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Abstract.

Convective wind gusts (CGs) are usually related to thunderstorms, and they may cause great structural damage and serious

hazards, such as train derailment, service interruption, and building collapse. Due to the small-scale and nonstationary nature

of CGs, reliable CGs nowcasting with high spatial and temporal resolutions has remained unattainable. In this study, a novel

nowcasting model based on deep learning - namely, CGsNet - is developed for 0-2 h
::::
hour

::::
lead

:::::
times

:
of quantitative CGs5

nowcasting, first achieving minute-kilometer-level forecasts. CGsNet is a physics-constrained model established by training

on large corpora of average surface wind speed (ASWS) and radar observations, it can produce realistic and spatiotemporally

consistent ASWS predictions in CGs events. By combining the gust factor (1.77, the ratio of the observed peak wind gust

speed (PWGS) to the ASWS) with the ASWS predictions, the PWGS forecasts are estimated with a spatial resolution of 0.01°

× 0.01° and a 6-minute temporal resolution. CGsNet is shown to be effective, and it has an essential advantage in learning the10

spatiotemporal features of CGs. In addition, quantitative evaluation experiments indicate that CGsNet exhibits higher gener-

alization performance for CGs than the traditional nowcasting method based on numerical weather prediction models
:::::
model.

CGs nowcasting technology can be applied to provide real-time quantitative CGs forecastsand alerts the damaging wind events

in meteorological services.

1 Introduction15

Convective wind gusts (CGs) are nontronadic
:::::::::
nontornadic, straight-line winds (Mohr et al., 2017; Yu and Zheng, 2020). They

predominantly occur in Eastern China in the warm summer months (Yang et al., 2017), and they are usually associated with

thunderstorm clouds, in particular squall lines and supercells, which generate conditions conducive to the appearance of whirl-

winds and squalls (Kolendowicz et al., 2016). Severe convective gusts are caused either by mesoscale cold pools associated

with horizontal pressure gradients large enough to produce high wind speeds in the absence of strong downdrafts or by local-20

scale downbursts that create strong divergent horizontal winds near the ground (Wakimoto, 2001). These severe convective
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gusts may cause considerable damage to communication, transport, buildings and other structures, and even the health and life

of humans in many parts of the world (Mohr et al., 2017; Wang et al., 2020).

CGs as defined by the China Meteorological Administration (CMA) are usually recognized as a PWGS ≥ 17.2 m/s caused

by severe atmospheric convection (Yu and Zheng, 2020). Compared with large-scale wind storms, many observations show25

that convectively induced storm events can reach higher wind speeds (Mohr et al., 2017). For example, the CGs observed in

1983 during a microburst in the United States had a peak gust of 67 m/s (Fujita, 1990), for which wind speeds are comparable

to those of an F3 tornado based on damage assessments. Thus, forecasting the occurrence of CGs in advance is valuable for

reducing the risk and threat of damaging wind events.

Currently, accurate CGs nowcasting is still a challenging issue in operational meteorology despite its severe impact (Ray,30

2015; Stensrud et al., 2009). This is primarily for several reasons. One is the small-scale and nonstationary nature of CGs.

Due to the rapid evolution of fine-scale convective systems and their complicated interactions with environmental features, it

is difficult for mesoscale numerical models or statistical models to capture and forecast CGs. In addition, the sparsity of wind

observations is a factor that hinders the development and verification of gust nowcasting models. The most frequently cited

record-breaking wind speeds are usually associated with wind gust values. This refers to a maximum momentary (2-3 sec.)35

wind speed that exceeds the 2-minute mean wind speed by at least 5 m/s (WMO, 2010). At present, wind gusts between full

hours of observation have been recorded in Eastern China, which makes it possible to determine the actual maximum wind

gusts/peak wind gusts (PWGS) for each hour. Obviously, these existing meteorological observation networks cannot record

fine-scale CGs accurately (Kahl et al., 2021; Mohr et al., 2017), and a significant portion of the highest wind gusts may be

missing.40

Many previous studies have mainly focused on potential severe convective weather (SCW) forecasting (McNulty, 1995;

Doswell et al., 1996) or the possibility of classified SCW forecasting (Zhou et al., 2019; Lagerquist et al., 2017), while quan-

titative CGs nowcasting has rarely been reported. Currently, some studies focus on wind gust forecasting by using physically

based methods, empirical results and tuning, statistical analysis or machine learning methods (Kahl, 2020; Kahl et al., 2021;

Lei et al., 2009; Sheridan, 2018; Nerini et al., 2014; Chaudhuri and Middey, 2011). Although some progress has been made in45

these studies, their performance on wind gust nowcasting (0-2 h) is poor (Wang et al., 2016), especially in terms of spatial and

temporal resolution. For example, the wind forecasted by Integrated Nowcasting through Comprehensive Analysis (INCA)

(Haiden et al., 2011) or the newly developed meteorologically stratified gust factor (MSGF) model (Kahl et al., 2021) has

a 1-hour temporal resolution, which is not sufficient for describing the evolution of wind gusts. Most importantly, few gust

forecasting models have been evaluated for effectiveness in CGs nowcasting.50

Recent advances in deep learning (Yang et al., 2017), especially recurrent neural networks (RNNs) and convolutional neural

networks (CNNs), have provided some useful insights into the meteorological field (Duan et al., 2021; Sadeghi et al., 2020).

Many approaches based on RNNs and CNNs have been applied successfully to short-term weather forecasting due to their

ability to capture temporal and spatial variations in image features, e.g., short-term drought (Danandeh Mehr et al., 2022) and

quantitative precipitation forecasts (Shi et al., 2015). An evaluation of the applications indicates that the deep learning solutions55

can model complex nonlinear systems and better extract advanced features.
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Complex physical processes and dynamic characteristics are often involved in convective systems at small spatial and tem-

poral scales (Doswell, 2001). It is critical to fully extract convective characteristics automatically to improve the forecast

accuracy, and deep learning provides a practical tool for this purpose. In particular, Zhou et al. (2019) developed a forecasting

solution for SCW using a CNN, producing objective-possibility
::::::::::
probabilistic

:
forecasting products. Their results showed that60

deep learning methods achieve better performance than traditional forecasting methods. Thus, as it is a similar problem, deep

learning may have considerable application potential in CGs nowcasting, and it is promising to test CGs forecasting using deep

learning methods, which has rarely been documented before.

The objective of this study is to achieve quantitative nowcasting of CGs speed in eastern China using the deep learning

method, in principle down to the minute-level timescale. Doppler weather radar is an important device for observing and65

forecasting CGs because of abundant weather information in radar reflectivity (e.g., bow echo and hook echo) (Holleman,

2001; Yuan et al., 2018; Yu and Zheng, 2020). Thus, in this study, we aim to forecast quantitative CGs based on observed wind

and radar data, which has rarely been considered in previous studies. We also compare the nowcasting performance of the deep

learning method with that of the INCA approach. Notably, we concentrate on the nowcasting and evaluation of the average

surface wind speed (ASWS) and PWGS, which are both key factors that reflect the strength and influence of CGs. We believe70

this work will have significant application potential in small-scale hazard assessment and alerting of threats to the economy

and human activities.

2 Data

The study area is in Eastern China (Figure 1), including Jiangsu Province and its adjacent area. The latitudinal and longitudi-

nal ranges of the study area are 30.4°N–35.2°N and 116.33°E–121.93°E, respectively. Considering that CGs associated with75

thunderstorms occur predominantly in the warm season in eastern China (Yang et al., 2017), April to September of each year

was selected as the period of the experiments in this study.

2.1 Wind data

For the ground-truth reference, the ASWS data comprise in situ observations with a 5-minute time interval, which is the 2-

minute average of the 3-second wind measured using automatic weather stations (AWSs) (Figure 1b) at a height of 10 meters80

above the ground. Note that there is
:::
are limited wind observation data available along the seacoast

::
on

:::
the

::::::::::::
seacoast/over

:::
the

:::
sea, and as a result, this study focuses on gust forecasting in the eastern region of mainland China. We use IDW method to

interpolate the wind observation data on the seacoast. However, during the subsequent training process, we mask the wind

data on the seacoast by setting the weight of the loss function to 0.
:::
land

::::::
region

::
of

:::::::
eastern

:::::
China.

:
To match the spatiotemporal

resolution of the observed radar reflectivity mosaics (RMOSs), the ASWS data were first interpolated to 6 minutes using85

linear interpolation. Inverse distance-weighted (IDW) interpolation has the advantages of being fast to calculate and easy to

understand, and it is suitable for eastern China, where the automatic stations are dense and evenly distributed. Then
::::
Thus, the

IDW interpolation method was employed to regrid the ASWS data to a spatial resolution of 0.01° × 0.01° by using the four

3



nearest stations within 15 km with a power of 2.
:
2
::::
(the

::::::
details

::
of

:::
the

:::::::::
parameter

::::::
choices

:::
can

:::
be

:::::
found

::
in

:::
the

:::::::::::
supplement).

::::
The

::::
wind

::::::::::
observation

::::
data

::
on

:::
the

:::::::
seacoast

::::
and

::::
over

:::
the

:::
sea

:::
was

:::
set

::
to

::
0.

::::::::::::
Subsequently,

::::::
during

:::
the

::::::
training

:::::::
process,

:::
we

:::::::
masked

:::
the90

::::
wind

::::
data

:::
on

:::
the

:::::::
seacoast

:::
and

::::
over

:::
the

::::
sea

::
by

::::::
setting

:::
the

::::::
weight

:::
of

:::
the

:::
loss

::::::::
function

::
to

::
0.

::::
This

:::::::
ensures

:::
that

:::
the

:::
sea

:::::
areas

:::
do

:::
not

::::::::
contribute

::
to
:::
the

::::::::::::::
backpropagation

::::::::::::
optimization.

::::::::
However,

:::
the

:::::
values

:::
in

:::
the

:::
sea

::::
areas

::::
still

:::::::::
participate

::
in

:::
the

::::::::::::
convolutional

::::::::
operations

::::::
during

:::
the

:::::::
forward

::::::::::
propagation

:::::::
process,

:::::
which

:::::
could

::::
lead

::
to

:
a
:::::
slight

:::::::::::::
underestimation

::
of

:::
the

::::::
ASWS

::
or

::::::
PWGS

::::::
values

::
in

::::
areas

:::::
close

::
to

:::
the

:::::::
seacoast.

:
In this study, the interpolated wind data are assumed to be close to the true observed wind field.

ASWS data from 2016 to 2022 were considered. To further select ASWS data associated with CGs, the samples were95

selected using two
:::::::
selection

::::
need

:::::
meet

:::
two

:::::::::
concurrent

:
principles: 1) more than 2% of stations recorded ASWS > 10.8 m/s; and

2) the precipitation at more than 5% of the stations within an hour was greater than 0.1 mm.

In addition, observed peak wind gust speed (PWGS) from 2021 to 2022 was used in this study for subsequent gust factor

calculation and model evaluation; it is the maximum 3-second average gust recorded over 1 hour by the AWS.
::::::
Samples

:::::
from

::::::
PWGS

::::
were

:::::
taken

::::
from

::::::
typical

::::
CGs

::::::
events

:::::::
recorded

:::
by

:::
the

::::::::::::
meteorological

:::::::
bureau.100

2.2 Radar reflectivity

Weather radar provides a highly detailed representation of the spatial structure and temporal evolution of thunderstorms over

a large area (Knupp, 1987). Weather radar data may also indicate the time and location of the CGs that occurred (Holleman,

2001). Thus
:
In

:::::::::
particular, the constant-altitude radar RMOSs at 3 km are

:::
less

:::::::::
susceptible

:::
to

::::::
ground

:::::
clutter

:::::::::
compared

::
to

:::::
radar

:::
data

::
at
:::::

other
::::::::
altitudes.

