.8

●

●

●

●

●

●

●

●

●

●

11

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

12

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

13

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

14

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

15

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

16

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

17

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

18

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

19

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

21

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

22

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

23

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

24

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

25

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

26

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

27

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

28

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

29

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

30

0.0 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

31

0.0 0.8

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.
0

0.
8

●

0.0 0.8

0.
0

0.
832

0.0 0.2 0.4 0.6 0.8 1.0

Density of model runs matching the criteria

1 alpha_io
2 a_wl_io
3 bio_hum_cn
4 b_wl_io
5 dcatch_dlai_io
6 dqcrit_io
7 dz0v_dh_io
8 f0_io
9 fd_io
10 g_area_io
11 g_root_io
12 g_wood_io
13 gs_nvg_io
14 hw_sw_io
15 kaps_roth
16 knl_io
17 lai_max_io
18 lai_min_io
19 lma_io
20 n_inorg_turnover
21 nmass_io
22 nr_io
23 retran_l_io
24 retran_r_io
25 r_grow_io
26 rootd_ft_io
27 sigl_io
28 sorp
29 tleaf_of_io
30 tlow_io
31 tupp_io
32 l_vg_soil

Figure 8. Two-dimensional projections of the density of input parameter candidates that conform to level 2 constraints. Blue regions have

a higher density of points and red regions lower. Marginal histograms indicate the marginal density. Red points mark the standard input

parameter value.

The diagram shows that some combinations of inputs have markedly smaller regions with a high relative chance of an input

being accepted as consistent with observations. For example, only the region of simultaneously low f0_io and g_area_io has a

relatively high chance of being accepted as being consistent with observations. Simultaneously high values of these parameters

don’t tend to give acceptable model output, and this corner of input space can be ruled out.

Marginal histograms are plotted on the diagonal of the diagram, giving an indication of how many emulated ensemble360

members are accepted across their entire marginal range. For example, it is clear that low values of alpha_io are almost never

accepted. It is possible to find some combination of the other parameters which compensates for low values of alpha_io,

however, and so the absolute marginal range of alpha_io is not reduced. This does not mean that the input space is not

constrained, only that we have constrained the joint space of parameters, but not the marginal space.
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It is worth noting that the default parameter (red dot) appears mainly in the blue regions of the diagram, and itself produces365

output which is consistent with constraints. The fact that it is near the border of "acceptable" input parameter space for some

inputs gives the modeller an indication of which direction the default parameter could be moved in, while keeping the model

output consistent with observations. For example, the parameter alpha_io could be safely increased, but decreasing it’s value

would lower the chance of acceptable model output.

3 Sensitivity Analysis370

Global sensitivity analysis calculates the impact of changes in input parameters on simulator outputs, when inputs are perturbed

across the entire valid input space. This is in contrast to a local sensitivity analysis, which calculates the impacts of small

deviations from a set of default values. The two types of analysis are useful in different contexts: in our case, we have large

uncertainties relating to a number of inputs, model processes and observations, and so a global sensitivity analysis as a form of

"screening" of important input parameters is appropriate.375

We use a set of Gaussian process emulators, fit to each of the JULES-ES-1.0 land surface summary outputs to perform two

types of global sensitivity analysis. We use the set of Gaussian process emulators fit to each of the outputs used for our "level 2"

constraint for a third kind of sensitivity analysis. Each type of sensitivity analysis tells us different things about the relationship

between the inputs and outputs of JULES-ES-1.0. At the end of this section, we summarise the results of all three types of

sensitivity analysis in order to suggest which inputs might be prioritised in any future experiment.380

Our aim is to give the modeller quantitative information on which inputs affect which outputs, to direct effort for reducing

model biases and errors, and to indicate regions of parameter space where the model might perform better. We might identify

parameters which have a direct impact on model output which does not conform to observations, identify groups of parameters

withing a poorly performing process, or help modellers sample uncertainty in other model applications..

3.1 Global one-at-a-time Sensitivity385

A one-at-a-time (OAAT) sensitivity gives a simple and easy-to-interpret measure of the impact of each input on a variety of

outputs, but does not include the effects of any interactions between inputs (for example, a non-linear change in model outputs

as two or more inputs vary together).

An OAAT analysis can be completed with a relatively small number of model runs - for example, a low, middle and high

run for each parameter in our 32 input dimension example would take fewer than 100 runs. However, using an emulator allows390

us to better characterise the response of the model across the entire range of each parameter, which would take many more

dedicated runs if completed using just the model.

