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Abstract 19 

Stochastically simulated data have been employed for hydrological variables in critical water-20 

related risk management. The simulated data can be utilized to assess the existing flood protection 21 

structure and future mitigation frameworks. Disaggregation of the simulated annual data to a lower 22 

time scale is often required since water resource management and flood mitigation plans should 23 

be done in a fine scale such as a monthly or quarter-monthly. In the current study, the randomized 24 

random block length was proposed for the nonparametric disaggregation model since one of the 25 

major weakness points for the nonparametric disaggregation model is repetition of similar patterns 26 

in the disaggregated data. Furthermore, long-term dependence structure was also mainly focused 27 

to preserve since consistent high-flow results devastating damages to inundated area. The proposed 28 

model was compared with the existing parametric and nonparametric disaggregation models. The 29 

annual net basin supplies (NBS) of the Lake Champlain–Richelieu River (LCRR) Basin was 30 

employed to test the performance of the proposed model by reproducing the critical statistics of 31 

the 2011 flood in the LCRR Basin. The 2011 flood occurred and was sustained for a few months. 32 

The results show that the existing parametric and nonparametric models have limitations and 33 

shortcoming and do not provide sufficient temporal dependence. In contrast, the proposed random 34 

block-based nonparametric disaggregation (RB-NPD) model with further model enhancement by 35 

the genetic algorithm mixture illustrates that the proposed RB-NPD model can be a comparable 36 

alternative and that its enhancement is suitable for disaggregating the annual NBS data for the 37 

LCRR Basin.  38 

 39 

40 
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1. Introduction 41 

Disaggregation models for hydrological variables have been developed in a number of 42 

studies to downscale simulated data of a coarse time scale to a fine time scale since water 43 

management should be performed in a fine time scale such as monthly or quarter-monthly. 44 

Valencia and Schaake (1973) proposed a parametric disaggregation model. The major shortcoming 45 

of the model by Valencia and Schaake (1973) is that there is no consideration for the previous year. 46 

Mejia and Rousselle (1976) improved the model by including the additional term for the last month 47 

of the previous year. However, the models require a significant number of parameters. To avoid 48 

parsimoniousness, some models have been proposed in a number of studies (Stedinger and Vogel, 49 

1984; Lane and Frevert, 1990; Santos and Salas, 1992) (Santos and Salas, 1992). Furthermore, 50 

Koutsoyiannis and Manetas (1996) proposed the accurate adjusting procedure (AAP), which 51 

integrates a model for the higher scale (e.g., yearly) and a model for the lower scale (e.g., monthly) 52 

by matching the generated sequences at each time scale. 53 

Alternative nonparametric disaggregation methods have been proposed in a number of 54 

studies (Srikanthan and Mcmahon, 1982; Porter and Pink, 1991; Tarboton et al., 1998; Prairie et 55 

al., 2007; Lee et al., 2010; Lee and Jeong, 2014; Lee and Park, 2017). Prairie et al. (2007) employed 56 

the K-nearest neighbor resampling technique, and Lee et al. (2010) improved the model by 57 

including the genetic algorithm (GA) mixture. 58 

In disaggregation models of hydrologic variables, higher time scale data (here, annual) are 59 

disaggregated into lower time scales (here, monthly) according to the relationship between the 60 

annual and monthly data. It is relatively easy to preserve the inner-annual relationship (i.e., month-61 

to-month). However, the interannual relationship of the disaggregated monthly data cannot be 62 
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easily captured since a disaggregation procedure is commonly performed with the current annual 63 

data value without the condition of the previous and future relationships. This might result in a 64 

discontinuity between the current monthly data and the previous (also following) year for the 65 

disaggregated monthly data. It is, in general, not very problematic for disaggregated data since the 66 

interannual relationship contains data at a higher time scale (i.e., annual). However, the interannual 67 

relationship is critical for the reproduction of a certain event, such as the 2011 flood in the Lake 68 

Champlain–Richelieu River (LCRR) Basin, which lasted approximately 3 months. An extreme 69 

event that consistently occurs over a long time cannot be generated unless the interannual 70 

relationship is appropriately considered. 71 

The U.S. and Canadian governments launched an initiative to identify how flood forecasting, 72 

preparedness and mitigation can be improved in the LCRR Basin. Synthetic net basin supply (NBS) 73 

series of the LCRR Basin are crucial to evaluate the adequacy of flood risk mitigation measures 74 

and management strategies under a number of potential hydrological scenarios that might occur in 75 

the future. Furthermore, the regulations and management plans for the LCRR Basin have been 76 

performed on a monthly or quarter-monthly scale. Therefore, an appropriate temporal 77 

disaggregation model to provide more specific information for the basin should be applied, if any, 78 

or developed to meet the specific statistical characteristics of the 2011 flood in the LCRR Basin. 79 

In the current study, comparable existing parametric and nonparametric models were tested 80 

to disaggregate the annual NBS data for the LCRR Basin. The performance of the existing models 81 

was carefully examined. Furthermore, a novel approach based on nonparametric techniques was 82 

proposed to improve the performance of the existing models, especially for the reproduction of the 83 

critical statistics related to the 2011 flood event in the LCRR Basin. Specifically, efforts were 84 
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made to find and devise a disaggregation model that appropriately captures the interannual 85 

relationship in disaggregated data. 86 

The present report is organized as follows. A mathematical description of the employed 87 

models is described in Section 2. The model development is described in Section 3. The data 88 

description and application methodology are presented in Section 4. The results of the compared 89 

models and the proposed model are shown in Section 5, followed by a summary and conclusion in 90 

Section 6. 91 

 92 

2. Mathematical Background 93 

2.1. Parametric Disaggregation 94 

Valencia and Schaake (1973) introduced the basic temporal disaggregation model for annual 95 

flows to seasonal flows, followed by its extended version by Mejia and Rousselle (1976), defined 96 

as: 97 

 

𝐘𝑡 = 𝐀𝑋𝑡 + 𝐁𝛆𝑡

      

(1) 98 

where 𝑋𝑡is the annual time series at year t, 𝐘𝑡 is the seasonal data for year t, 𝜏 =1..., nm as 𝐘𝑡 =99 

[𝑌𝑡,1, 𝑌𝑡,2, … , 𝑌𝑡,𝜏, … , 𝑌𝑡,𝑛𝑚
]