::::
This

::::::
allows

:::::
them

::
to

:::::::
provide

:::::::::
continuous

::::
and

:::::::::::::
comprehensive

:::::::
coverage

:::
of

:::
the

:::::
study

::::
area,

:::
as

::::
well

::
as

::
a105

::::
more

:::::::
accurate

::::::::::::
representation

:::
of

:::::
storm

::::::::
structure.

:::::
Thus,

:::::
these

::::::::::::::
constant-altitude

:::::
radar

:::::::
RMOSs

::
at

::
3

:::
km

::::
were

:
used as auxiliary

data along with observed wind data to forecast the speed of CGs. The RMOS data is from 10 weather radar stations in eastern

China (Figure 1a). The type of radar sensor is the CINRAD/SA Doppler weather radar (Sheng et al., 2006). The RMOS is

determined
:::::::
acquired

:::::::
through

:::
the

::::::::::
operational

:::::::
Doppler

::::::
weather

:::::
radar

::::
3-D

:::::
digital

::::::
mosaic

::::::
system

::::::::::::::::
(Wang et al., 2009)

:
,
:::::
which

::::
was

::::::::
developed

:::
by

:::
the

:::::::
Chinese

::::::::
Academy

:::
of

:::::::::::::
Meteorological

::::::::
Sciences.

::::
This

::::::
system

::::::::::
determines

:::
the

::::::
RMOS

:
by projecting the base110

reflectivity factor onto equal longitude and latitude coordinates. The time interval of the RMOS data is 6 minutes, the spatial

resolution is 0.01°, and the grid data are arranged from west to east and north to south. The selected study area: the red dotted

line in (a) represents Eastern China (30.4°N–35.2°N, 116.33°E–121.93°E); the black triangles in (a) represent the locations of

the weather radar; and the purple dots in (b) are the locations of the AWSs that currently measure ASWS and PWGS.

2.3 Workflow115

The workflow of this study is illustrated in Figure 2. First, the RMOS data were preprocessed, and the ASWS data were

interpolated and regridded as mentioned above. Second, the spatial-temporal resolutions of the RMOS and ASWS samples

were matched, and the time of the RMOS samples was determined by the selected ASWS samples. Third, the dataset was

divided into three parts (training, validation and testing datasets) according to the observation time. Fourth, the ASWS data

were clipped to between 0 and 35 m/s and subsequently normalized to the range [0.0, 1.0] through min-max normalization.120

Similarly, the RMOS values were clipped to between 0 and 70 dBZ and subsequently normalized to between 0 and 1. Fifth,
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(a) (b)

Figure 1.
:::
The

::::::
selected

:::::
study

::::
area:

:::
the

:::
red

:::::
dotted

:::
line

::
in
:::

(a)
::::::::
represents

::::::
Eastern

:::::
China

:::::::::::::
(30.4°N–35.2°N,

::::::::::::::::
116.33°E–121.93°E);

:::
the

:::::
black

::::::
triangles

::
in

:::
(a)

:::::::
represent

::
the

:::::::
locations

::
of
:::
the

::::::
weather

:::::
radar;

:::
and

:::
the

:::::
purple

:::
dots

::
in
:::
(b)

:::
are

::
the

:::::::
locations

::
of

:::
the

:::::
AWSs

:::
that

:::::::
currently

:::::::
measure

:::::
ASWS

:::
and

::::::
PWGS.

6-min RMOS
 (0.01〫×0.01〫)

6-min ASWS
(0.01〫×0.01〫)

Re-sampling 
& gridding 

Temporal-spatial 
matching

The observed 
wind data

Training set, validation 
set, and testing set

Max-min normalization CGsNet

The forecasted 0-2h
 6-min ASWS   

(0.01〫×0.01〫)

The forecasted 0-2h 
6-min PWGS (0.01〫

×0.01〫)

Statistical 
relationship: 
gust factor Evaluation 

Figure 2.
:::::::
Workflow

::
of
::::
deep

:::::::
learning

:::::::::
model-based

::::
CGs

:::::::::
nowcasting.
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the ASWS and RMOS data in the past 60 minutes were used as input data to train and validate the deep learning nowcasting

model, and the outputs were the forecasted ASWS and RMOS with lead times of 6-120 minutes ahead, with a spatial resolution

of 0.01° × 0.01° and a 6-minute temporal resolution. Sixth, the performance of the deep learning model in forecasting ASWS

was evaluated by different statistical variables. Seventh, the mean gust factor (GF) was determined by comparing the observed125

PWGS and ASWS. Subsequently, the PWGS forecasts were estimated by multiplying the GF by the forecasted ASWS. Finally,

the PWGS forecasts were compared with INCA results, and two cases were also showed to demonstrate the accuracy of PWGS

forecasts. Workflow of deep learning model-based CGs nowcasting.

3 Model and settings

3.1 Model architecture130

We started by adapting the network structure proposed by Guen and Thome (2020b), namely, PhyDNet, which is a sequence-

to-sequence network. Unlike traditional networks, PhyDNet steer
:::::
steers

:
the learning process toward identifying physically

consistent solutions by introducing an appropriate inductive bias (Karniadakis et al., 2021), that is, implicitly embedding prior

knowledge in the network architecture and satisfying a given set of physical laws. It has a two-branch deep architecture, i.e.,

the newly proposed recurrent physical cell (PhyCell) and ConvLSTM. Specifically, PhyCell is inspired by data assimilation135

techniques for performing partial differential equation (PDE)-constrained prediction in latent space. It explicitly disentangles

PDE dynamics from unknown complementary information and allows for a generic class of linear PDEs through varying

differential orders, e.g., wave equations. In PhyDNet, the physical knowledge is represented by PDEs, which can enforce

physical constraints for future image prediction well. PhyDNet has been successfully employed in many fields, e.g., solar

irradiance forecasting using fisheye images (Guen and Thome, 2020a) and nitrogen prediction (Jahanbakht et al., 2022).140

The attention mechanism can focus on the important information among a large amount of input information and ignore

most of the unimportant information (Niu et al., 2021). Thus, an attention mechanism is applied to improve the performance

of PhyDNet for nowcasting CGs in this study. Here, the PhyDNet with an attention mechanism for CGs nowcasting is called

CGsNet, and its architecture is illustrated in Figure 3. An input sequence {xa,r
t−K , . . . ,xa,r

t } ∈ RK×n×m×c
:::::::::
RK×n×l×c

:
in-

cluding ASWS (a) and RMOS (r) with spatial size n×m
::
K

::::
time

:::::
steps,

::::::
spatial

::::
size

:::::
n× l,

:
and c channels is projected into145

{hE
t−K , . . . ,hE

t } by the convolutional units and processed by the recurrent block unfolded in time. This forms a sequence-to-

sequence architecture suited for multistep prediction, outputting T future CGs
::::::
ASWS

:::
(a)

:::
and

::::::
RMOS

:::
(r)

:
predictions {x̂a,r

t+1,

. . . , x̂a,r
t+T }. For time t, we learn a weight vector ⟨αt1, ...,αtk⟩ :::::::::::

⟨αtk, ...,αt1⟩ for K hidden states {hm
t−K , . . . ,hm

t−1}, where the

weight αtk can be interpreted as the relative importance of the k-th hm. Each weight αtk is computed by taking hE
t ::::
hE
t−k:

as

input, followed by a softmax operation. Then, we perform summation over the weighted hidden states to obtain an attention150

representation At, which will be incorporated into the decoder for prediction. The key equations for generating the attention
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Figure 3. Illustration of CGsNet. The encoder is to the left of the dotted red line, and the decoder is to the right. xa,r
i and x̂a,r

i are the

observed and forecasted ASWS/RMOS fields, respectively. hE
i indicate the input tensors calculated by the convolution units, respectively.

hc
i and hp

i indicate the hidden states of ConvLSTM and PhyCell, respectively. hm
i represents the hidden state that combines the values from

hc
i and hp

i .

representation At for the t+1-th output prediction are summarized as follows.

stk =W ∗htt−k
::

E + b, ∀k ∈ [1,K] (1)

αtk =
exp(stk)∑K
k=1 exp(stk)

, ∀k ∈ [1,K] (2)

At =

K∑
k=1

αtkh
m
k (3)155

hm
t+1 = PhyCell([hE

t ,At]) +ConvLSTM([hE
t ,At]) (4)

where ‘∗’ denotes the convolution operator and the kernel matrices W and biases b are parameters to be learned. The high-

level representation hm
t+1 is then fed into the deconvolutional units, and x̂a,r

t+1 is calculated. Similarly, by inputting x̂a,r
t+1 into
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the decoder, combined with the attention mechanism, the forecasted x̂a,r
t+2 can be calculated. In this cycle, we can obtain the

ASWS and RMOS forecasts in the future, i.e., {x̂a,r
t+1, . . . , x̂a,r

t+n}. This
::::::
x̂a,r
t+T }.

::::
The

:::::
effect

::
of

:::
the attention mechanism operation160

:
is
::
to
::::
find

:::
the

::::
most

:::::::::
significant

::::::::
historical

::::::::::
information

::::
from

:::
the

:::::
input

:::::::::
sequences,

::::
e.g.,

::::
when

:::::::::
predicting

:::::
x̂a,r
t+1,

:::
the

:::::::
attention

:::::::
module

:::
can

::::::
assign

:::::::
weights

:::
for

::::::::::::::
{hm

t−K , . . . ,hm
t }.

::::
This

:
can better model both short-term and long-term dependencies.

:::
The

:::::::
detailed

:::::::::::
convolutional

:::::::
encoder

:::
and

:::::::
decoder,

:::
the

::::::::::
calculation

::::::
process

::
of

:::::::
PhyCell

::::
and

::::::::::
ConvLSTM,

::::
and

:::
the

::::::
feature

:::::
maps

::
of

::::::
hidden

:::::
states

:::
can

::
be

::::::
found

::
in

:::
the

:::::::::::
Supplement.

::::
Note

::::
that

:::
we

:::
just

:::::
focus

:::
on

:::::::::
analyzing

:::
the

:::::::::
forecasting

::::::
results

::
of

:::::::
ASWS,

::::
and

:::
the

:::::::::
forecasted

::::::
RMOS

::
is

:
a
::::::::
secondary

::::::
result.165

3.2 Experimental settings

Here, we aim to forecast 0-2 hour CGs; thus, 10 historical ASWS and RMOS grid fields {xa,r
1 , . . . ,xa,r

10 } ∈ R10×480×560×2

were taken as the inputs, and the subsequent 20 ASWS and RMOS grid fields {xa,r
11 , . . . ,xa,r

30 } ∈ R20×480×560×2 were the

ground-truth outputs. The ASWS and RMOS grid fields from 2016 to 2020 were used for model’s trainingand validation
::
’s

::::::
training, and the fields in

::::
from

::::
June

::
to
::::::::::
September 2021 and 2022

::::
April

::
to

:::::
May

::::
2021

:
were employed for ASWS testing and170

PWGS
::::::::
validation

::::
and testing, respectively.

:::
The

:::::
fileds

::::
from

:::::
May

::
to

::::
July

::::
2022

:::::
were

::::
used

:::
for

::::::
PWGS

::::::
testing.

:
Correspondingly,

we obtained 15,629 CGs samples, including a training set of 13,155 samples, a validation set of 1,236 samples, and the testing

sets of 1,184 and 54 samples for ASWS and PWGS.