We fit a Gaussian process emulator to each global summary output, both as a “modern value” (mean of 1995 - 2014), and as

an “anomaly" (change since 1850-1869). We use the 751 members from both wave00 and wave01 that conform to the level1a

constraints, being as wide an input space as possible without significant model failure.395
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We sample from the input space in a one-at-a-time fashion: each input is sampled uniformly across it’s input space, with all

other inputs held at standard values (note, these are often not the central value when normalized to 0-1 range). The variance of

the mean emulated output as each input is varied is then used as a measure of the sensitivity of that output to the corresponding

input. Variance is used as opposed to magnitude of change, as we expect some model outputs not to rise or fall monotonically

as an input varies.400

Different model outputs are clearly sensitive to different model inputs, and so we also seek ways of summarising sensitivity

across model outputs. One method is simply to find the mean effect across model outputs. Sensitivities are normalised so that

they lie in a [0−1] range for each output. Summary measures for each input are then averaged across all outputs, and the plotted

inputs are ranked by their average influence across all outputs. Individual sensitivities and summaries can be seen in fig. 9 for

the modern value, and in fig. 10 for the change over the historic period of the ensemble. The right-hand side of each diagram405

shows the average of the sensitivity measures, by which the input parameters are ranked in their influence. We see that for both

modern value and anomaly, by this measure only half or fewer of the inputs have discernible impact on global outputs.

3.2 Sensitivity of constraint outputs

We add detail to our one-at-at-time sensitivity of important outputs - those that we use for constraining JULES-ES-1.0 in figure

11. We plot the emulated mean of the each of four outputs - NBP, NPP, vegetation carbon and soil carbon, as each parameter is410

increased from its minimum to maximum range. Uncertainty bounds from the emulator predictions are not plotted, in order to

more clearly see the estimated main effect of each parameter, but uncertainty estimates for the emulators can be see in appendix

D1.1.

For each input, we can see the default value as a vertical dashed line. This plot indicates how deficiencies in the model

output might be corrected by altering individual parameters. For example, the fact that many ensemble members have low415

vegetation carbon might be countered by increasing alpha_io or nmass_io, or reducing g_area_io or tleaf_io. Of course,

these alterations will not be without impact on other model outputs, changes in which might be countered elsewhere, or must

be weighted against improvements in a particular output.

3.3 FAST sensitivity analysis

We use Fourier Amplitiude Sensitivity Test (FAST) as a further measure of global sensitivity of the model outputs to its inputs.420

The test is administered as the FAST99 algorithm of Saltelli et al. (1999), through the R package Sensitivity (Pujol et al., 2015).

Again, this algorithm requires a large number of model runs, and so we use emulated model outputs in place of dedicated model

runs, as previously used in McNeall et al. (2020, 2016); Carslaw et al. (2013). This comes at the cost of a risk of inaccuracy, as

the emulated model outputs won’t perfectly reproduce the true model runs at the corresponding inputs. However, the emulator

is shown to work adequately for the model outputs in appendix D.425

A FAST gives both first order and interaction effects: we sum these together to calculate a total sensitivity index, to make

showing the results across a large number of outputs simpler. Individual results for FAST can be seen in appendix F, and the

summarised results are used in our analysis in sect. 3.5
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Figure 9. One-at-a-time sensitivity summary for global summary “modern value" output. The left hand plot shows the relationship between

each individual input and output. The right hand plot shows the average of the sensitivity measures, by which the inputs are ranked.

3.4 Monte Carlo Filtering

Monte Carlo filtering (MCF) is a type of sensitivity analysis that integrates well with our aim of constraining model behaviour430

given a large ensemble using ensemble member rejection, or history matching. The idea of MCF is to identify inputs that

have an influence on whether the behaviour of the model falls within or outside acceptable bounds. This is done by splitting

samples of model behaviour into those that do or don’t meet some constraint, and then summarising the difference between the

cumulative distributions of the corresponding input variables. The larger the difference between the cumulative distributions,

the more influence the parameter has on whether the model passes the constraint.435
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Figure 10. One-at-a-time sensitivity summary for global summary “anomaly" (change since 1850-1870) output. The left hand plot shows

the relationship between each individual input and output. The right hand plot shows the average of the sensitivity measures, by which the

inputs are ranked.

A description of MCF and its uses can be found in Pianosi et al. (2016). McNeall et al. (2020) uses MCF to estimate

parameter sensitivity in the land surface model element of a climate model of intermediate complexity.