𝑇
, and nm is the number of seasons. A and B are nm ×1 and nm × nm 100 

parameter matrices, respectively. 𝛆𝑡 is the nm ×1 column noise vector uncorrelated with each 101 

element distributed as a standard normal. Mejia and Rousselle (1976) included an additional term 102 

to preserve the lag-1 correlation between the current year and the past year as: 103 

 

𝐘𝑡 = 𝐀𝑋𝑡 + 𝐁𝛆𝑡 + 𝐂𝐘𝑡,𝑛𝑚

     

(2) 104 
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where C is the nm ×1 parameter vector. These disaggregation models suffer from the parsimonious 105 

problem since the models require too many parameters, sometimes more than observations. 106 

To avoid this drawback, Lane and Frevert (1990) proposed the condensed version of the 107 

parametric disaggregation model on a one-season-at-a-time basis as: 108 

 

𝑌𝑡,𝜏 = A𝜏𝑋𝑡 + B𝜏𝜀𝑡,𝜏 + C𝜏Y𝑡,𝜏−1

    

(3) 109 

where, Aτ, Bτ, and Cτ are parameters at each season τ. These parameters can be estimated by 110 

applying the covariance matrices as:

  

111 

Â𝜏 = [𝐒YX(𝜏, 𝜏) − 𝐒YY(𝜏, 𝜏 − 1)𝐒YY
−1(𝜏 − 1, 𝜏 − 1)𝐒YX(𝜏 − 1, 𝜏)] ∙ [𝐒XX(𝜏, 𝜏) −112 

𝐒XY(𝜏, 𝜏 − 1)𝐒YY
−1(𝜏 − 1, 𝜏 − 1)𝐒YX(𝜏 − 1, 𝜏)]−1                                    (4) 113 

Ĉ𝜏 = [𝐒YY(𝜏, 𝜏 − 1) − Â𝜏𝐒XY(𝜏, 𝜏 − 1)]𝐒YY
−1(𝜏 − 1, 𝜏 − 1)   (5) 114 

B̂𝜏B̂𝜏
𝑇 = 𝐒YY(𝜏, 𝜏) − Â𝜏𝐒XY(𝜏, 𝜏) − Ĉ𝜏𝐒YY

−1(𝜏 − 1, 𝜏)    (6) 115 

where, 𝐒YX(𝑎, 𝑏) indicates a covariance between 𝑌𝑡,𝑎 and 𝑋𝑡,𝑏. Note that B̂𝜏 is estimated from the 116 

B̂𝜏B̂𝜏
𝑇 with either using eigenvalue and eigenvectors or estimating a lower triangular form matrix 117 

(Bras and Rodriguesz-Iturbe, 1994). To meet the additive condition, adjustment must be made as: 118 

𝑌𝑡,𝜏
∗ = 𝑌𝑡,𝜏 × 𝑋𝑡/ ∑ 𝑌𝑡,𝜏

𝑛𝑚
𝜏=1      (7) 119 

2.2. Nonparametric Disaggregation (NPD) 120 

Lee et al. (2010) proposed a nonparametric disaggregation model based on k-nearest neighbor 121 

resampling and a genetic algorithm for streamflow applications and further developed it for daily 122 
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precipitation (Lee and Jeong, 2014; Lee and Park, 2017). The procedure is briefly described as 123 

follows: 124 

Let the annual,𝑥𝑡 , and seasonal observations 𝐲𝑡 = [𝑦𝑡,1, … , 𝑦𝑡,𝑛𝑚
] and t=1...,N, where N is the 125 

record length. In addition, 𝑋𝑡 is the target annual variable. The objective is to disaggregate the 126 

annual time series 𝑋𝑡 
to the seasonal time series 𝐘𝑡 = [𝑌𝑡,1, … , 𝑌𝑡,𝑛𝑚

]. 127 

Assumed that the number of nearest neighbors, k, is already known, the temporal 128 

disaggregation procedure is as follows: 129 

(1) The distances between the target annual value 𝑋𝑡and the observed annual variable are 130 

estimated as: 131 

 𝐷𝑖 = [
𝑋𝑡 − 𝑥𝑖

𝑌𝑡−1,𝑛𝑚
− 𝑦𝑖−1,𝑛𝑚

]
T

Ξ [
𝑋𝑡 − 𝑥𝑖

𝑌𝑡−1,𝑛𝑚
− 𝑦𝑖−1,𝑛𝑚

]                   𝑖 = 2, … , 𝑁 (8) 132 

where the distances are measured for i=2,…, N, and Ξ is the variance–covariance 133 

matrix of [𝑥𝑖, 𝑦𝑖−1,𝑛𝑚
]. Here, the target annual value is considered. In addition, the 134 

simulated seasonal value of the last month of the previous year is also taken into 135 

account to preserve the dependence of the previous set, as in Lane’s model in Eq.(3). 136 

(2) The estimated distances from Step (1) are arranged in ascending order, the first k 137 

distances (i.e., the smallest k values) are selected, and the time indices of the smallest 138 

k distances are reserved. 139 

(3) One of the stored k time indices is randomly chosen with the weighting probability 140 

given by: 141 

  𝑤𝑚 =
1/𝑚

∑ 1/𝑗
𝐽
𝑗=1

,      𝑚 = 1, . . . , 𝑘     (9) 142 
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(4) The seasonal values of the selected time index (denoted as p) are assigned from Step 143 

(3) as 𝐲𝑝 = [𝑦𝑝,1, … , 𝑦𝑝,𝑛𝑚
]. 144 

(5) The following steps are executed for GA mixing: 145 

(5-1) Reproduction: One additional time index is selected using Steps (1) through (4) 146 

and this index is denoted as p*. The corresponding seasonal values are 147 

obtained, 𝐲𝑝∗ = [𝑦𝑝∗,1, … , 𝑦𝑝∗,𝑛𝑚
]. The subsequent two GA operators use the two 148 

selected vectors, 𝐲𝑝 and 𝐲𝑝∗. 149 

(5-2) Crossover: Each element yp,τ is replaced with yp*,τ at the crossover probability Pc, 150 

as: 151 

𝑌𝑡,𝜏 = {
𝑦𝑝∗,𝜏                         if 𝑟 < 𝑃𝑐

𝑦𝑝,𝜏                       otherwise
    (10)