Regarding the training settings, Adam (Kingma and Ba, 2014) was used as the optimizer, and the batch size was set as 2.

The learning rate was initially set to 0.001 and then multiplied by 0.3 if the loss did not decrease when the model was trained175

for 2 epochs. The model was trained for a total of 50 epochs, and the model weight with the minimum loss on the validation

set was saved. The comparison and
::::::
selected

::::
and

:::::
saved.

:::::
Then

:::
the evaluation experiments were implemented on the testing set.

:::::::
Detailed

:::::::::::::
hyperparameter

::::::
choices

::::
can

::
be

:::::
found

::
in
:::
the

:::::::::::
supplement. All experiments in this study were conducted using Python

and PyTorch and executed on 4 NVIDIA GeForce RTX 3090 GPUs with the CUDA-11.1 library.

3.3 Loss function180

The loss function is used to adjust the weights of the deep learning model, and it is an instructive function that guides how to

improve the weight coefficients. Most previous studies used the mean absolute error (MAE) loss or mean squared error (MSE)

loss as the default to train their models (Tran and Song, 2019; Veillette et al., 2020; Franch et al., 2020). However, these losses

will result in smoothing effects in the predicted fields, since they may make a good assumption about the global similarity of

the two fields, meaning that the field’s details may be lost (Tran and Song, 2019; Franch et al., 2020). Notably, with increasing185

forecast time, the problem of underestimating high values becomes more obvious, such as underestimating heavy rain or radar

reflectivity. To address these problems and make the predictions sharper and more realistic, the weighted MAE loss (Shi et al.,

2017) was adopted in this study. The weight
::::::
weights for the MAE loss function is

:::
are shown in Table 1 , and it is set according

to
:::
(the

::::::
further

::::::
details

:::
on

::::::::
parameter

:::::::
choices

:::
are

::::::::
available

::
in

:::
the

:::::::::::
supplement).

:::::
These

:::::::
weights

:::
are

::::::::::
determined

:::::
based

:::
on the six

ASWS and RMOS value ranges. The weighted MAE loss is equivalent to data augmentation
:::::::
designed

::
to

:::::::::
ameliorate

:::
the

:::::::
problem190

::
of

::::
data

::::::::
imbalance

::::::
caused

:::
by

:::
the

:::::::
scarcity

::
of

::::::
strong

::::
gust

::::
data, as it gives a large weight to strong gusts and a small weight to

8



weak gusts. Thus, this setting has a better effect on forecasting CGs than loss without weights. The weighted loss function can

be calculated as follows.

loss=
1

N

N∑
n=1

480∑
i=1

560∑
j=1

wn,i,j

∣∣yan,i,j − ŷan,i,j
∣∣+ 1

N

N∑
n=1

480∑
i=1

560∑
j=1

wn,i,j

∣∣yrn,i,j − ŷrn,i,j
∣∣ (5)

where N is the number of samples, and i and j are the width and length of the ASWS/RMOS, respectively. Moreover, yan,i,j ,195

yrn,i,j , ŷan,i,j , and ŷrn,i,j are the observed ASWS, observed RMOS, forecasted ASWS and forecasted RMOS values, respectively.

wa
n,i,j and wr

n,i,j denote the weights of the ASWS and RMOS values, respectively.

Table 1. The weights of the ASWS and RMOS in the MAE loss.

Wind (m/s) Weights RMOS (dBZ) Weights

y ≤ 5.5 0.5 y ≤ 15 0.5

5.5 ≤ y ≤ 8.0 1 15 ≤ y ≤ 25 1

8.0 ≤ y ≤ 13.9 2 25 ≤ y ≤ 35 2.5

13.9 ≤ y ≤ 17.2 10 35 ≤ y ≤ 45 5

17.2 ≤ y ≤ 20.8 20 45 ≤ y ≤ 50 10

y ≥ 20.8 30 y ≥ 50 15

3.4 Model evaluation

To quantify the capabilities of CGsNet, the critical success index (CSI), probability of detection (POD), false alarm rate (FAR),

bias score, and Heidke skill score (HSS) were implemented for evaluating the CGsNet forecasts. The following equations200

describe these indices.

CSI =
TP

TP +FP +FN
(6)

POD =
TP

TP +FN
(7)

FAR=
FP

TP +FP
(8)

BIAS =
TP +FP

TP +FN
(9)205

HSS =
(TP ×TN −FN ×FP )

(TP +FN)× (FN +TN)+ (TP +FP )× (FP +TN)
(10)

9



where TP, TN, FN, and FP are the numbers of true positives, true negatives, false negatives, and false positives, respectively.

Moreover, the MAE and RMSE are also used for model evaluation, and are calculated as follows.

MAE =
1

Q

Q∑
i=1

|yi − ŷi| (11)

RMSE =

√√√√ 1

Q

Q∑
i=1

(yi − ŷi)2 (12)210

where Q is the number of predicted ASWS pixel values. yi and ŷi represent the observations and forecasts, respectively. Note

that the value of BIAS is greater than 0, and the closer to 1 the value is, the better. The remaining indices range between 0 and

1. An excellent model should present high CSI, POD, and HSS values but low FAR, MAE, and RMSE values.

:::
The

::::::::::::
bootstrapping

::::::
method

::
is
::::
used

:::
to

:::::::
generate

:::
the

::::
95%

:::::::::
confidence

::::::::
intervals

:::
for

:::
the

:::::::::
mentioned

::::::
indices.

::::::::::
Confidence

:::::::
interval

:::
(CI)

:::::
helps

::
to

:::::::
provide

:
a
:::::::
measure

::
of

:::
the

::::::::::
uncertainty

::::::::
associated

::::
with

:::
the

::::::
results

:::
and

::::::
allows

:::
for

:
a
:::::
better

::::::::::::
understanding

::
of

:::
the

:::::
range215

::
of

:::::::
possible

:::::
values

:::
for

:::
the

::::::
indices.

::::::::
Besides,

::
the

::::
use

::
of

:::::::::::
bootstrapping

::::::
allows

::
us

::
to

:::::::
estimate

:::
the

:::::::::
variability

::
of

:::
the

::::::
indices

:::
and

:::::
helps

::
to

:::::
ensure

::::
that

:::
the

:::::
results

:::
are

::::::
robust

:::
and

::::::::::
reliable.The

:::::::
detailed

:::::::::
calculation

:::::::
process

:::
can

:::
be

:::::
found

::
in

:::
the

::::::::::
supplement.

In addition, the baseline methods,
:::::::
PhyDNet

::::
and

:
INCA (Haiden et al., 2011), is

::
are

:
compared with CGsNet in forecasting

::::::
ASWS

:::
and

:
PWGS in CGs,

:::::::::::
respectively. INCA is a nowcasting system developed with complex terrain adaptability at the

Austria National Weather Service. In this study, the nowcasts start with a three-dimensional analysis based on a first guess220

obtained from the output of the numerical weather prediction model (here, the PWAFS model (Li et al., 2016) is used), with

observation corrections superimposed. It can provide wind forecasts, for which the update frequency (temporal resolution) is 1

h.

In particular, we concentrate on evaluating ASWS in the range
::
at

::::::::
thresholds

:
of 8.0-13.9 m/s and PWGS in the range

::::
(e.g.,

::::::
ASWS

:
>
:::
8.0

::::
m/s

::
or

::::::
ASWS

::
>
::::
13.9

::::
m/s)

::::
and

::::::
PWGS

::
at

:::::::::
thresholds of 10.8-20.8 m/s in CGs events, which has broad value for225

disaster warning in meteorological operations and aviation applications.

4 Results

4.1 Model performance on ASWS nowcasting

To validate
:::
and

:::::::
evaluate the effectiveness of

::
the

:
CGsNet on forecasting ASWS in CGs, the

::::::
baseline

::::::
model,

:::::::::
PhyDNet,

::::
was

::::
used

:::
for

:::
the

::::::::::
comparison.

::::
The

::::::::
evaluation

::::::
results

::
of

:::::::
CGsNet

::::
and

::::::::
PhyDNet

::
on

:::
the

:
CSI, HSS, POD, FAR, MAE, and RMSE are230

calculated
::::
given

:
in Table 2 for the investigated nowcasting lead time. The thresholds at 8.0 m/s, 10.8 m/s and 13.9 m/s of

ASWS are evaluated, and the results reveal that CGsNet achieved outstanding performance
::::::::::
outperformed

::::::::
PhyDNet

:
on these

criteria. In detail, for an ASWS threshold of 8.0 m/s, CGsNet has excellent
::::
better

:
performance with HSS = 0.54

::::
(95%

::::
CI:

::::
0.47;

:::::
0.61), POD = 0.59

::::
(95%

::::
CI:

::::
0.51;

:::::
0.66), MAE = 1.6

::::
(95%

:::
CI:

:::::
1.46;

::::
1.80)

:
m/s, and RMSE = 2.26

::::
(95%

:::
CI:

:::::
2.00;

:::::
2.54)

:::
m/s

::::
than

::::::::
PhyDNet

:::::
(HSS

::
=

::::
0.52

:::::
(95%

:::
CI:

:::::
0.44;

:::::
0.59),

::::
POD

::
=
::::
0.55

:::::
(95%

:::
CI:

:::::
0.46;

:::::
0.62),

:::::
MAE

::
=
::::
1.71

:::::
(95%

:::
CI:

:::::
1.55;

:::::
1.91)235

:::
m/s,

::::
and

::::::
RMSE

:
=
::::
2.40

:::::
(95%

:::
CI:

:::::
2.14;

::::
2.68)

:
m/s). When the threshold is raised to 10.8 m/s, the forecast ability

:
of

:::::::
CGsNet

::::
and

10



:::::::
PhyDNet

:::::
both degrades slightly. For strong wind (the threshold is at 13.9 m/s), CGsNet still has a certain forecasting ability,

with an HSS of 0.20
:::::
(95%

:::
CI:

::::
0.07;

:::::
0.24)

:
and a POD of 0.22

::::
(95%

:::
CI:

:::::
0.10;

:::::
0.31),

::::::
which

:
is
::::::::

superior
::
to

:::
the

::::::::::
performance

:::
of

:::::::
PhyDNet. This means that the developed CGsNet can retain a decent modeling capability and is useful for ASWS nowcasting

in
:::::::
attention

::::::
module

::::
can

::::::::
effectively

:::::::
enhance

::::::::
modeling

::::::
ability

::
of

:::::::
CGsNet,

:::::::
making

:::::::
CGsNet

:
a
:::::::
valuable

::::
tool

::
for

::::::::::
nowcasting

::::::
ASWS240

:::::
during

:
CGs events, especially

:::::::::
particularly

:
for strong gusts that are difficult to forecast by

:::::::
typically

::::::::::
challenging

::
to

:::::::
forecast

:::::
using

traditional methods.

Table 2. Quantitative results of CGsNet
:::
and

:::::::
PhyDNet on ASWS nowcasting.

:::
95%

:::
CI

:::::::
represent

::
the

::::
95%

::::::::
confidence

:::::::
intervals

::
of

:::
the

::::::
indices.

