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Abstract. Atmospheric fronts are a widely used conceptual model in meteorology, most encountered as two-dimensional (2-

D) front lines on surface analysis charts. The three-dimensional (3-D) dynamical structure of fronts has been studied in the 

literature by means of “standard” 2-D maps and cross-sections and is commonly sketched in 3-D illustrations of idealized 

weather systems in atmospheric science textbooks. However, only recently the feasibility of objective detection and visual 

analysis of 3-D frontal structures and their dynamics within numerical weather prediction (NWP) data has been proposed, and 15 

such approaches are not yet widely known in the atmospheric science community. In this article, we investigate the benefit of 

objective 3-D front detection for case studies of extratropical cyclones and for comparison of frontal structures between 

different NWP models. We build on a recent gradient-based detection approach, combined with modern 3-D interactive visual 

analysis techniques, and adapt it to handle data from state-of-the-art NWP models including those run at convection-permitting 

kilometer-scale resolution. The parameters of the detection method (including data smoothing and threshold parameters) are 20 

evaluated to yield physically meaningful structures. We illustrate the benefit of the method by presenting two case studies of 

frontal dynamics within mid-latitude cyclones. Examples include joint interactive visual analysis of 3-D fronts and warm 

conveyor belt (WCB) trajectories, and identification of the 3-D frontal structures characterising the different stages of a 

Shapiro-Keyser cyclogenesis event. The 3-D frontal structures show agreement with 2-D fronts from surface analysis charts 

and augment the surface charts by providing additional pertinent information in the vertical dimension. A second application 25 

illustrates the relation between convection and 3-D cold front structure by comparing data from simulations with parameterised 

and explicit convection. Finally, we consider “secondary fronts” that commonly appear in UK Met Office surface analysis 

charts. Examination of a case study shows that for this event the secondary front is not a temperature-dominated but a humidity-

dominated feature. We argue that the presented approach has great potential to be beneficial for more complex studies of 

atmospheric dynamics and for operational weather forecasting. 30 
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1 Introduction 

The concept of atmospheric fronts, first introduced by Bjerknes (1919), plays a prominent role in meteorology. They are 

thought of as an interface separating two air masses of different density, mostly caused by temperature differences (Front - 

Glossary of Meteorology, 2022). Fronts are imaginary surfaces in three-dimensional (3-D) space, however, most commonly 35 

they are encountered as two-dimensional (2-D) lines on surface analysis charts, where they still frequently originate from 

manual analysis of different atmospheric variables. Despite the prevalence of 2-D surface fronts in meteorological practice, 

several studies have highlighted the impact of the vertical structure of fronts on surface weather (Bader et al., 1996; Browning 

and Monk, 1982; Locatelli et al., 1994, 2005; Aemisegger et al., 2015). Hence, analysis of the full 3-D temporal evolution of 

frontal surfaces has great potential to be beneficial both for weather forecasting and research on atmospheric dynamics. 40 

Here, we consider analysis of frontal dynamics for investigations including case studies and comparison of frontal structures 

between simulations from different numerical models. Analysis of 3-D frontal structures for such applications requires 3-D 

visualization and some objective feature detection method due to the difficulty of manual 3-D analysis on the one hand, and 

the requirement of feature consistency across time and/or different data sets on the other. Such analysis and the benefits for 

weather forecasting and research gained from it have, to the best of our knowledge, not been thoroughly addressed in the 45 

literature. To fill this gap is the purpose of the present study. 

Algorithms for 2-D objective front detection have been developed since the 1960’s (e.g., Renard and Clarke, 1965; Huber-

Pock and Kress, 1989; Jenkner et al., 2009). A widely cited method based on the third derivative of a thermal variable was 

introduced by Hewson (1998), and recently extended from 2-D to 3-D by Kern et al. (2019). Kern et al. (2019) integrated the 

objective detection algorithm into the open-source meteorological interactive 3-D visualization framework “Met.3D” 50 

(Rautenhaus et al., 2015a, b; Met.3D – Homepage, 2022; Met.3D – Documentation, 2022) and demonstrated the feasibility of 

interactive 3-D visualization of frontal surfaces detected in numerical weather prediction (NWP) data from the European 

Centre for Medium-Range Weather Forecasts (ECMWF). In the present study, our objective is to address open issues about 

the applicability of the method, and to demonstrate and evaluate its use for analysis of atmospheric dynamics and for examining 

other NWP datasets of different spatial resolution. 55 

The methods based on Hewson (1998) and Kern et al. (2019) (as well as further detection methods proposed in the literature) 

build on extracting frontal feature candidates from fields of the third derivative of a thermal variable (cf. Thomas and Schultz, 

2019a) that typically are smoothed to some extent to remove high-frequency fluctuations. The feature candidates are then 

filtered according to some filter criteria (most prominently, a so-called “thermal front parameter”, TFP, and the frontal strength) 

to yield the final frontal features. Two challenges arise when applying such an approach to modern NWP data. First, the current 60 

trend towards convection-permitting kilometer-scale resolution in NWP models leads to more small-scale fluctuations in the 

gradient fields. The question arises whether the existing approaches still extract meaningful structures that represent a frontal 

surface. A related issue is that smaller numerical differences between the values of neighboring grid cells (caused by smaller 

grid-point spacing) require care to avoid numerical artefacts when computing higher-order derivatives (cf. Jenkner et al., 2009). 
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Second, threshold values for filtering of feature candidates need to be selected carefully to yield physically interpretable 65 

structures. In the literature addressing 2-D front detection, such thresholds have been set to “hard” thresholds, i.e., fixed values 

suitable for the data and elevation level used. Such thresholds may not be generalized across different model resolutions and 

vertical elevations (Hewson, 1998). Furthermore, hard thresholds can lead to undesired “holes” in the resulting frontal surfaces, 

e.g., where frontal strength or TFP are only slightly below the chosen threshold. Therefore, Kern et al. (2019) proposed a fuzzy 

filtering method with upper and lower filter thresholds, between which the frontal features are gradually faded. However, past 70 

literature focused little on the filtering process and how to select suitable thresholds. 

For analysis of the detected 3-D features, recent advances in 3-D computer graphics and visualization bear large potential for 

intuitive, rapid interpretation in the context of the underlying atmospheric situation. Such techniques are not yet widely used 

in weather forecasting and research, with reasons including a lack of suitable software tools and a lack of literature 

demonstrating the benefit of 3-D visual analysis (Rautenhaus et al., 2018). An overview of the current state of the art in 75 

visualization in meteorology has recently been provided by Rautenhaus et al. (2018); recent examples of 3-D visual analysis 

being applied to meteorological research include the studies by Rautenhaus et al. (2015b), Orf et al. (2017), Kern et al. (2018, 

2019), Bader et al. (2020), Meyer et al. (2021), Bösiger et al. (2022), and Fischer et al. (2022). 

In the present study, we further contribute to the literature on benefits of atmospheric feature detection and 3-D visual analysis 

for weather forecasting and research and address the following objectives: 80 

(a) Advance the Kern et al. (2019) approach to objectively detect 2-D and 3-D frontal structures independently of the grid 

point spacing of the input NWP data, to be able to compare frontal structures between, for instance, different model resolutions 

(e.g., in convection-permitting vs. convection-parameterized simulations), different ensemble members or different cases. Our 

goal is to shed light on the smoothing and filtering processes in the detection method and to study the sensitivity of changing 

smoothing parameters on the resulting detected fronts: Which smoothing parameters yield meaningful 3-D structures, and how 85 

do filtering thresholds need to be chosen accordingly?  

(b) Evaluate the benefit of 3-D interactive visual analysis (IVA) of the detected frontal structures for the analysis of midlatitude 

cyclones. We focus on two case studies (cyclone Vladiana, crossing the North Atlantic in September 2016, and winter storm 

Friederike, hitting Germany in January 2018) and address the following questions: Can we confirm known knowledge about 

the 3-D dynamical structure of fronts and related warm conveyor belts (WCB) by means of 3-D IVA? How can the 90 

characteristic frontal development stages of a Shapiro-Keyser cyclone be distinguished in 3-D? How do 3-D frontal structures 

differ in (higher resolution) convection-permitting vs. (lower resolution) convection-parameterizing simulations? How do the 

detected 3-D structures compare to official analyses by the UK Met Office, in particular with respect to “secondary warm 

fronts” often observed in UK Met Office charts? 

In this study, we build upon the Kern et al. (2019) approach integrated into Met.3D (Met.3D – Code Repository, 2022). This 95 

facilitates straightforward use of the existing interactive 3-D visualization techniques in the software, including a “bridge from 

2-D to 3-D” (cf. Rautenhaus et al., 2015a) to combine well-proven 2-D views with new 3-D perspectives. Our method is 

flexible with respect to the input data, for the presented case studies we use forecast and reanalysis data from ECMWF with a 
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horizontal grid spacing between 0.15˚ and 0.25˚, and data from the limited-area model COSMO (Consortium for Small-scale 

Modeling; Baldauf et al., 2011; Doms and Baldauf, 2018) with a horizontal grid spacing of 0.02˚.  100 

The article is structured as follows. Section 2 introduces the underlying objective front detection approach by Hewson (1998), 

its extension to 3-D by Kern et al. (2019), and our enhancements for detection of fronts in kilometer-scale resolution data. In 

Section 3, we discuss which thermal variable is suitable for the approach and how sensitive detected fronts are to different data 

resolutions and smoothing parameters. Section 4 introduces the case studies and the data used for their visualization, and 

examines the benefit of 3-D front analysis for weather forecasting and research. Section 5 summarizes and concludes the study. 105 
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2 Method and implementation 

Our algorithm follows the 2-D detection algorithm originally introduced by Hewson (1998) and extended to 3-D by Kern et 

al. (2019). We briefly explain the basics of the algorithm and focus on the parts that have been adapted for this study. For 

further details we refer to Hewson (1998) and Kern et al. (2019). In the following, we describe and illustrate the conceptual 110 

and mathematical basis (Section 2.1), the required filtering process for frontal candidates (Section 2.2), and some 

implementation details we consider important (Section 2.3).  

2.1 Conceptual and mathematical basis 

 
Figure 1. Illustration of the thermal-gradient-based detection method, using a simplified straight front and following Hewson (1998) 115 
and Kern et al. (2019). The goal is to determine the warm air boundary of the frontal zone (i.e., the region of increased thermal 
gradient, cf. the yellow line). This boundary corresponds to the third derivative (red line) of a thermal variable τ (black line) being 
zero, under the condition that the second derivative of τ (blue line) is negative. The cold front typing shown assumes airmasses are 
moving from left to right across the figure. 