We use a Gaussian process emulator to allow a much larger set of samples from the input space, in order to make the MCF

process more efficient, at the cost of inaccuracy if the emulator is poor. We train a Gaussian Process emulator on each of the

four "constraint outputs", using the 751 ensemble members from both wave00 and wave01 that pass the level1a constraints.440

We draw a large sample of 10000 parameter combinations, uniformly from the level1a input parameter distributions. We use

the emulator to estimate the true model output for each of the four "constraining variables", NPP, NBP, cVeg and cSoil at these
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Figure 11. One-at-a-time sensitivity summary for global summary of the “modern value" of the constraint variables (nbp, npp, cVeg, cSoil)

parameter values. We perform a two-sample KS test on the cumulative distributions of those input samples where the mean of

the emulator predicts that the model would be within or outside of the modeller’s level 2 constraints. We use this KS statistic

as an indicator of the sensitivity of the model output to each input. We summarise the sensitivity in fig. 12.445

3.5 Screening input variables by ranking

Which parameters would we include in a subset of parameters for a new ensemble? One way to choose might be to exclude

those parameters which are inactive - those that have a small or no effect on any model output of interest, under any of our

tested measures of sensitivity. For this ensemble we screen out these “inactive inputs" by ranking the inputs using each of the

sensitivity measures. We can test OAT and FAST SA for both “modern value” and “anomaly” for the entire set of inputs. We450

can test Monte Carlo Filtering for the set of “constraint outputs" that we measure against real-world observations (or modellers

expectations).
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Figure 12. Monte Carlo filter sensitivity summary for global summary of the “modern value" of the constraint variables (nbp, npp, cVeg,

cSoil). The left hand plot shows the relationship between each individual input and output. The right hand plot shows the average of the

sensitivity measures, by which the inputs are ranked.

A conservative strategy excludes only those inputs that are consistently ranked lowest, that is those with the lowest miniu-

mum ranking (or those that have highest value of the rank). While we might choose a number of strategies for weighting of

outputs to prioritise input sensitivity, a good start might be to focus on the constraint outputs, later moving towards other output455
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comparisons. We see for example in table 3, that 17 of the parameters never appear in the top 10 most important inputs, for any

measure. Depending on our criteria for any new design, we would preferentially disregard inputs that never achieved a high

rank.

Using different measures of sensitivity makes our decisions more robust. However, a potential problem with the approach is

that all the sensitivity analyses share a Gaussian process emulator, and so will be sensitive to any errors or biases in that shared460

emulator. It is crucial that model developers are satisfied with the performance of the emulator across the relevant parts of input

parameter space, and its associated outputs.

4 Discussion

In this section, we discuss the results of the constraint process and the sensitivity analysis, and what they tell us about the

model.465

4.1 Lessons learned

As an exploratory and no-regrets analysis, a key outcome of this experiment is to identify the lessons learned from it, if we

would do things differently if we did the experiment again, and what we might take from it to future experiments.

First, would we use the "top-down" or "data-led" approach - where we perturb all inputs simultaneously, across wide param-

eter ranges, and constrain with global mean output - again? If we did, could it be improved? This approach provides a rapid470

and efficient first look at how model parameters influence global output. It is useful for an initial screening parameters, to see

which inputs broadly do or do not effect our outputs of interest. It reduces the chances that there may be some unidentified

parts of input space where the model would perform better - perhaps we have some discrepancy that can easily be resolved

through tuning. The top-down approach might help us set parameter boundaries in situations where there is not strong prior

knowledge about what parameters should be.475

However, the approach has its limitations and inefficiencies. First, as we see in sect. 2.2, a lot of runs fail to complete or

have highly unrealistic output (e.g. zero carbon cycle) in the initial ensemble. Only a very small number (less than 10%) came

within the generously wide observational constraints on output. This was perhaps inevitable, given the approach of halving and

doubling the most unknown inputs. Further, the halving and doubling approach leaves the standard member far from the centre

of the ensemble, which can perhaps lead to an overemphasis on parts of the input parameter space that were, in hindsight,480

unlikely to produce good output.

A more careful initial expert elicitation of input parameters might help to target more realistic uncertainty bounds for these

parameters, although at a cost of more "human time" spent on the elicitation process, and a higher chance of missing good (but

a priori unlikely) parts of parameter space. While these kind of experiments can effectively trade computation and analysis

time for setup time, the optimal balance of these is often unclear until after the experiment.485

With so many free parameters, there are often ways to offset any model discrepancy that can be attributed to a certain

parameter, by adjusting another parameter. In this case, it becomes hard to rule out the marginal limits of a parameter when