:::::
Model ASWS threshold (m/s) CSI

::::
95%

::
CI HSS

::::
95%

::
CI POD FAR

::::
95%

::
CI MAE

:::
95%

:::
CI RMSE

::::
95%

::
CI

CGsNet

8.0 0.41
::::
(0.33;

::::
0.49)

:
0.54

::::
(0.47;

::::
0.61)

:
0.59 0.45

:::::
(0.51;

::::
0.66) 1.60

::::
(1.46;

::::
1.80)

:
2.26

::::
(2.00;

::::
2.54)

10.8 0.31
::::
(0.22;

::::
0.40)

:
0.42

::::
(0.32;

::::
0.50)

:
0.47 0.54

:::::
(0.34;

::::
0.60) 2.19

::::
(1.93;

::::
2.51)

:
3.07

::::
(2.62;

::::
3.56)

13.9 0.15
::::
(0.04;

::::
0.21)

:
0.20

::::
(0.07;

::::
0.24)

:
0.22 0.61

:::::
(0.10;

::::
0.31) 2.90

::::
(2.26;

::::
2.66)

:
4.22

::::
(3.25;

::::
5.10)

PhyDNet
::
8.0

:::
0.39

:::::
(0.31;

::::
0.47)

: :::
0.52

:::::
(0.44;

::::
0.59)

: :::
0.55

:::::
(0.46;

::::
0.62)

::::
1.71

::::
(1.55;

::::
1.91)

:::
2.40

:::::
(2.14;

::::
2.68)

:::
10.8

:::
0.28

:::::
(0.20;

::::
0.38)

: :::
0.38

:::::
(0.28;

::::
0.47)

: :::
0.41

:::::
(0.29;

::::
0.53)

::::
2.40

::::
(2.12;

::::
2.76)

:::
3.33

:::::
(2.90;

::::
3.83)

:::
13.9

:::
0.12

:::::
(0.03;

::::
0.19)

: :::
0.16

:::::
(0.05;

::::
0.21)

: :::
0.19

:::::
(0.09;

::::
0.28)

::::
3.10

::::
(2.39;

::::
3.97)

:::
4.54

:::::
(3.59;

::::
5.47)

We further investigated the performance of CGsNet
::::::
models by drawing the CSI, HSS, MAE and RMSE curves at all now-

casting lead time stamps. As shown in Figure 4, in the cases with ASWS > 8.0 m/s, the prediction quality gradually decreased

::
of

::::
both

:::::::
CGsNet

:::
and

:::::::::
PhyDNet

::::::::
gradually

::::::::
decreases

:
as the forecasting time increased

::::::::
increases.

::::
The

::::
CSI

:::
and

::::
HSS

:::
of

:::::::
CGsNet245

::::::
always

:::::
retain

:::
top

::::::::
positions

::
at

:::
any

:::::
time. Specifically,

:::
for

:::::::
CGsNet,

:
the value of CSI/HSS dropped

::::
drops

:
from approximately

0.56/0.70 (lead time at 6 min) to 0.40/0.45 (lead time at 120 min) in the nowcasting results, and the RMSE (MAE) increased

:::::::
increases

:
from approximately 2.5 (1.7) m/s for the first lead time to 5.1 (3.7) m/s for the last lead time. The case of ASWS >

10.8 m/s (Figure 4b and 4e) is similar to that of ASWS > 8.0 m/s; its prediction quality
::
the

:::::::::
prediction

::::::
quality

::
of

::::
both

:::::::
models

gradually decreases as the lead time increases, but the performance is
:::::::::::
performances

:::
are

:
degraded compared to that with a250

threshold of 8.0 m/s. The CGsNet results for different nowcasting lead times of ASWS at thresholds of 8.0 m/s, 10.8 m/s, and

13.9 m/s.

In addition, the evaluation curves are depicted with respect to different nowcasting lead times at the 13.9 m/s threshold
:::::
Figure

:
4. The results are similar to the ASWS at the other two thresholds.

:
It

::
is

::::
also

::::
clear

:::
that

:::::::
CGsNet

::::::
always

::::
has

:::
the

::::::::::
performance

:::
on

:::
CSI

::::
and

::::
HSS

:::
for

::
all

:::::
steps.

:
In the first 12 minutes, the performance of CGsNet decreased

::::::::
decreases

:
rapidly and then gradually255

decreased slowly.
:::::::
decreases

::::::
slowly.

::::
For

::::::::
PhyDNet,

::::
there

::
is
::
a

::::
slow

::::::
decline

::
in

::::
both

::::
CSI

:::
and

::::
HSS

::::::
during

:::
the

:::
0-2

::::
hour

::::::::::
forecasting

::::::
period.

:
It
::

is
::::::

worth
:::::
noting

::::
that

:::
the

::::::::::
nowcasting

::::::::::
performance

:::
of

::::::::
PhyDNet

::
is

:::::
close

::
to

:::::::
CGsNet

::::
after

::::
108

::::
min,

:::
but

:::
on

:::
the

::::::
whole,

::::::
CGsNet

::::
with

:::
the

:::::::::
additional

:::::::
attention

::::::::::
mechanisms

::
is

:::::
better

::::
than

:::
that

::
of

:::::::::
PhyDNet. Although the performance

::
of

:::::::
CGsNet is worse

than that with the other two thresholds, CGsNet
:
it
:
still exhibits forecasting skill within 2 h. Overall, the above results confirm
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the effectiveness of the developed CGsNet model
:::::::
attention

:::::::::
mechanism, which is skillful

:::::::
potential

:
for nowcasting ASWS in260

CGs events.
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Figure 4.
:::
The

::::::
CGsNet

:::
and

:::::::
PhyDNet

:::::
results

:::
for

::::::
different

:::::::::
nowcasting

:::
lead

::::
times

::
of
::::::
ASWS

:
at
::::::::
thresholds

::
of

:::
8.0

:::
m/s,

::::
10.8

:::
m/s,

:::
and

:::
13.9

:::::::
m/s.The

:::::
shaded

::::
pink

:::
and

::::
green

::::
areas

:::::::
represent

:::
the

::::
95%

::::::::
confidence

:::::::
intervals

::
of

::
the

::::::
CGsNet

::::
and

:::::::
PhyDNet

::::::
indices,

:::::::::
respectively.

4.2 Case study of ASWS nowcasting

To further prove the usefulness of CGsNet in detail, we show examples in two meteorologically important weather cases

produced by CGsNet
:::
and

::::::::
PhyDNet. The first case occurred on April 30, 2021, when eastern China was affected by cold air

due to the influence of the Northeast Cold Vortex in China
:::::::
northeast

::::::
China

::::
cold

:::::
vortex. This cold air accompanied by the cold265

vortex moved eastward and southward, intersecting with some warm and humid air currents in eastern China. Then, the areas

along the Yangtze River and north of Jiangsu suffered from SCW, including sudden CGs and hail. Because of the small scale

and rapid development of these CGs, numerical models usually cannot forecast this process accurately.

Specifically, hail and large-scale thunderstorms occurred from 18:00 to 22:00 (BJT) in parts of Nantong, Jiangsu, with a

maximum wind speed of up to 47.9 m/s in some areas. Figure 5 shows the in situ observations and forecasted ASWS during270

this period. The CGs developed strongly at 20:12, and the ASWS exceeded 17.2 m/s in some areas. Then, the ASWS gradually

decreased after 20:12 for 120 minutes. It is clear that the CGsNet model has good forecasting skill
:::::
better

::::::::::
forecasting

::::
skill

:::
than

::::::::
PhyDNet

:::::::
(Figure

::
5). CGsNet accurately forecasts the position of the CGs and their weakening trend . In particular, the

CGsNet model can preserve the strong gust regions (ASWS>10.8 m/s) (Figure 5). The reason for this is that CGsNet employs

attention schemes, which better model the short-term and long-term dependency of wind gusts
:::::::::
weakening

:::::
trend

::
of

:::
the

:::::
CGs,275

::::
while

::::::::
PhyDNet

:::::
tends

::
to

:::::::::::
overestimate

::
the

::::::::::
weakening

::::
trend

::
of

::::
CGs. Additionally, the observed strong gusts continuously moved

to the southeast as the lead time continued. CGsNet forecasted
:::::::
forecasts

:
this phenomenon precisely, although in the later stage,

the locations of the forecasted strong gusts were
::
are

:
not exactly the same as in the observations.

:::::::::
Specifically,

::::
the

:::::::
CGsNet

:::::
model

::::::::
struggles

::
to

:::::::::
accurately

:::::::
forecast

::::::
regions

::::
with

::::::
strong

::::
gusts

:::::::
(ASWS

::
>
::::
10.8

::::
m/s)

::::
and

::::::::
produced

::::::::
nowcasts

:::
that

:::
are

:::::::
slightly

12



::::::::
northward

:::::::::::::
(approximately

:::
50

::::
km)

::
of

:::
the

::::::::
observed

::::::::
locations.

:::::::::::
Additionally,

::
in

:::::::
regions

::::
with

::::::
strong

::::
gusts

:::::::
(ASWS

::
>

::::
10.8

:::::
m/s),280

::::
both

:::::::
CGsNet

:::
and

::::::::
PhyDNet

::::::::::::
underestimate

::::
the

::::::
ASWS

::::::
values,

::::
with

:::::::::
PhyDNet

:::::::
showing

::
a

:::::
larger

::::::::::::::
underestimation.

:::::
Some

:::::
false

::::::
reports

:::
are

:::
also

::::::
found

::::
from

::::
both

::::::
models

:::
in

:::
the

::::
areas

::::::
where

:::
8.0

:::
m/s

::
<
::::::
ASWS

::
<

::::
10.8

::::
m/s,

::::::::
indicating

::::
that

:::
the

::::::::
modeling

::::::
ability

::
of

:::::::
CGsNet

:
is
:::::::
limited.

:
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Figure 5. Observations (first row)and ,
:::::::

CGsNet forecasts (second row),
:::
and

::::::::
PhyDNet

::::::
forecasts

:::::
(third

::::
row) of ASWS in eastern China, 30

April 2021, 20:12-22:12 BJT. Note that forecasting started at 20:12, and the observations and forecasts are shown at intervals of 30 min.

The second case is also typical convection weather. It was influenced by the low-level shear lines and strengthened by

southwest warm and humid airflow on 15 May 2021. This process occurred in central and eastern Jiangsu, accompanied by285

heavy precipitation and strong gusts, causing serious economic losses. The observations and forecasts of ASWS for this case

are presented in Figure 6.

In the second case, CGs are produced with the development of the squall line in the Jiangsu area. The strong gust position

is linearly distributed, moving eastward from western Jiangsu to central Jiangsu between 13:00 and 15:00 (BJT). Figure 6

clearly shows that CGsNet has good forecasting skill for the moving trend due to the
:
in

::::
most

:::
of

::
the

::::::::::
forecasting

::::::
period,

:::::::
CGsNet290

::::::::::
outperforms

::::::::
PhyDNet

:::
due

:::
to

::
its

:
improved modeling capability. Additionally, the

:::
The

:
results demonstrate that CGsNet can

accurately forecast the ASWS values in most areas, although the strong gust values are slightly smaller than the observations in

some areas.
:::
For

::::::::
PhyDNet,

::
it

:::::
shows

::
a
::::
more

::::::::::
pronounced

::::::::::::::
underestimation

::
of

::::::
ASWS

::::::
values

::::::::
compared

::
to

::::::::
CGsNet.

:::::::::::
Furthermore,

:
it
::
is

:::::
worth

::::::
noting

::::
that

::
in

:::
the

::::
later

:::::
stages

:::
of

::::::::
prediction

:::::
(e.g.,

::::
lead

::::
time

::
at

::::
120

::::
min),

:::
the

:::::::::
forecasted

::::
CGs

::::::::
positions

:::
by

::::::::
PhyDNet
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::
are

::::::
closer

::
to

:::
the

:::::::::::
observations.

