
Authors’ responses (GMD-2022-276) 

The authors would like to thank the editor for your precious time and invaluable comments. 

The corresponding changes and refinements are highlighted in yellow in the revised paper and 

are also summarized in our responses below. Authors’ responses are in blue. Editor’s comments 

are in black. When the manuscript in cited, it is shown in italics. 

 

Response to RC1 

 

The manuscript titled 'Key factors for quantitative precipitation nowcasting using ground 

weather radar data based on deep learning' presented a thorough analysis of different schemes 

to approach precipitation nowcasting problems using deep-learning techniques. The different 

schemes were tested using ground weather radar data over South Korea. In recent days, 

multiple works have explored the application of deep-learning algorithms for quantitative 

precipitation forecasting. Exploring endless options and schemes is necessary to understand 

better the feasibility of using these methods in an operational scenario. I appreciate the authors' 

effort in conducting a systematic analysis and discussions. Some parts of the manuscripts are 

still hard to understand and not very clear. 

è The authors are very appreciative of your valuable time and effort in helping us 

improve our study. Based on your comments, we have updated our manuscript. 

 

Major comments: 

1. Data imbalance: The major problem in precipitation nowcasting is the lack of representation 

of intense precipitation due to data imbalance. Did the authors try to consider this problem in 

their analysis?  

è In our original manuscript, data imbalance was not considered, as there were already 

many factors to compare. However, since data imbalance does matter in precipitation 

nowcasting, we addressed it in the revised manuscript. To investigate the effect of 

several trials to cope with data imbalance, we examined balanced loss functions from 

previous studies (Shi et al., 2017; Franch et al., 2020; Xiong et al., 2021; Kim and 

Hong). A balanced loss function is an approach that sets different weights for different 

intensities. Its definition and equation are described in Section 2.3 and Equation 3. 

Furthermore, we included the histogram of precipitation and corresponding weights 

for balanced loss in Figure 2 to illustrate the data imbalance and its anticipated impact.  

2.3 Balanced loss function  
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The loss function guides the direct optimization of DL models. The basic loss function in DL-

QPN is MSE. By summing up the error of each pixel, it produces a single value for a given 

prediction image. As most valid precipitation pixels are severely skewed in weak rainfall 

intensity (about ≤ 5 mm/h), calculating MSE (Equation 1) with a uniform weight for all pixels 

might result in an underestimation problem. Shi et al. (2017) suggested the BMSE to mitigate 

the sample imbalance by using different weights for precipitation intensity (Equation 2).   
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where y is the reference value, and y ̂ represents the predicted value and N is the number of 

all valid pixels within the radar area. Figure 2 shows the distribution of rainfall intensity and 

weights for BMSE. 

 

 
Figure 1. Mean distribution of rainfall intensity for the summers of 2020-2022 in a pixel 

window of 400×400. The blue bar represents the histogram of rainfall intensity. The green line 

shows the cumulative distribution function. The red line represents the balanced weights for 

mitigating data imbalances, as suggested by Shi et al. (2017). 
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è When comparing the BMSE, it appears to reduce errors in higher intensity compared 

to the original MSE. However, it also tends to overestimate at low levels, 

demonstrating that the overall estimation is generally higher than the original. To 

address the problem caused by data imbalance, we also tested an ensemble of original 

and Balanced MSEs. The ensemble results exhibit significant improvements in 

evaluation results, as summarized in Figure 5. 
 

 

Figure 5. Quantitative performance over summers of 2020-2022 of lead times of 30 min, 1 h, and 2 h. Please 

refer to Table 2 for each scheme. The numbers after metrics indicate the thresholds of precipitation for 

evaluation. 

 

2. Data: Do the authors consider datasets with overlap when training is done? If t1-tn is 
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used as input and tn+1 to tn+m is the forecast, is tn+1 - tn+n used as input for another sample? 

è Yes, we noticed that there is overlap when the stride of the time step is shorter than the 

maximum lead time. In our literature review, we found lack of explicit discussion or 

explanation of how this overlap was handled. However, in response to your comment, 

we increased the stride time step from 10 minutes to 30 minutes to reduce excessive 

overlap among samples. Additionally, overlapped data in the same batch might lead to 

data collinearity and decrease model generalization. We believe that this approach will 

address the sampling issue and potential problems from data overlap. 

 

3. Equations 2 and 3: The Mean Absolute error and mean bias equation are not 

normalized. Missing 1/n 

è Thank you for pointing this out. We have corrected the errors in the Equations. 

 

4. Line 271 and Section 4.2.3: Adding a dummy zero variable to input causes sparsity. 

Adding white noise is a better idea. But, I feel that the entire part (Section 4.2.3) does not add 

much to the paper. It just lengthens the paper. I will suggest the authors remove that part.  