 
152 

where r is a uniform random number between 0 and 1. 153 

(5-3) Mutation: Each element (i.e., each season, τ=1,…, nm) is replaced with the one 154 

chosen from all observations of this season with the mutation probability Pm, i.e., 155 

𝑌𝑡,𝜏 = {
𝑦𝑎,𝜏                         if 𝑟 < 𝑃𝑚

𝑦𝑝,𝜏                     otherwise
    (11)

 
156 

where 𝑦𝑎,𝜏 is selected from [𝑦1,𝜏, … 𝑦𝑁,𝜏] with equal probability for i=1,…,N. 157 

(6) The GA mixed values are adjusted as follows to preserve the additive condition 158 

as in Eq. (7). 159 

(7) Steps (1)-(5) are repeated until the target data are generated. 160 
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The characteristics of the mutation probability Pm and the crossover probability Pc were 161 

studied well by Lee et al. (2010) and Lee (2008). In the current study, two probabilities were used 162 

as tuning parameters to manipulate preservation of the historical statistics for the generated 163 

monthly time series. The selection of the number of nearest neighbors (k) has been studied (Lall 164 

and Sharma, 1996; Lee and Ouarda, 2011). The most common and simplest selection method was 165 

applied in the current study by setting 𝑘 = √𝑁 . This heuristic approach has commonly been 166 

employed in simulation studies with KNNR (Lall and Sharma, 1996; Lee and Ouarda, 2011; Lee 167 

et al., 2017; Lee and Ouarda, 2019). 168 

2.3. Normal Copula Standardization 169 

Seasonal variables, especially in hydroclimatological fields, are commonly skewed. A 170 

number of transformation methods have been attempted, such as box-cox, log, and gamma 171 

transformation. Among others, copula normal standardization can be a good alternative due to its 172 

simplicity and preservation of the marginal statistics as follows: 173 

𝑍𝑡 = 𝐹𝛷
−1[𝐹𝑌(𝑌; 𝛉)]      (12) 174 

where FY is the selected distribution for the Y variable, such as gamma, and 𝐹𝛷
−1 is the inverse 175 

standard normal distribution. With this normalization, the result variable (FZ) definitely has a 176 

standard normal distribution. For a marginal distribution, gamma was chosen since this distribution 177 

has been commonly used in hydroclimatological variables and fitted well to positively nonnegative 178 

skewed variables. Applications have been made in the statistical downscaling in climate change 179 

studies (Lee and Singh, 2018). Its back-transformation can be performed by: 180 

𝑌𝑡 = 𝐹𝑌
−1[𝐹𝛷(𝑍; 𝛉)]      (13) 181 
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3. Model Development 182 

3.1. Random Block-based Nonparametric Disaggregation (RB-NPD) 183 

To avoid discontinuation between the current year and following year, the random block length 184 

was used instead of the fixed length (i.e., l=12). The proposed method is similar to the original 185 

NPD model. However, both the current and following years for annual data must be considered in 186 

selecting the candidate. It can be described as follows: (1) to generate the block length (l) from a 187 

discrete distribution; (2) to estimate the distances between the observed and generated data, such 188 

as the current year and following year values of the observed and target annual data; and (3) to 189 

mix the selected block and one additional block. A detailed description is provided in Figure 1: 190 

i. A block length, LB, is generated randomly from a discrete distribution (e.g., geometric or 191 

Poisson) for the length of the following seasonal values that follow Yt,τ. Among other 192 

distributions, a Poisson distribution is used because the distribution shape is close to a 193 

gaussian distribution centered on the mean. More information on the selection of this 194 

discrete distribution in block bootstrapping can be found in previous studies (Lee and 195 

Ouarda, 2012; Lee and Ouarda, 2019). The Poisson distribution with its parameter (α) is: 196 

    𝐿𝐵 ~
𝑒−𝛼𝛼𝑙−1

(𝛼−1)!
      𝑙 = 1,2,....     (14) 197 

 Note that the parameter (α) is the mean of LB. The parameter for this Poisson distribution 198 

(τ) was set as the number of seasons used (e.g., α =12 for monthly) so that the average 199 

block length was the same as the number of seasons. In Figure 1, l=10 is generated. 200 

ii. Distances are estimated to collect close observations to the current status with KNNR as 201 

follows: 202 
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  𝐷𝑖 = [
𝑋𝑡 − 𝑥𝑖

𝑌𝑡,𝜏−1 − 𝑦𝑖,𝜏−1
]

T

Ξτ
−1 [

𝑋𝑡 − 𝑥𝑖

𝑌𝑡,𝜏−1 − 𝑦𝑖,𝜏−1
]                   𝑖 = 1, … , 𝑁  (15) 203 

  𝐷𝑖 = [

𝑋𝑡 − 𝑥𝑖

𝑋𝑡+1 − 𝑥𝑖+1

𝑌𝑡,𝜏−1 − 𝑦𝑖,𝜏−1

]

T

Ξτ
′−1 [

𝑋𝑡 − 𝑥𝑖

𝑋𝑡+1 − 𝑥𝑖+1

𝑌𝑡,𝜏−1 − 𝑦𝑖,𝜏−1

]                   𝑖 = 2, … , 𝑁 − 1 (16) 204 

Eq. (15) or (16) should be used according to whether the generated block length overrides 205 

the next year. For example, in Figure 1, the block length l=10 overrides the following year 206 

since the starting season for the current simulation is τ=11, and Eq. (16) must be employed. 207 

Ξτ and Ξ′τ are the variance–covariance matrices for the considered elements as follows: 208 