Figure 1 illustrates the method. The goal is to detect the horizontal warm air “boundaries” of frontal zones, i.e., regions with a 120 

strong horizontal gradient of a thermal variable τ (black line). In the simplified 1-D example shown in Figure 1, the first partial 

derivative of τ with respect to the spatial dimension x (𝜕τ/𝜕𝑥)	changes rapidly on both the warm and cold air boundaries of 

the frontal zone, with a maximum in between. Hence, the third derivative 𝜕!τ/	𝜕𝑥! can be used to detect the locations of 

maximum gradient change; the locations where it is zero and the second derivative 𝜕"τ/𝜕𝑥" is negative coincide with the 

warm air boundary of the frontal zone (Hewson, 1998). In the general 2-D case, points on a frontal line need to fulfil the “front 125 

location equation” (cf. Hewson, 1998) to account for curved fronts and corresponding along-front thermal gradients: 

𝐿# ≡	
$(|∇!|∇!#||)"

$ŝ
= 0,                                                                                                                                                            (1) 

with:  

ŝ = 	±
∇*|∇*𝜏|
|∇*|∇*𝜏||
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Here, ∇* denotes the horizontal derivative and ŝ is a unit axis (which possesses an orientation but no direction) oriented along 130 

∇*|∇*𝜏|. To derive 3-D frontal surfaces the approach is extended to 3-D as proposed by Kern et al. (2019). In short, the front 

location equation Eq. (1) is computed at every grid point of the gridded dataset; then “candidates” of frontal features are 

obtained by computing 3-D isosurfaces of 𝐿#	= 0 using a contouring algorithm such as Marching Cubes (Lorensen and Cline, 

1987). This results in a large number of potential frontal surfaces; to obtain meaningful structures the feature candidates need 

to be filtered according to additional diagnostics including the strength of the thermal gradient within the frontal zone. For 135 

details, we refer the reader to Kern et al. (2019, their Sect. 4). Note that only the horizontal gradient of the thermal variable is 

considered in this process, see Kern et al. (2019) for a discussion of the inclusion of vertical contributions. 

2.2 Filtering 

To obtain meaningful frontal surfaces (or frontal lines in the 2-D case), the feature candidates need to be filtered. Hewson 

(1998), following Renard and Clarke (1965), suggested to filter according to the thermal front parameter TFP, as well as to a 140 

frontal strength value estimated by the local thermal gradient at the frontal feature. The latter was improved by Kern et al. 

(2019) to estimate frontal strength by computing an average thermal gradient along “normal curves” traced through the frontal 

zone (basically streamlines computed on the gradient vector field). Here, we generalize these two filters to more generic types 

of filter mechanisms that can be interactively modified and combined during the analysis to investigate different aspects of the 

data: 145 

a) Masking: The feature candidates are filtered according to an arbitrary 3-D scalar field that is sampled (i.e., 

interpolated) at all feature locations (e.g., if isosurfaces are extracted using Marching Cubes, at all vertices of the 

isosurface). User-defined thresholds of the scalar field are used to keep or discard features.  

b) Frontal zone traversal: the frontal zone is traversed along “normal curves” started at feature candidate vertices and 

computed on the thermal gradient field (Kern et al., 2019); an arbitrary 3-D scalar field is sampled along the normal 150 

curves and filtering thresholds are based on the obtained samples. 

The generalization allows us, in addition to filtering with respect to TFP and frontal strength, to add filters that facilitate focus 

on the contribution of further quantities, including, for example, humidity and elevation. This way, we can eliminate, for 

example, pure “humidity fronts” by tracing the changes in (dry) potential temperature (θ) along the normal curves. TFP and 

frontal strength, however, remain to be the core filters. 155 

2.2.1 TFP Masking 

TFP is a masking filter. Note that computing isosurfaces of 𝐿#	= 0 results in front feature candidates at both the cold and the 

warm sides of the frontal zone. Since we are interested in the warm side only (cf. Renard and Clarke, 1965), cold side feature 

candidates need to be discarded. We follow the approach of Hewson (1998) and use the TFP filter, first introduced by Renard 

and Clarke (1965). The TFP filter is defined as:  160 
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𝑇𝐹𝑃# ≡	−∇*|∇*𝜏| ∙
∇!#
|∇!#|

> 𝐾,,                                                                                                                                                 (2) 

where 𝐾, is a used-defined threshold. This equation can also be interpreted as the “negative curvature” of the thermal front 

parameter field (Kern et al., 2019), being positive at the warm side of the frontal zone and negative at the cold side. To obtain 

only frontal feature candidates at the warm side of the frontal zone, 𝐾, must be at least zero. Hewson (1998) suggested a 

slightly positive value for 𝐾, to eliminate spurious frontal pieces. 165 

2.2.2 Frontal Strength 

Filters based on normal curves are evaluated for the remaining warm air side frontal candidates. We follow Kern et al. (2019) 

and estimate the frontal strength of the filter variable as “the average thermal gradient along a curved path through the frontal 

zone from the warm to the cold-air side”. The frontal strength filter Sτ is defined as: 

𝑆#|-./0123	4/05 ≡ ∫ |∇*𝜏| 𝑑𝑠 > 𝐾"67 ,                                                                                                                                          (3) 170 

The integration through the frontal zone starts at the warm side of the frontal zone and stops once a “normal curve” reaches 

the cold side of the frontal zone (where 𝐿#	 again is zero). The threshold 𝐾" is used to eliminate weak fronts below a user-

defined frontal strength.  

2.2.3 Fuzzy filtering 

Usage of distinct threshold values for 𝐾,	and 𝐾" results in “hard” boundaries of the generated features. Such visualization can 175 

be misleading since a viewer can interpret distinct feature boundaries into the depiction (including, e.g., “holes” in the front 

surfaces where, e.g., frontal strength is just below the chosen threshold). For fronts, however, this is not the case, as thermal 

gradients are gradually decreasing in space. Kern et al. (2019) suggested a “soft” (or “fuzzy”) filtering by providing two 

thresholds for each filter, between which opacity is faded from zero (completely transparent) to one (completely opaque). The 

feature candidates are subsequently rendered using the obtained opacity, resulting in “fuzzy” edges that visually indicate, e.g., 180 

a decreasing thermal gradient. The approach can also facilitate a visual distinction between weak fronts and strong fronts. 

When multiple filters are used in our implementation, every filter has individual threshold interval settings, and opacity 

information are accumulated accordingly.  

2.3 Supported data and methodological details 

The presented algorithm supports gridded data on horizontally regular and rotated latitude-longitude grids. In the vertical, the 185 

implementation can handle both pressure levels and model levels. For this study, we use data from the operational ECMWF 

high-resolution forecast (HRES) with 137 vertical model levels, horizontally interpolated to a regular grid with a grid point 

spacing of 0.15° in both latitude and longitude, data from the global reanalysis ERA5 (Hersbach et al., 2020) (also 137 vertical 

model levels, interpolated to a horizontal grid spacing of 0.25°), and data from the COSMO model (Consortium for Small-

scale Modeling; Baldauf et al., 2011; Doms and Baldauf, 2018), available on a rotated latitude-longitude grid with 60 vertical 190 
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model levels and a horizontal grid point spacing of 0.02° in both dimensions. The algorithm has been integrated into the 

interactive visualization framework Met.3D (Rautenhaus et al., 2015a) and is being made available as open-source. 

In the following, we describe methodological details we deem important for understanding our approach. Figure 2 illustrates 

the main steps of the front detection process. For simplicity, the process is described for 2-D frontal lines (letters correspond 

to panels in Figure 2): 195 

a) Choice of a thermal input field τ (e.g., wet-bulb potential temperature, Figure 2a).  

b) Smoothing of τ (and further input fields used for filtering) to a user-define length scale (Figure 2b). 

c) Computation of the magnitude of horizontal gradients |∇*𝜏| (Figure 2c). 

d) Computation of the horizontal gradient of the magnitude of horizontal gradients ∇*|∇*𝜏| (Figure 2d).  

e) Evaluation of the front location equation Eq. (1) and computation of the zero isolines to obtain feature candidates 200 

(Figure 2e). 

f) Computation and application of the TFP masking filter (Figure 2f). 

g) Application of frontal strength and further “normal curve” filters (Figure 2g).  

h) Final frontal structures are obtained (Figure 2h). 

In the 2-D example in Figure 2, the 850 hPa pressure level is used. One important design decision for the 3-D variant of the 205 

algorithm is the choice of the vertical coordinate, as the numerical computations need to be implemented accordingly. For this 

study, we consistently use pressure as the vertical coordinate, i.e., all horizontal computations are evaluated on levels of 

constant pressure. This is also consistent with Met.3D’s use of pressure as vertical coordinate. 

2.3.1 Smoothing 

NWP data, especially at kilometer-scale resolution, include convective and thermal processes that are much smaller in scale 210 

than atmospheric fronts (Keyser and Shapiro, 1986). To obtain frontal features that meaningfully represent a scale of interest 

(e.g., synoptic-scale fronts), it is advisable to smooth small scale thermal fluctuations in the thermal input field. Previous 

studies have used simple smoothing filters like a weighted moving average of neighboring grid points (e.g., Jenkner et al., 

2009), well known from image processing (Davies, 2017). Kern et al. (2019) point out that for data on a regular longitude-

latitude grid, however, geometric distance between grid points varies with latitude, requiring usage of a smoothing filter that 215 

considers all grid points based on a specified geometric smoothing distance. They propose usage of a 2-D Gaussian smoothing 

kernel. 

In our implementation, the smoothing distance is a user-defined method parameter that can be interactively changed in the 

analysis process. A disadvantage of a Gaussian smoothing filter, however, is its computational complexity that increases 

quadratically with smoothing distance – an important aspect for interactive use. We hence also provide an approximative 220 

smoothing method, the “fast almost-Gaussian filtering” presented by Kovesi (2010). The method uses a specified number of 

averaging passes. More averaging passes increase the accuracy of the approximative algorithm compared to Gaussian 

smoothing, but at the cost of increasing computation time. Another important aspect to consider is that with an increased 
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number of averaging passes the effect of “smoothing over the data field edges” propagates further into the data field center 

(Kovesi, 2010). In our implementation, the smoothing computation complexity depends linearly on the averaging passes and 225 

the smoothing distance. We find that three averaging passes are a reasonable tradeoff between accuracy, computation time and 

keeping the edged effect small. For illustration, we measured the performance of both smoothing algorithms on six cores of 

an AMD Epyc 7542 32-core processor with 2.9 GHz. In this setup, it takes about 29.5 seconds to apply a horizontal Gaussian 

smoothing with a smoothing distance of 100 km to a 3-D data field of 1800 x 1800 horizontal grid points with a horizontal 

grid spacing of 0.02° and 31 vertical level. For the same data field, the approximative algorithm requires 3.9 seconds. Both 230 

algorithms are optimized for OpenMP (OpenMP Architecture Review Board, 2015) and run in parallel. 