è Several ways exist to check model sensitivity, and our approach might not be the most 

optimal. Following your suggestion, we removed the sensitivity analysis and focused 

on other discussions. 

 

5. Table 4 and others: Persistence is not explained previously in the manuscript. 

è Thank you for your comment. We added it in lines 282-283. 

The n-hour persistence model represents a straightforward approach in which the current 

precipitation is assumed to persist without any change for the next n hours. 

 

Minor comments: 

Figure 2: Why is dBZ converted to rain rate? Why not just train the model for reflectivity 

values?  

è As the final goal of QPN is to determine the amount of precipitation, we used the unit 

of mm/h. However, forecasting with dBZ is also an active research area. We discuss 

the options for forecasting using reflectivity or precipitation intensity in Section 5.3. 

(Line 459-464) 

As precipitation is calculated from radar reflectivity, direct prediction of the original signal 
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can also be considered. Some previous studies utilized radar reflectivity in DL-QPN (Bonnet 

et al., 2020; Lepetit et al., 2022; Albu et al., 2022; Han et al., 2022). To our knowledge, there 

has been few studies comparing radar reflectivity and precipitation intensity directly in DL-

QPN. In this study, we chose to forecast precipitation intensity because our final interest is in 

the strength of the precipitation. However, as the precipitation intensity can be converted from 

predicted reflectivity, further investigation is needed in the future to find a better skill score. 

 

Figure 3: It is better to mark the study region on the map.  

è Thank you for your comment. We have updated Figure 3 to only display the study area 

with valid radar coverage and the position of each radar. 

 

Figure 2 Weather radar over the Korean Peninsula used in this study. The grey shadow at the boundary 

indicates the area outside of valid radar coverage. The locations of the eleven weather radars are represented 

by red dots.. 

 

Line 229: Why is leaky relu not used for U-net and only used for ConvLSTM?  

è As we employed the original models, we retained the model design, including their 

activation functions. 
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Table 2: Why is SU-120-60 or RU-120-60 not considered for analysis? Please justify this in 

the text. 

è Since SU-120-120 and RU-120-120 indicate the maximum lead time, they encompass 

SU-120-60 and RU-120-60, respectively. However, this part was omitted in the revised 

manuscript, as we excluded the model design from key factors. 

 

Table 4: Is there a reason why the best bias value is not highlighted? Just curious.  

è Mean bias can signal the overall tendency of underestimation or overestimation. When 
the magnitude of mean bias is near zero, it may indicate better results if other metrics 
are similar or improved. However, we cannot assert an optimal mean bias, as 
substantial positive or negative residuals may result in a zero-like mean bias. We have 
included a sentence to clarify this. 

(Line 301) 

Zero bias does not inherently signify superior performance 

 

Figure 8 and 10: The thresholds should be 5 mm/h. Please check the captions. 

è Thank you for your comment. We have updated the time-series figures, which can now 

be found in Figures 6 and 7 in the revised version. 
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Figure 6. Comparison of CSI performance for the case of heavy rainfall over South Korea from 7th to 8th 

August 2020 with the 1 mm/h threshold. Refer to Table 2 for scheme names. The bottom black line represents 

the ratio of precipitation pixels > 1 mm/h for each radar scene. 
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Figure 7. Comparison of CSI performance for the case of heavy rainfall over South Korea from 7th to 8th August 2020 

with the 10 mm/h threshold. Refer to Table 2 for scheme names. The bottom black line represents the ratio of precipitation 

pixels > 10 mm/h for each radar scene. 
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Response to RC2 

 

This paper compares different ML configurations for precipitation nowcasting. All the ML 

algorithms compared are deep learning (DL) algorithms. The aim of the paper is to figure out 

the best configuration and provide some guidelines for the best modeling strategy. I think this 

goal project is somewhat ill-defined just because there are so many different choices available, 

and the results of the study are quite inconclusive (discussed below in specific comments); but 

still it is important to explore these choices systematically as done in the paper. 

è The authors sincerely appreciate your valuable time and effort in providing 

constructive comments. Based on your suggestions, we have conducted intensive 

modeling and analysis, which took more time and effort than our original manuscript. 

By striving to address the suggested comments appropriately, we believe that this 

paper has been significantly improved in this time, resulting in more robust findings. 

 

There are some major issues with the methodology followed in the paper. The DL models 

trained using the ADAM optimizer can show very different performances based on random 

initialization – this is what I have seen in the streamflow simulation applications. Therefore, 

many different models must be trained using different initializations (i.e., different random 

seeds); an average of the models can be taken as the final model. It does not seem like the 

authors have followed this procedure; in which case, the results reported are unlikely to be 

robust. So, this needs to be taken care of before the paper can be considered for publication. 