  Ξτ = [
var(𝑋𝑡) cov(𝑋𝑡, 𝑌𝑡,𝜏−1)

cov(𝑋𝑡, 𝑌𝑡,𝜏−1) var(𝑌𝑡,𝜏−1)
]    (17) 209 

  Ξτ = [

var(𝑋𝑡) cov(𝑋𝑡, 𝑋𝑡+1) cov(𝑋𝑡, 𝑌𝑡,𝜏−1)

cov(𝑋𝑡, 𝑋𝑡+1) var(𝑋𝑡+1) cov(𝑋𝑡+1, 𝑌𝑡,𝜏−1)

cov(𝑋𝑡, 𝑌𝑡,𝜏−1) cov(𝑋𝑡+1, 𝑌𝑡,𝜏−1) var(𝑌𝑡,𝜏−1)
] (18) 210 

The first element (j=1) in both equations and the last element in Eq. (16) are omitted 211 

because the data are not available. 212 

iii. From the k numbers of the smallest distances among j = 2, …, N (or N-1), one of the time 213 

indices is chosen with the probability in Eq. (9). Assume that the selected points are p, and 214 

its following sequence is obtained. For example, l=10 in Figure 1 and the following 215 

sequence is selected as the generated sequence: [Yt-1,11, Yt -1,12, Yt,1..., Yt,8]=[ yp-1,11, yp-1,12, 216 

yp,1..., yp,8]. 217 

iv. For the GA crossover, one more sequence is chosen with the steps above (ii)-(iii) and the 218 

additional time index is assumed as p* in Figure 1 as [ yp*-1,11, y p*-1,12, y p*,1..., y p*,8]. Each 219 
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element of the first chosen sequence is replaced with the crossover probability as in Eq. 220 

(10). In Figure 1, the elements [yp-1,12, yp,5, yp-1,7] are replaced with [yp*-1,12, yp*,5, yp*-1,7] 221 

v. For the GA mutation, each element is substituted into the gamma random number with the 222 

probability Pm (i.e., r<Pm, where r is a uniform random number between 0 and 1), i.e., 223 

     𝑌𝑡,𝜏 
𝑛𝑒𝑤 ~ 𝐺𝑎𝑚𝑚𝑎 (𝛼𝜏, 𝛽𝜏)    (19) 224 

where 𝛼𝜏 and 𝛽𝜏 are parameters that can be estimated by fitting the gamma distribution to 225 

the seasonal data, i.e., yt,τ and t=1...,N. In Figure 1, Yt,2 is simulated from Eq. (19). 226 

vi. Simulated seasonal data at each year are adjusted to meet the additive condition as in Eq.(7). 227 

vii. Steps (i)-(vi) are repeated until the required data are disaggregated. 228 

3.2. Model Enhancement 229 

Further consideration was tested to preserve the interconnection in the mutated values from 230 

Eq.(19) by replacing the value with the following condition: 231 

𝑍𝑡,𝜏 = {
𝑍𝑡,𝜏 

𝑛𝑒𝑤                         if   𝑍𝑡,𝜏−1𝑍𝑡,𝜏 
𝑛𝑒𝑤 + 𝑍𝑡,𝜏 

𝑛𝑒𝑤𝑍𝑡,𝜏+1 > 𝑍𝑡,𝜏−1𝑍𝑡,𝜏 + 𝑍𝑡,𝜏𝑍𝑡,𝜏+1

𝑍𝑡,𝜏                            otherwise                                                                               
  (20) 232 

where 𝑍 = Φ−1[𝐹𝑌(𝑌); 𝛼𝜏, 𝛽𝜏] . Note that the condition of 𝑍𝑡,𝜏−1𝑍𝑡,𝜏 
𝑛𝑒𝑤 + 𝑍𝑡,𝜏 

𝑛𝑒𝑤𝑍𝑡,𝜏+1 >233 

𝑍𝑡,𝜏−1𝑍𝑡,𝜏 + 𝑍𝑡,𝜏𝑍𝑡,𝜏+1 indicates that the newly proposed value (𝑍𝑡,𝜏 
𝑛𝑒𝑤) has a higher correlation than 234 

the original value (𝑍𝑡,𝜏) since Z is the standard normal variable and its multiplication indicates the 235 

correlation. This modification is named after ‘the enhanced correlation algorithm in crossover’ and 236 

denoted as ‘ECAco’. 237 

Furthermore, we tested an additional algorithm by simulating the mutation value as 238 
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    𝑍𝑡,𝜏 
𝑛𝑒𝑤 = 𝑎1𝑍𝑡,𝜏−1  + 𝑎2𝑍𝑡 + 𝜀𝑡    (21) 239 

𝑌𝑡,𝜏 
𝑛𝑒𝑤 = 𝐹𝑌

−1[Φ(𝑍𝑡,𝜏 
𝑛𝑒𝑤); 𝛼𝜏, 𝛽𝜏]     (22) 240 

where 𝑍𝑡,𝜏−1 is the standard normal variable transformed from 𝑌𝑡,𝜏−1 with the gamma distribution 241 

and �̃�𝑡  is the standard normal variable of 𝑋𝑡 . This enhancement of the parametric simulation 242 

algorithm in mutation is denoted as ‘PSAm’. 243 

4. Data Description and Application Methodology 244 

4.1. Data Description 245 

The annual and monthly data of the net basin supply (NBS) series for the Lake Champlain–246 

Richelieu River system (LCRR) were applied in the current study. The water supplies to a lake or 247 

a river are referred to as NBS, and they are estimated with both component-based and residual-248 

based methods (Croley and Lee, 1993). The component-based NBS series is used due to its 249 

accuracy and popularity in the literature (Fagherazzi et al., 2011; Ouarda and Charron, 2019). The 250 

LCRR Basin has an area of 23,900 km2, with approximately 84% of the basin in northeastern New 251 

York and northwestern Vermont in the US and 16% in Quebec in Canada, as shown in Figure 2. 252 

In the spring of 2011 in the LCRR Basin, the worst flooding ever recorded in the past 100 years 253 

occurred, which damaged homes, businesses, and farms. Several annual stochastic series for the 254 

NBS were simulated in different studies, and further disaggregation to monthly data is required 255 

since the regulations and water management were performed on a monthly or quarter-monthly 256 

time scale. 257 
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4.2. Application Methodology 258 

A number of disaggregation models were considered in the current study, including the parametric 259 

VS and MR models and the NPD model (the original nonparametric disaggregation model from 260 

Lee et al. (2010)). Furthermore, the proposed RB-NPD model was fully tested with/without the 261 

enhanced algorithms in the GA, ECAco and PSAm. In application, the RB-NPD model implies 262 

the model without applying the enhanced algorithms and the RB-NPD model with ECAco (called 263 

the selective model) is only the enhancement applied in the crossover while the RB-NPD model 264 

with ECAco+ PSAm (called hybrid model) presents both the enhancements applied to the 265 

crossover and mutation process. Note that the parametric VS and MR models were applied to the 266 

copula transformed data with Eq. (12) and the disaggregated data for these models were back-267 

transformed with Eq. (13). Additionally, the Lane model was also tested. However, its 268 

performance was not satisfactory and was much worse than those of the VS and MR models. 269 