:
Similar results can also be found in the RMOS forecasts (Figure A1 and A2

::
S1

::::
and

::
S2

:::
in

:::
the295

::::::::::
Supplement), which are the other output variables of CGsNet. This further confirms

::::::
Overall,

:::
the

::::::
results

::::::
further

:::::::
confirm

:
that

CGsNet is effective and accurate for ASWS nowcasting. Based on the reliable ASWS forecasts, nowcasting on the PWGS of

CGs may be conducted.
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Figure 6. Same as Figure 5, but for 15 May 2021, 13:00-15:00 BJT.

4.3 Peak wind gusts speed nowcasting

ASWS reflects the average speed of CGs, which is not sufficient to determine the actual impact of CGs. The maximum300

momentary wind speed (e.g., PWGS) can reflect the actual peaks of CGs and is the key factor for the assessment and analysis

of weather hazards. Thus, this section focuses on evaluating the reliability and accuracy of CGsNet on nowcasting PWGS.

4.3.1 Gust factor

The gust factor (GF) is the ratio of the wind gust to the wind speed (Harris and Kahl, 2017), and it plays an important role

in wind conversion, the practice of converting between average wind speeds over different time periods (Harper et al., 2010).305

Kahl et al. (2021) showed that gust factors associated with strong winds (>7.65 m/s) were approximately 1.5 in the NW
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and NNW sectors of Rapid City, South Dakota, and ranged from 1.61 to 2.31 on different directionals at Waukegan. This

directional variation in the GF was largely due to the site-specific heterogeneity in surface roughness (Suomi et al., 2013).

Harris and Kahl (2017) investigated the GF in Milwaukee, Wisconsin, using Automated Surface Observation System (ASOS)

wind measurements from 2007 to 2014 and calculated a mean GF of 1.74. Similarly, we determined the GF using the measured310

wind data, i.e., ASWS and PWGS observations. Here, we do not consider the direction due to the relatively flat terrain in

eastern China; instead, the average GF is explored.

We take the observed maximum ASWS within an hour as the hourly maximum ASWS to match the temporal resolution of

the PWGS because the observed PWGS was reported for each hour at all sites in eastern China. Then, the GF is calculated as:

GF =
PWGS

hourly maximum ASWS
(13)315

According to the above formula, the observed wind data from April to September 2021, including 32015 stations data, were

used to calculate the GF. The corresponding scatter plots of the hourly maximum ASWS and PWGS can be found in Figure

A3
:::
the

::::::::::
Supplement

::::::
(Figure

::::
S3). As a result, we found a GF of 1.77.

4.3.2 Model performance on PWGS nowcasting

Utilizing the calculated GF, we first estimated the 0-2 h PWGS nowcasts by multiplying the GF by the ASWS nowcasts from320

CGsNet. Then, the PWGS nowcasts were comapared
::::::::
compared

:
with INCA results to demonstrate the accuracy of CGsNet

model and confirm the justifiability of the GF. Note that the results are in one-hour forecasts because the in situ PWGS

observations and INCA results are reported for each hour.

The overall evaluation results,
:::::
along

::::
with

::::
95%

::::::::::
confidence

::::::::
intervals, of CGsNet and INCA on PWGS nowcasting are given

in Table 3. The results reveal that CGsNet significantly outperforms INCA on our testing dataset, and it achieved outstand-325

ing performance of all criteria. Moreover, as the threshold increases, the superiority of CGsNet becomes more and more

obviously
::::::
obvious, e.g, for the PWGS thresholds is

:::::::
threshold

::
of

:
17.2 m/s, CGsNet still keep a decent modeling capability (CSI

=0.15
:::::
(95%

:::
CI:

::::
0.09;

:::::
0.19), POD=0.25

::::
(95%

:::
CI:

:::::
0.15;

::::
0.34)), which is much higher than INCA (CSI =0.03

::::
(95%

:::
CI:

:::::
0.01;

::::
0.05), POD=0.07

:::::
(95%

:::
CI:

::::
0.03;

:::::
0.12)).

For a more detailed comparison, the the PWGS results from CGsNet and INCA for 0-2 h nowcasting lead times at different330

thresholds are showed
:::::
shown

:
in Table 4. At the lead time of 0-1 h, the CSI and POD of CGsNet always keep top positions at dif-

ferent thresholds. Meanwhile, the BIAS and
:::
The

:
FAR of CGsNet are

:
is
:
also lower than those

:::
that of INCA. Besides

::::::::::
Meanwhile,

:::::
except

:::
for

:::
the

::::::::
threshold

::
of

::::
20.8

::::
m/s,

::::::
CGsNet

::::::::::
consistently

:::::::
exhibits

:::::
better

:::::
BIAS

::::
than

::::::
INCA.

::::::::::
Additionally, the quality of CGsNet

and INCA both degraded with the forecasting time increasing. Specifically, the performance of CGsNet still keep a forecasting

skill at the lead time of 1-2 h, while INCA is similar to the first hour, it is lack of skill, the CSI at all thresholds are
::
is lower335

than 0.1. It
::::::::
Compared

:::
to

::::
other

::::::::::
thresholds,

::::::
INCA’s

:::::::::::
performance

::
is

::::::
closest

::
to
:::::::::

CGsNet’s
:::::
when

:::
the

::::::::
threshold

::
is

:::
set

::
to

::::::::
20.8m/s.

::::::::::
Additionally,

::
it’s worth noting that the POD of INCA at the threshold of 10.8 m/s is a little larger than the CGsNet (0.29

:::::
(95%

:::
CI:

::::
0.21;

:::::
0.37) vs. 0.28

::::
(95%

:::
CI:

:::::
0.16;

:::::
0.41)) at the lead time of 1-2 h. This is due to the high false alarm ratio of INCA, thus,
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Table 3. Quantitative results of CGsNet and INCA on PWGS nowcasting
:::
with

::::
95%

::::::::
confidence

:::::::
intervals

::
(in

::::::::
brackets).

::::
Note

:::
that

:::
the

:::::
values

:
in
:::
the

::::
first

::::
row

:
of
::::

each
:::::
metric

:::::::
represent

:::::::
CGsNet

:::::
results,

:::::
while

::
the

::::::
second

:::
row

::
is

::::
INCA

::::::
results.

::::::::
Evaluation

::::::
Metrics

:::
10.8

:::
m/s

:::
13.9

:::
m/s

:::
17.2

:::
m/s

::::
20.8

:::
m/s

PWGS threshold (m/s) 10.8 13.9 17.2 20.8 10.8 13.9 17.2 20.8
CSI

10.8
:::
0.27

:::::
(0.25;

::::
0.28) 13.9

:::
0.22

:::::
(0.18;

::::
0.26) 17.2

:::
0.15

:::::
(0.09;

::::
0.19) 20.8

:::
0.06

:::::
(0.02;

::::
0.08)

:

10.8
:::
0.11

:::::
(0.09;

::::
0.12) 13.9

:::
0.06

:::::
(0.03;

::::
0.08) 17.2

:::
0.03

:::::
(0.01;

::::
0.05) 20.8

:::
0.02

:::::
(0.00;

::::
0.03)

CGsNet 0.27 0.22 0.15 0.06
POD

0.35
::::
(0.32;

::::
0.36) 0.31

::::
(0.26;

::::
0.37) 0.25

::::
(0.15;

::::
0.34) 0.12 0.63 0.73 0.94 1.21 0.45 0.57 0.73 0.90

::::
(0.04;

:::::
0.18)

INCA 0.11
:::
0.30

:::::
(0.28;

::::
0.32) 0.06

:::
0.13

:::::
(0.09;

::::
0.18)

:::
0.07

:
(0.03

:
;
::::
0.12) 0.02

:::
0.04

:::::
(0.01;

::::
0.07)

:

BIAS
0.30

:::
0.63

:::::
(0.61;

::::
0.65) 0.13

:::
0.73

:::::
(0.68;

::::
0.78) 0.07

:::
0.94

:::::
(0.76;

::::
1.13) 0.04

:::
1.21

:::::
(0.96;

::::
1.54)

:

2.07
::::
(1.88;

::::
2.42) 1.51

::::
(1.44;

::::
1.68) 1.27

::::
(1.21;

::::
1.37) 1.14 (

::::
1.07;

:::::
1.30)

FAR :::
0.45

:::::
(0.44;

::::
0.46)

:::
0.57

:::::
(0.52;

::::
0.62)

:::
0.73

:::::
(0.69;

::::
0.80)

::::
0.90

::::
(0.87;

::::
0.96)

:

0.85
::::
(0.83;

::::
0.88) 0.91

::::
(0.87;

::::
0.95) 0.94

::::
(0.91;

::::
0.99) 0.96

::::
(0.94;

::::
1.00)

:

it has the high FAR and BIAS. Overall, the results indicate that the developed CGsNet is helpful to improve the accuracy of

CGs nowcasting and more skillful than INCA.340

:::
The

::::::
PWGS

::::::::
forecasts

:::
for

:::::::
different

:::::
hours

::
of

::
a

:::
day

:::
and

:::::::
months

::
of

:
a
::::
year

:::
are

::::::
further

:::::::::
calculated

::
to

:::::::
evaluate

:::
the

:::::::::::
performance

::
of

:::::::
CGsNet.

:::
The

:::::::::
evaluation

::::::
results

::
for

::::
CSI

:::
are

::::::::
presented

::::
here.

::::
The

:::::
results

:::
for

:::::
POD,

:::::
BIAS,

::::
and

::::
FAR

:::
can

::
be

:::::
found

::
in

:::
the

::::::::::
supplement

::::::
(Figure

::::::
S4-S9).

::::::
Figure

::
7

:::::::
displays

:::
the

:::
CSI

::::::
results

::
of

::::::
PWGS

::::::::
forecasts

:::::
from

:::::::
CGsNet

:::
and

:::::
INCA

::
at
::::::::
different

:::::
hours

::
of

:
a
::::
day.

::::
The

::::::
PWGS

:::::::
samples

::::
were

::::::
mainly

:::::::
obtained

::::::
during

:::
the

::::::::
afternoon

::::
and

::::
night

:::::::
periods,

::
as

::::
CGs

::::::
events

::::
tend

::
to

:::::
occur

::::::
during

::::
these

::::::
times,

:::::::::
particularly

:::
in

:::
the

:::
late

:::::::::
afternoon

:::
and

:::::::
evening

:::::::::::::::::::::
(Firouzabadi et al., 2019)

:
.
::::
The

::::::
results

::::::::::
demonstrate

::::
that

:::::::
CGsNet

:::::::::::
outperforms345

:::::
INCA

::
in

:::::::::
forecasting

:::::::
PWGS

::
at

:::::::
different

:::::::::
thresholds,

::::
with

::::::
overall

::::::::
superior

::::::
forecast

::::::::::::
performance.

::::::::
However,

:::
the

::::::::::
performance

:::
of

::::
both

::::::
models

:::::::
declines

::
as

:::
the

::::::
PWGS

::::::::
threshold

::::::::
increases.

:::::::
Despite

::::::::
CGsNet’s

:::::::::
superiority,

:::
its

::::::::::
performance

::
is

:::
less

:::::
stable

::::
than

::::::
INCA

:::::
across

::::::::
different

:::::
hours,

:::::::::
exhibiting

:::::::::
significant

:::::::::
variability.

::::
For

:::::::
example,

:::
at

:::::
21:00

::::::
(BJT),

:::
the

:::::::::::
performance

::
of

:::::::
CGsNet

::::::::
declines,

:::
and

::::
even

:::::
when

::::::
PWGS

::
>

::::
10.8

::::
m/s,

::
its

:::::::::::
performance

::::
(CSI

::::
and

:::::
POD)

::
is

:::::
worse

::::
than

::::::
INCA.