è As you pointed out, the randomness should be considered in DL-QPN to assure robust 

prediction. We overlooked this in many previous studies. Based on your comment, we 

ran each scheme five times and aggregated them to generate the final results with 

random seeds of 0, 999, 2023, 44919, and 2022276. With 12 initial schemes, a total of 

60 runs were conducted, which was very time and resource-intensive. Since the 

number of runs in DL training increased fivefold, we changed the training samples 

from all seasons to only summers and increased the total period from 2011-2020 to 

2012-2022 by adding newly collected data. This was described in lines 243-257 and 

Table 2. 

 

(Lines 243-257) 

In DL models, there are various aspects that contain randomness, such as random weight 
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initialization or a random mini batch from the entire samples. To evaluate the model 

performance more reliably, we ran each scheme 5 times with different random seeds of 0, 999, 

2023, 44919, and 2022276. Starting from combining DL models (U-Net or ConvLSTM), loss 

functions (MSE or BMSE), and input sequence length (1 h, 2 h, or 3 h), total of 12 initial 

schemes were generated before ensemble averaging. As each initial scheme had 5 runs with 

different random scenes, a total of 60 runs for training DL models were conducted in this study 

(Table 2 and Figure 4). By aggregating 5 members for each scheme, each scheme can assure 

more stability than a single run. For example, UM1 stands for the average of U-Net trained by 

MSE loss with an input sequence of 1 h for 5 different random seeds. The average of each 

scheme with different input sequence lengths was again aggregated; for example, UM is the 

ensemble mean of UM1, UM2, and UM3. Consequently, UM is the mean of the total 15 runs, 

same is true for UB, CM, and CB. The remaining ensemble processes are similar to those in 

Table 2. 
 

Table 2. Specifications of the schemes designed in this study with their abbreviations. 'U' stands for U-Net, 'C' 
stands for ConvLSTM, and 'P' is for pySTEPS. 'M' and 'B' indicate MSE and BMSE loss functions, 
respectively. The following number is the length of the input past sequence in hours. The number of runs 
indicates that there are n total members to yield an average for each scheme with different random seeds to 
ensure stability and representativeness. 

Abbreviation Model Loss Input sequence # of run 

UM1 U-Net MSE 1h 5 

UM2 U-Net MSE 2h 5 

UM3 U-Net MSE 3h 5 

UM Ensemble averaging (UM1, UM2, UM3) 

UB1 U-Net BMSE 1h 5 

UB2 U-Net BMSE 2h 5 

UB3 U-Net BMSE 3h 5 

UB Ensemble averaging (UB1, UB2, UB3) 

U Ensemble averaging (UM, UC) 

CM1 ConvLSTM MSE 1h 5 

CM2 ConvLSTM MSE 2h 5 

CM3 ConvLSTM MSE 3h 5 

CM Ensemble averaging (CM1, CM2, CM3) 

CB1 ConvLSTM BMSE 1h 5 

CB2 ConvLSTM BMSE 2h 5 

CB3 ConvLSTM BMSE 3h 5 

CB Ensemble averaging (CB1, CB2, CB3) 
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C Ensemble averaging (CM, CB) 

P1 pySTEPS - 1h 1 

P2 pySTEPS - 2h 1 

P3 pySTEPS - 3h 1 

P Ensemble averaging (P1, P2, P3) 

UC Ensemble averaging (U, C) 

UCP Ensemble averaging (U, C, P) 

 

 

è Based on the idea of aggregation with multiple runs, we extended the experiments of 

ensemble averaging of different schemes. As the ensemble showed more significant 

results than initially suggested factors, we added ensemble as one of the four critical 

key factors. This was described in Section 2.4 and Figure 4. 

2.4 Ensemble approach 

Ensemble approaches have been adopted as the standard in NWP by combining multiple 

different members to produce robust results. Despite their potential, ensemble approaches 

have not been actively adopted in DL-QPN. The ensembling of multiple schemes can bring 

enhanced and more stable performance than a single model in various evaluation aspects. 

Ensemble can be executed with simple aggregation with equal weights, or it can employ 

another machine learning model to learn the optimal way of combining each prediction, such 

as a stacking ensemble (Cho et al., 2020; Franch et al., 2020). The primary interest of this 

study is how the results can be improved through ensemble. Hence, only a simple ensemble 

was done by averaging results from multiple schemes with same weight. 
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Figure 4. The infographic for overall flowchart in this study. 'U' stands for U-Net, 'C' stands for ConvLSTM, 

and 'P' is for pySTEPS. 'M' and 'B' indicate MSE and BMSE loss functions, respectively. The following 

number is the length of the input past sequence in hours. 