25



OAT_modern_value FAST_modern_value OAT_anomaly FAST_anomaly MCF_modern_value min_rank

alpha_io 1 1 2 1 1 1

lai_max_io 3 5 1 3 7 1

b_wl_io 2 2 5 2 6 2

fd_io 5 4 3 5 2 2

g_area_io 4 6 4 6 3 3

n_inorg_turnover 7 3 8 4 4 3

r_grow_io 9 8 12 7 5 5

lma_io 6 7 9 12 20 6

tleaf_of_io 8 11 6 16 8 6

a_wl_io 10 9 7 9 13 7

bio_hum_cn 29 26 14 8 18 8

hw_sw_io 17 15 19 15 9 9

kaps_roth 14 13 20 14 10 10

lai_min_io 15 14 10 11 12 10

nmass_io 11 10 13 10 11 10

tupp_io 16 18 11 13 16 11

dqcrit_io 12 12 18 17 19 12

rootd_ft_io 13 16 16 20 15 13

nr_io 20 21 23 28 14 14

g_wood_io 22 22 15 19 21 15

f0_io 18 17 17 18 26 17

l_vg_soil 23 25 25 32 17 17

g_root_io 19 19 22 22 24 19

retran_l_io 26 20 24 24 22 20

dz0v_dh_io 21 24 21 21 25 21

gs_nvg_io 24 23 29 23 27 23

knl_io 27 28 31 30 23 23

sorp 25 31 27 31 28 25

tlow_io 30 29 30 25 30 25

retran_r_io 28 27 26 27 29 26

sigl_io 31 32 32 26 31 26

dcatch_dlai_io 32 30 28 29 32 28
Table 3. Summary sensitivity ranks for all carbon cycle outputs, modern value and anomaly, for three different types of sensitivity analysis.

there is always another parameter whose impact can offset it. This means it is difficult to advise modellers on hard constraints

for their input parameters. Many constraints will be joint, that is, they will depend on the plausible setting of other parameters.
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We often see with this kind of setup, a constraint that has ruled out the large majority (88%) of input space as inconsistent with490

the observations, yet has not completely ruled out any marginal input space for individual parameters.

How could this problem be addressed? One way of shrinking down marginal space might be to add more data comparisons

- increasing the chance that a parameter will be deemed implausible in a history matching exercise, for example. A problem

with adding more data until much of input space is ruled out however, is that the chance of an unidentified but significant

model discrepancy goes up, particularly if some parts of the climate model are deemed more important, and may have had495

more development attention than others. In this scenario, a significant model error could lead to analysts unjustifiably ruling

out parameter space that should be retained.

A counter to this problem might be found in a sequential approach. Perhaps by targeting particular outputs (and inputs) that

are deemed more important in order to get right, before proceeding to data-observation comparisons where relationships are

more uncertain. The later data-observation comparisons would carry less weight, and a modelling judgement could be made500

as to the cut-off point where the analysis continued to add value. Our sensitivity analysis might also help here - narrowing

down the most important inputs to perturb in a repeat (or continuation) of the experiment could significantly simplify the input

parameter space under investigation.

Another strategy might be a simple "vote" system of constraints, whereby an input is excluded if a number of model outputs

fail to meet expectations at a particular input, or a more involved history matching process. A number of multivariate approaches505

to history matching have been taken in the past, usually either using a maximum value of implausibility, or using a mean squared

error approach to calculate an overall implausibility of an input (see eg Vernon et al. (2010)).

5 Conclusions and further work

In this study we were able to produce a perturbed parameter ensemble of land surface simulations and associated parameter

sets using JULES-ES-1.0, consistent with our understanding and observations of the true behaviour of the land surface, and510

considerably more tightly constrained than an initial ensemble.

An initial design, purposely chosen to produce a wide range of ensemble behaviour, generated only a very small number of

members (37/499) that would conform to a set of four basic constraints on global carbon cycle and land surface properties. In

this "first wave" (wave 0) of model simulations, there were identifiable marginal limits for parameters b_wl_io and f0_io that

caused the simulation to fail, or to produce zero-carbon-cycle climates. These limits were quite near the initial design limits515

and removing outliers therefore didn’t shrink input space much.

We were able to train Gaussian process emulators of global mean summaries of many land surface properties, with mean

absolute errors all less than 10% of the span of the ensemble. After using the emulators to predict outputs that would fall within

reasonable constraints in the four key outputs, a much higher proportion (128 of 400 members) of a second wave of simulations

complied with the constraints. Emulator performance improved for most outputs after adding data from the second wave to the520

training set - particularly for those members that passed the level 2 constraints. This means that analyses will be more accurate

and have less uncertainty than they would have when training with only the initial ensemble. Constraining input space to level
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2, using the four basic observational constraints and the emulator removed 88% of initial input parameter space, but marginal

ranges were hard to constrain. There were "induced constraints" of varying degrees when the ensemble output was constrained

using the four carbon cycle observations.525

We used three types of global sensitivity analysis to identify the most (and least) important parameters. A number of inputs

which have very little impact on global output were identified, and would be recommended to be excluded from further

analyses in order to simplify the input space and improve emulator performance. Detailed information on the relationship

between individual parameters and global mean outputs will be useful to modellers identifying ways to improve the simulator.