2.3.2 Numerical implementation 

For the computation of horizontal gradients, we use first order finite central differences and at boundaries first order finite 

right and left differences, respectively. As described above, we use pressure as the vertical coordinate and hence need to adapt 

the computations for data available on hybrid sigma pressure model levels or geometric altitude model levels. This leads to an 235 

additional coordinate transformation term (cf. Etling, 2008, p.129–131) in the derivatives. The horizontal gradient in pressure 

coordinates |p of the thermal variable τ is obtained from the partial derivative in longitudinal direction on the original coordinate 

system |σ and an additional transformation term. The gradient component in the longitudinal direction hence becomes: 
$#
$3/0

<
8
= $#

$3/0
<
9
+ $#

$8
< ∙ $:

$3/0
<
9

                 (4) 

And the latitudinal component: 240 
$#
$321

<
8
= $#

$321
<
9
+ $#

$8
< ∙ $:

$321
<
9

                 (5) 

 

Care needs to be taken for numerical implementation of equations 1-5. For numerical stability reasons, Hewson (1998) 

computed ŝ as a “five-point-mean axis” – an average orientation axis derived from the gradient at the corresponding grid point 

and at the four surrounding grid points (for details cf. Hewson, 1998). We encountered challenges with this approach: 245 

a) The studies by Hewson (1998) and Kern et al. (2019) used gridded data with a regular horizontal grid point spacing 

on the order of 50 km (0.5°) to 100 km (1°). At the time of writing, current (e.g., limited area) NWP models use finer 

grid spacings, e.g., the regional forecast model of the German Weather Service (DWD) runs with a horizontal grid 

spacing of 0.02°. At such resolutions and depending on the smoothing distance of previously applied smoothing, the 

differences between data values at neighboring grid cells tend to be very small – in such cases, no numerically stable 250 

orientation of the five-point mean axis can be obtained. 

b) Analogous to the above reasons for use of a distance-based Gaussian smoothing filter, the dependence of geometric 

distance between neighboring grid points on latitude leads to inconsistent calculations of the five-point-mean axis.  
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c) The distance between neighboring grid cells depends on the grid-point spacing of the specific dataset used. To 

compare fronts in different model simulations with a different grid-point spacing it is inconvenient to use a grid-point 255 

based approach, because the distance of the neighboring grid cell changes with changing model resolutions. 

Instead of taking the neighboring grid points to calculate the five-point-mean axis, we propose to use interpolated values at a 

specified distance to the considered central grid point. This improves numerical stability, makes the computation independent 

of geographic location, and facilitates objective comparison of frontal features obtained from NWP datasets with different 

grid-point spacings. From our experiments, we find that using a distance for the five-point-mean axis computation of half of 260 

the smoothing distance works well. 
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Figure 2. Step-by-step illustration of the 2-D front detection method. In the example, objective fronts are based on the 850 hPa wet-
bulb potential temperature field (𝜽𝒘) from the ECMWF HRES forecast (horizontally regular grid point spacing of 0.15° in both 265 
longitude and latitudes) initialized at 18 January 2018, 00:00 UTC, valid at 18 January 2018, 12:00 UTC. Fronts are “fuzzy filtered” 
using a fade-out range for TFP of 0.2 – 0.4 K (100km)-2 and for frontal strength of 0.6 – 1 K (100 km)-1. See Section 2.3 for a 
description of panels (a)-(h). 
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3 Thermal quantity, smoothing length scale, and filter parameters 

To successfully apply front detection for case studies, three important aspects need to be considered: Which thermal quantity 270 

should be used for detection? Which smoothing distance should be applied to the data? How do filter thresholds need to be 

adjusted (also with respect to the smoothing distance)? 

3.1 Choice of thermal quantity 

We first discuss the role of the chosen thermal quantity. Three candidates have frequently been used in the literature: (dry) 

potential temperature (θ), wet-bulb potential temperature (θw), and equivalent potential temperature (θe). There is an ongoing 275 

discussion in the scientific community regarding which thermal quantity is best suited to detect fronts (e.g. Sanders and 

Doswell, 1995; Hewson, 1998; Berry et al., 2011; Schemm et al., 2018; Thomas and Schultz, 2019a, b). The following provides 

a brief overview of the potential thermal quantities and their advantages and disadvantages.  

The dry potential temperature θ, reflects the original, purely temperature-dominated, definition of fronts and is most convenient 

from a rigorous dynamical point of view (Hewson, 1998). However, it is not conserved in moist processes, which often occur 280 

along fronts (Browning and Roberts, 1996). Alternative thermal quantities are θw or θe, which are both conserved in the 

reversible diabatic processes of evaporation and condensation (Thomas and Schultz, 2019b). Since both quantities have a one-

to-one relationship (each  θw  value matches a unique θe value and vice versa; Bindon (1940)), they share the same advantages 

and disadvantages for front detection (Thomas and Schultz, 2019b). In the following, we consider only θw; the arguments are 

similar for θe (to detect similar structures, however, the filter thresholds need to be adjusted due to the nonlinear relationship 285 

between θw and θe). The inclusion of humidity can help to better diagnose weak temperature gradients because humidity and 

temperature gradients are usually correlated, resulting in stronger θw gradients compared to θ gradients (Jenkner et al., 2009). 

However, if humidity and temperature are not correlated, gradients of θw could be weaker than gradients of θ. This may result 

in θw fronts being weaker than θ fronts, up to not being detected at all. Furthermore, in regions with humidity gradients but 

without temperature gradients, purely humidity-dominated fronts can be detected. Therefore, Thomas and Schultz (2019) 290 

recommended examining the temperature and moisture fields separately when analysing frontal structures. On the other hand, 

Berry et al. (2011) found that in their study θw provided the closest match to manually prepared front analysis. In our 

experience, θw is best suited to detect continuous fronts and closely matches the frontal analysis provided by UK Met Office 

(Figure 13). Note that some of the previously mentioned disadvantages of θw can be eliminated in our front algorithm. To 

facilitate the distinction between humidity- and temperature-dominated fronts, the implementation allows the mapping of 295 

different quantities on frontal surfaces as well as filtering of fronts according to multiple variables. Mapping the total change 

of θ or specific humidity within the frontal zone could help to distinguish between humidity- and temperature-dominated 

fronts. If desired, fronts can be filtered according to θ or humidity gradients within the frontal zone, which can help to eliminate 

purely temperature or humidity dominated fronts (Hewson and Titley, 2010).  
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3.2 Recommendations for filter thresholds and sensitivity of fronts to different smoothing length scales 300 

The number of detected frontal features depends on filter thresholds and the smoothing length scale applied to the input fields. 

Depending on the scale of interest for the analysis, the horizontal smoothing length scale is chosen. The question arises which 

filter thresholds for TFP and frontal strength filters should be recommended, and how these values depend on the smoothing 

length scale. In this section, we explore these method parameters and provide recommendations. We first investigate how 

smoothing length scale affects the magnitude and distribution of TFP values, then we consider magnitude and distribution of 305 

frontal strength |∇*𝜃;|. We present distributions of TFP and frontal strength obtained from 24 consecutive time steps of hourly 

ECMWF HRES forecast data on 18 January 2018 (initialized at 00:00 UTC) in a geographic region encompassing 60˚ W-30˚ 

E in longitude and 30˚ N-70˚ N in latitude (slightly larger than the region shown in Figure 2). The presented distributions 

provide guidance on the choice of suitable values for different smoothing length scales.  

3.2.1 Dependence of filter thresholds K1 and K2 on smoothing length scale 310 

Figure 3 shows the relative frequency of TFP values in the analysed area and for three different horizontal smoothing length 

scales of 100 km, 50km, and 30 km. Large horizontal smoothing length scales result, in general, in lower TFP values and vice-

versa. With large smoothing applied, strong horizontal gradients are weakened, resulting in smaller horizontal gradients. The 

magnitude of the horizontal gradients is inversely proportional to the length scale of the horizontal smoothing, and the filter 

thresholds need to be adjusted accordingly. Table 1 provides our recommendations for fuzzy TFP filter thresholds for the 315 

discussed smoothing scales. 

 

 
Figure 3. Distribution (relative frequencies) of thermal front parameter (TFP) values computed from hourly ECMWF HRES 
forecast data (horizontal grid point spacing of 0.15°) from 18 January 2018, in the region 60˚ W – 30˚ E, 30˚ N – 70˚ N, between 950 320 
– 500 hPa, for different smoothing length scales: (a) 100 km, (b) 50 km, and (c) 30 km.  

Figure 4 shows the relative frequency of |∇*𝜃;| for same smoothing length scales as above, although this time only considering 

values at grid points within the frontal zone (i.e., where 𝐿# (Eq. 1) > 0). The same effect encountered for TFP can be observed, 

the horizontal smoothing length scale alters the relative frequency of  |∇*𝜃;| as well. In general, |∇*𝜃;| decreases with 
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increasing horizontal smoothing length scale. As for TFP, it is necessary to adapt frontal strength filter thresholds to the chosen 325 

horizontal smoothing length scale. Table 1 provides guidance.  

 
Figure 4. Distribution (relative frequencies) of |𝛁𝒉𝜽𝒘| within frontal zones between 950 - 500 hPa (same data, time, and region as in 
Figure 3) for different smoothing length scales: (a) 100 km, (b) 50 km, and (c) 30 km.  

3.2.2 Example: Impact of filtering and smoothing on detected frontal features 330 

As mentioned above, NWP data at kilometer-scale resolution includes convective and thermal processes that are much smaller 

in scale than atmospheric fronts (Keyser and Shapiro, 1986). If the focus of an analysis is on large scale frontal features, e.g., 

for large-scale weather analysis, the thermal variable can be smoothed with a distance between 50 km and 100 km. If smaller-

scale frontal surface phenomena, e.g., surface precipitation, are of interest, the smoothing distance can be reduced to a few 

kilometers. However, it should not be less than the grid spacing of the thermal input variable. In the following, we demonstrate 335 

how different smoothing length scales and filter thresholds impact the resulting frontal features. In particular, we show how 

different frontal strength filters can help distinguish between different front types (temperature- and humidity-dominated 

fronts).  

Figure 5a extends the 2-D visualization of Figure 2h to 3-D, depicting the full 3-D structure of the frontal surfaces. We would 

also like to point the reader to supplementary video (Beckert et al., 2022c). We consider interactive use of the presented method 340 

as a key aspect of 3-D analysis, the video provides an impression of the additional benefit gained through interaction. 

The 3-D depiction in Figure 5a reveals further frontal structures such as the large-scale frontal surface in the north (marked 

with a black arrow in Figure 5b), which is located above the 850 hPa level and could easily be missed in a 2-D analysis. Not 

missing such potentially interesting structures is a key benefit of 3-D front detection compared to 2-D detection. Figure 5c-d 

shows temperature-dominated fronts, obtained by applying an additional normal curve filter of θ with a fuzzy threshold interval 345 

of 0.6 – 1.0 K (100 km)-1, the same value range used for θw (cf. Figure 2). This filter discards all humidity-dominated fronts. 