 

Further, in the multiple prediction case (MU), one expects that the performance will be worse 

than the single prediction scenario because in the former the model tries to minimize prediction 

errors at multiple time-steps. But the advantage of using MU design is that it is trying to capture 

more information from the data and the synergy between the information at different future 

time-steps helps improve the prediction. I wonder if it is possible to improve the predictions 

from the MU by adding small layers at the head of the MU where each layer will be dedicated 

to a single time-step. This can also be seen as the post-processing of MU predictions. This 

might be helpful in reducing some of the biases that are shown in Table 4. 

è When designing the U-Net model for time-series forecasting, the time dimension can 

generally be treated in the channel axis. In our pilot test, there were several trials to 

compare the optimal structure among the variants of U-Net. We tested the multi-head 

structure for different time steps as you suggested, as well as the same structure for 

each lead time. However, in our preliminary study, we could not find any improvement 

over the original U-Net structure from RainNet v1.0 (Ayzel et al., 2020). Hence, we 

adopted the U-Net structure without testing others in our main experiment. 
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The authors have compared their results with the ‘persistence’ prediction. First of all, 

persistence has not been defined anywhere in the paper. Assuming that it implies that the 

forecasted value is the same as at the previous time-step, the reported results are not much 

better than the persistence (both CSI and MAE). Which raises the question if the DL models 

are actually extracting any significant information from the data? In this regard, why stop at 

the previous 120 minutes of past data as input? Why not go further in the past; ConvLSTM 

could extract useful information from a long past sequence. 

è The missing definition of persistence was also pointed out in RC1. We added its 

definition in line 282-283. 

(Line 282-283) 

The n-hour persistence model represents a straightforward approach in which the current 

precipitation is assumed to persist without any change for the next n hours. 

 

è To test various time steps, we extended the length of the input sequence to up to 3 

hours. When the maximum lead time is set at 2 hours, three input sequence lengths 

(i.e., 1h, 2h, and 3h) can show the effect of shorter, same, and longer input lengths 

compared to output. The updated input sequence is described in the manuscript. 

Consequently, the scheme configuration was changed, as shown in Table 2. 

(Lines 147-149) 

To examine the impact of the input sequence length, we compared radar sequences of 1 h, 2 h, 

and 3 h against 12 future radar scenes for 2 h. This sets up a ratio of input-output sequences 

at 1:2, 1:1, and 3:2. 

 

è In the results, there was a weak tendency of performance improvement with a longer 

input sequence in terms of MSE and Balanced MSE (BMSE) in both 1h (Table 4) and 

2h (Table 5) lead times. The effect of input sequence length was covered in the revised 

manuscript. 

Table 4. Quantitative performance over summers of 2020-2022 for the 1 h prediction. Please refer to Table 2 
for each scheme. The numbers after metrics indicate the thresholds of precipitation for evaluation. Upward 
and downward arrows indicate that the metric is better when larger and smaller values are better, respectively. 

Scheme MSE↓ BMSE↓ Bias1 Bias5 Bias10 CSI1↑ CSI5↑ CSI10↑ 

UM1 10.22 206.43 -0.80 -3.00 -7.93 0.60 0.41 0.22 

UM2 9.98 200.15 -0.80 -3.02 -7.96 0.59 0.40 0.22 
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UM3 9.73 192.80 -0.66 -2.75 -7.58 0.59 0.40 0.22 