Therefore, its results were not included in this manuscript. 270 

To check the performance of the disaggregation models considered in the current study, the 271 

observed annual NBS data were disaggregated, and 200 series were produced. Note that the 272 

proposed disaggregation model is based on the simulation technique, and an infinite number of 273 

series can be produced from the simulation-based disaggregation model. The key statistics of the 274 

disaggregated data were estimated and presented by boxplots following the comparison with the 275 

observed data. In a boxplot, the boxes represent the interquartile range (IQR), and the whiskers 276 

extend up to 1.5 IQR. The horizontal line inside the box shows the median of the data. Data beyond 277 

the whiskers (1.5 IQR) are indicated by a plus sign (+). 278 

Furthermore, the interesting feature of the disaggregated NBS is the reproduction of the 279 

observed high values, especially in a consistent manner. In other words, the flood in the LCRR 280 
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Basin in 2011 continued for a few months. It is important to generate these continuous high values 281 

for a few months in the disaggregated data. Therefore, the key statistics of the accumulated data 282 

up to six months were also tested. Note that the n-month accumulation was performed by averaging 283 

the monthly data of the previous months. For example, 3 months accumulation for Month 2 (i.e., 284 

τ=2) is the average value of the 𝑌𝑡−1,12 , 𝑌𝑡,1, and 𝑌𝑡,2. 285 

5. Results 286 

5.1. Parametric Disaggregation 287 

5.1.1. Valencia–Schaake (VS) model 288 

In Figure 3, the observed annual NBS data (top panel) and the observed and disaggregated 289 

monthly NBS data are presented (bottom panel), indicating that the disaggregated data reproduce 290 

the variability of the observed monthly data with a higher maximum than the observed data. Figure 291 

4 presents the basic statistics of the disaggregated monthly data with boxplots and the statistics of 292 

the data observed by the dotted line with cross markers. The figure illustrates that the mean and 293 

standard deviation are reproduced as well as the extrema (i.e., maximum and minimum), while 294 

significant underestimation is found in the skewness. 295 

This underestimation of the skewness results stems from the fact that the gamma marginal 296 

distribution employed with the copula transformation was not good enough to reproduce these 297 

statistics. Three gamma distributions including the location parameter were also tested to 298 

reproduce this statistic. However, the location parameter induces another problem: no smaller 299 

values than the location parameter were simulated if the location parameter is greater than zero, 300 

and negative values were simulated when it is smaller than zero. Other distributions also have 301 
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similar problems. Furthermore, the original transformation method, such as box-cox, log, and 302 

power transformation, produces a larger problem of generating exceptionally large values and 303 

negative values after back-transformation (Jeong and Lee, 2015). Additionally, the extreme 304 

statistics are underestimated in several months, as shown in the right middle panel in Figure 4. 305 

This might be induced from the underestimation of the skewness by the normal copula 306 

transformation with the gamma marginal distribution. High skewness cannot be always reproduced 307 

in a gamma distribution, and it affects the magnitude and frequency of extreme events in the 308 

disaggregated data. 309 

The marginal cumulative distribution function and probability distribution function for the 310 

disaggregated data with the VS model and observed data are presented in Figure 5 and Figure 6, 311 

respectively. As shown in Figure 5, high disaggregated values are lower than those observed with 312 

the same CDF in most months (i.e., the blue thick solid line is located on the left side of the dotted 313 

red line with a cross marker, especially in months 1, 2, 6, 8, and 9). The skewness as well as the 314 

maximum of these months are highly underestimated, as shown in the left and right middle panels 315 

in Figure 4. 316 

The PDFs in Figure 6 show that the disaggregated marginal distribution does not match the 317 

observed one. The observed PDF is more positively skewed than the median of the 200 318 

disaggregated series. This indicates that the disaggregated data have lower skewness than the 319 

observed data. Furthermore, the observed PDF presents a thicker tail than the disaggregated 320 

median, implying that the disaggregated maximum should be lower than the observed maximum. 321 

As shown in Figure 4, the disaggregated data from the VS model often underestimate the maximum 322 

of the observed data. 323 
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Another critical point of the performance of the VS model is in the lag-1 autocorrelation 324 

(ACF1). The ACF1 of the first month is not preserved as in Figure 4. The ACF1 of the first month 325 

indicates the relationship between the last month of the previous year and the first month of the 326 

current year (i.e., corr(𝑌𝑡−1,𝑛𝑚
, 𝑌𝑡,1). This is because there is no term considering the previous year 327 

in the VS model in Eq. (1). This is one of the major reasons why the MR mode was devised, as in 328 

Eq. (2). Therefore, the extremes of the accumulated data are expected to be underestimated. 329 

As shown in Figure 7, the maximum values of the accumulated monthly data up to six 330 

months disaggregated with the VS model are underestimated in a number of months. For example, 331 

the maximum values of Months 5 and 6 are generally underestimated in most accumulated datasets, 332 

as are Months 1 and 2. The reproduction of this statistic for these months is important since the 333 

current study started from the 2011 flood that occurred on April 13 and lasted 67 days until June 334 

19. The major cause of this underestimation might be the discontinuity between the previous year 335 

and the marginal gamma distribution. 336 

5.1.2. Mejia–Rousselle (MR) model 337 

To avoid the discontinuity of the VS model with the previous year, the MR model includes 338 

an additional term by taking the last month of the previous year into account, as in Eq. (2). Its 339 

performance improvement can be observed in the lag-1 correlation of the basic statistics in the 340 

right bottom panel in Figure 8. The first month of ACF1 was improved. Even if it was just one 341 

simple improvement, it implies that the disaggregated data are connected to the previous year. The 342 

same behavior as the VS model can be observed for the other statistics since the same normal 343 

copula transformation with the gamma marginal distribution was applied to this MR model. In 344 