Note that the interactive adjustment of the filter is also illustrated in the supplementary video (Beckert et al., 2022c). The blue 

circle in Figure 5c highlights an area of the cold front – note how upper-level parts (lighter green, towards the south) are 

discarded when humidity contribution is filtered. The vertical cross-section in Figure 5d shows θ and |𝛻*𝜃|, with the black 
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arrow pointing at the area of the filtered out upper-level humidity-dominated front. The vertical cross-section also shows no 350 

temperature gradients, consistent with the interpretation that this is a humidity-dominated front. In Figure 5e-f a normal curve 

filter using specific humidity filter is applied instead, shifting focus to humidity contribution and discarding temperature-

dominated gradients in θw. In other words, temperature-dominated fronts are filtered out. The black circle in Figure 5e marks 

an area where a large-scale upper-level front is almost entirely discarded. 

Finally, Figure 5g shows the impact of decreasing the smoothing length scale from 100 km to 30 km. This reveals frontal 355 

features on a different length scale. However, without adjusting the filter thresholds, the resulting fronts become cluttered. 

Figure 5h shows the same fronts as in Figure 5g but with adapted filter thresholds to compensate for the reduced horizontal 

smoothing length scale. Due to reduced smoothing, the smoothness of the frontal surfaces is reduced. Especially at the cold 

front, fluctuations in θw cause less continuous fronts (red circle). In addition, the reduced smoothing reveals other frontal 

features on smaller scales, for example, the wrap-up of the occluded front around the cyclone center is more pronounced 360 

(orange arrow). Our recommendations for appropriate filter parameter intervals for different smoothing scales are summarized 

in Table 1 and are used throughout the paper, except where noted.  

 
Table 1: Fuzzy frontal filter threshold recommendations for different smoothing length scales.  

Smoothing length scale  

km 

TFP  

(K (100 km)-2) 

Frontal strength  

|𝛁𝒉𝜽𝒘| and |𝛁𝒉𝜽| 

(K (100 km)-1) 

Scale of detected frontal 

features 

100 0.2 – 0.4 0.6 – 1.0 ~ larger than 500 km 

50 0.4 – 0.8 1.0 – 1.6 ~ 200 km – 500 km 

30 1.5 – 2.5 1.2 – 2.2 ~ below 200 km 

 365 
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Figure 5. From 2-D to 3-D objective fronts. Same data as in Figure 2 (18 January 2018, 12:00 UTC) but showing the full 3-D structure 
of frontal surfaces in the lower and middle atmosphere. All circles and arrows denote features discussed in text. (a) 850 hPa frontal 
lines from Figure 2h with 3-D frontal surfaces between surface and 500 hPa, viewed from the top. (b) Same as (a) but from a tilted 370 
viewpoint looking north. (c) Same as (b) but with additional fuzzy normal curve filter of θ between 0.6 - 1 K (100 km)-1. (d) Same as 
(c) but viewed from west. Cross section shows θ and |𝛁𝒉𝜽|. (e) Same as (b) but with additional fuzzy normal curve filter of specific 
humidity between 0.1 - 0.2 g (kg 100 km)-1. (f) Same as (e) but viewed from west. Cross section shows q and |𝛁𝒉𝒒|. (g) Input field 
smoothed to a horizontal length scale of 30 km with same filtering applied as in (a). (h) Same as (g) but with adapted filter settings 
for TFP between 1.5 - 2.5 K (100 km)-2 and frontal strength between 1.2 - 2.2 K (100 km)-1.  375 
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4 Case studies 

We illustrate how meteorological analysis can be performed using 2-D and 3-D front detection by investigating two case 

studies of extratropical cyclones. The first case, cyclone Vladiana, occurred in the North Atlantic in September 2016. Section 

4.2 describes the synoptic situation and the data used for our analysis. For Vladiana, we examine the conceptual model of 380 

WCB ascent in the vicinity of fronts (Section 4.2.1), and show how frontal surfaces from convection-permitting NWP 

simulations compare to those found in simulations in which convection is parameterized (Section 4.2.2). The second case, 

winter storm Friederike, took place in Western Europe in January 2018 (introduced in Section 4.3). For Friederike, we examine 

the development stages of a Shapiro Keyser cyclone in 3-D (Section 4.3.1). Additionally, we compare our results to fronts 

analyzed by the UK Met Office, to discuss secondary fronts as often shown in surface analysis charts of the UK Met Office 385 

(Section 4.3.2). Before introducing our case studies, we briefly revisit the underlying meteorological theory in Section 4.1.  

4.1 Meteorological theory 

The frontal structure of extratropical cyclones is a key feature for the analysis of their development. Typically, extratropical 

cyclones are classified as either classical Norwegian cyclones (Bjerknes, 1919) or (the later proposed) Shapiro-Keyser cyclones 

(Shapiro and Keyser, 1990). The development of both cyclone types is classified into four characteristic stages. A cyclone first 390 

develops along a frontal wave as a small disturbance near the surface (stage I in both models). Meanwhile, this disturbance 

strengthens and extends to higher elevations, the cyclone starts to rotate cyclonically and forms a warm sector (stage II). In 

stage II the warm sector has its maximum size and maximum energy conversion. For Norwegian cyclones the displacement 

speed of the cold front is faster than of the warm front, the warm sector diminishes (stage III). The fronts occlude forcing the 

air to rise before the cyclone finally dissipates (stage IV). In contrast, a Shapiro-Keyser cyclone develops a frontal fracture in 395 

stage II separating the cold front from the warm front. While the cold front is usually weaker than in Norwegian cyclones 

(Schultz et al., 1998), the warm front is north of the cyclone center and starts wrapping around it bending backwards, hence 

also called bent-back front (stage III). This stage is also called “T-bone structure”. With the warm front wrapping around the 

cyclone center, a warm seclusion occurs (stage IV) before the cyclone decays. More recent literature proposes an extension of 

the four stages by three additional stages, the diminutive frontal wave stage and frontal wave stage which occur before stage I 400 

and a decay stage after stage IV (Hewson and Titley, 2010). However, in this publication we focus on the initially proposed 

four stages of the Shapiro-Keyser cyclone model.  

Both cyclone models can be accompanied by coherent circulation features called conveyor belts. The cold conveyor belt occurs 

ahead of the warm and occlusion front, usually remaining below 850 hPa. It is often associated with high wind speeds in later 

stages, typically south-west of the cyclone center. The WCB (cf. Eckhardt et al., 2004; Madonna et al., 2014) occurs ahead of 405 

the cold front near the surface in early stages and is also associated with high wind speeds. It typically ascends at least 600 hPa 

in the warm sector and over the warm front and often splits into anticyclonically and cyclonically turning branches (Martínez-

Alvarado et al., 2014). 
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4.2 Vladiana 

The extratropical cyclone Vladiana occurred during the North Atlantic Waveguide and Downstream Impact Experiment 410 

(NAWDEX, Schäfler et al., 2018). Vladiana formed on 22 September 2016 near Newfoundland and the frontal wave 

intensified while moving eastwards across the North Atlantic. As the cyclone continued to move north-eastward, it 

strengthened until it reached its pressure minimum of 975 hPa at 18:00 UTC on 23 September. On 24 September the cyclone 

reached Iceland and became stationary. Figure 6 shows a horizontal section of θw with detected 2-D fronts at 850 hPa, as well 

as 3-D fronts on 23 September 2016, 06:00 UTC. The frontal analysis of this case study builds upon previous studies of 415 

Vladiana and its associated WCB ascent (Kern et al., 2019; Oertel et al., 2019, 2020; Choudhary and Voigt, 2022). Based on 

the results of Oertel et al. (2019), we evaluate the conceptual model of 3-D fronts and WCB ascent (Section 4.2.1), and illustrate 

differences in the frontal structure of simulations with explicit versus parameterized deep convection (Section 4.2.2). 

For our analysis we use ECMWF HRES analysis data with parameterized convection, a convection-permitting simulation with 

the limited-area model COSMO, and UK Met Office surface analysis charts. Initial and lateral boundary conditions of the 420 

COSMO simulation were taken from the ECMWF HRES analysis (see Oertel et al., 2019, 2020 for a detailed description of 

the simulation set-up). The COSMO simulation includes online trajectories (cf. Miltenberger et al., 2013) which were used to 

selected strongly ascending trajectories with ascent rates of at least 600 hPa in 48 h, here referred to as WCB trajectories 

(Oertel et al., 2019, 2020). For the evaluation of the conceptual model of 3-D fronts and WCBs, WCB trajectories that ascend 

at least 25 hPa in 2 h at 06:00 UTC, 23 September 2016 were selected.  425 

 
Figure 6. Cyclone Vladiana on 23 September 2016, 06:00 UTC. (a) Detected 2-D warm (red line) and cold (blue line) fronts at 850 
hPa, θw at 950 hPa (colours, in K), and mean sea level pressure (black contour lines, every 2 hPa) from a COSMO simulation (black 
frame shows domain boundaries; green frame shows the selected subregion for studying convection in the vicinity of the cold front, 
cf. Sect. 4.2.2). (b) Detected 3-D warm (red) and cold (blue) fronts between 950 hPa and 500 hPa, on top of a horizonal map showing 430 
θw at 950 hPa and mean sea level pressure (black contour lines, every 2 hPa). Warm and cold front classification is computed 
according to warm and cold air advection at the front (follwing Hewson, 1998).  

4.2.1 3-D examination of conceptual model: fronts and warm conveyor belt  

Conceptual models and simplified illustrations are frequently used to explain the relation and dynamics of fronts and the WCB. 

Figure 7 shows an example of such an illustration in 2-D, a more sophisticated 3-D representation can be found, e.g., in 435 

Martínez-Alvarado et al. (2014, their Fig. 1). However, subsequent studies of these 3-D atmospheric features are usually 
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conducted by means of horizontal or vertical 2-D slices through NWP data and it is less common to use a 3-D representation 

of 3-D atmospheric features (Rautenhaus et al., 2018). In this section, we demonstrate the use of 3-D front detection to visualize 

such conceptual models against NWP data by directly representing these features in 3-D.  