UM 9.97 203.99 -0.80 -3.11 -8.21 0.61 0.42 0.22 

UB1 15.58 151.96 2.62 3.75 3.78 0.51 0.36 0.25 

UB2 15.27 148.74 2.52 3.62 3.50 0.49 0.35 0.25 

UB3 14.56 150.27 2.22 3.15 2.73 0.48 0.35 0.24 

UB 12.87 144.76 2.39 3.25 2.44 0.48 0.37 0.28 

U 10.27 168.64 1.01 0.50 -2.62 0.53 0.42 0.28 

CM1 12.28 251.25 -0.72 -3.87 -11.33 0.51 0.31 0.10 

CM2 11.87 242.57 -0.79 -4.09 -11.24 0.51 0.31 0.11 

CM3 11.60 235.31 -0.77 -4.14 -11.15 0.51 0.30 0.11 

CM 12.09 249.31 -0.80 -4.12 -11.49 0.52 0.32 0.11 

CB1 25.52 171.82 4.08 6.15 7.33 0.32 0.23 0.18 

CB2 24.67 165.02 3.58 5.99 7.12 0.29 0.23 0.18 

CB3 25.57 159.65 3.88 6.25 7.59 0.31 0.23 0.17 

CB 24.79 168.68 3.89 6.03 7.11 0.31 0.24 0.18 

C 14.79 196.83 2.06 2.42 -0.36 0.37 0.30 0.20 

UC 11.72 180.08 1.52 1.21 -2.34 0.43 0.37 0.25 

P1 19.18 291.18 -0.19 -0.33 -0.62 0.52 0.35 0.22 

P2 18.90 284.38 -0.16 -0.29 -0.55 0.52 0.34 0.22 

P3 18.73 279.51 -0.14 -0.26 -0.51 0.52 0.34 0.21 

P 16.18 252.12 -0.34 -0.76 -1.41 0.47 0.31 0.19 

UCP 11.04 191.04 0.87 -0.08 -4.22 0.44 0.38 0.26 

Persistence 21.61 267.60 0.15 0.34 0.55 0.47 0.27 0.16 

è  
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Table 5. Quantitative performance over summers of 2020-2022 for the 2 h prediction. Please refer to Table 2 
for each scheme. The numbers after metrics indicate the thresholds of precipitation for evaluation. Upward 
and downward arrows indicate that the metric is better when larger and smaller values are better, respectively. 

Scheme MSE↓ BMSE↓ Bias1 Bias5 Bias10 CSI1↑ CSI5↑ CSI10↑ 

UM1 12.62 257.45 -1.75 -5.63 -13.00 0.49 0.23 0.07 

UM2 12.29 249.03 -1.75 -5.59 -12.91 0.48 0.23 0.07 

UM3 12.03 242.30 -1.63 -5.35 -12.52 0.48 0.23 0.07 

UM 12.27 254.84 -1.78 -6.09 -13.69 0.51 0.24 0.06 

UB1 18.04 208.84 1.80 2.21 0.61 0.38 0.26 0.14 

UB2  19.07 196.56 2.31 3.25 2.66 0.39 0.26 0.15 

UB3 18.52 197.14 2.12 2.90 1.95 0.39 0.25 0.14 

UB 14.83 192.23 1.93 2.30 -0.36 0.37 0.29 0.17 

U 12.20 218.85 0.50 -1.25 -7.61 0.44 0.30 0.13 

C1M 13.90 281.72 -1.00 -7.06 -16.73 0.40 0.12 0.00 

C2M 13.50 273.02 -1.05 -7.06 -16.53 0.41 0.12 0.00 

C3M 13.23 266.75 -1.04 -7.06 -15.95 0.41 0.12 0.01 

CM 13.82 281.01 -1.09 -7.22 -16.55 0.41 0.12 0.01 

C1B 29.79 198.82 3.05 6.04 6.82 0.16 0.17 0.12 

C2B 29.04 190.89 3.01 6.00 6.91 0.16 0.18 0.12 

C3B 29.74 185.57 3.19 6.23 7.34 0.17 0.17 0.12 

CB 29.23 196.31 3.01 5.98 6.78 0.16 0.18 0.13 

C 16.99 227.21 1.92 2.16 -3.46 0.27 0.22 0.10 

UC 13.64 220.93 1.30 0.18 -7.40 0.33 0.28 0.11 

P1 24.33 337.08 -0.31 -0.46 -0.71 0.39 0.21 0.11 

P2 23.87 327.89 -0.27 -0.40 -0.62 0.38 0.21 0.11 

P3 23.58 321.85 -0.24 -0.37 -0.59 0.38 0.20 0.11 

P 19.41 288.13 -0.52 -1.10 -2.03 0.33 0.18 0.10 

UPC 13.26 240.00 0.49 -1.69 -9.33 0.35 0.27 0.11 

Persistence 25.39 288.91 0.25 0.60 1.03 0.37 0.19 0.10 

 

(Lines 21-22 in Abstract) 

There was a small trend where a longer input time (3 h) gave better results in terms of MSE 

and BMSE, but this effect was less significant than other factors. 

 

(Lines 283-290 in Section 4.1) 

A longer input sequence length generally yields lower MSE and BMSE for all schemes, with 

specific improvements seen for UM and CM in both prediction lead times. This trend can also 

be observed with UB and CB and, interestingly, in the pySTEPS non-DL model. P3 

demonstrated the lowest MSE and BMSE across all P1-P3 schemes in both prediction periods, 
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suggesting that a longer input sequence can reduce both general capitation (MSE) and high-

intensity weighted metrics (BMSE). However, no significant patterns were discernible in other 

metrics, such as mean bias or CSI, across all schemes with varying input sequence lengths. As 

the ensemble mean revealed similar results to individual members with different input sequence 

lengths, subsequent analyses solely focused on aggregated results (i.e., UM, UB, CM, and CB), 

as illustrated in Figure 5. 

 

(Lines 500-502 in Conclusion) 

In general, there was a weak tendency for longer past sequence lengths to yield lower MSE 

and BMSE for both DL models, but there was little difference in terms of the CSI. 
 