Figure 9, the maximum of the accumulated data presents little improvement compared to that of 345 
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the VS model shown in Figure 7. The underestimation for Months 5 and 6 still often occurred in 346 

the MR model. 347 

5.2. Nonparametric Disaggregation 348 

5.2.1. Original NPD Model 349 

The original NPD model by Lee et al. (2010) was tested. For the NPD model, the results 350 

with Pc=0.1 and Pm=0.01 for the GA mixture in Eqs. (10) and (11) were presented. Rather high 351 

values of these probabilities produced more diverse scenarios. The results of the key statistics are 352 

shown in Figure 10. All statistics were reproduced well from the NPD model except the slight 353 

underestimation of ACF1, which was not significant. The slight underestimation of ACF1 was 354 

induced from the GA mixture. Lowering the probabilities could lead to less diverse disaggregated 355 

scenarios since these probabilities control the magnitude of mixing and mutating the scenarios 356 

from the observed sequences. Combined with the additive adjustment, totally new values and 357 

patterns could be produced from the NPD model. 358 

  The maximum of the accumulated data presents better performance than the parametric 359 

model, as shown in Figure 11. The statistics for Month 5 improved in this model, while those for 360 

Month 6 were still underestimated. Additionally, the other months, such as Months 2 and 1, also 361 

improved. This improvement might be induced from the marginal distribution. As shown in Figure 362 

12 and Figure 13 for the CDF and PDF, respectively, the marginal distribution of the disaggregated 363 

monthly data reproduced the observed marginal distribution well, especially comparable to the 364 

results of the parametric model in Figure 5 and Figure 6. Since the NPD model does not use 365 

parameters, especially for a marginal distribution, the characteristics of the observed marginal 366 
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distribution were preserved well. This feature remains in the other NPD model (i.e., RB-NPD) as 367 

well. 368 

There were some tangible improvements in the original NPD model compared to the 369 

parametric model. However, the NPD model always disaggregated the annual data with a 12-370 

month length basis. The applied combinations (called blocks) for a year were always from one of 371 

the observed monthly combinations for a year. In other words, one of the 12 month observed 372 

combinations must always be taken for the disaggregation (as 𝑦𝑡,1, 𝑦𝑡,2, … , 𝑦𝑡,12). Even if the GA 373 

mixture is applied to overcome this feature, it still suffers from this limitation. This might result in 374 

a weak lagged correlation, especially in the early few months, such as Months 1 and 2. Figure 14 375 

presents the lagged correlation starting at each month, i.e., lag-5 correlation at Month 2 is 376 

corr(𝑌𝑡−1,𝑛𝑚−4, 𝑌𝑡,2). The lagged correlations at Months 1-4 were underestimated in a number of 377 

lags, while those of the other months were preserved well. 378 

5.2.2. Proposed RB-NPD Model 379 

To avoid the fixed length and the effects on the lagged correlation, the random block-based 380 

NPD model (i.e., RB-NPD) was devised in the current study. Instead of the fixed 12-month block 381 

by Lee et al. (2010), the block length was randomly selected from a Poisson distribution as in 382 

Eq.(14). The parameter α=12 was used to make the average of the block length the same as the 383 

original NPD model. This random block allows the change point of the block to be different from 384 

the first month of a year in the original NPD model. By changing the block length into a random 385 

block, the distance and its related covariance matrix must be changed at each month. Furthermore, 386 

the adjustment to meet the additive condition must be made whenever the random block length 387 

overrides the following year. 388 
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The key statistics of the disaggregated data with the RB-NPD model are presented in Figure 389 

15. Note that relatively high probabilities of crossover and mutation for the GA mixture were 390 

employed as Pm=0.1 and Pc=0.3 to produce diverse disaggregated scenarios. Further testing was 391 

performed to check whether the employed probabilities were feasible with root mean square error 392 

(RMSE), especially the maximum for accumulated data. One of the major objectives was to 393 

produce extreme events such as the 2011 flood that had consistently high NBS values for a long 394 

period. 395 

As shown in Figure 16, increasing the crossover probability (Pc) did not lower the RMSE. 396 

Since a high Pc can be beneficial for producing diverse scenarios, Pc =0.3 can be acceptable. In 397 

addition, a lower Pm value might be better for all accumulated data except Acc-2 shown in the 398 

panel in Figure 16(b). With Pc =0.3, Pm =0.1 is the best choice for Acc-1 (see the blue dotted line 399 

with circle in Figure 16 (a)). Additionally, the choice of Pm =0.1 is an acceptable choice, showing 400 

the second lowest RMSE for all accumulated data with Pc =0.3. Note that Pm =0.01 can be a good 401 

alternative, but this might lower the role of the ECAco and PSAm algorithms in the model 402 

enhancement. Therefore, Pm=0.1 and Pc=0.3 were applied to the following results. Diverse values 403 

of Pm and Pc were also tested in the simulation, and no significantly better results were found. 404 

All observed statistics were preserved well except ACF1. The underestimation of ACF1 was 405 

induced by the high probabilities of mutation and crossover. The enhancement was made by 406 

choosing high correlation in the crossover as in Eq. (20), denoted as the enhanced correlation 407 

algorithm in the crossover (ECAco, see the model development section). Note that 𝑍𝑡,𝜏−1𝑍𝑡,𝜏 +408 

𝑍𝑡,𝜏𝑍𝑡,𝜏+1 indicates the correlation since for variables a and b, corr(a,b)=cov(a,b)/std(a)std(b) and 409 

std(a) and std(b) are one and mean(a) and mean(b) are zero for standard normal variables (i.e., 410 
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corr(a, b) = E[a ∙ b]). Further enhancement was made in the mutation by replacing the monthly 411 

sequence with the sequence generated by the parametric simulation algorithm, called PSAm. 412 

The basic statistics of the enhanced RB-NPD model with ECAco and PSAm are presented 413 

in Figure 17. The figure shows that all statistics were reproduced well, including ACF1. Even 414 

slight overestimation of ACF1 is shown. The maximum of the accumulated data in Figure 18 was 415 

better preserved in this model compared to the original NPD model in Figure 11, especially Months 416 

5 and 6, which were the most critical months when floods occurred in the LCRR Basin. 417 

Furthermore, the lagged correlation at each month in Figure 19 was better preserved than that of 418 

the NPD model in Figure 14. In particular, the lagged correlations of Months 1, 2, and 3 improved 419 

in the enhanced RB-NPD model. 420 

Further model testing was performed with wavelet analysis (Foufoula-Georgiou and Kumar, 421 

1994; Grinsted et al., 2004) for the RB-NPD models (1) without enhancement (Basic), with ECAco 422 

only (Selective), and with ECAco and PSAm (Hybrid). The magnitude-squared coherences (C2) 423 

between the observed data and the disaggregated data from the RB-NPD models are presented in 424 