A focus on the key uncertain parameters will be useful for modellers, to inform future improvements of JULES, ahead of the530

next generation Earth system models.

The potential of observations to further constrain input parameter space could and should be explored. Both more waves

of simulations - further improving emulators and reducing uncertainty - and new observations of unconstrained outputs could

be tried. Care must be taken to ensure that adding more observations doesn’t unduly increase the chances of including an

unidentified simulator discrepancy.535

We might identify parts of parameter space where the model does better at reproducing observations, rather than simply

removing parts of parameter space where the model does poorly. Regions that produce more realistic carbon vegetation (cVeg)

for example, or airborne fraction could be targeted in an optimisation or calibration routine. A simple analysis could illustrate

parts of input parameter space that do better than the standard ensemble member.

Finally, we could use sensitivity analysis and uncertainty quantification to quantify the impact that observations of the land540

surface might have on the uncertainty of future projections, and the parameters by which that uncertainty is manifest. A useful

extension to this study would identify which observations would best constrain future projections of the carbon cycle, and by

how much.

In summary, we have successfully constrained the input space and corresponding output space for simulating the carbon

cycle with the JULES-ES model. As part of the process we gained lots of valuable insight into threshold behaviour associated545

with certain parameters and the marginal impact of parameter settings. This information is extremely useful in arriving at a

single parameter set for the full complexity Earth System Model for which only a single parameter set is realisable. Ultimately,

the analyses used here could be extended, and applied to future experiments, to better understand and constrain terrestrial

carbon cycle feedbacks - a key uncertainty in setting carbon budgets necessary to meet the Paris Climate goals.

Appendix A: Parameters550

A table of input parameters and their descriptions can be seen in table A1.

Appendix B: Outputs

A table of land surface and carbon cycle outputs of JULES-ES-1.0 and their descriptions can be seen in table B1.
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Table A1. Uncertain input parameters in JULES-ES-1p0

Parameter Description

alpha_io Quantum efficiency (mol CO2 per mol PAR photons).

lai_max_io Maximum leaf area index (LAI).

b_wl_io Allometric exponent relating the target woody biomass to the leaf area index.

fd_io Scale factor for dark respiration.

g_area_io Disturbance rate (/360days).

n_inorg_turnover Parameter controlling the lifetime of the inorganic N pool.

r_grow_io Growth respiration fraction.

lma_io Leaf mass per unit area (kgLeaf m−2).

a_wl_io Allometric coefficient relating the target woody biomass to the leaf area index (kgCm−2).

bio_hum_cn Parameter controlling ratio of C to N for BIO and HUM pools.

nmass_io Top leaf nitrogen content per unit mass (kgN kgLeaf−1).

kaps_roth Specific soil respiration rate for the RothC submodel for each soil carbon pool.

hw_sw_io Ratio of N stem to N heartwood (kgN/kgN) from the TRY database.

tleaf_of_io Temperature below which leaves are dropped (K).

dqcrit_io Critical humidity deficit (kg H2O per kg air).

lai_min_io Minimum leaf area index (LAI).

tupp_io Upper temperature for photosynthesis (◦C).

retran_l_io Fraction of retranslocated leaf N.

rootd_ft_io Parameter determining the root depth (m).

l_vg_soil Switch for van Genuchten soil hydraulic model.

dz0v_dh_io Rate of change of vegetation roughness length for momentum with height.

f0_io CI / CA for DQ = 0.

sigl_io Specific density of leaf carbon (kgCm−2 leaf).

g_root_io Turnover rate for root biomass (/360days).

gs_nvg_io Surface conductance (m s−1).

retran_r_io Fraction of retranslocated root N.

g_wood_io Turnover rate for woody biomass (/360days).

nr_io Root nitrogen concentration (kgN/kgC).

knl_io Parameter for decay of nitrogen through the canopy, as a function of LAI.

sorp Parameter controlling the leaching of inorganic N through the soil profile.

dcatch_dlai_io Rate of change of canopy capacity with LAI (kgm−2).

tlow_io Lower temperature for photosynthesis (◦C).
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Table B1. Uncertain input parameters in JULES-ES-1p0