 

Specific comments: 

Line 70: Why are RNNs unstable? Explain. 

è In Ayzel et al. (2020), they reported that RNNs are sometimes brittle, and CNNs are 

more stable, citing Bai et al. (2018) and Gehring et al. (2017). We checked the 

suggested references and found these supporting parts. The corresponding texts cited 

references in Ayzel et al. (2020) as follows: 

- Bai et al. (2018):  

“However, RNNs have limitations in processing long-term dependencies due to 

the vanishing gradient problem and are not well-suited for parallelization.” 

- Gehgring et al. (2017): 

“Compared to recurrent models, computations over all elements can be fully 

parallelized during training and optimization is easier since the number of non-

linearities is fixed and independent of the input length” 

è As we checked the original references, it seems that they reported the limitations of 

RNNs as (1) the vanishing gradient problem and (2) difficulty in parallelization. Based 

on this, we removed this sentence, as it is hard to simply say that "RNN is unstable." 

 

Line 88: Do you want to say the ‘sequence length’ and ‘forecasting length’? Amount of data is 

usually reserved for sample size. 

è We updated the sentence to indicate 'sequence length' more clearly. 
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(Line 87-88) 

As the DL-QPN is data-driven, the sequence length will likely determine the model performance 

 

Line 131: A 3x3 kernel was used in this study. Why? Were other kernel sizes tried?  

è As you pointed out, the size of the kernel can be diverse. However, we set the kernel 

size to 3x3 for two reasons. (1) As we adopted the U-Net model from RainNet v1.0 

(Ayzel et al., 2020), we kept the original kernel size. (2) Prior to Ayzel et al. (2020), 

Ayzel et al. (2019) explicitly compared the impact of kernel size on the CNN model. 

They compared kernel sizes of 3x3, 5x5, and 7x7. Contrary to their expectation that 

increased kernel size may result in better performance, the largest kernel size (7x7) 

showed the worst result. 

(Ayzel et al., 2019) 

“4.3. Kernel size impact 

Our first guess was that increasing the neural network receptive field by increasing a 

size of convolutional kernels, would increase the overall network’s performance 

because of accounting of precipitation specific changes from a larger neighborhood. 

However, the results are different. It is clear that increasing model’s receptive field 

capacity leads to overfitting and increasing uncertainty of predictions. For providing 

nowcast with the lead time of one hour, we recommend using smaller kernel size of 

convolutional layers.”  
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Line 148: Vanilla RNNs also have ‘exploding gradient’ problem. 

è Here, "basic RNN" indicates a vanilla RNN. To avoid confusion, we changed "basic 

RNN" to "vanilla RNN" for clarity. 

(Line 127) 

As the vanilla RNN structure suffers from the vanishing gradient problem with an increasing 

number of recurrent hidden layers, revised RNNs, such as long short term memory (LSTM) and 

gated recurrent units (GRU), have gained widespread acceptance (Cho et al., 2014; Hochreiter 

and Schmidhuber, 1997). 

 

Line 149: Do you want to say increasing sequence length? 

è No. In this sentence, our intention was to discuss the number of hidden layers of RNN 

regardless of its sequence length. We updated it according to the previous answer. 

 

Line 161: Why is more diverse input sequence a problem? Yes, there is tradeoff between the 

calibration sample size and the input sequence length. But did you test what is the optimal 

sequence length for your models given the amount of available training data? 
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è This sentence is not about the trade-off between sample size and sequence length but 

simply that a longer sequence can contain both helpful or non-helpful information 

simultaneously. We updated the sentence for better clarity. 

(Lines 144-145) 

A longer past sequence may provide more information than a shorter one, but it could also 

contain unnecessary information for model training. 

 

Section 3.2: What learning rates were used to train the models? 

è The learning rate was set at 0.001 for the ADAM optimizer. 

(Lines 221-223) 

All models were trained with the MSE and BMSE loss functions and adaptive momentum 

optimizer (ADAM) with a learning rate of 0.001, widely adopted in deep learning regression 

models (Kingma and Ba, 2014).  

 

Equations 2 and 3: Missing 1/𝑛. 

è Thank you for pointing this out. We corrected the errors in Equations 1, 2, and 4. We 

also added balanced MSE (BMSE) to Equation 2. 

 

(Line 155-159) 

𝑀𝑆𝐸 = ∑ ((!)(*!)
"
!#$

%

,
                 (1) 

𝐵𝑀𝑆𝐸 = ∑ -((!)((!)(*!)
"
!#$

%

,
, 𝑤(𝑦.) =

⎩
⎪
⎨

⎪
⎧ 1,2,
5,
10,
30,

		

	𝑦. < 2
	2 < 𝑦. < 5
	5 < 𝑦. < 10
10 < 𝑦. < 30
	𝑦. > 30

,          (2) 

where 𝑦 is the reference value, and 𝑦7 represents the predicted value and 𝑁 is the number of all valid pixels 

within the radar area. Figure 2 shows the distribution of rainfall intensity and weights for BMSE. 