Figure 8a-c shows the evolution of 3-D fronts from 03:00 UTC to 09:00 UTC 23 September 2016 of Vladiana, together with 440 

a selection of WCB trajectories that ascend at the selected times. During this period the frontal system moves eastwards. At 

03:00 UTC the selected WCB trajectories are located in the lower troposphere near the surface in the warm sector and move 

along the cold front in a north-eastward direction (Figure 8a). At 06:00 UTC most of the WCB trajectories are in their ascent 

phase (Figure 8b), and at 09:00 UTC the majority of the WCB trajectories have risen above 500 hPa (Figure 8c). The selected 

trajectories have different pathways for their ascent: some rise directly at or ahead of the cold front, and others rise above the 445 

warm front. While trajectories rapidly increase in altitude when lifted spontaneously at the cold front, trajectories at the warm 

front ascend more slowly and gradually. In Figure 8d-e the difference between cold frontal and warm frontal ascent is 

emphasized. Figure 8d shows frontal surfaces at 06:00 UTC together with 48-h WCB trajectories with maximum ascent rates 

faster than 200 hPa within 2 h. Most of these fast-ascending WCB trajectories ascend at the cold front. In contrast, trajectories 

at the warm front ascend more slowly, with maximum ascent rates below 200 hPa in 2 h (Figure 8e). In the upper troposphere, 450 

the WCB splits into two outflow branches, a cyclonic branch which turns westward and an anticyclonic branch which turns 

eastwards. WCB trajectories ascending ahead of the cold front tend to take the anticyclonic outflow, while warm frontal WCB 

trajectories tend to take the cyclonic outflow. We hypothesize that trajectories that rapidly ascend at the cold front experience 

jet wind speeds earlier following the anticyclonically turning jet stream and are thus deflected into the downstream ridge (see 

Figure 8f). The 3-D visualization corroborates the conceptual model of how WCB ascent relates to fronts, and highlights the 455 

presence of smaller-scale convective ascent structures embedded in the WCB discussed in recent studies (cf. Rasp et al., 2016; 

Oertel et al., 2019, 2020; Blanchard et al., 2020). The 3-D visualization of rapidly and more slowly ascending high-resolution 

WCB trajectories further shows their similarity to the so-called 'escalator-elevator' concept of WCB-embedded convection 

which was proposed by Neiman et al. (1993) to distinguish between fast ascent and more gradual frontal upglide. By looking 

at the 3-D structure of the trajectories, this concept appears suitable for this case study. 460 
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Figure 7: Conceptual model of fronts and WCB showing large scale ascending and descending air in the vicinity of an extratropical 
cyclone (Figure reproduced from Stull, 2017, © Stull, 2017, CC-NC-SA 4.0 license). 
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 465 
Figure 8. (a-c) Temporal evolution of 3-D frontal structures and WCB trajectories of Vladiana on 23 September 2016. (d) Same time 
as (b) but only fast ascending WCB trajectories (minimum 200 hPa within 2 h) are displayed for a period of 48 h. (e) Same as (d) 
but only slow ascending WCB trajectories (less than 200 hPa within 2h) are displayed. (f) Same time as (c), jet stream (yellow 
isosurface of 50 ms-1 windspeed) and WCB trajectories are displayed for a period of 48 h. For the full temporal development of this 
scene see the supplementary video (Beckert et al., 2022b). 470 
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4.2.2 Cold-front structure in the vicinity of convection  

Here we compare fronts of convection-permitting NWP simulations with fronts in simulations where convection is 

parameterized, using Vladiana as an example. We focus on the southern end of the cold front (green box in Figure 6) where  

mid- and small-scale convection occurs in this WCB. Oertel et al. (2019) highlight (embedded) convection with lightning near 

the trailing edge of the cold front on 23 September 2016, 06:00 UTC. To detect mid-scale frontal features induced by 475 

convection the input field, θw is smoothed to a horizontal length scale of 50 km and filtered according to TFP, θw and θ (cf. 

Table 1). Figure 9 shows detected 2-D fronts at 850 hPa together with fronts of UK Met Office surface charts, at 700 hPa and 

at 500 hPa. The yellow dot at the southern end of the cold front marks the position of the observed embedded moist convection. 

The COSMO simulation shows strong ascending motion in this region at all plotted vertical levels (Figure 9d-f). In contrast, 

in the ECMWF data (Figure 9a-c) where convection is parameterized, the vertical velocity field shows no significant local 480 

maximum. The detected cold front of both simulations follows the cold front of the UK Met Office surface analysis chart. 

However, in the vicinity of convection and at 850 hPa the cold front of the COSMO simulation brakes apart, while the cold 

front detected in ECMWF is a continuous line. At 700 hPa the cold front detected in ECMWF data is weak and broken while 

the cold front detected in COSMO data is a continuous line. At 500 hPa the cold front is shifted towards north and less 

continuous in the COSMO data compared to ECMWF data. 485 

Figure 10 shows the corresponding 3-D frontal structures. In the area where convective vertical motion differs between the 

two simulations, a gap can be observed in the frontal surface between 700-600 hPa in the ECMWF data, whereas the frontal 

surface is present in the COSMO simulation (red circle in Figure 10a-b). These kind of gaps in the cold front have been 

observed in earlier studies (Geerts et al., 2006) and were associated with weaker temperature gradients at this elevation range. 

The time evolution of the COSMO 3-D front (Figure A 2) suggests that the intensification of the mid-level cold front is a 490 

transient feature that occurs at the time of convection, which is associated with strong horizontal convergence (Figure 10c-d), 

and disappears as soon as the convection weakens again. In simulations where convection is parameterized, however, the 

convection scheme may not activate at that time and location. Additionally, the feedback of the convection scheme on the grid-

scale variables may differ from their explicit model representation (as shown in this example). We hypothesize that the model 

representation of convection and/or simulation grid spacing influences the feedback and interaction between convection, 495 

frontogenesis, and detailed frontal structures. Investigation of this relation between frontal structure, θw gradient, and 

convective ascent, however, will require more detailed and systematic analyses that is beyond the scope of this study.  
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Figure 9. Convection and frontal structure on 23 September 2016, 06:00 UTC. Region corresponds to green subarea in Figure 6. 
ECMWF analysis (top row) and COSMO analysis (bottom row), at (a, d) 850 hPa, (b, e) 700 hPa, and (c, f) 500 hPa. Objective 2-D 500 
fronts (blue tubes) are shown along with UK Met Office fronts (red tubes), θw (colour), |∇h	θw| (grey shades), and upward air velocity 
(contour lines; orange=upwards, black=zero, green=downwards, contour line spacing of 0.02 m s-1).  
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Figure 10. 3-D view of the 2-D frontal structures from Figure 9. (a) 2-D objective fronts (blue tubes) at 850 hPa, 700 hPa, and 500 
hPa (cf. Figure 9) in the context of full 3-D frontal structures, as found in ECMWF data. (b) Same as (a) but for COSMO data. Red 505 
circles in (a) and (b) mark the differences in the frontal surfaces. Contour lines on all surface maps represent upward air velocity at 
700 hPa (orange=upwards, black=zero, green=downwards, contour line spacing 0.02 m s-1). (c) ECMWF 3-D fronts and vertical 
section of wind divergence (colour), θw (coloured contour lines, spacing 1 K), and θ (black contour lines, spacing 5 K). (d) Same as 
(c) but for COSMO data. 

4.3 Friederike 510 

The extratropical cyclone Friederike (called David in Great Britain) passed over western Europe from 17 to 18 January 2018. 

The cyclone had formed east of Florida on 15 January 2018, then moved northwards along the coast of Newfoundland before 

it passed the North Atlantic Ocean and first hit Europe at the west coast of Ireland on 17 January 2018. During its passage 

across the North Atlantic, the cyclone strengthened, and its core pressure dropped to 985 hPa. The cyclone moved from Ireland 

across northern England and the North Sea, reaching the north of the Netherlands on 18 January 2018, 09:00 UTC with a core 515 

pressure of 976 hPa. From there, the cyclone moved further east and passed northern Germany until it reached the border of 
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Poland on 18 January 2018, 18:00 UTC and dissipated in the following days. The cyclone caused high wind speeds with gusts 

up to 203 km/h in the Harz Mountains, 144 km/h at the North Sea coast of the Netherlands, and 138 km/h in lowlands of the 

Netherlands and central part of Germany (Wandel et al., 2018). Surface analysis charts of the UK Met Office (not shown here) 

indicate that this was a Shapiro Keyser Cyclone (Shapiro and Keyser, 1990). Our 2-D front algorithm detects some of the 520 

characteristic frontal features of the Shapiro-Keyser cyclone, including the frontal wave stage, frontal fracture, and t-bone 

structure (Figure 11). This case will allow us for the first time (to our knowledge) to extract and visualize the 3-D frontal 

structure of a Shapiro-Keyser cyclone directly from NWP data and to evaluate the time evolution in comparison to the 

conceptual model (Section 4.3.1). In Section 4.3.2 we analyse the occurrence of secondary warm frontal structures as often 

present in surface analysis charts of the UK Met Office.  525 

Here we use the ERA-5 reanalysis and ECMWF HRES forecast data initialized on 18 January 2018, 00:00 UTC. ERA-5 

reanalysis is used to visualize the temporal development of 2-D (Figure 11) and 3-D (Figure 12) fronts. For the analysis of 

secondary frontal structures, fronts extracted from the UK Met Office surface analysis charts supplement the ECMWF HRES 

forecast. 

 530 
Figure 11: Successive time steps of objective 2-D frontal structures showing the temporal development of Friederike (17 and 18 
January 2018), as detected in ERA-5 reanalysis data at 750 hPa and surface pressure (black lines). The displayed time steps are 
approximately assigned to the four ideal development stages of the Shapiro-Keyser cyclone model (Shapiro and Keyser, 1990). We 
find that not all characteristics of the individual stages can be observed in 2-D. As shown in the following, 3-D front detection is 
required to observe all characteristics (cf. Figure 12).   535 
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4.3.1 3-D examination of conceptual model: Shapiro-Keyser Cyclone 

Figure 12 extends the 2-D frontal analysis of Friederike shown in Figure 11 and shows the temporal development of the 3-D 

structure. In 3-D, the typical characteristics of a Shapiro-Keyser cyclone (Shapiro and Keyser, 1990) with its distinctive frontal 

T-bone structure and the four cyclone stages can be well observed. However, at different elevations the four stages, as described 

in Schultz and Vaughan (2011), occur at different times: 540 

• Red and orange front: Stage I, incipient frontal cyclone. A perturbation of the frontal structure is already present in 

the upper atmosphere. This disturbance will later develop into the frontal wave. However, the frontal surface in the 

lower atmosphere is unperturbed.  

• Orange, yellow, green front: Stage II, frontal fracture. The timing of frontal fracture strongly depends on the vertical 

level. In the lower troposphere the cold front is separating from the main front. In the upper troposphere, a connection 545 

between the cold front and the main part of the frontal surface still exists.  