Figure 20. At lower frequencies, strong coherences can be observed, and this is rational since the 425 

aggregated data (annual NBS) of the disaggregated data (monthly NBS) are the same as those 426 

observed from the additive condition. Figure 21 presents the magnitude-squared coherence for the 427 

selected frequencies with high magnitudes. This illustrates that the selective and hybrid models 428 

show higher coherence than the basic model and shows that the selective and hybrid algorithms 429 

mimic the spectral frequency behavior of the observed data. The results indicate that the proposed 430 

algorithm can be a reasonable alternative to disaggregate the annual NBS data to monthly or 431 

quarter-monthly scale data. 432 
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6. Summary and Conclusions 433 

Based on the 2011 flood in the LCRR Basin, the assessment of the existing flood protection 434 

structure and future mitigation frameworks requires simulation scenarios. Furthermore, the 435 

scenarios must be on a monthly or quarter-monthly scale. Here, the disaggregation model 436 

development was made in the current study focusing on preserving the consistent extreme event 437 

of the 2011 flood that was sustained for more than three months. 438 

The existing parametric models, VS and MR, and the nonparametric model of the NPD were 439 

tested. The VS and MR models employed the normal copula transformation with the gamma 440 

marginal distribution instead of the traditional log, box-cox, or power transformation to avoid 441 

producing exceptionally large values and negative values. The results were reasonable, but the 442 

skewness and maximum statistics were underestimated. Furthermore, the maximum of the 443 

accumulated data was not reproduced well, especially for Months 5 and 6, which were critically 444 

related to flood events in the LCRR Basin. In contrast, the NPD model reproduced all basic 445 

statistics, including skewness and maximum statistics. However, the lagged correlation at each 446 

month was underestimated, especially in the first few months (i.e., Months τ=1, 2, and 3) due to 447 

the fixed number of blocks, 12 months, in the disaggregation procedure. Additionally, the 448 

maximum of the accumulated data was not appropriately reproduced, especially in Month 6. 449 

To overcome the shortages induced by the fixed number of blocks, the random block was 450 

suggested in the NPD model as the RB-NPD model. The proposed RB-NPD model varies the 451 

starting month of the block, while the starting month of the original NPD model for the block is 452 

always Month 1 (τ=1). Further model enhancement was made in the GA mixture to improve the 453 

cross-correlation by adding the ECAco and PSAm algorithms. The enhanced RB-NPD model 454 
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reproduced the lagged correlation as well as the maximum of the accumulated data, especially in 455 

Months 5 and 6, which are critical for the purpose of the current disaggregation model. 456 

Furthermore, the disaggregated data with the enhanced RB-NPD model present better preservation 457 

of the lagged correlation at each month than the NPD model, as well as spectral coherence. 458 

Therefore, the results indicate that the proposed RB-NPD model can be a comparable 459 

alternative and that its enhancement is suitable for disaggregating the annual NBS data for the 460 

LCRR Basin. 461 

  462 
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Abbreviations  463 

Abbreviations 464 

LCRR   Lake Champlain–Richelieu River 465 

NBS  Net Basin Supply 466 

VS  Valencia and Schaake 467 

MR  Mejia and Rousselle 468 

NPD  Nonparametric Disaggregation 469 

GA  Genetic Algorithm 470 

KNNR  K-Nearest Neighbor Resampling 471 

CDF  Cumulative Distribution Function 472 

PDF  Probability Density Function 473 

RB-NPD  Random Block-based Nonparametric Disaggregation 474 

PSAm   Parametric Simulation Algorithm in mutation 475 

ECAco   Enhanced Correlation Algorithm in crossover 476 

 477 

 478 

  479 
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7. Code and data availability 480 

The model code and example data are available at Mendeley Data in 481 

<https://data.mendeley.com/datasets/jrrwbc4cx6/1>.  The net basin supply (NBS) observed data 482 

are available from the International Joint Commission (IJC, https://www.ijc.org/en) upon request 483 
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Figures 566 

 567 

 568 

Figure 1. Diagram of the proposed random block-based nonparametric disaggregation (RB-NPD) 569 

from the current study. 570 

 571 

 572 
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 573 

Figure 2. Map of the LCRR Basin. Note that dark blue represents the whole area of the LCRR 574 

Basin, light blue inside dark blue represents Lake Champlain, and the northward line from Lake 575 

Champlain represents the Richelieu River. Note that the map was provided by the International 576 

Joint Commission. 577 

  578 
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 579 

Figure 3. Time series of the annual (top panel) and monthly (bottom panel) data for the observed 580 

(thick solid line) and disaggregated (dotted line with circle) simulation data with the VS model. 581 

 582 
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 583 

Figure 4. Boxplots of the basic statistics of the disaggregated monthly data from the annual data 584 

with the VS model for the NBS of the LCRR basin. Note that the statistics of the observed data 585 

are also represented with the dotted line and cross marker (.x.). The boxes represent the 586 

interquartile range (IQR), and the whiskers extend to 1.5 IQR. The horizontal lines inside the 587 

boxes depict the data median. Data beyond the whiskers (1.5 IQR) are shown by a plus sign (+). 588 

https://doi.org/10.5194/gmd-2022-274
Preprint. Discussion started: 26 January 2023
c© Author(s) 2023. CC BY 4.0 License.



   

33 

 589 

Figure 5. Cumulative distribution function (CDF) of the disaggregated data in each month with 590 

the VS model from the annual NBS of the LCRR Basin. Note that the observed data are 591 

represented with the dotted line and cross marker (.x.); (2) the 200 disaggregated simulation 592 

series are shown with thin gray lines, while their median is represented with the thin blue line; 593 

and (3) τ indicates the month from 1 to 12. 594 

https://doi.org/10.5194/gmd-2022-274
Preprint. Discussion started: 26 January 2023
c© Author(s) 2023. CC BY 4.0 License.