(Line 276-277) 

𝑚𝑒𝑎𝑛	𝑏𝑖𝑎𝑠 = ∑ ((!)(*!)
"
!#$

,
               (4) 

where 𝑦 is the reference value, and 𝑦7 represents the predicted value. 

 

Table 5: Looking at these results, it seems that that there is no clear winner among these models. 

It really depends upon what we want to achieve (the performance metric used and the time-
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step in in future where we need the forecast). This is why I say that this project is a bit 

ambiguous. In fact, the main conclusion seems to be that there cannot be any specific guidelines 

for developing these models. I suspect the if the authors compute their goodness measures (CSI, 

MSE, etc.) separately for different region of the South Korea; they might find that different 

models perform better in different regions. These arguments apply to high rainfall case of Table 

7 also. 

è As you pointed out, the original manuscript's conclusion was ambiguous due to the 

absence of clear superiority among the compared schemes. In our revised version, we 

updated the key factors by dropping prediction design and maximum length and newly 

added the balanced loss function and ensemble approach. These updated factors 

convey a more significant comparison with conclusive discussion, as well as some 

enhanced results compared to the original design, as shown in the previous answers. 

Consequently, we updated the discussion about performance in Section 5.1. 

 

5.1 Performance comparison and considerations of key factors 

To address data imbalance and improve skill scores, various loss functions have been 

considered in previous research. Our comparison of two representative losses, MSE and BMSE, 

revealed that each has its strengths and weaknesses. The selection of an appropriate loss 

function should be informed by a comprehensive evaluation of QPN results. Optimal loss 

functions may vary depending on the specific objectives as it provides guidance to DL modeling. 

For instance, if the model's focus is on severe weather, BMSE can be weighted to emphasize 

high intensities. In cases where the area of precipitation over a certain threshold is of key 

interest, a modified CSI loss can be used (Ko et al., 2022). As a single metric cannot fully 

evaluate a model, combinations of different losses can also be explored. Alternatively, the 

ensemble approach analyzed in our study can leverage different loss functions to create a 

synergistic effect for QPN. 

In this study, U-Net consistently outperformed ConvLSTM in various respects, both in long-

term evaluation and in a single heavy rainfall event. This finding is in line with previous 

research (Ayzel et al., 2020; Ko et al., 2022; Han et al., 2023). Additionally, U-Net 

demonstrated more stability across different random seeds than ConvLSTM (Figure 8). 

Contrary to the widespread expectation that DL models powered by RNN would excel in time-

series forecasting, it was found that a model relying solely on CNN can perform better. 

However, this does not imply that all models using RNN structures are inferior to full CNN 
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models. Considering the wide range of U-Net and ConvLSTM variants, there could be potential 

for RNN-powered models to exhibit superior results. Lastly, the input sequence length did not 

significantly impact the results compared to other factors in this study. Nevertheless, sequence 

length should still be carefully considered as DL-QPN relies significantly on past information. 

In other DL models and QPN designs, input sequence length may have a greater impact than 

it did in this study, therefore, we continue to regard this as a key factor in DL-QPN. 

Due to the inherent randomness and stochastic nature of deep learning, modeling and 

evaluation need to be carefully conducted, taking into account relevant factors. As 

demonstrated in Figure 8, results can vary for each run with a different random seed. Thus, 

stability should be a priority when developing a DL-QPN model, a point often overlooked in 

previous studies. By treating each run as an ensemble member, we can avoid unstable results 

under varying conditions of randomness. 

 

Figures 5 and 6: Use a different color scheme to differentiate between the models? It is a bit 

difficult to differentiate between them. 

è We believe that evaluation at every time step is not necessary. Therefore, we removed 

the time-series figures for 10-120 minutes. We have updated the figures for the time-

series of heavy rainfall cases in the revised manuscript for better readability. 
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Figure 6. Comparison of CSI performance for the case of heavy rainfall over South Korea from 7th to 8th 
August 2020 with the 1 mm/h threshold. Refer to Table 2 for scheme names. The bottom black line represents 
the ratio of precipitation pixels > 1 mm/h for each radar scene. 
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Figure 7. Comparison of CSI performance for the case of heavy rainfall over South Korea from 7th to 8th 
August 2020 with the 10 mm/h threshold. Refer to Table 2 for scheme names. The bottom black line represents 
the ratio of precipitation pixels > 10 mm/h for each radar scene. 