Output Description Units

npp_nlim_lnd_sum Net Primary Production on land as carbon mass Flux kg m2 s−1

nbp_lnd_sum Carbon mass flux out of atmosphere due to net biospheric production on land kg m2 s−1

cSoil_lnd_sum Carbon mass in model soil pool kg m2

cVeg_lnd_sum Carbon mass in vegetation kg m2

lai_lnd_mean Leaf area index N/A

rh_lnd_sum Total Heterotrophic respiration on land as carbon mass flux kg m2 s−1

fLuc_lnd_sum Net carbon mass flux into atmosphere due to land-use change kg m2 s−1

fHarvest_lnd_sum Carbon mass flux into atmosphere due to crop harvesting kg m2 s−1

treeFrac_lnd_mean Fractional cover of each surface type %

baresoilFrac_lnd_mean Bare soil percentage area coverage %

shrubFrac_lnd_mean Percentage cover by shrub %

c3PftFrac_lnd_mean Percentage cover by C3 plant functional type %

c4PftFrac_lnd_mean Percentage cover by C4 plant functional type %

Appendix C: The emulator

A summary univariate output of the simulator, land surface model JULES-ES-1.0 y is treated as an uncertain function f() of555

the input vector x, so that y = f(x).

We produce a predictive distribution for y at any simulator input vector, conditional on the points already run, or the design

(Y,X). We use a Kriging function, or a Gaussian process regression emulator, from the package DiceKriging (Roustant et al.,

2012) in the statistical programming environment R (R Core Team, 2016).

The GP regression is specified hierarchically with a separate mean and covariance function. For prediction purposes, we560

assume that the trend is a linear function of the inputs x, and adjust with a GP.

f(x) = h(x)Tβ+Z(x)

Where h(x)Tβ is a mean function, and the residual process Z is a zero mean stationary GP. The covariance kernel c of Z

Cov(Z,Z ′) = σ2c(x,x′)

can be specified in a number of different ways: we use the default option of a Matern v = 5/2 function so that

c(x,x′) = (1+

√
5|x−x′|
θ

+
5|x−x′|2

3θ2
)exp(−

√
5|x−x′|
θ

)
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where θ describes the characteristic length scales (or roughness parameters): a measure of how quickly information about

the function is lost moving away from a design point, in any dimension.565

These, along with other hyperparameters are estimated via maximum likelihood estimation from the training set (Y,X), so

the approach is not fully Bayesian. We use Universal Kriging, with no ‘nugget’ term, meaning that there is zero uncertainty on

model outputs in the training set, and the mean prediction is forced through those points.

Details of the Universal kriging process used can be found in sect. 2.1, the kernel in sect. 2.3, and examples of trend and

hyperparameter estimation in sect. 3 of Roustant et al. (2012).570

Appendix D: How good is the emulator?

We assess the quality of the Gaussian Process emulator, for a number of outputs that we use for constraining the parameters of

JULES.

Although there are a large number of possible metrics for validating emulators (see e.g. Al-Taweel (2018)), we prefer those

that give the modeller information about the performance of the emulator in terms of the output of the model, and the context575

of the entire ensemble. As such, we wish to relate the performance directly to the model output, and to metrics that make sense

and are important to the modeller. Although the uncertainty estimate of a particular the emulator prediction is important, it

takes a secondary role to the performance of the posterior mean prediction in our work.

D1 Leave-one-out metrics

We use a leave-one-out prediction metric to initially assess the quality of our Gaussian Process emulators. For each of the580

outputs of interest, each of the 361 ensemble members which form the "level 1a" constrained ensemble is removed in turn. A

Gaussian Process emulator is trained in its absence and then the withheld ensemble member is predicted. We repeat the process

while adding the 390 successful members of the second wave ("wave 1"), in order to assess the value of adding extra training

points for the emulator.

Figures D1 and D2 show a summary plots of the actual value against the predicted value (the mean of the Gaussian process),585

and associated uncertainty (+- 2 standard deviations), for each output, for both "modern values", and "anomaly", or change in

the output over the duration of the simulation. For each output, we include a summary of the performance across the ensemble

in the form of the "proportional mean absolute error (PMAE)", which we define as the mean absolute error of prediction, when

that error is expressed as a fraction of the range of the ensemble. The PMAE is calculated when all 751 members are used to

train each GP emulator.590

For "modern value", We find that the PMAE ranges from between around 3% and around 8% of the range of the ensem-

ble, with the emulator for fLuc_lnd_sum performing best (PMAE=3.05%), and shrubfrac_lnd_sum performing worst (PMAE

8.25%).