   

34 

 595 

Figure 6. Probability density function (PDF) of the disaggregated data at each month with the VS 596 

model with Pm=0.01 and Pc=0.1 from the annual NBS of the LCRR Basin. Note that the 597 

observed data are represented with the dotted line and cross marker (.x.); and (2) the 200 598 

disaggregated simulation series are shown with thin gray lines, while their median is represented 599 

with the thick blue line. 600 
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 601 

Figure 7. Boxplots of the maximum of the accumulated data for 1-6 months at each month of the 602 

disaggregated data with the VS model from the annual to the monthly NBS of the LCRR Basin. 603 

Note that the statistics of the observed data are also represented with the dotted line and cross 604 

marker (.x.); (2) the accumulation was performed for the previous months. For example, the acc-605 

4 data at Month 6 are obtained by summing the monthly data of 6, 5, 4, and 3 months. 606 

 607 

608 

https://doi.org/10.5194/gmd-2022-274
Preprint. Discussion started: 26 January 2023
c© Author(s) 2023. CC BY 4.0 License.



   

36 

 609 
Figure 8. Same as Figure 4 but for downscaled data from the MR model. 610 

 611 

  612 
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 613 

Figure 9. Same as Figure 7 but for downscaled data from the MR model. 614 

 615 

616 
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 617 
Figure 10. Boxplots of the basic statistics of the disaggregated monthly data from the annual data 618 

with the NPD model with Pc=0.1 and Pm=0.01 for the NBS of the LCRR Basin. Note that the 619 

statistics of the observed data are also represented with the dotted line and cross marker (.x.). 620 

  621 
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 622 
Figure 11. Boxplots of the maximum of the accumulated data for 1-6 months at each month of 623 

the disaggregated data by the NPD model with Pc=0.1 and Pm=0.01 from the annual to the 624 

monthly NBS of the LCRR Basin. Note that the statistics of the observed data are also 625 

represented with the dotted line and cross marker (.x.); and (2) the accumulation was made for 626 

the previous months. For example, the acc-4 data at Month 6 are obtained by summing the 627 

monthly data of 6, 5, 4, and 3 months. 628 
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 630 
Figure 12. Cumulative distribution function (CDF) of the disaggregated data at each month with 631 

the NPD model with Pm=0.01 and Pc=0.1 from the annual NBS of the LCRR Basin. Note that the 632 

observed data are represented with the dotted line and cross marker (.x.); and (2) the 200 633 

disaggregated simulation series are shown with the thin gray lines, while their median is 634 

represented with the thick blue line. 635 
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 636 

 637 
Figure 13. Probability density function (PDF) of the disaggregated data at each month with the 638 

NPD model with Pm=0.01 and Pc=0.1 from the annual NBS of the LCRR Basin. Note that the 639 

observed data are represented with the dotted line and cross marker (.x.); and (2) the 200 640 

disaggregated simulation series are shown with the thin gray lines, while their median is 641 

represented with the thick blue line. 642 
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 643 
Figure 14. Boxplots of the lagged correlation for the disaggregated monthly data with the NPD 644 

model with Pm=0.01 and Pc=0.1 from the annual NBS of the LCRR Basin. Note that the statistics 645 

of the observed data are also represented with the dotted line and cross marker (.x.); and (2) the 646 

lagged correlation was estimated at each month. For example, the lag-2 correlation at τ=1 was 647 

estimated with the Month-1 data of the current year and the Month-11 data of the previous year. 648 

  649 
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  650 
 651 

Figure 15. Boxplots of the basic statistics of the disaggregated monthly data from the annual data 652 

with the RB-NPD model with Pc=0.3 and Pm=0.1 for the NBS of the LCRR Basin. Note that the 653 

statistics of the observed data are also represented with the dotted line and cross marker (.x.). 654 

655 
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 656 

Figure 16. Root mean square error between the observed maximum values for the average of the 657 

accumulated monthly NBS and the simulated maximum values with different crossover and 658 

mutation probabilities of 0.01, 0.1, 0.2, 0.3, 0.4, and 0.5. 659 

 660 

 661 
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 662 
Figure 17. Boxplots of the basic statistics of the disaggregated monthly data from the annual data 663 

for the RB-NPD model with ECAco+PSAm (hybrid model) as well as Pc=0.3 and Pm=0.1 for the 664 

NBS of the LCRR Basin. Note that the statistics of the observed data are also represented with 665 

the dotted line and cross marker (.x.). 666 
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 667 
Figure 18. Boxplots of the maximum of the accumulated data for 1-6 months at each month of 668 

the disaggregated data from the RB-NPD model with the ECAco+PSAm as well as Pc=0.3 and 669 

Pm=0.1 from the annual to the monthly NBS of the LCRR Basin. Note that the statistics of the 670 

observed data are also represented with the dotted line and cross marker (.x.); and (2) the 671 

accumulation was made for the previous months. For example, the acc-4 data at Month 6 are 672 

obtained by summing the monthly data of 6, 5, 4, and 3 months. 673 
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 674 
Figure 19. Boxplots of the lagged correlation for the disaggregated monthly data for the RB-675 

NPD model with the ECAco+PSAm as well as Pc=0.3 and Pm=0.1 from the annual NBS of the 676 

LCRR Basin. Note that the statistics of the observed data are also represented with the dotted 677 

line and cross marker (.x.); and (2) the lagged correlation was estimated at each month. For 678 

example, the lag-2 correlation at τ=1 was estimated with the Month-1 data of the current year 679 

and the Month-11 data of the previous year. 680 
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Figure 20. Magnitude-squared coherence (C2) of all frequencies between the observed monthly 681 

NBS and the example of the disaggregated data from the RB models of the (a) basic, (b) 682 

selective, and (c) hybrid algorithms. Note that (1) C2(𝑓) = |𝑆𝑥𝑦(𝑓)|/𝑆𝑥𝑥(𝑓) ∙ 𝑆𝑦𝑦(𝑓), where 683 

𝑆𝑎𝑏(𝑓) is the cross power spectrum of two signals, a and b, at frequency f; (2) very strong 684 

coherence can be seen in lower normalized frequencies; (3) lower frequency indicates long-term 685 

variability; and (4) this is sound since the disaggregated data have the same annual values from 686 

the additive condition. 687 
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 688 
Figure 21. Magnitude-squared coherence (C2) of selected high frequencies (f=0.16, 0.32, 0.5, and 689 

0.66) between the observed monthly NBS and the disaggregated from the RB models of the 690 

basic, selective, and hybrid models. Note that high coherence indicates that the model mimics the 691 

spectral frequencies of the observed data well. 692 

 693 

 694 

 695 

 696 
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