 

Lines 294-296: These two sentences are not logically connected. Basically, the first part of the 

second sentence ‘The two models produced identical 10-minute forecasts’ can be removed. 

Line 303: Language typo: gap was reduced with 5 mm/h threshold?  

Line 306-307: This sentence is unclear. Rewrite. 

Line 312: But even the CSI were not much better than persistence. So, does this sentence really 

make sense? 

è In the revised version, these parts were removed as the result was updated with a new 

experimental design. 
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Lines 316-324; I am not sure the ConvLSTM has been designed properly. Basically, the 

sequence length of 12 may not be good enough for convLSTM. 

è Based on your comment, we conducted experiments again for ConvLSTM, extending 

the input sequence to up to 3 hours, which is longer than the maximum lead time. 

 

I think it still might be a good idea to include MAPLE results in Tables 5 and 7 even though 

these are based on different datasets. This would tell us at least something how a physics based 

model performs in comparison to the DL models. 

è We agree with you that a comparison with a non-DL model would make this evaluation 

more meaningful. However, as MAPLE is based on a different data type with different 

quality control and masking, our concern is that it is hard to compare MAPLE (hybrid 

surface radar) with other DL models (radar CAPPI). Since MAPLE data was provided 

by the Korea Meteorological Administration, there was a limitation in changing the 

input data source. Hence, we replaced MAPLE with pySTEPS, a method widely used 

to demonstrate how non-DL models perform. By adopting pySTEPS, we can directly 

compare the results. The quantitative and qualitative comparisons with pySTEPS are 

provided in Tables 5 and 6, and Figures 6-8. As other results were already cited in the 

previous answers, we only cite Figure 8 here. 

è Thank you for your comment. Similar to the previous comment, there was no 

quantitative evaluation using MAPLE. In lines 403-405, we discussed this based on 

the visual interpretation of Figures 11-14, which was still unclear. After replacing 

MAPLE with pySTEPS, we were able to calculate the CSI score, indicating how each 

model can predict the area over a given threshold. In the revised manuscript, the 

updated results now support that some DL models can achieve better performance than 

pySTEPS in terms of forecasting precipitation area. 

 

3.2 Comparison with non-DL model 

To compare the DL-QPN results with a non-DL model, we also included pySTEPS (Pulkkinen 

et al., 2019) in our comparison. PySTEPS is a Python implementation of the Short-Term 

Ensemble Prediction System (STEPS) proposed by Bowler et al. (2006). It has been widely 

used as a control non-DL model in previous studies (Ravuri et al., 2021; Choi and Kim, 2022; 

Han et al., 2023; Zhang et al., 2023). By calculating the mean wind vector using the input 
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radar sequence, pySTEPS simulates future radar sequences. To examine the impact of input 

sequence length, we also tested 1-3 h of input sequence in pySTEPS to predict a maximum of 

2 h, the same as the other DL models. More detailed information and usage of pySTEPS can 

be found in its documentation (https://pysteps.github.io) and repository 

(https://github.com/pySTEPS/pysteps). 
 

 

Figure 8. Comparison map for 05:00 on August 8, 2020, in KST with a 2h lead time. Refer to Table 2 for scheme 
names. Schemes with seed numbers are the averages of results for three scenes using 1h, 2h, and 3h input 
sequences. CSI1 and CSI10 indicate the CSI scores with thresholds of 1 and 10 mm/h, respectively. 

 

Lines 403-405: This is not really supported from Figure 11-14. 
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è Thank you for your comment. Similar to previous comment, there was no quantitative 

evaluation using MAPLE. In lines 403-405, we discussed based on the visual 

interpretation of Figures 11-14, which is still not clear. After replacing MAPLE with 

pySTEPS, we can calculate CSI score which can indicate how each model can predict 

the area over the given threshold. In the revised manuscript, updated results now can 

support that some DL models can achieve better performance than pySTEPS in terms 

of forecasting precipitation area. 

 

Lines 427-429: This is not really true. As I have mentioned earlier, ConvLSTM may perform 

better with larger sequence length. 

è As in previous responses, we did recognize the need for testing with a longer input 

sequence. We extended the length up to 3 hours and found a performance improvement. 

Even though the performance slightly improved in terms of MSE or BMSE, U-Net still 

outperformed ConvLSTM in this time. Moreover, ConvLSTM exhibited higher 

variance depending on different random seeds and loss functions. The input length had 

little impact on both models. 

è Based on a comment from RC1, we removed Section 4.2.3 to avoid a lengthy 

manuscript and to focus on other discussions. Therefore, these sentences were also 

removed from the revised manuscript. 

 

Lines 447-448: This has not been mentioned earlier. Explain. 

è This part was also removed to accommodate new results. 

 