• Green and blue front: Stage III, bent-back warm front, and frontal T-bone structure. At lower levels, the cold front 

lies almost perpendicular to the warm front, showing the typical Shapiro-Keyser T-bone structure. Interestingly, the 

upper part of the cold front also bends slightly towards the south, following the lower part of the cold front, but a 

connection to the warm front remains.  550 

• Blue and purple front: Stage IV: warm-core frontal seclusion. The warm front wraps-up around the warm air near the 

cyclone centre. The separated lower part of the cold front moves further south and the upper cold front dissipates.  

In this example, uniquely assigning the 3-D frontal structure at specific time steps to the Shapiro and Keyser stages is not 

possible. As described, frontal evolution does not occur synchronously at all elevations, creating a temporal offset of the stages 

at different elevations. We could also not find a height level where the 2-D fronts could be unique assigned (see Figure 11). It 555 

is important, however, that the 3-D front detection can detect all the characteristic structures of the Shapiro-Keyser model, 

even though a one-to-one assignment to the stages is not possible. Another example of the 3-D frontal development with 

typical characteristics of a Shapiro-Keyser cyclone, storm Egon (11-13 January 2017; Eisenstein et al. (2020)), is shown in 

Figure A 1 in the appendix of this study. Again, the visual analysis shows that frontal evolution does not occur synchronously 

at all elevations, creating a temporal offset. For example, frontal fracture does not occur at all elevations simultaneously. The 560 

time step on 13 January 2017, 00:00 UTC shows the development of the bent-back warm front in upper levels, whereas the 

frontal fracture is not yet complete near the surface. These examples suggest a more nuanced view of the Shapiro-Keyser 

model, where there is a significant 3-D component to the evolution of a cyclone through the different stages of the conceptual 

model.  
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 565 
Figure 12. Temporal evolution of 3-D frontal structures of Friederike (16 to 19 January 2018), as detected in ERA-5 reanalysis data. 
(a) Different cyclone stages encountered along the cyclone track. Yellow poles mark centres of surface low, front colours distinguish 
time steps. (b) The six stages from (a), approximately centred around the cyclone centres for comparison of frontal structures. Blue 
arrows mark frontal fracture, yellow arrows mark warm core frontal seclusion, contour lines show surface pressure (spacing 2 hPa).  
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4.3.2 Secondary fronts 570 

Secondary fronts are commonly analysed by the UK Met Office and seen in their surface analysis charts. Beside other variables, 

the UK Met Office uses the wet-bulb potential temperature as primary thermal variable for their front detection in surface 

analysis charts (N. Armstrong, UK Met Office, pers. comm., 2022). In this section, we consider a secondary front which occurs 

ahead of the warm front of Friederike. We investigate if the front detection algorithm can detect such secondary fronts and 

how secondary fronts depend on the detection variable. Red tubes in Figure 13  show the positions of fronts analysed by the 575 

UK Met Office for 18 January 2018, 12:00 UTC. The most eastward front, extending from northeast Italy up to the southern 

border of Denmark, is a typical secondary warm front as often analysed by the UK Met Office. Figure 13b shows fronts 

detected in θw at 850 hPa (blue tubes). In general, the structure of fronts detected in θw agrees well with fronts of the UK Met 

Office, despite some smaller differences. In particular, the secondary front detected in θw is shorter in its horizontal extent and 

the wrap-up of the occluded front around the cyclone centre is more pronounced. Figure 13c shows fronts detected in θ at 850 580 

hPa (green tubes). There is no indication for secondary fronts in this analysis, as no strong horizontal gradients of θ are present 

in this area. Hence, the presence of the secondary front detected by θw results from moisture gradients. Furthermore, the 

structure of the primary fronts is less continuous and deviates more from the UK Met Office analysis. Figure 14 shows the 3-

D frontal surfaces of θw (Figure 14a) and θ (Figure 14b). The 3-D frontal structure illustrates that the secondary front detected 

in θw is a shallow atmospheric feature and only present in the lower troposphere at around 850 hPa. For this case study we 585 

conclude that the lower atmospheric secondary front is a moisture feature, and thus, can only be detected in a variable that 

includes humidity formation. Furthermore, θw as detection variable results in more continuous fronts compared to θ. We again 

would like to point the reader to the supplementary video (Beckert et al., 2022c), which illustrates the benefit of interactive 

exploration and analysis of the detected fronts within Met.3D.  

 590 
Figure 13. Comparison of UK Met Office fronts with objective fronts, case Friederike (18 January 2018, 12:00 UTC). (a) UK Met 
Office surface analysis chart. Blue box marks analysed area. (b) Objective 850 hPa 2-D fronts (blue lines) as detected from ECMWF 
HRES θw (colour; grey shading shows |∇h	θw|), UK Met Office fronts (red lines), and mean sea level pressure (black contour lines, 
spacing 2 hPa). (c) Same as (b) but objective 2-D fronts (green lines) based on θ. The secondary front (black arrow) is only detected 
when using θw. When based on θ, the cold front (blue arrow) breaks up and is less continuous compared to the cold front based on 595 
θw. 
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Figure 14. 3-D view of Figure 13b-c. Red tubes show UK Met Office fronts, 3-D objective fronts are coloured according to pressure 
elevation. Objective fronts based on (a) θw and (b) θ. The secondary front (black arrow) is a feature of θw and only occurs around 
850 hPa. Yellow poles to aid spatial perception. Compare the animated version in the supplementary video (Beckert et al., 2022a). 600 
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5 Summary and discussion 

This article explores how objective 2-D and 3-D front detection and visualization, integrated into an interactive 3-D visual 

analysis environment for atmospheric data, can be used to study frontal dynamics within mid-latitude cyclones and thus be 

beneficial for weather forecasting and research. The presented method builds on approaches previously introduced by Hewson 605 

(1998) and Kern et al. (2019) and is applicable to gridded data from state-of-the-art NWP models. It facilitates rapid analysis 

of 3-D frontal dynamics, including objective comparison of detected frontal structures between datasets from different 

numerical models or ensemble members, also at different model resolutions. We addressed the objectives of (a) identifying 

appropriate detection parameters including data smoothing and filtering thresholds, to ensure objective comparability, and (b) 

evaluating the benefit of 3-D IVA of frontal surfaces through case study investigations, including interpretation based on 610 

conceptual models, and comparison of frontal structures between different numerical models and with manually produced 

surface analysis charts. 

We find that the integration of 3-D front detection with 3-D IVA (in our case in the open-source meteorological visual analysis 

framework Met.3D) facilitates rapid analysis of complex weather situations, in part because the detected fronts can be 

visualized jointly with interactively placed depictions of other meteorological quantities.  615 

The choice of the thermal variable is essential for the presented approach. For the cases presented in this article, we show that 

θw is most suitable since, in contrast to θ, it considers reversible moist processes in the atmosphere. The resulting fronts are 

longer and more continuous. A disadvantage of θw is that it also detects purely humidity-dominated fronts. Separately filtering 

frontal feature candidates according to humidity and θ gradients, however, allows us to distinguish humidity-dominated from 

temperature-dominated fronts. The choice of filter parameters and filter thresholds to obtain meaningful frontal structures is 620 

challenging. These settings depend on the thermal input variable’s horizontal smoothing length scale, which determines the 

“spatial scales” of detected frontal features (large-scale smoothing of the thermal input field results in detection of large-scale 

frontal features and vice versa). The distribution of gradient magnitudes shows that different smoothing length scales require 

different filter thresholds to obtain meaningful fronts. Large-scale smoothing requires less restrictive filter thresholds compared 

to small-scale smoothing. We present recommendations for future users on how to tune filter thresholds according to the 625 

previously applied smoothing length scale (Table 1). 

The application of the proposed approach to case studies of midlatitude cyclones provides detailed information about the 

temporal evolution of 3-D front characteristics. We demonstrate the use of 3-D front detection to visualize dynamic relations 

of features in the context of fronts in NWP data by directly representing these features in 3-D. In a case study of cyclone 

Vladiana (September 2016) we examine the conceptual model of the WCB as represented by NWP data. At the cold front, 630 

WCB trajectories ascend fast, experience jet wind speeds early and follow the anticyclonically turning jet stream. In contrast, 

WCB trajectories ascending at the warm front show a slower ascent rate and tend to take the cyclonic outflow branch in the 

upper troposphere. These observations agree well with conceptual models of fronts and WCB as proposed in literature. Our 

next example considers the relation between convection and cold front structure. For Vladiana, the cold front at mid-



32 
 

tropospheric levels is temporarily strengthened in the vicinity of resolved convection; we hypothesize that the model 635 

representation of convection and/or simulation grid spacing influences the feedback and interaction between convection, 

frontogenesis, and detailed frontal structures. In a second case study of cyclone Friederike (January 2018), we visually analyse 

the 3-D temporal evolution of fronts in a Shapiro-Keyser cyclone and compare our results to the conceptual model proposed 

in the literature. We observe that the different Shapiro-Keyser cyclone stages do not occur simultaneously at all elevations. 

However, all characteristic stages of the conceptual model of the Shapiro-Keyser cyclone could be observed in NWP data. 640 

Finally, we compare the objective 3-D frontal structures with 2-D fronts in UK Met Office surface analysis charts and 

investigate the occurrence of secondary fronts often present in UK Met Office surface analyses. The objective 3-D fronts are 

consistent with the UK Met Office fronts if θw is used for front detection. This is no coincidence as θw is the primary thermal 

variable used for the manual front detection by the UK Met Office. For Friederike, we show that the secondary front 

corresponds to a humidity-dominated rather than a temperature-dominated front.  645 

An in parts similar front detection approach – only two-dimensional but also applicable to kilometre-scale resolution data – 

was proposed by Jenkner et al. (2009). Because of high sensitivity to local noise in higher derivatives, their approach uses the 

zero lines of the TFP (second derivative) as frontal candidates, which correspond to the steepest gradient within the frontal 

zone. However, this does not match the most common definition of a front as the boundary of the frontal zone located on the 

warm air side (cf. Renard and Clarke, 1965). We argue that an advantage of our approach in particular for case studies is that 650 

also in kilometre-scale data fronts are detected at this warm air side, albeit at the cost of potential smoothing artefacts. 

Opportunities for future novel methods may be facilitated by recent advances in machine learning (ML). For example, an 

approach using artificial neural networks to detect 2-D fronts was recently proposed by Niebler et al., (2022). Their approach 

learns from fronts depicted on analysis charts issued by national weather services, hence mimics the approaches of human 

forecasters. Will such ML-based approaches be able to detect robust 3-D structures in the future?  655 

As a final remark, the front detection and visualization approach presented here has the potential to be used operationally. 

Being integrated in Met.3D, other meteorological variables can be analysed in conjunction with the 3-D frontal structures. This 

facilitates the rapid analysis of complex weather situations, as required in operational settings (cf. Rautenhaus et al., 2018). 