For "anomaly", we find a similar range, with the emulator for fLuc_lnd_sum anomaly scoring a PMAE of 3.07% and the

poorest performance, of c4PftFrac_lnd_mean anomaly scoring a PMAE of 6.59%. ( fig. D2)595
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We see the value of including the extra ensemble members in the training set in fig D3. For both modern value and anomaly

outputs, we plot PMAE using the emulators trained with the 361 wave00 level1a ensemble with those trained including the

former plus the 390 wave01 ensemble. Points below the diagonal line show an improvement in the performance of the emulator

for that output. Not all emulators show an increase in performance using this metric, but the vast majority do.
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Figure D1. Leave-one-out summaries of emulator fits for modern value carbon cycle quantities. First wave (wave00) is blue and the second

wave (wave 1) is red.

D1.1 Assessing emulator variance600

To assess emulator variance, we produced rank histograms (Hamill, 2001) for the emulators of the 13 "modern value" outputs,

both for absolute (fig. D4), and for anomaly (D5) outputs. Leave-one-out tests were conducted for the 751 ensemble members

of wave 0 (level1a) and wave 1 combined. For each ensemble member, 1000 predictions were simulated from the prediction

distribution, ranked, and the rank of the observation was compared. A well calibrated prediction produces a uniform distribution
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Figure D2. Leave-one-out summaries of emulator fits for modern value anomaly carbon cycle quantities. First wave (wave00) is blue and

the second wave (wave 1) is red.

of the ranks across ensemble members. A “domed” shape in the histogram indicates that uncertainty is overestimated (i.e. we605

do better in prediction than we think), and a “U” shape indicates that uncertainty is underestimated.

We see that most emulators have well-calibrated uncertainty estimates, without obvious deviations from uniform histograms.

Exceptions are perhaps apparent in outputs fLuc_lnd_sum, fHarvest_lnd_sum and cVeg_lnd_sum, which show a distribution

weighted near the centre of the histogram. In all of these cases, this indicates a mild overestimate of uncertainty, which is less

concerning than an underestimate of uncertainty. In this case we can be more confident of the behaviour of the mean of the610

emulator prediction than our uncertainty estimate would indicate.

D2 Predicting members that satisfy level 2 constraints

A useful measure of the practical utility of our emulator is the accuracy with which we can predict if a given input config-

uration will produce model output that conforms to a set of constraints. Here, we focus on the accuracy of our emulator for

33



●

●

●

●

●

●

●

●

●

●

●

● ●

3 4 5 6 7 8 9

3

4

5

6

7

8

9

Modern Value

Wave00 trained PMAE (%)

W
av

e0
0 

+
 W

av
e0

1 
tr

ai
ne

d 
P

M
A

E
 (

%
)

npp_nlim_lnd_sum

nbp_lnd_sum

cSoil_lnd_sum

cVeg_lnd_sum

lai_lnd_mean

rh_lnd_sum

fLuc_lnd_sum

fHarvest_lnd_sum

treeFrac_lnd_mean

baresoilFrac_lnd_mean

shrubFrac_lnd_mean

c3PftFrac_lnd_meanc4PftFrac_lnd_mean

●● ●

●

●

●

●

●

●

●●
●

●

3 4 5 6 7 8 9

3

4

5

6

7

8

9

Modern Value Anomaly

Wave00 trained PMAE (%)

W
av

e0
0 

+
 W

av
e0

1 
tr

ai
ne

d 
P

M
A

E
 (

%
)

npp_nlim_lnd_sumnbp_lnd_sum cSoil_lnd_sum

cVeg_lnd_sum

lai_lnd_mean

rh_lnd_sum

fLuc_lnd_sum

fHarvest_lnd_sum

treeFrac_lnd_mean

baresoilFrac_lnd_meanshrubFrac_lnd_mean
c3PftFrac_lnd_mean

c4PftFrac_lnd_mean

Figure D3. Proportional mean absolute error (PMAE) summaries for selected JULES modern value (top) and anomaly (bottom) outputs.

Horizontal axes show PMAE using only wave00 level 1a constrained outputs, while vertical axes show the same summary using wave00 and

wave01 outputs. Outputs below the diagonal line show an overall improvement in emulator performance.

predicting ensemble members that conform to our reasonable "level2" constraints. These ensemble members produce output615

that is reasonable in a very broad way - roughly consistent with a functioning carbon cycle, our observations of the world, and

the CMIP6 ensemble, but not directed at a particular set of observations.

We perform a Leave-one-out cross validation on the outputs that we use for the level2 constraint, namely the modern-day

value of the global sum of NBP, NPP, soil carbon and vegetation carbon. We show the results of the leave-one-out posterior

mean predictions in fig. D6. If we treat the posterior mean predictions as model runs, and constrain them using the same620

thresholds as the level 2 results, we can convert them into a binary forecast for whether they are "in" or "out" of the constraint.