::
At

::::::
PWGS

::
>
::::::::
17.2m/s,

:::
the

:::::::::
confidence

:::::::
intervals

::
of

:::::::
CGsNet

:::
and

:::::
INCA

:::
are

::::
both

:::::
wide,

:::::
while

::::
some

::::
CSI

:::
and

::::
POD

::::::
values

::
of

:::::
INCA

:::
fall

::::::
outside

:::
the

:::::::::
confidence

:::::::
intervals

::::
and350

::::::
exhibit

:::::
almost

:::
no

:::::::::::
predictability

:::
for

::::
CGs

::::::
during

::::::::::
20:00-24:00

:::::
(BJT)

:::::::
(CSI=0,

::::::::
POD=0).

:::::::::::
Additionally,

:::::
when

:::
the

::::::
PWGS

::::::::
threshold

:
is
::::
20.8

::::
m/s,

::::::
neither

:::::::
CGsNet

::::
nor

:::::
INCA

::
is

::::::
skillful

:::
for

::::
CGs

::::::::::
nowcasting

:::::::
between

:::::
20:00

::::
and

:::::
24:00

:::::
(BJT),

::::
with

:::::::
CGsNet

::::::::
showing

:
a
::::::
higher

::::
FAR

::::
than

:::::
INCA

:::::::
(Figure

::::
S6).

:::::
These

::::
may

::
be

:::::::::
attributed

::
to

:::
the

:::
fact

::::
that

:::::
strong

:::::
gusts

:::::
occur

::::
less

::::::::
frequently

::::::
during

:::::
these

:::::
times,

:::::::
resulting

::
in
:::::
fewer

:::::::::
high-value

::::::
PWGS

:::::::
samples

::::
and

::::::::::
highlighting

:::
the

:::::::::
imbalance

::
of

::::
wind

:::::
data.

:::
The

::::
CSI

::::::
results

:::
for

:::
the

::::::
PWGS

::::::::
forecasts

:::
of

:::::::
CGsNet

:::
and

::::::
INCA

::
in

::::::::
different

::::::
months

:::
of

:
a
::::

year
::::

are
::::::::
illustrated

:::
in

::::::
Figure

::
8.355

::
At

:::::::
different

:::::::
PWGS

:::::::::
thresholds,

:::::::
CGsNet

::::::::::
outperform

:::::
INCA

::
in

:::::
terms

:::
of

:::
CSI

::::
and

:::::
POD

:::
for

::::::
PWGS

:::::::
forecasts

:::::
from

::::
May

::
to
:::::

July,

::::
while

:::::
FAR

::
is

:::::
lower

::::
than

::::::
INCA.

::::::::
However,

:::::
there

:::
are

::::
large

::::::::::
confidence

:::::::
intervals

::
in

:::
the

:::::::::
calculated

:::::::::
evaluation

::::::
metrics

:::
at

::::::
PWGS

::::::::
thresholds

:::
of

::::
17.2

:::
m/s

::::
and

::::
20.8

::::
m/s

:::
due

:::
to

:::
the

:::
low

:::::::
number

:::
of

:::::
strong

:::::
gusts

::::::::
samples,

::::::
leading

:::
to

::::::::::
uncertainty.

:::::::::
Moreover,

:::
for

::::::
PWGS

:
>
::::::::
20.8m/s,

::::
both

:::::::
CGsNet

:::
and

::::::
INCA

::::::
exhibit

::::::
almost

::
no

::::::::::::
predictability

::
for

:::::
May

:::
and

::::
June

::::::
PWGS

:::::::::
forecasts.

:::::::::::
Additionally,
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Figure 7.
:::
The

::::
CSI

:::::
results

::
of

:::::
PWGS

:::::::
forecasts

::::
from

::::::
CGsNet

:::
and

:::::
INCA

:::
for

:::::::
different

::::
hours

::
of

:
a
:::
day

::
at
::::::::
thresholds

::
of

::::
10.8

:::
m/s,

::::
13.9

:::
m/s

::::
17.2

:::
m/s,

:::
and

::::
20.8

::::::
m/s.The

:::::
shaded

::::
pink

:::
and

:::::
purple

::::
areas

:::::::
represent

:::
the

::::
95%

::::::::
confidence

:::::::
intervals

::
of

::
the

:::::::
CGsNet

:::
and

::::
INCA

::::::
indices,

::::::::::
respectively.

1 2 3 4 5 6 7 8 9 10 11 12
Month

0.10

0.15

0.20

0.25

0.30

0.35

C
SI

> 10.8 m/s
CGsNet
INCA

1 2 3 4 5 6 7 8 9 10 11 12
Month

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
SI

> 13.9 m/s

1 2 3 4 5 6 7 8 9 10 11 12
Month

0.00

0.05

0.10

0.15

0.20

0.25

C
SI

> 17.2 m/s

1 2 3 4 5 6 7 8 9 10 11 12
Month

0.00

0.05

0.10

0.15

0.20

C
SI

> 20.8 m/s

Figure 8.
:::
The

:::
CSI

:::::
results

::
of
::::::
PWGS

:::::::
forecasts

:::
from

:::::::
CGsNet

:::
and

:::::
INCA

::
for

:::::::
different

:::::
months

::
of
::
a

:::
year

::
at

::::::::
thresholds

::
of

:::
10.8

::::
m/s,

:::
13.9

:::
m/s

::::
17.2

:::
m/s,

:::
and

::::
20.8

::::::
m/s.The

:::::
shaded

::::
pink

:::
and

:::::
purple

::::
areas

:::::::
represent

:::
the

::::
95%

::::::::
confidence

:::::::
intervals

::
of

::
the

:::::::
CGsNet

:::
and

::::
INCA

::::::
indices,

::::::::::
respectively.
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Table 4. The PWGS evaluation results from CGsNet and INCA for different nowcasting lead times at thresholds of 10.8 m/s, 13.9 m/s, 17.2

m/s and 20.8 m/s.
::::
Note

:::
that

::
the

:::::
values

::
in

:::
the

::::::
brackets

:::::::
represent

::::
95%

::::::::
confidence

:::::::
intervals,

:::
and

:::::
values

::
in

:::
the

:::
first

:::
row

::
of

::::
each

:::::
metric

:::::::
represent

::::::
CGsNet

:::::
results

:::
and

:::
the

:::::
second

:::
row

::
is

:::::
INCA

:::::
results.

Lead time of 0-1 h

::::::::
Evaluation

::::::
Metrics

:::
10.8

:::
m/s

:::
13.9

:::
m/s

:::
17.2

:::
m/s

::::
20.8

:::
m/s

PWGS threshold (m/s) 10.8 13.9 17.2 20.8 10.8 13.9 17.2 20.8
CSI

10.8
:::
0.31

:::::
(0.23;

::::
0.40) 13.9

:::
0.26

:::::
(0.16;

::::
0.34) 17.2

:::
0.17

::::
(0.10;

:::::
0.24) 20.8

:::
0.06

:::::
(0.02;

::::
0.09)

:

10.8
:::
0.13

:::::
(0.10;

::::
0.16) 13.9

:::
0.06

:::::
(0.03;

::::
0.09) 17.2

:::
0.04

::::
(0.01;

:::::
0.06) 20.8

:::
0.02

:::::
(0.01;

::::
0.04)

CGsNet 0.31 0.26 0.17 0.06
POD

0.40
::::
(0.28;

::::
0.52) 0.37

::::
(0.24;

::::
0.49) 0.28

:::::
(0.15;

::::
0.41) 0.14 0.69 0.79 0.99 1.43 0.42 0.53 0.71 0.90

::::
(0.05;

:::::
0.26)

INCA 0.13
:::
0.31

:::::
(0.23;

::::
0.37)

:::
0.13

:
(0.06

:
;
::::
0.19) 0.04

:::
0.07

:
(0.020.31 ;

:
0.13)

: ::::
0.03

::::
(0.01;

:
0.07)

:

BIAS
0.03

:::
0.69

:::::
(0.50;

::::
0.89)

:::
0.79

:::::
(0.56;

::::
0.99)

:::
0.99

:::::
(0.59;

::::
1.36)

::::
1.43

::::
(0.69;

::::
2.36)

:

1.74
::::
(1.37;

::::
2.25) 1.30

::::
(0.89;

::::
1.78) 1.10

:::::
(0.56;

::::
1.83) 1.00

::::
(0.33;

::::
1.93)

:

FAR :::
0.42

:::::
(0.34;

::::
0.52)

:::
0.53

:::::
(0.45;

::::
0.64)

:::
0.71

:::::
(0.63;

::::
0.83)

::::
0.90

::::
(0.86;

::::
0.96)

:

0.82
::::
(0.78;

::::
0.87) 0.90

::::
(0.83;

::::
0.96) 0.93

:::::
(0.86;

::::
0.98) 0.97

::::
(0.94;

::::
1.00)

:

Lead time of 1-2 h

::::::::
Evaluation

::::::
Metrics

:::
10.8

:::
m/s

:::
13.9

:::
m/s

:::
17.2

:::
m/s

::::
20.8

:::
m/s

PWGS threshold (m/s) 10.8 13.9 17.2 20.8 10.8 13.9 17.2 20.8
CSI

10.8
:::
0.22

:::::
(0.13;

::::
0.31) 13.9

:::
0.18

:::::
(0.09;

::::
0.26) 17.2

:::
0.13

::::
(0.04;

:::::
0.20) 20.8

:::
0.05

:::::
(0.01;

::::
0.09)

:

10.8
:::
0.09

:::::
(0.06;

::::
0.12) 13.9

:::
0.05

:::::
(0.02;

::::
0.08) 17.2

:::
0.03

::::
(0.00;

:::::
0.06) 20.8

:::
0.02

:::::
(0.00;

::::
0.04)

CGsNet 0.22 0.18 0.13 0.05
POD

0.28
::::
(0.16;

::::
0.41) 0.26

::::
(0.12;

::::
0.39) 0.21

:::::
(0.06;

::::
0.36) 0.09 0.56 0.66 0.88 0.98 0.49 0.61 0.76 0.91

::::
(0.01;

:::::
0.19)

INCA 0.09 0.05 0.03 0.02 0.29
::::
(0.21;

::::
0.37) 0.14

::::
(0.06;

::::
0.22) 0.07

:::::
(0.01;

::::
0.12) 0.05

::::
(0.00;

::::
0.10)

:

BIAS :::
0.56

:::::
(0.35;

::::
0.77)

:::
0.66

:::::
(0.41;

::::
0.89)

:::
0.88

:::::
(0.47;

::::
1.26)

::::
0.98

::::
(0.36;

::::
1.72)

:

2.43
::::
(1.82;

::::
3.36) 1.73

::::
(1.18;

::::
2.46) 1.45

:::::
(0.81;

::::
2.23) 1.29

::::
(0.60;

::::
2.20)

:

FAR :::
0.49

:::::
(0.39;

::::
0.61)

:::
0.61

:::::
(0.52;

::::
0.75)

:::
0.76

:::::
(0.66;

::::
0.90)

::::
0.91

::::
(0.83;

::::
1.00)

:

0.88
::::
(0.84;

::::
0.92) 0.92

::::
(0.86;

::::
0.97) 0.95

:::::
(0.87;

::::
1.00) 0.96

::::
(0.87;

::::
1.00)

:

::::::::
CGsNet’s

:::::::
forecast

::::::::::
performance

::::::::
generally

::::::::
improves

::::
with

:::::::::
increasing

:::::::
months,

:::::
while

:::::
INCA

:::::::
exhibits

:
a
:::::::::
fluctuation

::
in
:::::
June

::::::
PWGS360

:::::::::
forecasting

:::
and

::::::
overall

:::::
better

:::::::::::
performance

::
in

::::
July

::::::
PWGS

:::::::::
forecasting

:::::::::
compared

::
to

::::
May

::::::
PWGS

::::::::::
forecasting.