Further fields of application include the feature-based analysis of forecast uncertainty represented by ensembles simulations 

(albeit comparative visualization of features from many ensemble members will be challenging), climatological studies of 660 

frontal characteristics derived from the 3-D features, and investigation of the relation of frontal structures to other physically 

meaningful features in the 3-D atmosphere, including the jet stream – this will be beneficial for studies that contribute to the 

understanding of complex dynamical processes in the atmosphere. 

  



33 
 

Code and data availability 665 

The code of the specific version of the open-source visualization framework Met.3D, including the code for front detection 

and example configuration files to reproduce figures of this manuscript, are available at Beckert et al. (2023). User and 

developer documentation is available at https://met3d.wavestoweather.de (Met.3D – Homepage: Interactive 3D visualization 

of meteorological simulations, 2022) and https://collaboration.cen.uni-hamburg.de/display/Met3D/ (Met.3D – 

Documentation: User Documentation, 2022). The ECMWF ERA5 and ECMWF HRES forecast and analysis datasets used in 670 

this study are available at Beckert (2023). Please contact the authors for information about the COSMO dataset. 

 

Video supplement  

The following movies illustrate interactive visual data analysis using Met.3D and provide supplementary insights into the 3-D 

dynamics of frontal structures, jet stream and WCB trajectories, and illustrate the benefit gained from interactive use of 3-D 675 

visual analysis. 

– Comparison of objectively detected 3-D fronts in wet-bulb potential temperature and potential temperature of 

Friederike on 18 January 2018, 12:00 (Beckert et al., 2022a).  

– Development of 3-D frontal structures, jet stream and WCB trajectories of Vladiana (Beckert et al., 2022b). 

– Interactive front analysis of storm Friederike using the open-source meteorological 3-D visualization framework 680 

"Met. 3D" (Beckert et al., 2022c). 

 

Competing interests	

The authors declare that they have no conflict of interest.  

 685 

Author contributions 

AB designed and implemented the algorithm, performed the analysis, created the visualizations, and wrote the manuscript. LE 

contributed to the meteorological related results, especially to the characterisation and discussion of the Shapiro-Keyser 

cyclone. AO contributed to the meteorological related results, especially to the characterisation and discussion of the WCB. 

TH contributed to the design of the algorithm and secondary front discussion. MR and GC proposed, supervised, and 690 

administrated the study. All authors contributed to writing and revising the manuscript. 

 

Acknowledgement  

This research leading to these results has been done within subprojects C9 (AB, GC, MR), C5 (LE), and B8 (AO) of the 

Transregional Collaborative Research Center SFB/TRR165 “Waves to Weather” (www.wavestoweather.de) funded by the 695 

German Research Foundation (DFG). The authors would like to thank the Institute for Atmospheric and Climate Science at 

ETH Zürich for providing the high-resolution COSMO dataset of Vladiana. We also very much thank the two anonymous 

reviewers and the editor.  



34 
 

References 

Aemisegger, F., Spiegel, J. K., Pfahl, S., Sodemann, H., Eugster, W., and Wernli, H.: Isotope meteorology of cold front 700 

passages: A case study combining observations and modeling, Geophys. Res. Lett., 42, 5652–5660, 

https://doi.org/10.1002/2015GL063988, 2015. 

Bader, M. J., Forbes, G. S., Grant, J. R., Lilley, R. B. E., and Waters, A. J.: Images in Weather Forecasting : A Practical Guide 

for Interpreting Satellite and Radar Imagery, 523 pp., 1996. 

Bader, R., Sprenger, M., Ban, N., Radisuhli, S., Schar, C., and Ganther, T.: Extraction and Visual Analysis of Potential 705 

Vorticity Banners around the Alps, IEEE Trans. Vis. Comput. Graph., 26, 1–1, https://doi.org/10.1109/TVCG.2019.2934310, 

2020. 

Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale 

numerical weather prediction with the COSMO model: Description and sensitivities, Mon. Weather Rev., 139, 3887–3905, 

https://doi.org/10.1175/MWR-D-10-05013.1, 2011. 710 

Beckert, A.: Datasets associated with the publication: “The three-dimensional structure of fronts in mid-latitude weather 

systems in numerical weather prediction models”., https://doi.org/10.5281/ZENODO.7875629, 2023. 

Beckert, A., Rautenhaus, M., Kern, M., and Met.3D-Contributors: met.3d-1.8.0_3DFronts_v1.0, 

https://doi.org/10.5281/ZENODO.7870254, 2023. 

Beckert, A. A., Eisenstein, L., Oertel, A., Hewson, T., Craig, G. C., and Rautenhaus, M.: Comparison of objectively detected 715 

3-D fronts in wet-bulb potential temperature and potential temperature, TIB AV Portal [video suppl.], 

https://doi.org/10.5446/57600, 2022a. 

Beckert, A. A., Eisenstein, L., Oertel, A., Hewson, T., Craig, G. C., and Rautenhaus, M.: Development of 3-D frontal structures, 

jet stream and WCB trajectories of Vladiana, TIB AV Portal [video suppl.], https://doi.org/10.5446/57570, 2022b. 

Beckert, A. A., Eisenstein, L., Oertel, A., Hewson, T., Craig, G. C., and Rautenhaus, M.: Interactive front analysis of storm 720 

Friederike using the open-source meteorological 3-D visualization framework “Met. 3D,” TIB AV Portal [video suppl.], 

https://doi.org/10.5446/57944, 2022c. 

Berry, G., Reeder, M. J., and Jakob, C.: A global climatology of atmospheric fronts, Geophys. Res. Lett., 38, 1–5, 

https://doi.org/10.1029/2010GL046451, 2011. 

BINDON, H. H.: RELATION BETWEEN EQUIVALENT POTENTIAL TEMPERATURE AND WET-BULB POTENTIAL 725 

TEMPERATURE, Mon. Weather Rev., 68, 243–245, https://doi.org/10.1175/1520-

0493(1940)068<0243:RBEPTA>2.0.CO;2, 1940. 

Bjerknes, J.: On the structure of moving average processes, 95–99, 1919. 

Blanchard, N., Pantillon, F., Chaboureau, J.-P., and Delanoë, J.: Organization of convective ascents in a warm conveyor belt, 

Weather Clim. Dyn., 1, 617–634, https://doi.org/10.5194/wcd-1-617-2020, 2020. 730 

Bösiger, L., Sprenger, M., Boettcher, M., Joos, H., and Günther, T.: Integration-based extraction and visualization of jet stream 



35 
 

cores, Geosci. Model Dev., 15, 1079–1096, https://doi.org/10.5194/gmd-15-1079-2022, 2022. 

Browning, K. A. and Monk, G. A.: A Simple Model for the Synoptic Analysis of Cold Fronts, Q. J. R. Meteorol. Soc., 108, 

435–452, https://doi.org/10.1002/qj.49710845609, 1982. 

Browning, K. A. and Roberts, N. M.: Variation of frontal and precipitation structure along a cold front, Q. J. R. Meteorol. Soc., 735 

122, 1845–1872, https://doi.org/10.1002/qj.49712253606, 1996. 

Choudhary, A. and Voigt, A.: ICON simulations of cloud diabatic processes in the warm conveyor belt of North Atlantic 

cyclone Vladiana, 2022. 

Davies, E. R.: Computer Vision, Principles, Algorithms, Applications, Learning, Fifth Edit., Academic Press, 900 pp., 2017. 

Doms, G. and Baldauf, M.: A Description of the Nonhydrostatic Regional COSMO-Model. Part I: Dynamics and Numerics, 740 

Report COSMO-Model 5.05, Deutscher Wetterdienst, https://doi.org/10.5676/DWD_pub/nwv/cosmo-doc_5.05_I, 2018. 

Eckhardt, S., Stohl, A., Wernli, H., James, P., Forster, C., and Spichtinger, N.: A 15-Year Climatology of Warm Conveyor 

Belts, J. Clim., 17, 218–237, https://doi.org/10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2, 2004. 

Eisenstein, L., Pantillon, F., and Knippertz, P.: Dynamics of sting-jet storm Egon over continental Europe: Impact of surface 

properties and model resolution, Q. J. R. Meteorol. Soc., 146, 186–210, https://doi.org/10.1002/qj.3666, 2020. 745 

Etling, D.: Theoretische Meteorologie Eine Einführung, Springer-Verlag Berlin Heidelberg, 376 pp., 2008. 

Fischer, C., Fink, A. H., Schömer, E., van der Linden, R., Maier-Gerber, M., Rautenhaus, M., and Riemer, M.: A novel method 

for objective identification of 3-D potential vorticity anomalies, Geosci. Model Dev., 15, 4447–4468, 

https://doi.org/10.5194/gmd-15-4447-2022, 2022. 

Geerts, B., Damiani, R., and Haimov, S.: Finescale Vertical Structure of a Cold Front as Revealed by an Airborne Doppler 750 

Radar, Mon. Weather Rev., 134, 251–271, https://doi.org/10.1175/MWR3056.1, 2006. 

Front - Glossary of Meteorology: https://glossary.ametsoc.org/wiki/Front, last access: 28 February 2022. 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, 

D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, 

G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., 755 

Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., 

Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999–2049, 

https://doi.org/10.1002/qj.3803, 2020. 

Hewson, T. D.: Objective fronts, Meteorol. Appl., 5, S1350482798000553, https://doi.org/10.1017/S1350482798000553, 

1998. 760 

Hewson, T. D. and Titley, H. A.: Objective identification, typing and tracking of the complete life-cycles of cyclonic features 

at high spatial resolution, Meteorol. Appl., 17, 355–381, https://doi.org/10.1002/met.204, 2010. 

Huber-Pock, F. and Kress, C.: An operational model of objective frontal analysis based on ECMWF products, Meteorol. 

Atmos. Phys., 40, 170–180, https://doi.org/10.1007/BF01032457, 1989. 

Jenkner, J., Sprenger, M., Schwenk, I., Schwierz, C., Dierer, S., and Leuenberger, D.: Detection and climatology of fronts in 765 



36 
 

a high-resolution model reanalysis over the Alps, Meteorol. Appl., 17, 1–18, https://doi.org/10.1002/met.142, 2009. 

Kern, M., Hewson, T. D., Sadlo, F., Westermann, R., and Rautenhaus, M.: Robust Detection and Visualization of Jet-Stream 

Core Lines in Atmospheric Flow, IEEE Trans. Vis. Comput. Graph., 24, 893–902, 

https://doi.org/10.1109/TVCG.2017.2743989, 2018. 

Kern, M., Hewson, T. D., Schäfler, A., Westermann, R., and Rautenhaus, M.: Interactive 3D Visual Analysis of Atmospheric 770 

Fronts, IEEE Trans. Vis. Comput. Graph., 25, 1080–1090, https://doi.org/10.1109/TVCG.2018.2864806, 2019. 