While this loses some information, it is a useful summary. We predict 24 ensemble members correctly as "in" the constraints,

and 309 correctly as "out". We predict 14 incorrectly as "out" when they should be "in" (false negative) and 14 incorrectly as "in"

when they should be "out". A contingency table summarising these results is presented in D1. We use the R verification package
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Figure D4. Rank histogram to test the emulator uncertainty estimate for 13 "modern value" outputs, covering the absolute values of major

land surface and carbon cycle outputs of JULES-ES-1.0. A uniform distribution indicates a well-calibrated uncertainty estimate. A "domed"

shape indicates overestimated uncertainties, while a "U" shape indicates underestimated uncertainties.

Laboratory (2015) to calculate a number of skill scores, including the Equitable Threat Score (ETS), which we calculate at625

0.34, and the Heidike Skill Score (HSS), which we calculate at 0.51. These scores (as well as the raw numbers) indicate that

we have a predictive system, which could well be improved.

Table D1. Confusion matrix for leave-one-out emulator predictions of whether the true model outputs conform to the level 2 output con-

straints. Correct predictions are on the diagonal of the table.

Model

Out In

Emulator Out 309 14

In 14 24

Studying fig. D6, we see that a possible culprit for many of the constraint prediction errors is the relatively poor quality of the

emulator for vegetation carbon (cVeg). That emulator predicts a relatively large number of ensemble members to have a lower
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Figure D5. Rank histogram to test the emulator uncertainty estimate for 13 "modern value" outputs, covering the anomaly values of major

land surface and carbon cycle outputs of JULES-ES-1.0. A uniform distribution indicates a well-calibrated uncertainty estimate. A "domed"

shape indicates overestimated uncertainties, while a "U" shape indicates underestimated uncertainties.

vegetation carbon that we see in reality (and many close to zero), when the true vegetation is high. This leads to a number of630

"false negatives". Conversely, when the vegetation carbon is relatively low, there are a small number over-predicted, leading to

false positives. This is not a consistent bias, so we cannot simply add a discrepancy value all across input space, more subtlety

is required in order to improve the emulator and predictions.

We try a number of strategies to improve the emulator, including transformation of the cVeg output by taking logs, or square

root. These can considerably improve the emulator for low values of the output. Unfortunately, we don’t believe that the very635

low values are realisitic, and are therefore not very informative about higher values. Indeed, transforming the output has the

impact of making the leave-one-out scores for the ensemble members that conform to level 2 constraints worse.

We try a number of different covariance types and optimisation methods within the emulator fitting process for cVeg, but

none improves the performance for level 2 conforming ensemble members.

It appears that the initial design for the experiment was set too wide, with many ensemble members having unrealistically640

low carbon vegetation values. This meant that this emulator is difficult to build, output isn’t smooth, and the constraint may well

benefit from an iteration of the history matching, getting the initial ranges more close to being correct, and having smoother

output.
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Figure D6. Leave-one-out predictions of the status of the initial ensemble members, either "in" or "out" of the level-2 constraints in NBP,

NPP, cVeg and cSoil.
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Appendix E: Impact of uncertainty on sensitivity analysis

We use visualisation to assess the impact of emulator uncertainty on one-at-a-time sensitivity analysis in fig. E1 (for "modern645

value" and fig. E2 for "modern value anomaly" outputs of JULES-ES-1.0.

Each row in the matrix of plots is an output, and each column is an input, so each individual plot shows an emulated estimate

of how an output varies across an input, when each input is varied independently. The emulator mean prediction is shown

as a black line, and the emulator uncertainty is shown as a grey shaded area. Each row is normalised to the largest range

of variability, so the reader can see the impact of each input in for each particular output. This plot allows the reader to see650

the magnitude of the variability relative to the emulator uncertainty. For some outputs (for example treefrac_lnd_sum), the

variability is much larger than the uncertainty. For some (for example cV eg_lnd_sum), the uncertainty is relatively larger.

However, it is possible in all outputs to identify the input parameters with the largest impact on outputs.
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Figure E1. Impact of emulator uncertainty on sensitivity analysis for "modern value" outputs.
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Figure E2. Impact of emulator uncertainty on sensitivity analysis for "modern value anomaly" outputs.

Appendix F: FAST sensitivity analysis details

Summaries of FAST sensitivity analysis for both "modern value" and "anomaly" outputs of JULES-ES-1.0 can be found in fig.655

F1 and fig. F2 respectively.
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Figure F1. FAST sensitivity analysis summary for modern value outputs.
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Figure F2. FAST sensitivity analysis summary for anomaly outputs.
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