::
To

:::::
better

::::::::::
understand

:::
the

:::::::::::
performance

::
of

:::
the

::::::
model,

:::
we

:::::::::
evaluated

:::
the

:::::::::
forecasting

:::::::::::
performance

::
of

::::::::
CGsNet

:::
and

::::::
INCA

:::
for

::::::
PWGS

:::::
using

::::::
various

:::::::
metrics

::::::
across

:::::::
different

::::::::::
geographic

::::::::
locations

::::::
within

:::
the

:::::
study

::::
area.

::::::
Figure

::
9
:::::::
displays

::::
the

::::::
results

:::
for

::::
CSI,

:::::
while

:::
the

::::::
results

:::
for

:::::
POD,

::::::
BIAS,

::::
and

::::
FAR

:::
are

::::::::
provided

::
in

::::::
Figure

::::::::
S10-S12

::
in

:::
the

:::::::::::
supplement.

:::::::
CGsNet

:::::
shows

::::::
better

::::::::::
performance

::::
than

:::::
INCA

:::
in

:::::::::
forecasting

::::::
PWGS

::
at

:::::::
different

::::::::::
thresholds.

::
As

:::
the

::::::::
threshold

:::::::::
increases,

:::
the

:::::::::
forecasting

:::::::::::
performance365

::
of

:::::::
CGsNet

::::::::
decreases.

::::
This

::::
may

:::
be

:::
due

::
to

::::
two

:::::::
reasons.

::::::
Firstly,

::::
there

::
is
::
a

::::::::
reduction

::
in

:::
the

::::::
number

::
of
::::::::

observed
::::::
PWGS

::::::::
samples,

::
as

:::::
some

::::
areas

:::
do

::::
not

:::::::::
experience

::::
CGs

::::::
events,

::::::::
resulting

::
in
:::

an
:::::::::
evaluation

:::::
value

::
of
::

0
:::
for

:::::
those

::::::
areas.

::::::::
Secondly,

:::::::
CGsNet

::::
has

:::::::::
limitations

::
in

::
its

::::::::::
forecasting

::::::
ability,

::::::::::
particularly

:::
for

:::::::
extreme

::::::
PWGS

::::::
(>20.8

::::
m/s),

::::::
which

::
is

::::::
mainly

:::::
owing

:::
to

:::
the

::::::::
imbalance

:::
of

:::::::
observed

::::::
strong

:::
and

:::::
weak

:::::
wind

::::
data.

::::::::::
Specifically,

:::
for

:::
the

::::::
PWGS

:::::::::
thresholds

:::
are

::
at
::::
10.8

::::
m/s

:::
and

::::
13.9

::::
m/s,

:::::::
CGsNet

:::::::
exhibits

::
a

:::::::::
outstanding

::::::
ability

::
to

:::::::
forecast

::::::
PWGS

:::
for

::::::
diverse

::::::
regions

::
in

:::::::
Jiangsu

:::::::::
(excluding

:::
the

::::
edge

::::::
areas),

::::
with

::::
most

:::::
areas

::::::::
achieving

::::
CSI370
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Figure 9.
:::
The

::::
CSI

:::::
results

::
of

:::::
PWGS

:::::::
forecasts

::::
from

::::::
CGsNet

:::
and

:::::
INCA

:::
for

:::::::
different

::::
areas

::
at

::::::::
thresholds

:
of
::::

10.8
::::
m/s,

:::
13.9

:::
m/s

::::
17.2

::::
m/s,

:::
and

:::
20.8

::::
m/s.

:::
and

::::
POD

::::::
values

:::::
above

::::
0.8.

::::::::::
Conversely,

:::::::
INCA’s

:::::::::
forecasting

:::::::::::
performance

::
is

::::
poor

:::
for

::::
most

::::::
areas,

::::
with

::::::::
relatively

:::::
better

::::::
results

::
in

:::
the

::::::::
southwest

::
of

:::::::
Jiangsu.

::::::::
However,

:::::
even

::
in

::::
these

:::::::
regions,

:::::::
INCA’s

::::::::::
performance

::
is
::::
still

::::::
inferior

::
to
::::
that

::
of

::::::::
CGsNet.

::::::::
Although

:::::
INCA

::::::::::
outperforms

:::::::
CGsNet

::
in

:::::
terms

::
of

:::
CSI

:::
and

:::::
POD

::::::::
evaluation

::::::
results

:::
for

:
a
::::::
PWGS

::::::::
threshold

::
of

::::
10.8

:::
m/s

::
in

:::
the

:::::
Anhui

::::::::
Province

::::::
region,

:::
but

:::::
INCA

:::::::
exhibits

::::
high

::::
FAR

:::
and

::::
poor

:::::
BIAS

::
in

:::
this

:::::
area.

:::
For

::::::
PWGS

:
>
::::
17.2

::::
m/s,

:::::::
CGsNet

:::::
shows

:::::
good

:::::::::
forecasting

::::::
results

::
in

::::::
central,

::::::::
northern,

::::
and

:::::::
southern

:::::::
Jiangsu,

:::::
while

::::::
INCA

::::
only

::::::::
performs

::::
well

::
in

::
a

:::
few

:::::::
stations

::
in

:::::::::::
southwestern

:::::::
Jiangsu.

::::::
When375

::::::
PWGS

:
>
::::
20.8

::::
m/s,

::::
both

:::::::
CGsNet

:::
and

::::::
INCA

::::::
exhibit

::::
poor

:::::::::
forecasting

::::
skill,

::::
and

::::
only

:
a
::::
few

::::::
stations

:::
can

:::
be

:::::::::
effectively

:::::::::
forecasted.

::::::::::
Additionally,

::::::::
CGsNet

:::
and

::::::
INCA

::::
show

:::::
poor

:::::::::
forecasting

:::::::::::
performance

::
in

:::::::
regions

::::::
outside

::
of

:::::::
Jiangsu,

::::
due

::
to

:::
the

:::::::::
dominance

:::
of

::::
CGs

::::::::
occurring

::
in

:::::::
Jiangsu

::
in

:::
the

::::::
PWGS

::::
test

::::::
dataset,

:::::
with

::::::
limited

:::::::
samples

::::
from

:::::::
outside

:::
the

:::::::
Jiangsu.

:::::::::
Obtaining

:::::
more

::::::
PWGS

::::::::
evaluation

:::::::
samples

::::::
outside

:::
of

::::::
Jiangsu

::
in

:::::
future

:::::::
studies

::::
could

:::::::
address

:::
this

:::::
issue.

:

:
A
::::::

scatter
::::

plot
:::

of
::::::::
observed

:::
and

:::::::::
forecasted

::::::
PWGS

:::
is

::::::::
presented

::
in

::::::
Figure

:::
10

:::
for

::::::
further

:::::::::::
comparison.

::::
The

::::::
results

:::::::
indicate380

:::
that

::::::::
although

:::::::
CGsNet

::::::
slightly

:::::::::::::
underestimates

:::::::
PWGS,

::
it

::::::::
performs

::::
well

:::
for

::::::
PWGS

::::::
values

:::
less

:::::
than

:::::
about

::
12

::::
m/s.

:::::::::
However,

::
its

:::::::::::
performance

::::::::
decreases,

::::
and

::
a

:::
bias

:::
in

::::::
PWGS

::::::::
forecasts

::
is

::::::::
observed

:::
for

::::::
PWGS

:::::
values

:::::::
greater

::::
than

::::::::::::
approximately

:::
12

::::
m/s.

::
In

:::::::
contrast,

::::::
INCA

:::
has

::
a
:::::::
obvious

::::::::::::
overestimation

:::
for

:::::::
PWGS

:
<
:::

12
::::
m/s,

::::
and

:::
the

::::::
PWGS

::::::::
forecasts

:::::
have

:
a
:::::
large

::::::::
deviation,

::::
not

:::::::::::
corresponding

:::::
well

::
to

:::
the

:::::::::::
observations.

:::::::::::
Additionally,

:::
the

:::::::::::
performance

:::
of

:::::
INCA

:::
for

::::
high

:::::::
PWGS

:::::
values

::
is
::::

also
:::::

poor,
::::::
which

:
is
:::

of
::::
great

::::::::
concern.

::
In

:::::::::
summary,

:::
the

::::::
results

:::::::
indicate

:::
that

:::
the

:::::::::
developed

:::::::
CGsNet

::
is
:::::::

helpful
::
to

:::::::
improve

:::
the

::::::::
accuracy

::
of
:::::

CGs385

:::::::::
nowcasting

:::
and

:::::
more

::::::
skillful

::::
than

::::::
INCA,

::::::::
although

:
it
:::::
tends

::
to

::::::::::::
underestimate

:::::
strong

:::::
gusts.

:
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Figure 10.
:::::
Scatter

:::
plot

::
of
:::::::::

observation
:::
and

::::::::
forecasted

::::::
PWGS,

:::
(a)

::::::
CGsNet

:::::::
forecasts

::
vs.

:::::::::
observation,

:::
(b)

:::::
INCA

:::::::
forecasts

::
vs.

:::::::::
observation.

::::
The

:::::
density

:::::::::
distribution

:::::
curves

:::
are

::::::::
represented

:::
by

::
the

:::::
black

::::
lines.

4.3.3 Case study of PWGS nowcasting

To illustrate the perfromance of CGsNet more intuitively, the INCA forecasts in two instances are presented for comparison.

The first case is on June 23, 2022, short-term heavy precipitation and CGs occurred over a large area in Jiangsu Province

because of the influence of the Northeast Cold Vortex in China
::::::::
northeast

:::::
China

::::
cold

::::::
vortex. As shown in Figure 7

::
11, for the390

first nowcasting hour (19:00 BJT), the CGs were mainly located in central Jiangsu, and the PWGS at some sites exceeded 20.8

m/s. Then, the CGs moved to the southeast of Jiangsu from 19:00 to 20:00 (BJT), occurring in Nantong and surrounding areas,

and the PWGS gradually decreased. During this process, it is clear that CGsNet can effectively forecast the location of the

CGs, especially for the first hour of nowcasting (19:00 BJT). However, CGsNet underestimates the PWGS at some sites. INCA

does not accurately forecast the occurrence of CGs at 19:00 (BJT); the area in which PWGS > 17.2 m/s is too small, and the395

PWGS is also significantly underestimated. Besides, INCA failed to forecast the occurrence of CGs at 20:00 (BJT), and the

forecasted PWGS values were all below 17.2 m/s.