Keyser, D. and Shapiro, M. A.: A Review of the Structure and Dynamics of Upper-Level Frontal Zones, Mon. Weather Rev., 

114, 452–499, https://doi.org/10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2, 1986. 

Kovesi, P.: Fast almost-Gaussian filtering, Proc. - 2010 Digit. Image Comput. Tech. Appl. DICTA 2010, 121–125, 

https://doi.org/10.1109/DICTA.2010.30, 2010. 775 

Locatelli, J. D., Martin, J. E., and Hobbs, P. V.: A wide cold-frontal rainband and its relationship to frontal topography, Q. J. 

R. Meteorol. Soc., 120, 259–275, https://doi.org/10.1002/qj.49712051603, 1994. 

Locatelli, J. D., Stoelinga, M. T., and Hobbs, P. V.: Re-examination of the split cold front in the British Isles cyclone of 17 

July 1980, Q. J. R. Meteorol. Soc., 131, 3167–3181, https://doi.org/10.1256/qj.04.157, 2005. 

Lorensen, W. E. and Cline, H. E.: Marching cubes: A high resolution 3D surface construction algorithm, in: Proceedings of 780 

the 14th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’87, 163–169, 

https://doi.org/10.1145/37401.37422, 1987. 

Madonna, E., Wernli, H., Joos, H., and Martius, O.: Warm Conveyor Belts in the ERA-Interim Dataset (1979–2010). Part I: 

Climatology and Potential Vorticity Evolution, J. Clim., 27, 3–26, https://doi.org/10.1175/JCLI-D-12-00720.1, 2014. 

Martínez-Alvarado, O., Baker, L. H., Gray, S. L., Methven, J., and Plant, R. S.: Distinguishing the Cold Conveyor Belt and 785 

Sting Jet Airstreams in an Intense Extratropical Cyclone, Mon. Weather Rev., 142, 2571–2595, https://doi.org/10.1175/MWR-

D-13-00348.1, 2014. 

Met.3D – Documentation: User Documentation: https://collaboration.cen.uni-hamburg.de/display/Met3D/, last access: 15 

November 2022. 

Met.3D – Homepage: Interactive 3D visualization of meteorological simulations: https://met3d.wavestoweather.de, last 790 

access: 15 November 2022. 

Met.3D – Code Repository: https://gitlab.com/wxmetvis/met.3d, last access: 15 November 2022. 

Meyer, M., Polkova, I., Modali, K. R., Schaffer, L., Baehr, J., Olbrich, S., and Rautenhaus, M.: Interactive 3-D visual analysis 

of ERA5 data: improving diagnostic indices for marine cold air outbreaks and polar lows, Weather Clim. Dyn., 2, 867–891, 

https://doi.org/10.5194/wcd-2-867-2021, 2021. 795 

Miltenberger, A. K., Pfahl, S., and Wernli, H.: An online trajectory module (version 1.0) for the nonhydrostatic numerical 

weather prediction model COSMO, Geosci. Model Dev., 6, 1989–2004, https://doi.org/10.5194/gmd-6-1989-2013, 2013. 

Neiman, P. J., Shapiro, M. A., and Fedor, L. S.: The Life Cycle of an Extratropical Marine Cyclone. Part II: Mesoscale 

Structure and Diagnostics, Mon. Weather Rev., 121, 2177–2199, https://doi.org/10.1175/1520-



37 
 

0493(1993)121<2177:TLCOAE>2.0.CO;2, 1993. 800 

Niebler, S., Miltenberger, A., Schmidt, B., and Spichtinger, P.: Automated detection and classification of synoptic-scale fronts 

from atmospheric data grids, Weather Clim. Dyn., 3, 113–137, https://doi.org/10.5194/wcd-3-113-2022, 2022. 

Oertel, A., Boettcher, M., Joos, H., Sprenger, M., Konow, H., Hagen, M., and Wernli, H.: Convective activity in an 

extratropical cyclone and its warm conveyor belt – a case-study combining observations and a convection-permitting model 

simulation, Q. J. R. Meteorol. Soc., 145, 1406–1426, https://doi.org/10.1002/qj.3500, 2019. 805 

Oertel, A., Boettcher, M., Joos, H., Sprenger, M., and Wernli, H.: Potential vorticity structure of embedded convection in a 

warm conveyor belt and its relevance for large-scale dynamics, Weather Clim. Dyn., 1, 127–153, https://doi.org/10.5194/wcd-

1-127-2020, 2020. 

OpenMP Architecture Review Board: OpenMP Application Programming Interface Version 4.5, http://www.openmp.org/, 

2015. 810 

Orf, L., Wilhelmson, R., Lee, B., Finley, C., and Houston, A.: Evolution of a Long-Track Violent Tornado within a Simulated 

Supercell, Bull. Am. Meteorol. Soc., 98, 45–68, https://doi.org/10.1175/BAMS-D-15-00073.1, 2017. 

Rasp, S., Selz, T., and Craig, G. C.: Convective and slantwise trajectory ascent in convection-permitting simulations of 

midlatitude cyclones, Mon. Weather Rev., 144, 3961–3976, https://doi.org/10.1175/MWR-D-16-0112.1, 2016. 

Rautenhaus, M., Kern, M., Schäfler, A., and Westermann, R.: Three-dimensional visualization of ensemble weather forecasts 815 

- Part 1: The visualization tool Met.3D (version 1.0), Geosci. Model Dev., 8, 2329–2353, https://doi.org/10.5194/gmd-8-2329-

2015, 2015a. 

Rautenhaus, M., Grams, C. M., Schäfler, A., and Westermann, R.: Three-dimensional visualization of ensemble weather 

forecasts - Part 2: Forecasting warm conveyor belt situations for aircraft-based field campaigns, Geosci. Model Dev., 8, 2355–

2377, https://doi.org/10.5194/gmd-8-2355-2015, 2015b. 820 

Rautenhaus, M., Bottinger, M., Siemen, S., Hoffman, R., Kirby, R. M., Mirzargar, M., Rober, N., and Westermann, R.: 

Visualization in Meteorology—A Survey of Techniques and Tools for Data Analysis Tasks, IEEE Trans. Vis. Comput. Graph., 

24, 3268–3296, https://doi.org/10.1109/TVCG.2017.2779501, 2018. 

Renard, R. J. and Clarke, L. C.: Experiments in Numerical Objective Frontal Analysis, Mon. Weather Rev., 93, 547–556, 

https://doi.org/10.1175/1520-0493(1965)093<0547:einofa>2.3.co;2, 1965. 825 

Sanders, F. and Doswell, C. A.: A Case for Detailed Surface Analysis, Bull. Am. Meteorol. Soc., 76, 505–521, 

https://doi.org/10.1175/1520-0477(1995)076<0505:ACFDSA>2.0.CO;2, 1995. 

Schäfler, A., Craig, G. C., Wernli, H., Arbogast, P., Doyle, J. D., Mctaggart-Cowan, R., Methven, J., Rivière, G., Ament, F., 

Boettcher, M., Bramberger, M., Cazenave, Q., Cotton, R., Crewell, S., Delanoë, J., DörnbrAck, A., Ehrlich, A., Ewald, F., Fix, 

A., Grams, C. M., Gray, S. L., Grob, H., Groß, S., Hagen, M., Harvey, B., Hirsch, L., Jacob, M., Kölling, T., Konow, H., 830 

Lemmerz, C., Lux, O., Magnusson, L., Mayer, B., Mech, M., Moore, R., Pelon, J., Quinting, J., Rahm, S., Rapp, M., 

Rautenhaus, M., Reitebuch, O., Reynolds, C. A., Sodemann, H., Spengler, T., Vaughan, G., Wendisch, M., Wirth, M., 

Witschas, B., Wolf, K., and Zinner, T.: The north atlantic waveguide and downstream impact experiment, Bull. Am. Meteorol. 



38 
 

Soc., 99, 1607–1637, https://doi.org/10.1175/BAMS-D-17-0003.1, 2018. 

Schemm, S., Sprenger, M., and Wernli, H.: When during Their Life Cycle Are Extratropical Cyclones Attended by Fronts?, 835 

Bull. Am. Meteorol. Soc., 99, 149–165, https://doi.org/10.1175/BAMS-D-16-0261.1, 2018. 

Schultz, D. M. and Vaughan, G.: Occluded Fronts and the Occlusion Process: A Fresh Look at Conventional Wisdom, Bull. 

Am. Meteorol. Soc., 92, 443–466, https://doi.org/10.1175/2010BAMS3057.1, 2011. 

Schultz, D. M., Keyser, D., and Bosart, L. F.: The Effect of Large-Scale Flow on Low-Level Frontal Structure and Evolution 

in Midlatitude Cyclones, Mon. Weather Rev., 126, 1767–1791, https://doi.org/10.1175/1520-840 

0493(1998)126<1767:TEOLSF>2.0.CO;2, 1998. 

Shapiro, M. A. and Keyser, D.: Fronts, Jet Streams and the Tropopause, 167–191, https://doi.org/10.1007/978-1-944970-33-

8_10, 1990. 

Stull, R.: Practical Meteorology: An Algebra-based Survey of Atmospheric Science, University of British Columbia, 2017. 

Thomas, C. M. and Schultz, D. M.: Global climatologies of fronts, airmass boundaries, and airstream boundaries: Why the 845 

definition of “‘front’” matters, Mon. Weather Rev., 147, 691–717, https://doi.org/10.1175/MWR-D-18-0289.1, 2019a. 

Thomas, C. M. and Schultz, D. M.: What are the best thermodynamic quantity and function to define a front in gridded model 

output?, Bull. Am. Meteorol. Soc., 100, 873–896, https://doi.org/10.1175/BAMS-D-18-0137.1, 2019b. 

Wandel, J., Wisotzky, C., Pantillon, F., Mühr, B., Becker, F., Friederich, D., Straub, J., and Mohr, S.: Wintersturm 

FRIEDERIKE, Center for Disaster Management and Risk Reduction Technology, KIT, 1–12 pp., 2018. 850 

  



39 
 

Appendix A 

 
Figure A 1. Temporal evolution of 3-D frontal structures of Egon (12 to 13 January 2017), as detected in ERA-5 reanalysis data. (a) 
Different cyclone stages encountered along the cyclone track. Yellow poles mark centres of surface low, front colours distinguish 855 
time steps. (b) The six stages from (a), approximately centred around the cyclone centres for comparison of frontal structures. 
Contour lines show surface pressure (spacing 2 hPa).  
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Figure A 2. Temporal evolution of 3-D frontal structures in Figure 10, detected from (left) ECMWF analysis and (right) COSMO 860 
analysis. Contour lines projected onto the surface show upward air velocity at 700 hPa (orange=upwards, black=zero, 
green=downwards, contour line spacing of 0.02 m s-1). The yellow pole marks the centre of the convective updraft at 06:00 UTC, red 
arrow points northward.  