The performance of CGsNet and INCA at different PWGS thresholds for the case on on June 23, 2022 are shown in Figure

8
::
12. In particular, the PWGS at thresholds of

:::
8.0

:::
m/s,

:
10.8 m/s, 13.9 m/s and 17.2 m/s is compared because the PWGS is below

20.8 m/s over most of the study area at 20:00 (BJT). The performance of CGsNet and INCA both decrease as the threshold of400

PWGS increases, but CGsNet significantly outperforms INCA
::::
when

::::::
PWGS

::
at
:::::::::
thresholds

::
of

:::
8.0

::::
m/s,

::::
10.8

::::
m/s,

::::
13.9

::::
m/s. For

example, in the cases of PWGS > 10.8 m/s, CGsNet achieved
:::::::
achieves outstanding performance on the criteria, with a CSI of

0.34 , a POD of
::::
(95%

:::
CI:

:::::
0.27; 0.43, and a FAR of 0.38

:
)
:::
and

::
a
::::
POD

::
of

::::
0.43

:::::
(95%

:::
CI:

:::::
0.34;

::::
0.53), which are higher

:::::
better than

the corresponding INCA values (CSI=0.15
::::
(95%

:::
CI:

:::::
0.10;

::::
0.21), POD=0.26 , and FAR=0.73

:::::
(95%

:::
CI:

::::
0.18;

:::::
0.35)). It is worth

noting that the
::::::::::
noteworthy

:::
that

:::
the

:::::
POD

:::::
(0.49

:::::
(95%

:::
CI:

:::::
0.44;

:::::
0.55))

::
of

:::::::
CGsNet

::
is
:::::::

inferior
::
to

::::
that

::
of

::::::
INCA

:::::
(0.64

:::::
(95%

:::
CI:405

::::
0.59;

:::::
0.70))

::
at
:::

the
::::

8.0
:::
m/s

:::::::::
threshold.

::::
This

::::
may

::
be

:::::::
because

:::::::
CGsNet

:::
has

::::::
missed

::::::::::
forecasting

:::::
some

::::::
PWGS

::
>

:::
8.0

:::
m/s

:::
(as

::::::
shown

::
in

::
the

::::
east

::
of

:::::::
Jiangsu

:::::::
Province

::
in

::::::
Figure

::::
11),

:::::
while

:::::
INCA

:::
has

::::::
falsely

:::::::
detected

:::
the

::::::
PWGS

::
in

:::::
areas

:::::
where

::
it

:
is
:::::::
actually

::::
less

::::
than

:::
8.0

:::
m/s.

::::::
INCA

::::::::
predicted

:::::
large

::::
areas

::::
with

::::::
PWGS

::
>
:::
8.0

::::
m/s,

::::::
despite

:::::::
PWGS

:
<
:::
8.0

::::
m/s

::
or

:::
the

:::::::
absence

::
of

::::::
strong

:::::
gusts

::
in

:::::
many
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Figure 11. Observations and forecasts of PWGS in eastern China on June 23, 2022, 18:00-20:00 BJT. Note that the forecasting started at

18:00. The first column shows the observations at 19:00 BJT and 20:00 BJT. The last two columns show the PWGS forecasts obtained by

CGsNet and INCA.

::::::
regions,

:::::::
leading

::
to

:
a
::::
high

::::
FAR

::::
and

:::::
BIAS.

:::::::
Besides,

:::
the

:
BIAS of CGsNet (0.70 ) is

:::::
(95%

:::
CI:

::::
0.55;

::::::
0.86))

:
is
::::
also

:
worse than that

of INCA (0.97
:::::
(95%

:::
CI:

:::::
0.76;

::::::
0.1.22)) at a threshold of 10.8 m/s, which may be

::::::
possibly

:
because some areas with PWGS <410

10.8 m/s are mispredicted by INCA as PWGS > 10.8 m/s. In this condition, the BIAS of INCA is small
:::::
nearly

::::::
optimal, but the

performance on FAR and POD is poor. Again, the advantages of CGsNet become increasingly obvious with increasing PWGS

threshold (13.9 m/s and 17.2 m/s); in .
::
In
:
particular, for PWGS > 17.2 m/s, INCA is nearly unable to perform CGs nowcasting,

while CGsNet still shows nowcasting skill,
:::
but

:::
the

:::::::
forecast

::::::::::
uncertainties

::
of

::::
both

:::::::
models

::
are

::::::::
relatively

:::::
large.

::::
This

::
is

:::::::
because

:::
the

::::::
samples

:::
for

::::::
PWGS

:::::::::::
observations

::
at

::::
this

::::::::
threshold

:::
are

:::::
small,

:::::::
leading

::
to

::::
wide

:::::::::
confidence

::::::::
intervals

:::::::::
calculated

::
by

::::::::::::
bootstrapping415

::::::
method.

The other CGs case on 26 July 2022 was also selected to further verify the nowcasting ability of the CGsNet model. For this

case, with the movement and development derecho in eastern China, Jiangsu and northern Zhejiang were hit by SCW (i.e., CGs,

short-term heavy precipitation
:
, and tornadoes). Figure 9

::
13 shows the observed and forecasted PWGS. Specifically, central and

southern Jiangsu suffered from CGs during 14:00-16:00 (BJT), and there was PWGS > 28.5 m/s in some areas. From 15:00 to420

16:00 (BJT), the CGs gradually moved eastward with slight weakening. Compared with the observations, CGsNet was shown

to be accurate in capturing the location of the CGs, despite underestimating the PWGS, which was greater than 20.8 m/s. INCA

did not accurately forecast the area where the CGs would occur and underestimated the PWGS. In addition, neither CGsNet

nor INCA accurately forecasted the CGs that occurred in northern Zhejiang at 15:00 and 16:00 (BJT); the CGsNet forecasts

were weaker than the observations, while the INCA forecasts were in the wrong area. Overall, the
:::
The

:
results demonstrate that425

CGsNet is better than INCA and shows excellent performance in CGs nowcasting.
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Figure 12. Comparison results of CGsNet and INCA on PWGS at thresholds of 10.8 m/s, 13.9 m/s, and 17.2 m/s on June 23, 2022, 18:00-

20:00 BJT
:::::
(Black

::::
error

:::
bars

:::::::
represent

::::
95%

::::::::
confidence

:::::::
intervals).
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Figure 13. Same as Fig. 7
::
11, but for July 26, 2022, 14:00-16:00 BJT.
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In addition, Figure 10
::
14

:
shows the performance of CGsNet and INCA at different PWGS thresholds. Unlike the first case,

we evaluate the PWGS at a threshold of 20.8 m/s, since many sites have PWGS > 20.8 m/s in this case. The results indicate

that the CSI and POD of both methods show a general decrease with increasing thresholds, and the BIAS and FAR increase.

The CGsNet forecasts achieve better performance than those of INCA at all thresholds; e.g., the evaluated POD reaches 0.51430

::::
(95%

:::
CI:

:::::
0.38;

:::::
0.64) when the threshold is 17.2 m/s, which is 147.62% higher than that of INCA. Additionally, INCA has a

poor performance on CSI and FAR at each PWGS threshold, which is due to the large location deviation of the INCA forecasts

with respect to where CGs occurred. Again, the result illustrates
:
It

::
is

:::::
worth

::::::
noting

:::
that

:::::
when

:::
the

::::::::
threshold

:::
of

::::::
PWGS

::
is

::::
20.8

:::
m/s,

:::
the

:::::::::::
uncertainties

::
of

::::
CSI

::::
and

::::
POD

:::
are

::::
both

:::::
high,

::::::
similar

::
to

:::
the

::::::::
situation

:::::
when

:::
the

::::::::
threshold

::
of

::::::
PWGS

::
is

::::
17.2

::::
m/s

::
in

:::
the

:::
first

:::::
case.

::::::
Overall,

:::
the

::::::
results

::::::
further

::::::::
highlight the usefulness of the proposed CGsNet in CGs nowcasting. It also demonstrates435

the effectiveness of the GF.
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Figure 14. Same as Fig. 8
::
12, but for July 26, 2022, 14:00-16:00 BJT.

5 Discussion and conclusions

In this study, a physics-constrained deep learning model was proposed for CGs nowcasting. This model was established based

on the extended PhyDNet and is called CGsNet. Then, by using observed ASWS and RMOS datasets, CGsNet was trained

for CGs nowcasting in eastern China. CGsNet can produce ASWS nowcasts of 6-120 min with a temporal resolution of 6 min440

and a spatial resolution of 1 km. To estimate the PWGS forecasts, we multiplied the forecasted ASWS by the GF, which was

determined from the ratio of the historical observed ASWS to the PWGS. The PWGS forecasts had the same spatiotemporal

resolution as the ASWS forecasts. This is the first time that minute-level CGs nowcasting has been achieved for eastern China.
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Several metrics for evaluating the performance of CGsNet were analyzed, confirming the effectiveness of the CGsNet model

for ASWS and PWGS nowcasting. The
:::::
results

:::
of

:::
our

::::::::::
comparison

:::::::
between

:::
the

::::::
ASWS

::::::::
forecasts

::::::::
generated

::
by

:::::::
CGsNet

::::
and

:::
the445

:::::::
baseline

:::::::::
(PhyDNet)

:::::::
revealed

:::
the

:::::::::::
effectiveness

::
of

:::
the

:::::
newly

:::::::::
developed

::::::::
attention

:::::::
module.

:::
The

:
PWGS forecasts were also com-

pared with the INCA results, and the results demonstrated that the performance of CGsNet is better than that of INCA. CGsNet

can effectively forecast the location and evolution of CGs, and the PWGS forecasts are a good match with the observations. In

contrast, INCA does not accurately determine the locations and strengths of CGs, with low POD and CSI and high BIAS and

FAR. The superiority of the PWGS results also proves that the calculated GF is reliable.450

In addition to these achievements, there are some points requiring further discussion and investigation. For example, CGsNet

sometimes underestimates the intensity of ASWS and PWGS
::::::::
sometimes

::
is
:::::::::::::
underestimated

:::::::::
(especially

:::
for

::::::
strong

:::::
gusts,

::::
i.e.,

::::::::::
PWGS>20.8

::::
m/s)

::
or

:::::
there

:
is
:::::::::
sometimes

::
a
:::::
spatial

:::::
offset

:::::::
between

:::
the

:::::::::
forecasted

:::
and

::::::::
observed

:::::
strong

:::::
gusts, which may be caused

by several different factors. For ASWS forecasts, this may be due to the limited modeling ability of CGsNet; that is, the model

has not fully learned the nonlinear variation characteristics of CGs,
::::::

which
::::::
mainly

::::
due

::
to

:::
the

::::::
scarcity

:::
of

:::::
strong

:::::
gusts

::::
data. In455

addition, the input variables may be insufficient, and it is difficult to accurately forecast small-scale and nonstationary CGs

with only radar data and observed wind data. For PWGS forecasts, the error from ASWS and GF, and thus their combination,

leads to the deviation of the predicted PWGS.

Therefore, in future work, more meteorological factors related to CGs, such as the three-hour pressure change and relative

humidity, should be considered in CGs nowcasting.
:::
And

::::
the

:::::::::
imbalance

::
of

:::::::
samples

::
in

:::
the

:::::::
dataset

:::
can

:::
be

::::::
further

:::::::::
improved.460

The predictive ability of the model can then be improved to some extent by reforming the training dataset. In addition, a

more accurate GF should be calculated by using years of wind observations
::
or

:::::::::
computing

::::::::::::::::::::::::
site-specific/direction-specific

::::
GFs.

Although our experiments were performed in eastern China, the proposed CGs nowcasting technology can be generalized

to a wide range of areas. Besides, CGs nowcasting technology could also be applied to forecast other phenomena, such as

convection or hail, for which real-time-response models are crucially needed.465

Code availability. The source code and the used data are available at this repository https://doi.org/10.7910/DVN/PIZU7V.

Appendix A: appendix figures

Observations (first row) and forecasts (second row) of ROMS in eastern China, 30 April 2021, 20:12-22:12 BJT. Note that

forecasting started at 20:12, and the observations and forecasts are shown for every 30 min.

Same as Figure A1, but for 15 May 2021, 13:00-15:00 BJT.470

Scatter plot of the hourly maximum ASWS and PWGS. The red line represents the linear regression line for the GF.
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